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Abstract. Density-stratified and/or rotating fluids are very common in geophysical and astrophysical flows
and enable the propagation of respectively internal gravity waves and inertial waves. Their peculiar disper-
sion relation has the same mathematical form for both classes of waves and can lead to unexpected outcomes
through amplification, resonance or non-linearities. Even though their dispersion relation is very similar, in-
ternal gravity waves and inertial waves have different structural characteristics and arise from distinct phys-
ical mechanisms. Understanding the analogies and the differences in their behaviors is crucial for studying
their respective roles. In this review, we will describe laboratory experiments that have studied either iner-
tial waves in rotating homogeneous fluids or internal gravity waves in non-rotating density stratified fluids to
highlight both the similarities and the differences between these two types of waves. We will focus on linear
and non-linear phenomena occurring for three different configurations: wave beams in 2D and in 3D geom-
etry, axisymmetric waves, as well as wave attractors, a specific feature for these waves. In particular, we will
describe the influence of these various configurations on the Triadic Resonant Instability (TRI).

Résumé. Les fluides stratifiés en densité et/ou tournants sont très courants dans les écoulements géophy-
siques et astrophysiques et permettent respectivement la propagation d’ondes internes de gravité et d’ondes
inertielles. Mathématiquement, la relation de dispersion particulière a la même forme pour les deux classes
d’ondes et peut conduire à des résultats inattendus via amplification, résonance ou non-linéarités. Même si
leur relation de dispersion est très similaire, les ondes internes de gravité et les ondes d’inertie ont des carac-
téristiques structurelles différentes et résultent de mécanismes physiques distincts. Comprendre les analo-
gies et les différences dans leurs dynamiques est crucial pour étudier leurs rôles respectifs. Dans cette revue,
nous décrirons des expériences en laboratoire qui ont étudié soit les ondes d’inertie dans un fluide homogène
en rotation, soit les ondes internes de gravité dans un fluide stratifié en densité non tournant, afin de mettre
en évidence à la fois les similitudes et les divergences entre ces deux types d’ondes. Nous nous concentre-
rons sur les phénomènes linéaires et non linéaires se produisant pour trois configurations différentes : les
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faisceaux d’ondes en géométrie 2D et 3D, les ondes axisymétriques, ainsi que les attracteurs d’ondes, spécifi-
cité de ces ondes. En particulier, nous décrirons l’influence de ces différentes configurations sur l’instabilité
triadique résonante (TRI).

Keywords. Internal gravity waves, Inertial waves, Stratified fluid, Rotating fluid, Triadic Resonant Instability,
wave attractors.

Mots-clés. Ondes internes de gravité, Ondes inertielles, Fluides stratifiés, Fluides en rotation, Instabilité par
résonance triadique, attracteurs d’ondes.

Funding. The authors acknowledge support from the Simons Foundation through Grant No. 651475.
S. Joubaud acknowledge the support from Institut Universitaire de France.

Manuscript received 19 April 2024, revised 23 July 2024, accepted 5 August 2024.

1. Introduction

Internal gravity waves and inertial waves are two distinct classes of waves that commonly occur in
fluid dynamics, respectively for density stratified fluids and rotating fluids [1]. On the one hand,
internal gravity waves correspond to disturbances in the density structure of the fluid, which
leads to buoyancy forces acting as a restoring force. In a non-rotating density stratified fluid, the
energy flux of pure monochromatic internal gravity waves propagates in a direction tilted by an
angle β with the horizontal, given by the dispersion relation [2, 3]

ω= N sinβ, (1)

with N the buoyancy frequency, which characterizes the stratification of the fluid.
On the other hand, pure inertial waves result from the action of the Coriolis force leading to an
energy flux for monochromatic waves also inclined by an angle β with the horizontal defined by
the dispersion relation [4]

ω= 2Ωcosβ, (2)

with Ω the solid rotation rate of the fluid. As a comparison to the vertical density stratification,
Coriolis force in rotating flows leads to a horizontal stratification in angular momentum.

In various geophysical and astrophysical phenomena, the dynamics is often based on a
coupling between rotation and gravity. Such flows are therefore dominated by inertia-gravity
waves, which is a combination of internal gravity waves and inertial waves. This type of waves
share similar properties since their dispersion relation explicitly involves a coupling between the
two characteristic frequencies N and f = 2Ω

ω2 = N 2 sin2β+ f 2 cos2β . (3)

Internal gravity waves and inertial waves are fundamental phenomena observed in various
fluid systems, including the ocean, atmosphere, and astrophysical environments. In the oceans,
these waves play a crucial role in mixing water masses, redistributing nutrients and heat, and
influencing oceanic currents and circulation patterns [5–10]. Atmospheric internal waves often
arise in stably stratified layers, such as within the troposphere or the bottom boundary layer,
and contribute to turbulence, cloud formation, and the propagation of weather systems [10–14].
Gravity and inertial waves are also observed in astrophysical environments, such as stars, where
they influence stellar dynamics, energy transport, and magnetic field generation [15–19].

The large scale of fluids in geophysical and astrophysical bodies induces for the waves a
cascade of mechanical energy resulting from wave-wave, wave-vortex, wave-topography and/or
wave-mean flow interactions. In particular, Triadic Resonant Instability (TRI) is an important
type of wave-wave interaction that plays a major role in various geophysical contexts, and
that has been extensively studied in the literature [20]. TRI is characterized by the non-linear
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generation of two subharmonic secondary waves from a monochromatic primary wave, forming
a triad of temporally and spatially resonant waves. We will come back throughout this article on
various features of this instability. In general, these interactions result in an energy transfer from
large scale to small scale structures so that waves can break and lead to turbulence and mixing or
are dissipated through viscosity and diffusivity [21].

Understanding these waves is therefore crucial for modeling and predicting the behavior of
fluid systems across various scales. Interestingly, the dispersion relations for gravity waves (1),
inertial waves (2), and inertia-gravity waves (3) share similar properties. In particular, the phase
and group velocities are orthogonal for plane waves and no characteristic length is prescribed.
This mathematical analogy between rotating and stratified fluids has been well-known for more
than 75 years. In his review, Veronis [22] describes this parallel and shows in different examples
how results from one system can be analyzed and understood in terms of the behavior in the
analogous system. More recently, the similarities among models for rotating fluids, stratified
flows and even flows in magnetohydrodynamics have been used to understand in a unified
manner the problem of weak turbulence of, respectively, inertial, gravity, and Alfvèn waves [23].
Differences, however, still exist and have to be taken into account. The major one is the motion of
the fluid particles in a wave. Indeed, for a plane wave, the wave is made of rectilinear oscillations
for internal gravity waves while it is made of anticyclonic circular oscillations for inertial waves,
implying a 3D motion in the latter case, contrary to the former (see in Maurer [24, Fig. I.3]). Since
the first experimental validation of the dispersion relation for internal gravity waves [25] and for
inertial waves [26], they have been the object of many theoretical, numerical, and experimental
studies in the last decades. In this review, we discuss recent experimental studies on either
inertial waves or gravity waves in different setups using either non-rotating stratified fluids or
rotating homogeneous (unstratified) fluids; a few cases of rotating-stratified configurations are
also discussed. We focus on three main setups: wave beams, axisymmetric waves, and, finally,
wave attractors. We will pay particular attention to studies involving Triadic Resonant Instability
(TRI).

1.1. Governing equations

In this article, we consider a linearly stratified incompressible fluid subject to a global rotation
at a rate Ω = f /2 around the vertical axis, defined by the unit vector ez . We consider the case
in which the background stratification is constant and parallel to the axis of rotation, i.e. the
background density ρ̄ is a linear function of z, characterized by the constant buoyancy frequency

N =
√

− g
ρ0

∂ρ̄
∂z with ρ0 the mean density. In the rotating frame of reference, the dynamics of such

flow is described by the Navier–Stokes and mass conversation equation under the Boussinesq
approximation

ρ0

(
∂v

∂t
+ (v ·∇)v

)
=−ρ0 f ez ×v−∇p ′−ρ′g ez +ρ0ν∆v, (4)

∂ρ′

∂t
− ρ0

g
N 2v ·ez +v ·∇ρ′ = κ∆ρ′, (5)

∇·v = 0. (6)

In these equations, v(x, t ) stands for the velocity field, ν the kinematic viscosity, κ the diffusivity of
the stratifying agent. The pressure field p ′ is the pressure perturbation to the hydrostatic pressure
incorporating the centrifugal acceleration. The density field ρ′ is the difference between the
total density field ρ and the density background stratification ρ′(x, t ) = ρ(x, t )− ρ̄(z). As a result,
the system forms a set of five equations with five unknown quantities: the velocity field v, the
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pressure perturbation p ′ and the density perturbation ρ′. In a given problem, (v, ρ′, p ′) are the
solutions of equations (4)-(6) completed with boundary conditions.

Introducing U a characteristic velocity amplitude and L a characteristic length, the previous
equations exhibit various dimensionless numbers, which are important to characterize the flows.
In what follows, we will consider waves and therefore, the characteristic length will be related
in most cases to the wave length, 2π/|k|, with k the wave vector. Due to the anisotropy of
rotating and/or stratified flows, it is important to consider separately the components that are
perpendicular and parallel to the direction of the stratification/axis of rotation. We denote k⊥ =
2π/λ⊥ (respectively kz = 2π/λz ) the perpendicular component (respectively parallel component)
to ez . For each dimensionless number described below, two can be defined using the horizontal
or the vertical wavelength, the subscript j standing for ⊥ and z . Note that, in most stratified
turbulence theories, the anisotropic limitλz ≪λ⊥ is considered [27]. This limit is indeed relevant
for geophysical flow. On the contrary, in experiments, λ⊥ ∼λz .

• The Froude number, Fr j = U
λ j N , represents the ratio between the buoyancy time scale and

the inertial time scale. The regime where internal gravity wave propagation takes place is
the small Froude number regime.

• The Rossby number, Ro j = U
2Ωλ j

, compares the advection term to the Coriolis term. The
regime where inertial wave propagation takes place is the small Rossby number regime.

• The ratio N /2Ω compares the importance of stratification with rotation.

• The Reynolds number, Re j = Uλ j

ν , characterizes the separation between laminar and
turbulent flow.

• The Schmidt number, Sc = ν/κ, compares the viscous effects with the diffusive ones. In
the ocean, for salt water, Sc ≈ 700.

• The Ekman number is defined as Ek = ν
2ΩL2 = Ro

Re j

λ2
j

L2 with L a characteristic global scale of
the flow. It characterizes the importance of viscous forces compared with Coriolis forces.
It is associated to phenomena emerging from boundary layers.

• The Richardson number, Ri = g
ρ0

|∂zρ
′|

(∂zU )2 , compares the potential energy due to buoyancy
with eddy kinetic energy. Small Richardson numbers are associated to overturning and
mixing [28, 29].

An interesting regime is the one for which Re ≫ 1 while Fr ≪ 1, with low-frequency waves
ω/N ≪ 1. This regime corresponds to stratified turbulence. For forcing frequencies ω/N com-
parable to the Froude number, the dynamics falls in the strongly stratified turbulence regime,
relevant notably for the atmosphere. If ω/N is large compared to the Froude number, i.e.
if Fr ≪ω/N ≪ 1, the dynamics is dominated by weakly interacting non-linear internal gravity
waves and corresponds to a weak wave turbulence regime. These regimes are the object of the
review [30].

In the linear inviscid limit, this set of equations has wave solutions with the following disper-
sion relation

ω2 = N 2 sin2β+ f 2 cos2β= f 2 k2
z

k2 +N 2 k2
⊥

k2 , (7)

The angle β is the angle between the vertical and the wave vector. This dispersion relation is
illustrated in Figure 1 using (ω,β) polar plane. The angleβ is associated to a single valueωwhile a
value ofω is almost always associated to 4 values of the angle β corresponding to the 4 quadrants
of the oft-cited Saint Andrews cross. In the special case f = N , only a single value ω = N = f is
allowed and valid for all angles. This schematic illustrates the symmetry between N and f .

The dispersion relation (7) leads to different features. First of all, it limits the accessible values
of the frequency ω to either f < ω < N or N < ω < f . Outside these ranges, internal waves are
evanescent. The low frequency domain can however be populated by other types of waves, such
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N = 1 & f = 0 N = 1 & f = 0.5

ω

β

N = 1 & f = 1 N = 0.5 & f = 1 N = 0 & f = 1

Figure 1. Dispersion relation (7) plotted in the (ω, β) polar plane, for dimensionless
parameters N and f : to each angle β corresponds a unique frequency ω given by the blue
curve (extracted from [31]).

as Rossby waves which exist in the presence of a zonal mean flow. Another feature of these
types of waves, the phase velocity cϕ, aligned with the wave vector, and the group velocity cg

are orthogonal. Importantly, as already mentionned in the introduction, the value of ω does not
determine the wave length, which depends on many phenomena such as boundary effects or
non-linear effects. This final remark implies that a particular attention must be paid to the choice
of the wave maker to generate controlled gravity or inertial wave beams, as will be discussed in
Section 1.2.

An important feature in the comparison between internal gravity and inertial waves is the
wave structure itself. To explain this difference, let us first consider a plane wave characterized by
a single wave vector k0. The fluid motion for internal gravity waves is rectilinear, perpendicular
to k0, and contained in the (k0,ez ) plane. In contrast, due to the Coriolis term, the inertial wave
field is characterized by anticyclonic oscillations in the plane perpendicular to k0 and is therefore
inherently three dimensional. In the following, for both inertial and internal gravity waves, we will
call 2D wave any superposition of plane waves for which all the wave vectors are localized in a
single plane containing ez . The velocity field will therefore be uniform in the direction normal to
this plane. Note that, with this definition, an inertial wave will be considered as a 2D wave even if
the three components of the velocity field are non zero. Such differences could lead to different
behaviors as we will describe in the rest of this article.

Dissipation effects take place through viscosity or salt/temperature diffusion. In almost all
experiments, this influence of viscosity has a negligible effect on the relation between ω and
the direction of the wave vector. However, as the waves propagate, viscosity results in energy
dissipation and attenuation of the wave. This dissipation has a characteristic time scale 1/(νk2)
and is therefore large for short wave lengths. It explains why viscosity has to be taken into
account in laboratory experiments compared to geophysical and astrophysical flows. A self-
similar solution describing the propagation of a viscous wave beam was found independently
for rotating fluids [32] and for density-stratified fluids [33]. Near boundaries, such as the ocean
floor or a container wall, viscosity plays a significant role in modifying gravity/inertial wave
behavior. The dissipation near topographies clearly matters in the global energy budget [34].
Both inertial waves and gravity waves can be affected by the presence of a viscous boundary
layers, which in turn can be modified due to the presence of gravity/inertial waves, leading
to intricate patterns of motion and transport within these fluid systems [35–39]. For internal
gravity waves, a strong mean flow will modify the wave field and may in turn be generated due
to non-linearities of internal gravity waves in 3D [20, 40] or due to streaming in the viscous
boundary layer as predicted theoretically [41] and observed experimentally [38]. The equivalent
feature for rotating flows is the existence of zonal flows, a characteristic phenomenom of forced
rotating flows. They are generated by different mechanisms such as non-linearities in the Ekman
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boundary layer [42] or non-linear inertial waves [43]. Such axisymmetric mean flows have been
observed experimentally [44].

Finally, an important phenomenon that needs to be considered in stratified fluids is internal-
wave driven mixing [45]. When the wave amplitude is large enough, the shear associated
with it can be characterized by a small Richardson number (Ri < 0.25), inducing overturns
that can lead to mixing. This can be particularly true if TRI is present, contributing to energy
transfers to smaller scales, resulting in a more efficient mixing. This mixing can be seen as a
problem in experiments since the linear stratification cannot be conserved contrary to numerical
simulations. However, mixing is critical for climate models [46]. In numerical models, mixing and
associated turbulence are usually linked to subgrid scale internal wave processes. It is therefore
crucial to understand the mixing caused by internal waves and to properly parameterise the
mixing efficiency. To that extent, various experiments have been performed at ENS de Lyon to
study the influence of TRI on mixing [47, 48].

1.2. Experimental techniques

Internal gravity waves in the laboratory require a stratified medium, which is generally achieved
using salt as the stratifying agent, easier to manipulate than temperature. The filling of the tank
is performed via the so called two-bucket method [49, 50], which in its initial version produces a
linearly stratified medium in a tank whose horizontal section is vertically uniform, but which can
actually be generalized, using computer-controlled pumps, to create non-linear density profiles,
or to produce a linear profile in a tank of vertically varying section [51]. Stewart et al. [52] have
recently developed a derivation of this method, allowing to use temperature stratification.

As to rotating fluids, one “simply” needs to place a tank on top of a rotating table, which of
course implies a number of technical challenges, including dealing with spin-up processes, non
horizontal isobars, mechanically restraining the tank and all the measuring devices and allowing
proper communication of power and data between the non-rotating and the rotating frame. The
spin-up process, in particular, is rendered more complex when the fluid is also stratified [24],
since the stratification prevents Ekman pumping motion, which is the major driving motion to
attain solid body rotation during a spin-up.

Once the supporting medium is ready, a device is necessary to create the perturbation to this
medium that will generate the wave. Almost 60 years ago, Mowbray and Rarity [2] were the first
to produce internal waves in a laboratory experiment, using a sphere oscillating vertically in a
linearly stratified fluid. Since then, experimentalists have been very creative in improving the
design of the wave generators. Table 1 is an attempt to summarize and classify these various
types of wave generators.

In laboratory experiments, internal waves can be observed thanks to the following techniques:

• Dye lines, showing the motion of iso-density lines (or isopycnals), mainly qualitative;
• Particle Image Velocimetry (PIV), based on following in time the motion of patterns of

tracer particles, giving access to the velocity field;
• Synthetic Schlieren, based on the apparent displacement of a pattern placed behind

the experimental tank, linked to the change in refraction index of the fluid, associated
with the density perturbation accompanying the wave propagation. It gives access to
the density gradient field [53] or to the whole density field [54] (only possible for gravity
waves);

• Planar Laser Induced Fluorescence (PLIF), using a laser-excited fluorescent dye as tracer
for density, allowing to measure directly the density field. It can be coupled to PIV, using
the same laser plane, to get access to density-velocity correlations and therefore density
fluxes, important for studies of mixing [47] (only possible for gravity waves).
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Table 1. List of experimental gravity and/or inertial wave generators, organised by type of
wave form generation.

Category Description Type of wave
Example
reference

I Whole tank oscillation
Up and down motion Global mode or [55]
Libration self-similar wave beam [56]

II Global boundary motion
Oscillating rigid wall

Guided wave
[37, 57]

Oscillating rigid lid [58]

III Oscillating object

Oscillating cylinder

Self-similar wave beam

[25, 59]
Oscillating sphere [60]
Oscillating torus [61]
Multiple [62]
oscillating objects
Tidal motion on
a fixed obstacle [63]

IV Towed object Towed object Wave beam [64]

V Oscillating plates

Linear device

Versatile wave form

[65]
Independent [66–68]
oscillating plates
Axisymmetric
oscillating plates [69]

VI Local boundary
Deformable tank Specific purpose

deformation [70, 71]

VII Liquid interface motion
Turbulent underlayer

Uncontrolled
[72]

Convective underlayer [73]

The two most common techniques, PIV and Schlieren, allow quite easily for an extrac-
tion of wave frequency content and spatial structure, using respectively Fourier transform (or
time frequency analysis [74] when time-dependence is relevant) and Hilbert transform [75].
Many experiments require to estimate or to measure quantitatively the amplitude of the primary
wave. One cannot rely on the amplitude of the wave generator motion, since there is an efficiency
factor that comes into play and that depends strongly on frequency, wave form and experimental
conditions. For the Schlieren technique, such measurement requires integration of the mass con-
servation equation, which in general cases with multiple waves is not a simple task. In the same
way, for PIV measurements, a direct estimate of the kinetic energy of the whole velocity field can
easily be computed. However, quantifying the amplitude of a specific wave among other waves
in interaction can be difficult.

Among the various methods used to extract a wave amplitude, Mathur et al. [76] studied trans-
mission and reflection of internal wave beams across a transmission region and took a Fourier
transform of the reflected and transmitted wave fields along appropriately chosen transects.
Maurer [24] measured wave amplitudes by looking at the maximum of the velocity over a given
spatial area, and Supekar et al. [77] utilized the distribution of maxima of amplitudes for a ve-
locity field in a widespread two-dimensional beam. Boury et al. [78] first performed a fit of the
wave form to the expected spatial profile as a function of time, thus extracting a wave amplitude
as a function of time, before averaging in time the obtained amplitude, choosing a time window
where the process was as stationary as possible. When the amplitude of two different waves of
same frequency must be estimated (in the case of wave reflection for example), a method based
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on the signal processing technique called Variable Mode Decomposition has been adapted suc-
cessfully [79]. In the case where time stationarity is not achieved in the observed experiment,
Boury et al. [80] developed a method based on using Hilbert transform times series and root-
mean-square averaging to obtain a time dependent amplitude of the waves. Finally, in the case
where synthetic Schlieren is used to observe the waves, Grayson et al. [81], based on previous
developments [64, 82], used integrated components of the density gradient field, to which they
apply a root-mean-square and spatial average.

2. Internal Wave Beams in a Square Geometry and its Instability

During the years 2010-2015, a series of studies [40, 83, 84] was undertaken by a group at ENS
de Lyon, jointly with a group at Université d’Orsay (now Université Paris-Saclay), where the
generation of plane beams of internal gravity waves (in Lyon) and inertial waves (in Orsay) was
obtained using the same wave generator (linear oscillating plates, type V of Table 1), allowing for
interesting comparisons between both types of generated waves, and in particular regarding the
Triadic Resonant Instability of the corresponding wave beams.

2.1. Generation of Gravity Versus Inertial Waves

In both cases, the generation of the waves was very similar, using the wave generator described
in [65], placed in a tank, either non-rotating but linearly salt stratified (in Lyon) or non stratified
but lying on top of a platform rotating at rotation rate Ω (in Orsay). It was actually the same
device, which travelled from Lyon to Orsay. In both cases, the generator configuration was set to
excite a plane wave beam, with 3 to 4 wave lengths of about 7 cm each along the whole height
of the generator, with a tapering amplitude at each end to avoid spurious emission of internal
waves.

However, a main difference lies in the generation process, since the fluid motion in the case of
internal gravity waves is a simple oscillating translation in the direction of the group velocity,
whereas fluid particles describe anticyclonic circular translation in the case of inertial waves.
As a consequence, for inertial waves, the oscillating plates of the wave maker only force the
longitudinal component of their circular motion, while the lateral component is let to freely
adjust according to the spatial structure of the wave solution. This makes the generator less
efficient in producing inertial waves, compared to gravity waves. A detailed description of the
added difficulty when producing inertial waves with this generator, with an efficiency depending
strongly on generator amplitude and wave length can be found in the appendix of [85, Chapter 3].

In order to make up for that difficulty, the generator angle was adapted to the oscillating
frequency ω, so that the plate motion would actually be in the exact direction of the longitudinal
component of the wave motion. Note that this solution is not applicable to the case of gravity
waves, since reclining the generator, with a change of inclination for each frequency studied,
would be complicated and would also rapidly destroy the stratification.

In the case of inertial waves, it turned out that in order to vary the wave angle, set by the ratio
ω/ f = ω/2Ω, it was easier to change the global rotation of the table, rather than changing the
generator frequency. For gravity waves, of course, changing the stratification was not an option
and it is the wave frequency ω that was varied.

One last point of comparison: in both cases, the generator was parallelepippedic. While for
gravity waves, which have a perfect 2D behaviour, this is not a problem, it becomes more tricky
with inertial waves, which have inherent 3D motion and the tank shape is not really adapted, with
lateral walls restraining the transverse motion. For this reason, while the tank used for gravity
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Figure 2. Examples of frequency spectra showing TRI. (Left) Frequency spectrum for inter-
nal gravity waves (N ̸= 0, f = 0), from [83]. (Right) Frequency spectrum for inertial waves
(N = 0, f ̸= 0), from [40]. In the latter case, a narrow peak corresponding to the rotation
frequency of the table (thus at ω/ f = 0.5) is visible, linked to mechanical noise of the table.

waves was narrow (2 wave lengths), in the case of inertial waves, the tank was much wider, with a
width of about 10 wave lengths.

As we will show later, in spite of these differences, the production of the waves and the
characteristics of the instability via resonant interaction are very similar.

2.2. Instability of the Wave Beams

Already in 1967, Davis and Acrivos [86] showed experimentally and theoretically that, due to the
non-linear terms of the wave equations, internal waves are unstable to infinitesimal perturba-
tions, which grow to form temporally and spatially resonant triads between the primary wave
(indicated in what follows by index 0), and two secondary waves (indicated by indices 1 and 2).
These resonant conditions write respectively

ω0 =ω1 +ω2, (8)

k0 = k1 +k2. (9)

This instability is now referred to as Triadic Resonant Instability (TRI). The analytical derivation
for the plane wave solutions of the non-linear wave equations can be found in Dauxois et al. [20].
For a given primary wave vector of components (ℓ0,m0), combining the dispersion relation of
the waves with the temporal resonance condition (and eliminating one of the two secondary
wave vectors using the spatial resonance condition), one obtains the following equation for the
components (ℓ1,m1) of the remaining secondary wave vector

|ℓ0|√
ℓ2

0 +m2
0

= |ℓ1|√
ℓ2

1 +m2
1

+ |ℓ0 −ℓ1|√
(ℓ0 −ℓ1)2 + (m0 −m1)2

. (10)

The set of solutions of this equation can be represented by a resonance locus ([20, Figure 2.a])
defined as the possible locations in wave vector space of the tip of vector k1. We recall the typical
shape of this locus, with examples of the vector triads k0, k1, and k2 in the insets of Figure 3(left).

The TRI instability was observed in several laboratory experiments [87–89] with increasing
details thanks to progresses in fluid motion imaging, using in particular PIV and synthetic
Schlieren in the last decade. This instability was shown to play a role in oceanic energy transport
and vertical mixing [90, 91].
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Here again, the joined study performed by the Lyon and Orsay groups using the same wave
generator provides an interesting view on the TRI instability in the respective case of internal
gravity waves and inertial waves. In both cases, with a large enough amplitude – typical wave
velocity of the order of 2 to 3 mm.s−1, or in other words dimensionless quantityψ0/ν (equivalent
to a typical Reynolds number of the flow), of the order of a few tens, where ψ0 is the stream
function amplitude of the wave – the instability starts after 20 to 40 generator periods.

Figure 2 shows the frequency spectra of the wave system after the onset of instability, on the
left for the gravity waves and on the right for the inertial waves. Three main peaks are observed,
corresponding to the primary and two secondary waves. In both cases, the temporal resonance
condition is verified. However, the secondary peaks are much broader for the inertial wave case
than for gravity waves. A possible explanation for this observation is given in Section 4.4.

One of the interesting features of TRI, in the oceanic mixing context, is that it allows for a
transfer of energy to smaller scales, without the necessity of a turbulent energy cascade. That
happens in particular when both secondary waves have larger wave vectors, compared to the
primary wave: κ1,2 > κ0, where κ is the modulus of the wave vector. This is the case, in general,
when the solutions belong to the external branches of the resonance locus (see example in top
inset of Figure 3(left)). In contrast, when the solutions are on the central part of the locus, the
transfer goes both directions, with κ1 > κ0 > κ2, or vice-versa (see example in bottom inset of
Figure 3(left)).
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Figure 3. Normalized wave numbers κ1,2/κ0 of the secondary waves, as a function of
the primary wave frequency ω0. (Left) Gravity waves, adapted from[83]. (Right) Inertial
waves [40]. The lines represent theoretical predictions, computed for the wave dimension-
less amplitude ψ0/ν = 28 (left) and ψ0/ν = 37 (right). The insets on the left plot show two
typical examples of the resonance locus. As illustrated in this inset, the solid lines on the
left plot (upward going dotted lines on right plot) represent the case where the secondary
wave vectors are on the external branches of the resonance locus, while the dashed lines
on the left plot (mostly downward going dotted lines on the right plot) represent the case
where the secondary wave vectors are on the central part of the locus. Between these two
types of solutions, the one that has the largest growth rate is represented by a thicker line.
Filled circles and squares with error bars correspond to experimental measurements. The
two solid thin lines on the right plot show the allowed range around the dotted curves, de-
termined by considering an uncertainty of ±50% on the wave amplitude.

Both studies mentioned earlier delved into this issue. For a given wave amplitude and for each
normalised frequencyω/N of the primary wave, the relative magnitudes κ1,2/κ0 of the secondary
wave vectors that correspond to the largest growth rate of the instability were computed, both in
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the case of the external and central branches of the resonance locus. The result is presented
in Figure 3, on the left plot for internal gravity waves [83] and on the right plot for inertial
waves [40]. In addition, a thickening of the lines highlights the case (between central and
external branches) with highest growth rate. There is a transition from the central to the external
branch, at a frequency around ω/N = 0.77 for gravity waves and ω/ f = 0.79 for inertial waves.
Experimental points are also shown, with colored symbols. Interestingly, in both cases, even
below the transition frequencies mentioned above, the experimental solutions seem to stay on
the external branch, with, mostly, an energy transfer towards smaller scales, except at the lowest
frequencies where TRI was observed in the case of inertial waves. Note that for gravity waves,
were only one experimental point is shown, the magnitude of the wave vectors is slightly larger
than predicted.

In a laboratory experiment of typical sub-meter size, the viscosity of water is such that small
scale waves are damped quickly and secondary waves with wave vector magnitude above a
few times the primary wave vector magnitude are never the most unstable solution (see [20,
Figure 2.c]) and are therefore never observed. However, the opposite trend can be observed in
Figure 3, where wave vectors longer than expected were measured and the solution on the central
branch of the resonance locus, where wave vectors are shorter, was never observed.

This could be explained by a finite-size effect. This effect was described in Bourget et al. [84]
and relates to the fact that in finite-size beams with a width equal to only a few wave lengths,
the secondary waves, which have a group velocity with a different direction than the primary
wave, leave the interaction region, located within the primary wave beam width, before the
instability has time to grow. This effect is of course enhanced when the waves have a large group
velocity, which is the case of waves of small wave vectors, since group velocity increases when
wave vector amplitude decreases. For this reason, one can understand that the solutions on the
central branches of the resonance locus, which, for infinitely wide beams, have a larger growth
rate below the transition frequency, are not observed in the experiments, since the actual growth
rate, taking into account the finite size effect, is reduced (see equation 3.7 in [84]).

2.3. Variability of the Triadic Resonant Instability

A recent study by Grayson et al. [81] focused on the long-term fate of TRI in the case of narrow
beams of internal gravity waves. The authors used a large scale tank (11 m wide) to prevent
interactions between the beam and its reflections and they took advantage of the very versatile
“magic carpet” wave generator built in Cambridge (type V of Table 1, [66]). By doing a refined
analysis of the characteristics of the secondary waves of the TRI, they showed that there exists
an important variability in amplitude, frequency and wave vector of these secondary waves. This
variability takes place both in time and space.

This is illustrated in Figure 4, showing the power spectral density at the function of time and
frequency (left plot) and as a function of the secondary wave vector horizontal components and
of the height in the tank (right plots). On the left plot, one can observe that while the primary
wave frequency maintains a constant value at the forcing frequencyΩ0/N =0.62, both secondary
frequencies fluctuate in time, while conserving the resonance property ω1 +ω2 = ω0. Note that
frequencies around 0.0, 0.8, and 1.0 come from higher order interactions. In order to better
understand the underlying modal structure of the observed beams, Grayson et al. decomposed
the flow field using Dynamic Mode Decomposition (DMD, white line superimposed in the time-
frequency plot), confirming the observed variability. A similar variation in frequency has been
witnessed by both Bourget et al. [83] and Brouzet et al. [92] in their experimental studies. One can
also observe at certain times (in particular between 100 and 200 T0, as well as between 200 and
300 T0), other pairs of secondary beams appearing and then merging with the continuous mode,
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in the form of convergent “wisps” on the ω1/N and ω2/N bands. The authors have checked that
in such cases, the triadic resonance in frequency persists across all the spectrum.

Figure 4. (Left) Time-frequency spectra (log scale of normalised spectral density) for
a long term experiment. The dominant frequencies obtained from the DMD frequency
decomposition are overlaid in white. (Right) For the same experiment, distribution of
energy in the ℓ/ℓ0 space and over the non-dimensional height in the domain z/H . (top)
t/T0 = 83, (bottom) t/T0 = 481. Both the surface plot colour and the height of the peaks
show the power spectral density. The left (right) “bump” corresponds to ℓ2 (ℓ1). The
background plot shows the power spectral density at the same instant in time in the Fourier
plane of horizontal wave number component and frequency. Adapted from [81].

The right plot shows, at two different times, the distribution of energy along the horizontal
component of the wave vector and across the height of the tank. One can observe that at the
earlier time (top figure), the TRI is mostly localised in the upper part of the tank, with the ℓ2

component at a value around −2ℓ0 and the ℓ1 component at a value around 0.8ℓ0. Note that
the two secondary waves can be identified on this plot thanks to the background plot, showing
the distribution of energy in the (ℓ,ω) plane, the wave with largest frequency being identified
with index 2 (ω2 >ω1, see left plot). At a much later time (bottom figure), towards the end of the
experiment (which lasted 682T0), one can see that the distribution of energy over ℓ and z have
evolved, with in particular different values of ℓ1 and ℓ2 depending on z/H , as well as a central
region (around z/H = 0.5), where no secondary waves are present.

Grayson et al. [81] interpret these observations by a finite-size effect, using a model quite
similar to the one presented in Bourget et al. [84], taking into account how the secondary waves
exit their interaction region with the primary wave due to their group velocity. However, the
main difference with the model of Bourget et al. [84] is that the instability is allowed to be a
function of space, and not only time as was the case in the previous model. The authors show that
including this feature in the model actually results in the observed variability. In addition, they
show that with the parameters of the experimental study, the ratio between the residence time of
the secondary waves in the interaction region and the development time of the instability is close
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FIGURE 7. (Colour online) Experimental observations showing the triadic resonance
stability or instability of a primary wave of dimensionless frequency !0/N at Coriolis
parameter f /N. The fixed parameters are `0 = 80 m�1, e0 = 5 mm, leading to Re > 100
for each experiment. The predicted threshold is shown by a dotted line in the infinite beam
case, by a dashed line in the finite beam case with a 3-wavelength-wide beam and by a
dash-dotted line in the finite beam case with a 1.5-wavelength-wide beam. Our prediction
uncertainty due to the uncertainty in the width of the beam is displayed as a light green
zone. The hatched zone corresponds to a forbidden zone for TRI: if !1 and !2 are larger
than f , then according to the space resonance condition, !0 is larger than 2f . The larger
symbols help to locate on this graph the experiments described in other figures of this
article, with the figure number indicated. The horizontal dashed line indicates !0/N = 0.8,
which corresponds to the experiments presented in figure 8.

For low values of the Coriolis parameter ( f /N < 0.12), the threshold remains fairly
constant. It then decreases to reach a minimal value around f /N = 0.2. At larger
values of the Coriolis parameter, the threshold follows a limit defined by the line
!0 = 2f . Below this line (hatched zone in the figure), TRI is forbidden. Indeed, the
two secondary frequencies have to be larger than f , so that !0 = !1 + !2 has to be
larger than 2f for the temporal resonance condition to be satisfied.

In the previous section, we wrote a simplified expression ⌃ for the growth rate of
the instability, which takes into account the finite size effect. This growth rate can be
used to estimate the threshold of the instability from the model and compare it with
experimental observations.

An experimental criterion is needed to determine whether or not the frequency
is above the threshold. To find this criterion, we consider the case f /N = 0. From
figure 7, we estimate that the threshold in this case is located around !0/N = 0.68.
For these values of f and !0, we then calculate the maximum value of ⌃(`1) (with
respect to `1), later referred to as ⌃0. In what follows, we assume for a given
primary wave in the parameter space (!0/N, f /N) that any corresponding value of
the growth rate ⌃ that is larger than ⌃0 leads to an unstable case, whereas any value
below gives a stable primary wave. To estimate the evolution of the threshold with
increasing f /N, we operate as follows.
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FIGURE 8. (Colour online) Renormalized amplitude of the fast Fourier transform of the
vertical gradient of density over a 30T0 time window at t ⇡ 90T0, for a primary wave
propagating at !0/N ' 0.8 and for various values of f /N, which correspond to 63.2� <
✓ < 68.9�. For the sake of clarity, the spectra are shifted vertically by a multiple of 3,
the vertical axis values corresponding to the case f /N = 0. On each spectrum, a red dot
indicates the value of f /N and separates it into two parts, one in green on the left where
! < f and one on the right where ! > f . A vertical dashed line indicates !/N = 0.4, which
corresponds roughly to !0/N/2. On each spectrum, the peak on the right represents the
primary wave, and daughter waves correspond to the other peaks, identified with a cross.
For the sake of clarity, the value f /N is displayed with full precision only when it is
necessary, for the experiments just above and just below the threshold.

Snapshots of an experimental vertical density-gradient field at different times are
presented in figure 9 for the particular case f /N = 0.39. At early time, a plane wave
propagates from the top left corner to the bottom right corner of the field of view
(figure 9a). A few oscillating periods later, perturbations of the wave field appear
below the wave maker (figure 9b). These perturbations continue to evolve until a
stationary state is reached (figure 9c). This behaviour is similar (even at long times)
to what was observed when !1 and !2 were larger than f (for example, figure 3c).
The experimental time series at a point 5 cm below the wavemaker filtered at !0, !1
and !2 respectively are shown in figure 9(d–f ), confirming that a stationary regime is
reached for the configuration under consideration.

From a theoretical point of view, the existence of sub-inertial waves in the case
of TRI was predicted for !0 slightly smaller than 2f by Young et al. (2008). A
comparison between this theory and the experiments is not possible because the
viscosity and finite size effect of the primary wave are of paramount importance in
the laboratory case. A possible explanation for this type of sub-inertial waves could
be a misalignment between the background density gradient and the axis of rotation.
As mentioned in § 2.1, however, this alignment was carefully controlled in the
building of the rotating platform, leading to a maximum angle of 0.1�, too small to
explain the observed phenomenon. A formal theory that incorporated our experimental
configuration would be interesting for the understanding of this phenomenon for which
the interpretation currently remains open.
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Figure 5. (Left) Experimental observations showing the triadic resonance stability or insta-
bility of a primary wave of dimensionless frequency ω0/N at Coriolis parameter f /N . The
instability threshold in this ( f /N ,ω0/N ) phase space is shown by various curves, depend-
ing on the beam width. The hatched zone corresponds to a forbidden zone for TRI (see
text). (Right) Renormalized amplitude of the Fast Fourier Transform of the vertical gradient
of density for various values of f /N . For the sake of clarity, the spectra were shifted verti-
cally. The vertical dashed line indicates ω/N = 0.4 ≃ 1

2ω0/N . On each spectrum the peak
on the right represents the primary wave, daughter waves correspond to the other peaks.
Extracted from [93].

to one, so that the TRI is actually very sensitive to the actual properties of the secondary beams.
As a result, preferential selection of triads is locally determined. As one triadic interaction decays,
another forms, but this time at a different physical location and with new secondary beam
properties. This explains why, experimentally, modulations are observed not only in physical
space but also in Fourier space.

2.4. What Happens with TRI when Combining Stratification and Rotation ?

An extensive comparison of the characteristics of TRI between gravity and inertial waves has been
presented in Section 2.2, mainly based on the joined studies of the Lyon and Orsay groups. A
question remains: how is, for example, the TRI for gravity waves modified when rotation is added?
This study has been performed in [93], where the same experiment used in [83, 84] was placed
on a rotating table, which was rotated at values of f /N between 0 and 0.45.

The main results are summarised in Figure 5. The left plot represents the phase space ( f /N ,
ω0/N ), where the instability threshold, computed including the effect of rotation in the finite-
width analysis of Bourget et al. [84], is represented by several lines, depending on the beam
width (infinite, 3 wave lengths and 1.5 wave length). One can observe that - as expected since
the group velocity, at the heart of the finite-width effect, decreases with the rotation rate - the
instability threshold lowers when rotation increases, all the more when beams are narrow. This
effect only takes place on a limited range of rotation rates, since in this phase space there is an
exclusion region for TRI (hatched). This is due to the fact that, as rotation rate increases above
ω0/2, with secondary wave frequencies that have to be larger than f , it implies ω0 > 2 f , which is
not possible for propagating waves. As a result, there is a value of f /N for which the threshold is
minimum, reminiscent of the critical latitude phenomenon described in MacKinnon et al. [90].
Experimental data points are shown, with symbols indicating if TRI was observed or not, and they
are in very good agreement with the analytical predictions given by the smooth curves.

On the right plot of Figure 5, the frequency spectra for all values of rotation rates are shown,
allowing to observe the evolution of the secondary frequencies with f /N . As rotation increases,
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the frequencies of the two secondary waves get closer (and therefore closer to ω0/2). As the
rotation rate gets very close to the limit of the forbidden region (ω0/2), the secondary wave of
lowest frequency surprisingly falls below f . An explanation of this result could be the existence
of a non-zero out-of-plane component of the wave vector. This has been discussed in Mora et
al. [94], who show that when rotation is present, the maximum growth rate is obtained with a
non-zero component of the wave vectors in a direction perpendicular to the primary wave beam.
This result is attributed to the 3D structure of inertial waves. Indeed, while theoretical analysis
have shown that coplanar triads always display the highest growth rates for TRI of internal gravity
waves [95], in contrast, for inertial waves the possibility of an out-of-plane component of the
secondary wave vectors is still an open question both theoretically and experimentally.

3. Axisymmetric Waves

Beyond two-dimensional (2D) wave beams, various recent studies have delved into three-
dimensional (3D) internal waves assuming that they would exhibit peculiar dynamics. The
drive to study such wave fields is, interestingly, both experimental and theoretical to investigate
whether purely 3D effects may exist, either in the linear or in the non-linear regime. Besides in-
situ measurements of axisymmetric wave fields [96, 97], it is interesting to note that various lab-
oratory systems generate such wave fields, e.g. vertically oscillating spheres [98, 99] or impacting
plumes [100].

In what follows, we will use the distinction made in [101] between axisymmetric waves that are
invariant by rotation (θ-independent, where θ is the orthoradial angle in the horizontal plane)
and cylindrical waves that allow for an orthoradial dependence (θ-dependent). Axisymmetric
waves are a particular class of cylindrical waves, easier to generate and study experimentally.

Axisymmetric wave fields have traditionally been experimentally excited using a vertically os-
cillating sphere and exploring the shape of the wave beams [2, 98, 99, 102–104]. The radially
decreasing amplitude and the viscous decay of the conical wave beam emitted by an oscillat-
ing sphere has been explored in laboratory experiments by Flynn et al. [99] showing good agree-
ment with theoretical predictions. More sophisticated axisymmetric experimental geometries
have later been investigated using a vertically [61] and a horizontally [105] oscillating torus, in
which case a highly non-linear process occurs due to the three-dimensional geometric focusing,
able to transport momentum and break into turbulence. None of these experimental configu-
rations, however, readily permitted a change in the form nor the wave number of the wave field
being excited. Versatile configurations have been obtained thanks to a cam-based axisymmet-
ric wave [69] generator, derived from the planar wave generator developed by Gostiaux et al. [65]
(see Table 1).

The experimental study of axisymmetric waves presents several difficulties. First, the funda-
mentally 3D geometry of the waves means that a complete characterisation requires visualiza-
tions both in the vertical and in the horizontal planes. A way to obtain this imaging is to elevate
the tank and use an mirror inclined at 45 degrees below it (e.g. [69]). Second, to match bound-
ary conditions with the axisymmetry of the wave field, it is more appropriate to use a cylindrical
tank with the same geometry; to prevent optical distorsions, this cylindrical tank should then be
enclosed in a larger tank of square cross section.

3.1. Linear Dynamics

Axisymmetric waves can be described in natural cylindrical coordinates (r,θ, z) by decomposing
the velocity field into two horizontal (radial and orthoradial) and one vertical velocity compo-
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nents, (vr , vθ, vz ). For practical reasons, it is instructive to introduce the stream function under a
symmetric formalism

vr =−1

r

∂
(
rψ

)
∂z

and vz = 1

r

∂
(
rψ

)
∂r

. (11)

Neglecting non-linear and dissipative terms, the axisymmetric stream function satisfies a col-
lapsed equation

∂2∆ψ

∂t 2 + f 2 ∂
2ψ

∂z2 + N 2

r

∂2
(
rψ

)
∂r 2 = 0, (12)

whose solutions can be found analytically under the form of either a product of a radial Bessel
function and a vertical exponential, or a product of a radial Hankel function and a vertical
exponential. These are the counterparts of sine-cosine and exponentials for Cartesian modes
and plane waves, respectively. Bessel-shaped wave fields describe modes; Hankel-shaped ones
are more appropriate to describe converging or diverging conical wave fields.

The dispersion relation can be obtained thanks to a Hankel–Fourier transform on equa-
tion (12), yielding

ω2(ℓ2 +m2) = f 2m2 +N 2ℓ2, (13)

with ω the wave frequency, and ℓ and m the radial and vertical wave numbers.
Cylindrical wave fields satisfy a system of equations similar to equation (12), but with non-

zero θ-derivatives. Solutions to these equations are called Kelvin modes [101, 106, 107]. They
involve rotating and counter-rotating waves, and preserve the 2π orthoradial periodicity through
a dimensionless, integer, orthoradial wave number p. The axisymmetric dynamics is recovered
by setting p = 0. Interestingly, p does not appear in the dispersion relation (13) which thus
remains the same for both axisymmetric and cylindrical waves. A thorough description of these
Kelvin modes can be found in [101].

Horizontal axisymmetric modal wave fields, propagating vertically, are the easiest to study and
characterize experimentally as the radial structure can be described under the simple analytical
form of a single Bessel function. Similarly to Cartesian studies, axisymmetric modes can be
obtained experimentally by enforcing appropriate boundary conditions with a tank of the same
radial size as the wave generator. Such modes have been described in [78].

3.2. Non-Linear Dynamics

While the linear dynamics of axisymmetric waves remains fairly similar to the linear dynamics of
Cartesian plane waves, strong differences have been evidenced in the non-linear regime both in
stratified and in rotating experiments [24, 56, 101, 108, 109]. The analytical justification is two-
fold: first, contrary to the plane wave case, the cylindrical Jacobians giving the non-linear terms
are no longer anti-symmetric, due to the r -derivatives, preventing some terms to mutually cancel
out; second, while the product of two exponentials (plane waves) or sine-cosines (Cartesian
modes) can be expressed under the form of another exponential or sine-cosine, the product of
two Bessel functions does not usually have a similar simple expression but rather yields a sum
of Bessel functions. This is further complexified for waves with a non-zero orthoradial velocity
vθ (notably inertial waves), as the horizontal Laplacian introduces additional non-linear terms
coupling the horizontal velocities (vr , vθ) [101]. These different terms bring several questions
regarding the non-linear dynamics of axisymmetric and cylindrical waves, whether it be the
subsistance of the triadic resonant instability in a similar formalism as with plane waves, or
the possibility for other non-linear behaviors to arise due to the modification of the Jacobian
structure.
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3.2.1. Triadic Resonant Instability

Axisymmetric Triadic Resonant Instability (TRI) has been proposed as a natural extension of
TRI, extensively studied in 2D for plane waves. Various experimental studies in axisymmetric
geometry led to the observation of localized TRI whose resonant conditions, both temporal and
spatial, are the same as for plane waves [101, 109]. This is due to the assimilation, locally, of the
axisymmetric wave field with a Cartesian wave field when disregarding the overall geometry of
the system imposed by the forcing or by the boundary conditions. As such, it does not provide
clear indications on a totally cylindrical, fully developed, TRI that would preserve the imposed
geometry of the system. In axisymmetric focusing experiments performed with an oscillating
torus in a stratified fluid, [109] have shown that a primary wave field can lead to resonant
subhmarmonics in agreement with the 2D TRI theory. However, other experiments led by Maurer
et al. [24] in a stratified and rotating fluid suggested that the axisymmetry could be broken for the
subharmonics and that they may not fully satisfy the spatial resonance conditions.

An analytical derivation of the resonance conditions involving three cylindrical wave fields
(Kelvin modes) performed by [101] showed that a fully 3D TRI could exist, preserving the cylindri-
cal geometry of the system, although with some modifications compared to the Cartesian case.
First, the three waves have resonant frequencies ω and two exact spatial resonances, along the
vertical (m) and orthoradial (p) directions. The p resonance along θ is particular insofar as the
wave fields also have to satisfy a 2π periodicity, which necessarily leads to a discretized reso-
nance. Second, the situation gets more complex along the radial direction, as exact resonances
have been shown to exist only for sufficiently large wave fields whereas in configurations of small
extent or in confined geometries quasi-resonances are more likely to appear. Lastly, due to an as-
ymptotic divergence at the center of the domain, it is unclear whether waves are locally spatially
resonant at r = 0.
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Figure 6. Experimental visualization of TRI for cylindrical wave fields. The top row shows
the radial velocity field vr in the vertical plane; the bottom row shows the same radial
velocity field in the horizontal plane. From left to right: forcing wave field, at ω0 =
0.80 rad · s−1; first and second subharmonics at ω1 = 0.50 rad · s−1 and ω2 = 0.30 rad · s−1.
Experiments conducted at f = 0.29 rad · s−1 and N = 0.97 rad · s−1 (adapted from [101]).
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These results have been confirmed experimentally both in confined and in unconfined ge-
ometries [101]. Figure 6 shows an example of TRI obtained in an unconfined stratified-rotating
experiment ( f = 0.29 rad · s−1 and N = 0.97 rad · s−1), in which the forcing wave (shown in the
first column) generates two resonant subharmonics (second and third columns). The velocity
field in the horizontal plane shows that the two subharmonics are not axisymmetric. In addition,
their time behavior shows that they have opposite orthoradial wave numbers. Interestingly, the
axisymmetric forcing seems to lead to axisymmetric subharmonics if the fluid is stratified only;
however, if the fluid is also rotating (as in the example shown in Figure 6), cylindrical subhar-
monics with a non-zero orthoradial wave number have been observed with the emergence of
two contra-rotating subharmonic waves. Similar experiments performed in a confined domain
have shown that TRI is slightly modified, as the radial wave numbers of the waves forming the
triad can be quasi-resonant and not exactly resonant[101]. This result is consistent with the fact
that boundary conditions are known to have a significant impact on the characteristics of TRI, as
discussed in the case, for instance, of surface waves [110].

3.2.2. Super-Harmonic Generation

While for a single monochromatic plane wave, the self-interaction term (u·∇)u vanishes, this is
no longer the case for axisymmetric wave fields. A direct consequence is that axisymmetric waves
can self-interact and transfer energy to waves at higher frequencies, contrary to Cartesian plane
waves (self-interaction is only possible for plane waves if the stratification is non-linear [111]).
This process generates super-harmonics, i.e. waves at frequencies 2ω, 3ω, . . . from an axisym-
metric wave field initially forced at ω. These super-harmonics are propagating if the primary
forcing occurs at sufficiently small frequency so that the harmonic frequencies remain smaller
than the cut-off frequency imposed either by f or N . Evidenced for the first time in the exper-
imental study of [108], these harmonics remain axisymmetric if the fluid is stratified and non-
rotating. The energy is then distributed onto several waves (cavity modes in the aforementioned
study), that satisfy temporal resonance conditions but not necessarily spatial ones. As for TRI,
this could be due to the enforcement of boundary conditions that prevail over the resonances.

4. Internal Gravity Wave/Inertial Wave Attractor

4.1. 2D and 3D Reflection

As underlined in the introduction, internal waves propagate along a double cone with a half top
angle equal to β which is given by the dispersion relation (7). Such a property leads to a peculiar
reflection law of these waves on a slope. Snell’s reflection law, applicable e.g. for light waves
and surface waves, prescribes that the reflected and the incident waves have the same angle with
respect to the normal to the slope. This is not the case for internal waves (either gravity or inertial
waves). The first conservation law in this case is given by the non penetrability condition, written
as

(vr +vi ) ·n = 0. (14)

This leads to the conservation of frequency and of the projection of the wave vector along the
direction of the slope. As a consequence, the reflected and incident waves propagate along the
same double cone.

In 2D geometry, this means that the reflected wave propagates in a different quadrant of the
Saint Andrews cross. In addition, the reflection on a slope inclined with an angle α with the
horizontal leads to focusing or defocusing, depending on the relative values of α and β and on
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the direction of propagation of the incident wave. When focusing occurs, the wave length of the
wave beam decreases by a factor

γ=
∣∣∣∣sin(α+β)

sin(α−β)

∣∣∣∣ . (15)

Assuming conservation of energy, the energy flux density is increased by a factor γ2 and the
reflected wave is therefore more prone to instability. Note that the case β = α is a singularity
(γ→∞), the so-called critical reflection. It has been the focus of theoretical analysis [112] and
experiments [79].

In three dimensions, the orthoradial angle is not imposed by the dispersion relation and is
therefore not conserved. The derivation of the reflection law in this case has been performed for
internal gravity and inertial waves following slightly different approaches [113–117]. The different
derivations use three ingredients: non penetrability; propagation of the incident and reflected
waves on the same cone and conservation of the horizontal component of the velocity normal to
the slope. They have shown that the rays of waves change direction upon reflection and have the
tendency to converge toward the upslope gradient.

4.2. Wave Attractor

In a closed domain with a particular geometry and for a specific range of frequencies, successive
reflections of wave rays in the domain have been shown to converge on the same limit cycle,
which is a geometric pattern, called wave attractor [118]. Theoretical predictions can be made
using ray-tracing methods, in which the wave beam is assumed to be localized enough so
that its propagation along the group velocity can be described by a geometrical ray path. The
phenomenon of concentration of the energy on attractors in 2D geometries has been the subject
of different mathematical studies [35, 119–121]. In the past years, different geometries leading
to the possible existence of wave attractors have been investigated. These works have been
summarized in a recent review [122].

In astrophysics, the link between wave attractors and trapped wave in the equatorial regions
of rotating planets has been first considered [123–125]. Rotating spherical shells have been
shown to be a generic geometry for inertial wave attractors [126, 127], which appear in numerical
simulations [16]. The role of different features such as the behavior of the waves in the vicinity
of the axis of rotation, the critical latitude phenomenon, and non-linearities have then been
analyzed [128–131].

Even if different works have considered the possible existence of internal wave attractors in
real stratifications and topographies using different geometries [82, 132–134], no field observa-
tions of attractors has been reported so far.

In the following, we will focus on the main experimental results obtained in 2D trapezoidal
geometries and in an axisymmetric frustrum to show the difference and similarities between
gravity and inertial wave attractors.

4.3. Experiments in Quasi-2D Trapezoidal Domains

Following his seminal theoretical study [118], Maas has collaborated in different experimental
studies to visualize internal gravity wave and inertial wave attractors. There were first observed
in a density stratified fluid using an oscillating tank [135]. Even though the structure of an inertial
wave is three-dimensional, a linear attractor was also observed in the case of inertial waves, using
as well an oscillating tank as generator [35, 115, 136]. Without dissipation, the energy density
along the attractor tends to infinity due to multiple focusings. In a more realistic scenario, the
energy is dissipated through viscous dissipation or non-linear phenomena. The balance between
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Figure 7. Examples of experimental realization of internal wave attractors. (Top left)
Synthetic Schlieren visualization of a linear gravity wave attractor (adapted from [141]).
(Top right) Kinetic energy for a non-linear gravity wave attractor (adapted from [92]).
(Bottom left) Horizontal velocity field for a linear inertial wave attractor (adapted from [67]).
(Bottom right) Horizontal velocity field for a non-linear inertial wave attractor (adapted
from [67]).

focusing at the slope and viscous effects can be used to predict the width of the branches of the
attractor. Based on experimental results for gravity internal waves [137], this width was predicted
to scale as (ν/L2N )1/3 with L the perimeter of the attractor. This result was checked numerically
by Grisouard et al. [138]. For inertial waves, the equivalent scaling factor is Ek1/3 = (ν/L2 f )1/3, as
verified numerically [139, 140].

To illustrate this discussion, a typical linear wave field for both types of attractors is displayed
in Figure 7(left). The scaling proposed above was satisfied in the case of a linear inertial wave
attractor [67]. For the linear gravity wave attractor, the agreement was less clear [141]. An
explanation was further proposed in [142] and validated in [37]. It is related to boundary
dissipation effects, whose magnitude is different between the two configurations, due to the size
of the tanks. The different tanks were chosen to be adapted to the structure of the waves. For
internal gravity waves, the tank had a small thickness compared to the other dimensions and the
velocity profiles were measured to be two-dimensional except in the viscous boundary layer near
the lateral walls. This layer induces a strong dissipation which is at least ten times larger than the
bulk dissipation. This effect is reduced in the case of inertial waves, since the tank is much wider,
relatively to the other typical dimensions, and as a consequence, the bulk dissipation dominates.
A new scaling law for the size of the branches of the internal wave attractors was then proposed
and is in better agreement with experiments [142].
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The three-dimensional effects on a wave attractor were then studied for internal gravity
waves by Pillet et al. [143] using an extension in the third direction of the quasi-2D experiments
performed at ENS de Lyon. These experiments show a trapping of the waves in different 2D
planes.

Due to the accumulation of energy in the branches of the attractor, gravity wave attractors and
inertial wave attractors are prone to instabilities and in particular triadic resonance instability.
Snapshots of the non-linear gravity wave attractor obtained at ENS de Lyon [92, 141, 144] and
of the non-linear inertial wave attractor obtained at Paris-Saclay [67] are reproduced in Figure 7.
One can still see the geometrical structure, on top of which several other waves have formed.
Both studies have shown that the attractor amplitude was reduced and the attractor typical length
increased.

Such results were attributed to an energy transfer due to the instability and can be quantified
by replacing, in the model for linear attractors, the kinematic viscosity by a turbulent viscosity
based on the features of the forced waves [67]. In the non-linear case, strong differences between
gravity wave attractors and inertial wave attractors have been observed. An important one is the
selectivity of the secondary waves. The feature already mentioned for wave beams (Section 2.2
and Figure 2) is also observed here: indeed, for inertial waves the frequency peaks for the
secondary waves are very wide compared to the ones for gravity waves. In addition, there
is a clear discrepancy between experimental results for rotating fluids and the 2D numerical
simulations [139], while the agreement between experiments and simulations is very good for
gravity wave attractors [141]. This weak selectivity in the case of inertial waves can be attributed
to the three-dimensional structure of these waves interacting with physical walls, which was
clearly neither the case for internal gravity waves [141], nor in the numerical simulations of
inertial waves using proper boundary conditions [139]. The second difference concerns the
possibility of secondary inertial waves with a non-zero component in the direction perpendicular
to the plane of the attractor. This observation, specific to inertial waves and already mentioned
for wave beams, could explain the dependence of the secondary waves on Reynolds number,
which displays an opposite behavior compared to 2D numerical simulations. Indeed, in the latter
case the frequencies ω1 and ω2 of the subharmonic waves tend toward ω0/2 for larger Reynolds
number while for experiments they depart from ω0/2.

4.4. Axisymmetric Domain: Frustrum

A second geometry has been widely used to study 3D effects for gravity or inertial wave attractors:
the frustrum, i.e. an annulus whose inner cylinder is replaced by a truncated cone. This
geometry has been investigated for inertial waves both numerically and experimentally [145–
148]. These studies show a wide variety of dynamical systems including linear wave attractors,
triadic instability, and emergence of mean flows.

We would like to focus on a similar geometry without the inner cylinder, used in experiments
conducted at ENS de Lyon [58]. Using exactly the same experimental setup, rotating fluids and
stratified fluids were studied. If the formation of a linear internal wave axisymmetric attractor
is similar for both inertial and gravity waves, a major difference is visible for the nonlinear
dynamics. Here again, the secondary waves are associated with discrete frequencies for gravity
waves contrary to inertial waves for which the frequency range is large, as can be seen in Figure 8
(top, respectively left and right). To explain this behavior, the authors of this study [58] show
that the secondary internal waves are the global resonant modes of the tank while the secondary
inertial waves are only localized near the center of the tank, as can be seen in the bottom
row of Figure 8, left and right respectively. It is explained by the fact that for rotating fluids,
standing modes are associated with frequencies larger than the forcing frequency and therefore
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not accessible through TRI, resulting only in a local appearance of these secondary waves. The
important role of the boundaries is therefore highlighted in the respective non-linear dynamics
of gravity and inertial waves. At Paris-Saclay, an experiment to study internal wave turbulence
has been designed with inclined panels at the bottom of the tank to inhibit the emergence of
wave eigenmodes [149]. In such a configuration, the frequency peaks of the secondary waves
excited through TRI are much broader. The frequency spectrum for internal gravity waves
becomes therefore closer to the frequency spectrum observed for weakly non-linear inertial
waves (Figure 2 right).

Gravity waves Inertial waves
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Figure 8. Non-linear behavior of an axisymmetric wave attractor in a frustrum, for gravity
waves (left) and inertial waves (right). (Top row) Frequency spectrum. (Bottom row)
Snapshots of one of the secondary waves filtered at a given frequency. (Figure adapted
from [58]).

Finally, breaking the axisymmetry could induce the trapping of a wave attractor in a particular
plane in 3D. This has been recently predicted theoretically and verified numerically [117].

5. Conclusions and Future Directions

In this article, we have discussed several examples of experiments investigating both the linear
and non-linear behaviors of internal gravity waves in stratified fluids and of inertial waves in
rotating fluids. More specifically, we have focused on the Triadic Resonant Instability (TRI) in
various configurations. All these experiments show that, although these waves have a similar
dispersion relation, their spatial structure is very important and must be taken into account in
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order to accurately predict their linear and non-linear dynamics. In particular, clear differences
have been noted in the weakly non-linear regime for different geometries. The main difference is
the attraction of energy by discrete frequencies associated to resonances and standing modes in
the stratified case. This process seems not to be at play in the rotating case, probably because of
the 3D structure of wave field. This observation is of great interest to guide future developments
in the study of internal waves.

Recently, efforts have been made to observe, in laboratory experiments, both a weakly non-
linear regime of internal gravity wave turbulence in a density stratified fluid [30], and a regime
of inertial wave turbulence in a rotating flow [150]. It will be interesting as well to study the
similarities and differences in these wave turbulence regimes between gravity and inertial waves.

As mentioned in the introduction, rotating-stratified fluids are ubiquitous in geophysical
and astrophysical systems. Laboratory experimental studies combined with theoretical devel-
opments and numerical simulations help complement the fundamental understanding of the
non-linear behavior of both internal gravity and inertial waves, and therefore help improve the
parametrization of (stratified) mixing and other small scale phenomena in climate models. To
further assess the role of these waves in atmospheric and oceanic processes, additional features
have recently been the focus of a more sustained attention such as the generation of inertial or
internal gravity waves due to moving obstacles, the combination of rotation and stratification,
the role of a non-linear stratification in density stratified fluids, ice-melting and double diffusive
mechanisms, wave-turbulence interaction, wave-mean flow interaction, and the coupling be-
tween internal gravity/inertial waves with other type of waves (Lee waves, Kelvin waves, surface
waves. . . ). These are important processes that need to be further understood.
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