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Abstract. In the mid-latitude atmosphere, synoptic eddies carry heat and momentum towards the poles
and are hence a major element shaping weather and climate. The eddies are due to baroclinic instability
caused by a supercritical vertical wind shear, which in turn is due to a supercritical meridional temperature
gradient. Since the 1950s this crucial instability has systematically been studied with the thermally driven
rotating annulus laboratory experiment. In this review, we summarize the research on baroclinic instability
from the experimenter’s perspective covering a period of about three quarters of a century. The fact that
it was possible to tie in with the field of atmospheric dynamics, right from the start in the 1950s, makes
the experiment unique compared to other experiments representing geophysical flow phenomena. The
applications span a wide range of topics, e.g., regime transitions and the route to turbulence in the presence
of rotation, or geostrophic turbulence, internal wave generation at baroclinic fronts, tests of operational
weather forecasting methods, extreme value distributions with regard to climate, and more. In view of new
measurement methods and data processing techniques, the baroclinic instability experiment will continue
to be an important complement to numerical methods in the future.

Résumé. Dans l’atmosphère des latitudes moyennes, les tourbillons synoptiques transportent la chaleur et
élan vers les pôles et constituent donc un élément majeur du temps et du climat. Les tourbillons sont dus
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à l’instabilité barocline provoquée par un cisaillement vertical du vent supercritique, lui-même dû à un gra-
dient de température méridien supercritique. Depuis les années 1950, cette instabilité cruciale a été systéma-
tiquement étudiée à l’aide de l’expérience de laboratoire de l’anneau rotatif à entraînement thermique. Dans
cette revue, nous résumons les recherches sur l’instabilité barocline du point de vue de l’expérimentateur,
sur une période d’environ trois quarts de siècle. Le fait qu’il ait été possible d’établir un lien avec le domaine
de la dynamique atmosphérique, dès le début dans les années 1950, rend l’expérience unique par rapport à
d’autres expériences utilisées pour examiner les phénomènes d’écoulements géophysiques. Les applications
couvrent un large éventail de sujets, par exemple les transitions de régime et la voie vers la turbulence géo-
strophique, la génération d’ondes internes sur les fronts baroclines, les tests de méthodes opérationnelles de
prévision météorologique, les distributions de valeurs extrêmes en ce qui concerne le climat, etc. Compte
tenu des nouvelles méthodes de mesure et des techniques de traitement des données, l’expérience sur l’in-
stabilité barocline restera à l’avenir un complément important des méthodes numériques.
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1. Introduction

Laboratory experiments in baroclinic instability are at least a century old now, and have been re-
viewed numerous times over the years, beginning perhaps with Fultz’s [1] discussion of labora-
tory experiments as analogues of atmospheric motion. At the time, Fultz’s experiments were stir-
ring up ideas concerning the role of eddies in the thermal equilibrium of the planet [2] and Hide
had embarked on a series of studies in the laboratory, first meant to reveal circulation related to
Earth’s dynamo, but soon applied to atmospheric motion [3]. These studies were to become the
backbone of rotating annulus experimentation on baroclinic instability. Together with [4], the
appearance of Fultz’s [2] work and Eady’s contemporaneous paper [5], providing an analytical re-
sult for the transition from axisymmetric flow to waves, where, in the context of the annulus, the
Rossby radius of deformation is similar to the size of the tank, hints at the explosion of scientific
effort on baroclinic instability in this postwar period.

While Hide’s experiments drove quantitative investigation of the transition between regimes
forward, from symmetric to steady or regular waves, quasi-periodic waves, vacillation and more
chaotic regimes, Fultz’s experiments appear to have helped convince the community of scientists
studying weather and dynamics early on of the fundamental role of eddies. Judging from the
language of the debate [6] the question of the relative role of the symmetric circulation versus
waves in the transfer of heat from equator to pole was still an ongoing and acrimonious debate
at the time. Fultz’s description of some of his experiments were evidently directed to laboratory
analogues of the Polar Jet, leaving open the more global question of multiple jets and eddy-driven
cells, but in any case the function of baroclinic wave development and the associated meandering
jet carrying heat “poleward” were deep insights to the thermodynamic systems operating in both
the lab and atmosphere. The annulus experiment illuminated the notion of a dynamic, detached
thermal boundary carrying heat meridionally in a dramatic fashion.

Later, by the time of Hide and Mason’s [7] review, extensive previous work had, in their words,
already occurred to map out the various regimes of baroclinic instability in the differentially
heated rotating annulus. This mapping took place on the Taylor–Rossby number diagram (see
Figure 1 and (2), (3) where the Taylor number is modified taking into account the aspect ratio.).
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Figure 1. Regime diagram spanned by Ta and RoT . Data from different Hide experiments
are shown (colored dots). Different flow regimes are indicated: axissymmetric (overturn-
ing) flow, steady waves, vacillating waves, and geostrophic turbulence. The Figure is an up-
dated version of [9, Figure 2a].

Although it is important to note that variations in the exact definition of these parameters oc-
cur in the literature according to the laboratory configuration or the incorporation of related pa-
rameters, both of these parameters represent bulk properties of the system. Gent and Leach [8],
on the other hand, performed experiments in an eccentric annulus with variable gap width and
found azimuthally-dependent regimes. They made the observation that the parameters are lo-
cally important - that the flow structure is determined by local values of these parameters within
the system.

In the time frame of the 1970 review [7], the Geophysical Fluid Dynamics Institute (GFDI)
at Florida State University (FSU) was formed and devoted, in these early years, to the careful
measurement of the time-dependent motion in the large rotating annulus, a new facility set
up expressly for this purpose. GFDI publication number 1 by Pfeffer and Fowlis [10] described
wave dispersion induced by beating waves of nearby wavenumber and placed this evolution
of the circulation onto the regime diagram. Some of the pioneers in the field of laboratory
experimentation on baroclinic currents are pictured in Figure 2.

Interestingly, new work still refers back to these early experiments [11] in wave dispersion
and vacillation. Subsequent efforts were made especially to quantify amplitude vacillation [12]
and the role of topographic forcing [13] neglected in earlier experiments. Later work showed
progress in the transition to turbulence [14] and led to the inference that that internal potential
vorticity gradients – difficult to measure initially – needed to be more realistic [15]. The notion of
an organized transition to turbulence took hold across many fields at the time and the annulus
played an important role as a more geophysical representation of such phenomena.

This exciting new subject [16] literally brought chaos to the regime diagram and sharply re-
defined the role of irregular, quasi-periodic, and other notions under the heading of geostrophic
turbulence. The area of transition to turbulence grew to dominate some efforts, for which the
baroclinically unstable annulus was an attractive system to explore, more relevant to large-scale
geophysical systems than say, Couette flow experiments. At GFDI, the modification of the annu-
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lus to include 98 thermistors [17], and, following that, the additional technical achievements to
produce an array of 2016 thermistors for a “synoptic network” in the large annulus allowed for
a deeper analysis of internal structure and stratification through the transitions among regimes
and toward geostrophic turbulence. Details of the vertical structure of waves and eddies, and
wavenumber spectra evolution revealed time-dependent characteristics of both amplitude and
structural vacillation and better defined turbulent, uncorrelated behavior at highly resolved de-
tail. Früh’s [18] excellent review of these and related studies shows the richness of possible states
found in the baroclinic annulus experiments, and foundational ideas about the feedback be-
tween internal flow and boundary layer structures.

Through these years of laboratory experiments with the rotating annulus, the application
of the results was focused mainly on the atmosphere: the role of eddies, and the irregular,
unpredictable nature of weather. With north-south continental boundaries that nearly span the
globe the role of eddies and waves in the meridional circulation and transport of heat in the ocean
was thought to be of a more secondary role. Moreover, the observational record from the ocean
with respect to eddy motion lagged that of the atmosphere due largely to the difficulty making
measurements from relatively slow-moving ships. But the circumpolar laboratory experiments
with flow around Antarctica and the “dishpan” geometry of the Arctic Ocean make laboratory
experiments with the baroclinic annulus-type configurations close analogies to these systems as
well. Crucially, the deformation radius is so much smaller in the ocean relative to the size of the
ocean basins that whole distinct regimes can “fit” into ocean basins, bringing back the notion of
local parameters and local regime diagrams for individual oceans rather than a single planetary
oceanic regime.

The record of ocean measurement expanded greatly in the 60’s and 70’s, partly as a result of
the use of lagrangian techniques along with standard fixed point moorings. In parallel, laboratory
experiments in baroclinic instability were also being carried out with the ocean in mind, to help
explain observations that demonstrated the presence of Rossby waves (e.g. [19]) and turbulent
mesoscale eddy motions in the ocean (The MODE Group, 1978; see also the review by [20]).
Such efforts grew over time to help to comprehend instabilities associated with a vast range of
conditions and ocean depths, and both convective and mean flow energy sources.

An early idealized experiment of lasting influence in the oceanographic community was that
of Saunders [21], known as the cylinder collapse experiment, in which a volume of dense fluid
was allowed to relax in a rotating container of slightly less dense fluid. This simple configuration,
both relevant to the ocean and straitforward to model, generated vortices around the edge due
to baroclinic instability. Maxworthy and Narimousa [22] carried out a series of experiments
with a surface density or buoyancy flux and produced scaling arguments to demonstrate the
evolution of these and related instabilities under forced conditions. A natural or “convective”
Rossby number-like parameter R∗ in these systems is based on a rotation length scale lr ot

R∗ = lr ot

H
, where lr ot =

(
B0

f 3

)1/2

, (1)

with the fluid depth H , B0 the buoyancy flux, and f = 2Ω, making apparent the notion of
“slope” in sloping convection. While the traditional Rossby number is of order one in the
initial state of these convective flows or plumes, the system rapidly evolves toward a dominantly
geostrophic balance. Marshall and Schott [23] provide a comprehensive review of laboratory,
field, and numerical work in this area of “open-ocean” convection and instability far from lateral
boundaries.

While the advent of more effective and powerful numerical modeling techniques in the years
following the heyday of annulus experiments dampened to some extent laboratory efforts, at
least in the US as funding became more difficult to obtain for the larger technical groups needed
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Figure 2. The pioneers (clockwise): Carl-Gustaf Arvid Rossby (Chicago), in front Dave Fultz
(Chicago), Richard L. Pfeffer (Florida), and bottom left Raymond Hide (Oxford).

to maintain laboratory facilities, dedicated groups around the world remained very active. These
and other later efforts are described in an exhaustive series of reviews by Read and associates [24–
27], spanning the extension of laboratory experiments into detailed dynamical descriptions and
analyses of the evolving time-dependent flow under various boundary conditions. The body of
literature we can only touch upon here provide a broadly framed background to the history of
the rotating baroclinic annulus and the vastness of the subject matter available in the laboratory.
We are aware of shear-driven experiments (see the early experiments by J.E. Hart, e.g. [28] or the
more recent studies by Lovegrove et al. [29] and Williams et al. [30]). Like the thermally driven
rotating annulus systems, the mechanically driven open cylinder/annulus systems successfully
reproduce the full range of flow regimes, and might allow for more direct verification of theoret-
ical predictions in the laboratory. However, a two-layer density stratification is a very crude ap-
proximation to the structure of the atmosphere or ocean, and neglects the feedback of the flow on
the stratification. Taking all this into account we focus here almost exclusively on the thermally
driven variant. A thorough discussion of shear-driven experiments is well beyond the scope of
this review.

New experiments are pointing to the continued relevance of the annulus experiment to cli-
mate change, and, for example, to extreme events in climate that may also have analogies in the
laboratory [31], just as the early investigations were motivated by the idea of eddy fluxes in the
atmosphere. The value of laboratory experiments as idealized testbeds for theory, parameteriza-
tions of complex heat, mass, and chemical property fluxes, and as inspiration and for the insight
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they provide in and of themselves has not decreased over the years.

1.1. Governing Nondimensional Parameters

Returning to the earlier period, Fowlis and Hide [32] listed as many as 18 nondimensional
parameters for the rotating differentially heated annulus, some of them not independent, and
in the end only a small subset of the total number turned out to be important. To find the
relevant dimensionless parameters it is perhaps easiest to start with the underlying equations
suitable for studying baroclinic waves in the Hide experiment. Considering the Boussinesq
equations in a rotating frame of reference and nondimensionalizing the equations by scaling
(⃗x, t , u⃗, p,T ) with the factors (1/L,ν/L2,L/ν,L2/ρν2,κ/ν∆T ), where L = b − a is the gap-width,
a(b) the inner (outer) radius, ν the kinematic viscosity, ∆T the radial temparature difference,
and κ the thermal conductivity, three nondimensional parameters appear in the dimensionless
equations, the Rayleigh number Ra, the Taylor number TaL , and the Prandtl number Pr

Ra = gα∆T L3

νκ
, TaL = 4Ω2L4

ν2 , Pr = ν

κ
, (2)

where g is the constant of gravity,α the thermal expansion coefficient, andΩ the angular velocity
of the cavity rotation. Note that the Ekman number Ek can be written as Ek = 1/Ta1/2

L . Hide
and Fowlis [32] modified TaL respecting different scales for the horizontal and axial direction,
Ta = TaLL/d , where d is the fluid depth. In the literature on the baroclinic wave tank experiment
it is common not to use the Rayleigh number but the so called thermal Rossby number, defined
as

RoT = 4
Ra

Pr Ta
= g dα∆T

Ω2L2 . (3)

The latter corresponds to the classical Rossby number Ro =U /(ΩL) = RoT when U is replaced by
the thermal wind

UT = g dα∆T

ΩL
. (4)

From the boundary conditions of the Boussinesq model two further geometrical parameters
result, the radius ratio ηr and the aspect ratio Γd

ηr = a

b
, Γd = d

L
. (5)

Note that the four parameters, Ta,RoT ,Pr,Γd correspond with Π5,Π4,Π6,Π2 in [32] and these
parameters turned out to be most relevant in characterizing and comparing flows resulting from
different annulus experiments. In fact, usually just Ta and RoT are taken to define the parameter
space of the experiments. An recent example from [9] summarizing the parameters of Hide
experiments covering a period from 1958 to 2024 is shown in Figure 1.

As discussed by [26], there are other nondimensional parameters that are relevant from a more
physical point of view. One is the Burger number

Bu =
(

N

2Ω

)2

Γ2
d = gα∆Tv

(2Ω)2d

(
d

L

)2

, (6)

a square of the product of the ratio between the buoyancy frequency N and the tank rotation fre-
quencyΩ and the aspect ratio. Here ∆Tv denotes the vertical temperature difference. According
to the Eady model, this number needs to be small enough for baroclinic instability (see section 2.2
and 3.7.2). Read [26] calls this an “internal parameter” since it cannot be directly set by the ex-
perimenter. Note that the Froude number F r is connected to the Rossby and Burger number via
F r =U /(N d) = (RoT /2)/Bu1/2. Assuming that ∆Tv ≈∆T we find F r ≈ Ro1/2

T , i.e. Bu = RoT /4.
For similarity between the experiment and planetary circulations, RoT ,Γd need to be very

small, Pr needs to be order one, and Ta needs to be very large. From figure 1 it is obvious that the
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conditions are fulfilled for RoT and Ta; however, in experiments with fluids like water or silicon
oil, Pr is too large. This has an impact on the transition to instability and the complexity of the
flow [33], but is not too essential for the process of baroclinic instability.

Figure 1 not only sorts experiments into the Ta −RoT -parameter space, it is also a regime
diagram. Four different flow regimes are indicated: an axisymmetric regime without waves, a
steady wave regime, a regime with vacillating waves, and a geostrophic turbulent regime. These
regimes and the transitions between them have been discussed in detail, see e.g. [34]. There are
further subdivisions into an upper and lower axisymmetric regime, into regimes with amplitude
and structural vacillations, and a rich dynamics at the transition to geostrophic turbulence [24].
With the similarity parameters at hand, Read [26] and other authors connected these flow regimes
to planetary circulation regimes.

1.2. The baroclinic wave experimental setup

The basic layout of the rotating annulus configuration and some of its variations are sketched
in figure 3. Raymond Hide began his career using the annulus experiment at Cambridge in the
1950s, working on what was actually planned to be a simple laboratory model to study convection
in the rapidly rotating fluid core of the Earth. The geometry of this experiment is shown in
Figure 3, upper left picture [35]. The typical “Hide” tank is mounted on a turntable revolving
around its axis of symmetry at angular velocity Ω counterclockwise (Ω > 0) or clockwise (Ω < 0)
and is divided into three sections by heat conductive co-axial cylindrical walls. The innermost
cylinder (radius r = a) is referred to as the “cold bath”, where water of constant temperature
usually below room temperature is circulated through a cooling thermostat (chiller). A separate
regulated outer annular water circuit (radius r = b) keeps the “warm bath” at a temperature
larger than the one in the inner cold cylinder. The inner annular cavity of gap width L = b − a
forms the experimental domain, and is filled up with the working fluid (air, water or oil) up to
a certain height level. The fluid surface can be closed or is free, and the flow is driven by the

Hide, 1958

Ω = 0.8–8.2rad/s
∆T = 5–40℃

9.7cm

11cm

9.7cm

2.7cm 7.1cm

12cm

Smith et al., 2014
40cm
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Sloping base

Scolan & Read, 2017

97.6cm
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∆T = 8–10℃
Inner surface cooling
Outer base heating

25cm

Stewart & Shakespeare, 2024

160cm

40cm
Ω = 0.7–1.4rad/s
∆T = -6.7–12.2℃
Differentially-rotating ridge

Hignett et al., 1985
Ω = 0.5–2.0 rad/s
∆T = 1–10℃14cm

16cm

5cm
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∆T = 1–4℃
Sloping lid
Sloping base

30cm
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Wordsworth et al., 2008
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Marshall & Read, 2018

Read & Risch, 2011
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Vincze et al., 2021
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24cm
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Harlander et al., 2022 (centre tank only)
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Figure 3. Geometries and setups for heating and cooling of baroclinic wave tanks from the
period 1958 to 2024. The Figure is an updated version of [9, Figure 1].
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buoyancy flux maintained by the temperature contrast ∆T = Tb − Ta between the cylindrical
walls. This configuration is a barebone representation of the atmosphere at the mid-latitudes
of the Northern (Ω> 0) or Southern (Ω< 0) Hemisphere with the inner “cold” cylinder modeling
the cold polar regions and the “warm” outer rim the subtropics.

As can be seen in Figure 3, there are several variations of the original Hide setup. Most notable
is the use of a topographic β-plane [36, 37] allowing Rossby waves and the evolution of multiple
jets or local topography [9, 37, 38] which partially blocks the flow or leads to interactions between
stationary topographic waves and Rossby waves. The wide range of different geometries with
a tendency towards larger tanks in more recent publications is also striking (compare the size
of [35] and [9]). The aspect ratio Γd is ≪ 1 for tanks with a larger gap is hence somewhat closer
to atmospheric conditions. Finally we mention variations with respect to the way the cavity is
heated/cooled. Scolan and Read [39] did not cool and heat the walls but, in contrast, placed heat
sources and sinks at the bottom and top such that Rayleigh–Bénard convection could take place
close to the inner and outer wall. Hence local vigorous convection was possible in the “tropical”
and “polar” regions of the annulus mimicking the situation of the atmosphere. In such a setup, in
between the convective regions, stably-stratified baroclinic motion can still develop in analogy
to the mid-latitudes of the Earth’s atmosphere. It was observed that, in contrast to the classical
configuration, this alternative forcing typically exhibit more spatio-temporal complexity. This
was confirmed by later studies [31, 40, 41].

As with the development towards more complex experiments and more complex questions
to be answered with the experiments, the measurement methods used in the experiments also
developed. In the early days, the focus was on flow visualisation. This was done, for example,
with aluminium flakes floating on the surface [35]. Later, ink, Kalliroscope, Uranine and other
substances were added as tracers, which, when illuminated with laser light, produced a fairly
complete but only qualitative image of the flow (see Figure 8). Over the years, local flow
measurements were done by using Laser Doppler Velocimetry and flow field measurements have
been tackled by Particle Image Velocimetry (PIV), e.g. [11].

Temperature has been measured locally by temperature sensors or by arrays of thermocouple
probes, e.g. [17, 42]. Surface temperature was measured using infrared cameras [43]. The lateral
heat transport is an important variable to obtain insight into the eddy dynamics. The total heat
transport was determined in the laboratory by real-time calorimetry of the regular baroclinic
wave regime accessible in the rotating annulus up to the transition to geostrophic turbulence [44]
and in some studies PIV and infrared thermography has been combined to measure the heat
transport, e.g, [38].

Before reviewing applications of the annulus experiments in more detail in section 3, we start
with a section on the theory of baroclinic instability.

2. Theory of baroclinic instability

At the beginning of the 20th century, in connection with the problems of applying fluid dynamics
to natural environments, such as the atmosphere and ocean (now called geophysical fluids), it
became necessary to consider models when the density ρ depends not only on the pressure
p, but also on a second independent thermodynamic variable (in the case of two independent
thermodynamic functions of state): either temperature T (in Kelvin) or specific (per unit mass)
entropy s. In this more complex, but more realistic, model of a baroclinic fluid, the isobaric
surfaces p = const and isopycnal surfaces ρ = const , generally speaking, no longer coincide
with each other, but form an angle or “wedge”. In the presence of gravity and in the absence
of general fluid rotation, the overturning circulation induced will tend to reduce this angle to
zero. However, the presence of the Coriolis force inhibits this overturning motion (cf. [34]), and a
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Figure 4. Disposition of isopycnal surfaces accompanying the baroclinic instability, ϕ is
the angle of slope of surfaces ρ = const with respect to the horizontal.

non-zero angle is established between these surfaces in a rotating baroclinic fluid, promoting
non-axisymmetric flows (“baroclinic waves”) of a general type sometimes called “sloping” or
“slantwise” convection (ibid). According to the thermal wind equation, written here for a density-
stratified, incompressible fluid

(
2Ω⃗ ·∇)

v⃗ ≈ g⃗ ×∇ρ
′

ρ̄
, (7)

where Ω⃗ is the angular velocity of general fluid rotation, v⃗ the velocity in a rotating reference
frame, g⃗ the acceleration due to gravity, ρ′ the density deviation from the hydrostatically bal-
anced value ρ̄, this generally small angle is sustained by the effects of both background fluid ro-
tation and vertical wind shear. Therefore, the baroclinic instability that arises in such a system
and is reviewed in this article is equally characterized by the inhomogeneity of the density field
on isobaric surfaces and by vertical shear of velocity. An important integral characteristic of the
first of these factors is the available potential energy [45–47], which, stored in the basic flow, is
used to supply the energy of disturbances during the development of baroclinic instability.

In fact, only trajectories of fluid parcels with slopes between the horizontal and the slope of
the mean isopycnal surface can release the available potential energy and lead to generation of
baroclinic waves. This is the classic “wedge of instability” argument (see [45]; and Figure 4).

Indeed, when a fluid parcel makes an excursion from point O to either point P or point Q, it will
find itself in the ambience of fluid parcels with either smaller (in point P) or, respectively, larger
(in point Q) density values. A appearing buoyancy force b⃗ ≈ g⃗ (ρ′/ρ̄) will tend to move the fluid
parcel at a greater distance from its initial position. Therefore, baroclinic instability is a specific
form of thermal convection and is determined by the mutual configuration of the isopycnal and
horizontal surfaces.

A major success of geophysical fluid dynamics in the 20th century was a rational explanation
of why synoptic-scale atmospheric motions, particularly cyclones and anticyclones, have a
dominant spatial scale of a few thousand kilometers, i.e., approximately an order of magnitude
smaller than the scale at which energy is supplied from the Sun. This was a principal result of the
theory of baroclinic instability pioneered by Charney and Eady [4, 5]. The main prediction was
that the spatial scale of the fastest growing baroclinic disturbances (waves) is limited from below
by the characteristic length given by the ratio between the buoyancy frequency times the vertical



10 U. Harlander, M. V. Kurgansky, K. Speer and M. Vincze

length scale and the rotation frequency,

LR = N d

Ω
=

(
gα∆Tv

d

)1/2 d

Ω
, (8)

known as the Rossby (internal or baroclinic) radius of deformation. Identifying the vertical
temperature contrast ∆Tv with the horizontal ∆T , we find

RoT = L2
R

L2 or Bu = RoT

4
= 1

4

L2
R

L2 , (9)

with L the characteristic length-scale. Note that in laboratory experiments with mechanically
driven baroclinic instability in a rotating tank (an open cylinder/annulus) filled with a two-
layer fluid [28–30], an inverse parameter F = L2/L2

R is used, called the internal (rotational)
Froude number. For a two-layer fluid LR = (g d(∆ρ/ρ))1/2/2Ω, where ∆ρ/ρ is the relative density
difference between the layers.

For typical atmospheric conditions and a geographical latitude of 45◦, the Rossby radius is
slightly less than 103 kilometers. In the case of the ocean, this radius is (much) smaller and in
high latitude regions it is even less than 10 kilometers.

2.1. Baroclinic instability and nonlinear stability analysis

In order to unify the presentation and keeping in mind applications to most geophysical fluid
media, as well as to the laboratory experiment, we will proceed from the equations of motion of a
density-stratified, incompressible fluid in a Coriolis force field in (a) the Boussinesq approxima-
tion and (b) the so-called traditional approximation, when the axis of general rotation coincides
with the direction of gravity (vertical)

du

d t
− f v =−∂Φ

∂x
,

d v

d t
+ f u =−∂Φ

∂y
,

d w

d t
=−∂Φ

∂z
+b, (10)

and
db

d t
= 0,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (11)

A right-handed Cartesian coordinate system (x, y, z) is used, where in the case of geophysical
media (such as the atmosphere and ocean) the x-axis is typically eastward, the y-axis northward,
and the z-axis upward (opposite to the direction of gravity); (u, v, w) are the corresponding
components of the fluid velocity. The Coriolis parameter, equal to twice the angular velocity
of the general rotation, is presented as a linear function of the coordinate y : f = f0 +βy , where
f0 and β are constants. Let us recall that Φ = p̃/ρ0, where ρ0 is the constant (reference) value of
density and p̃ = p −p0(z), where p0(z) = const − gρ0z is the hydrostatic pressure corresponding
to the reference state; the variable b =−g (ρ−ρ0)/ρ0 is called buoyancy; here g is the acceleration
due to gravity. In fact, this is the total buoyancy, which is further conveniently presented as
the sum of the buoyancy corresponding to the average state of fluid stratification, b̄ = −g ρ̄/ρ0,
and the deviation from it, b′ = −gρ′/ρ0, assuming that ρ − ρ0 = ρ̄(z) + ρ′(x, y, z, t ). Similarly,
p̃ = p̄(z)+p ′(x, y, z, t ), where p̄(z) and ρ̄(z) are related by the hydrostatic relation, and we rewrite
(1), explicitly highlighting the average stable state of the fluid

du

d t
− f v =−∂Φ

′

∂x
,

d v

d t
+ f u =−∂Φ

′

∂y
,

d w

d t
=−∂Φ

′

∂z
+b′, (12)

and
db′

d t
+N 2w = 0,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (13)
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In (12) Φ′ = p ′/ρ0 and the square of the buoyancy frequency (Brunt–Väisälä frequency) N 2(z) =
−g (d ρ̄/d z)/ρ0 is considered a given function. For the atmosphere, N 2 = const is a good approxi-
mation away from the lower boundary, but in the ocean the profile N 2(z) is very inhomogeneous:
the N 2-value takes on large values in the surface layer and the mid-depth pycnocline region and
is small in the deeper layers of the ocean. In a laboratory experiment, when a continuous density
profile is concerned, most often a linear decrease in density with height is reproduced, so that
N 2 ≈ constant.

The motions associated with baroclinic instability, to which this chapter is devoted, are
characterized by the fact that hydrostatic and geostrophic relationships are satisfied to a good
approximation. We represent the horizontal velocity field in the form (u, v) = (−∂Ψ/∂y,∂Ψ/∂x),
where Ψ = Φ′/ f0 is the geostrophic stream function, and in the quasi-static approximation
b′ = f0(∂Ψ/∂z). Since in the continuity equation the terms ∂u/∂x and ∂v/∂y cancel each other
with asymptotic accuracy, the vertical velocity is very small and to a good approximation

d

d t
= ∂

∂t
− ∂Ψ

∂y

∂

∂x
+ ∂Ψ

∂x

∂

∂y
. (14)

Therefore, eliminating Φ′ between the equations of the horizontal motion, we arrive at a system
of two equations:

∂

∂t
∇2Ψ+ J (ψ,∇2Ψ+βy) = f0

∂w

∂z
, (15)

∂

∂t

∂Ψ

∂z
+ J

(
ψ,

∂Ψ

∂z

)
=−N 2

f0
w. (16)

Here, ∇2 is the two-dimensional Laplacian in the (x, y)-plane and J (a,b) = (∂x a)(∂y b)−(∂y a)(∂x b)
is the Jacobian. Eliminating the vertical velocity w between equations (15) and (16), we arrive
at the equation for the conservation of quasi-geostrophic potential vorticity (in the case of fast
annulus rotation and accordingly small Rossby numbers)

∂q

∂t
+ J (ψ, q) = 0, q =∇2Ψ+ ∂

∂z

(
f 2

0

N 2

∂Ψ

∂z

)
+ f0 +βy. (17)

Equation (17) is solved with the boundary conditions of impermeability of the lower z = z− and
upper z = z+ boundaries of the fluid layer

∂b

∂t
+ J (Ψ,b) = 0, b = f0

∂Ψ

∂z
, z = z±. (18)

In the atmosphere, the earth’s surface is chosen as the lower boundary z = z− = 0, and the
tropopause (where N 2 experiences an upward jump) is taken as the upper boundary, z = z+ = H .
In the ocean, it is natural to take its surface z = z+ = 0 as the upper boundary, and the ocean
floor as the lower boundary z = z− = −D . In the atmosphere, the buoyancy can be considered
proportional to the deviation of the potential temperature from the average value. In liquid
media, including the typical laboratory experiment, we take the corresponding temperature
deviation.

The general problem of nonlinear Lyapunov stability of a zonal (axially symmetric) flow may
be considered under the β-plane approximation. If, initially, we consider a problem with axial
symmetry, for example, about a laboratory experiment with a rotating cylindrical annulus, then
an approximate theoretical analysis can be carried out in Cartesian coordinates, neglecting the
effects of curvature of coordinate lines. This can be done when the corresponding centrifugal
forces are much smaller than the Coriolis force (cf. [48]). The flow is assumed to be periodic in
the zonal (azimuthal) direction, with a spatial period equal to the average circumference of the
channel. The flow is limited laterally by vertical walls. We consider these walls impermeable to
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fluid ∂xΨ= 0, y = y∗, y∗, and the velocity circulation on them being preserved for each altitudinal
level,

∫
(∂yΨ)d x = const , y = y∗, y∗.

We follow Arnold’s [49] method, first applied by Blumen [50] for a nonlinear stability study of
rotating and stratified Boussinesq fluid flows and use the existence in the problem of constants
of motion: (a) energy

E = 1

2

∫ ∫ ∫ (
(∇Ψ)2 + f 2

0

N 2

(
∂Ψ

∂z

)2
)

d xd yd z, (19)

as the sum of kinetic and available potential energy; (b) zonal (azimuthal) momentum

P =−
∫ ∫ ∫

∂Ψ

∂y
d xd yd z, (20)

and (c) Casimirs, whose conservation follows from (17) and (18):

F =
∫ ∫ ∫

Φ(q, z)d xd yd z, G =
∫
Σ−

∫
Γ(b)d xd y, H =

∫
Σ+

∫
H(b)d xd y. (21)

Here,Φ,Γ, and H are arbitrary continuously differentiable functions, and Σ± are the lower/upper
end-walls at z = z±, respectively. In the presentation, we follow [50–53].

Now a linear combination of constants of motion I = E −U P + F +G + H is formed, where
an arbitrary constant U has the dimension of velocity. Let Ψ̄(y, z) be a stationary zonal flow,
the stability of which is being studied. Assuming the deviation δΨ = Ψ− Ψ̄ to be small, let
us expand I [Ψ]− I [Ψ̄] into a series according to variations of successive orders: I [Ψ]− I [Ψ̄] =
δI + (1/2)δ2I 2 +·· · . By properly choosing arbitrary functionsΦ,Γ, and H it is possible to arrange
the series so that for a given Ψ̄(y, z) at any value U the first variation δI becomes zero:

Φ′
q |q=q̄= Ψ̄+U y, z− < z < z+,

Γ′ |b=b̄=
f0

N 2

(
Ψ̄+U y

)
, z = z−, , H ′ |b=b̄=− f0

N 2

(
Ψ̄+U y

)
, z = z+,

(22)

The prime at the top denotes differentiation and the subscript q means partial differentiation
with respect to that variable. If we assume monotonicity of q̄ with the coordinate y for each
z, and monotonicity of b̄ for z = z±, respectively, then these conditions can always be satisfied.
Calculating the second variation, we have

δ2I =
∫ ∫ ∫ (

(∇δΨ)2 + f 2
0

N 2

(
∂δΨ

∂z

)2

+ (∂Ψ̄/∂y)+U

∂q̄/∂y
(δq)2

)
d xd yd z︸ ︷︷ ︸

A

+
∫
Σ−

∫
f0

N 2

(
∂Ψ̄/∂y

)+U

∂b̄/∂y
(δb)2d xd y︸ ︷︷ ︸

B

−
∫
Σ+

∫
f0

N 2

(
∂Ψ̄/∂y

)+U

∂b̄/∂y
(δb)2d xd y︸ ︷︷ ︸

C

. (23)

If all coefficients of the squared field variables are positive, then the zonal flow Ψ̄ is stable in
the Lyapunov sense. This quadratic form is an exact conservation law (constant of motion) for
equations linearized with respect to disturbances imposed on the basic flow, and represents a
linear combination of pseudo-energy and pseudo-momentum.

What basic flows satisfy this stability criterion? To satisfy the necessary condition δI = 0, we
assumed that q̄ is a monotonic function of y . The most natural step is to assume that this is
a monotonically increasing function, similar to the Coriolis parameter f . Zonal winds in the
atmosphere of mid-latitudes are predominantly westerly, i.e. ∂Ψ̄/∂y < 0. By choosing a constant
U greater than the maximum velocity of the basic flow, we find that the volume integral in the
first line of (23), the term denoted by A, is positive. This is formally analogous to the transition to
a reference frame in which the zonal wind is easterly and the condition for positive definiteness
of the volume integral is satisfied (cf. [49]). In the subtropical ocean, zonal currents are directed
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to the east and the condition for positive definiteness of the volume integral is satisfied at U = 0.
The problem is caused by the surface integrals in the second line of (23), the terms denoted by
B and C. The potential temperature on the earth’s surface decreases monotonically towards the
poles, and the integral over the earth’s surface, that is, the first term in the second line of (23),
term B, is negative, so the second variation is indefinite in sign. The situation is aggravated
by the integral taken over the upper boundary, that is, term C in the second line of (23). It is
positive if the potential temperature decreases towards the poles, and negative in the opposite
case. In any case, the quadratic form (23) is indefinite in sign, and the necessary condition for
baroclinic instability is satisfied. If the potential temperature (buoyancy) changes very little at
the lower and upper boundaries, then the surface integrals (term B and C) of (23) can be omitted.
All that remains is the volume integral A of (23), and we arrive at the Charney–Stern criterion [54],
originally derived using the normal mode approach for linearized quasi-geostrophic equations.
This criterion states that a basic flow with a monotonically increasing potential vorticity is always
stable. The important effects of the lower boundary were incorporated by Pedlosky [55] also using
the normal mode approach; see [46]. This gives the Charney-Stern-Pedlosky necessary criterion
for linear instability (see [47]).

An interesting case is when the potential vorticity can be considered constant at each height.
This is a special idealization, acceptable when considering fairly narrow channels, when the Cori-
olis parameter can be considered approximately constant and this constancy can be extended to
the entire quasi-geostrophic potential vorticity. Now, in (23), the last term in the integrand in
the volume integral in the first line, term A, disappears and if the buoyancy has the same sign of
growth at the upper and lower boundaries, then baroclinic instability is possible in the problem.
Linear instability analysis in the Eady model [5] confirms this situation.

2.2. Linear stability analysis. Eady Model

The Eady Model is the most famous model in the theory of baroclinic instability, and it naturally
fits the conditions of a laboratory experiment. A vast literature is devoted to it, including whole
monographs. We will therefore limit ourselves to a brief formulation of the problem and a
presentation of the key results. We assume the constancy of the Coriolis parameter, f = const ,
and of the buoyancy frequency, N 2 = const . For mathematical simplicity, we place the origin
of coordinates in the middle between the rigid end-walls; then z± = ±H/2, cf. (18). The stream
function of the basic flow, whose linear stability is being studied, is chosen, up to an insignificant
additive constant, in the form Ψ̄=−Λy z. It corresponds to a flow with the velocity profile linear
in height ū =−∂Ψ̄/∂y =Λz and the buoyancy field b̄ = f ∂Ψ̄/∂z =− f Λy . The flow is considered
within a channel with side walls at y =±L/2, on which the conditionΨ= 0 is set.

Let us impose small disturbances on this basic flow and linearize equations (17), (18) with
respect to them (

∂

∂t
+Λz

∂

∂t

)(
∇2Ψ′+ f 2

N 2

∂2Ψ′

∂z2

)
= 0, (24)

and the boundary condition(
∂

∂t
+Λz

∂

∂x

)
∂Ψ′

∂z
−Λ∂Ψ

′

∂x
= 0 at z =±H/2. (25)

A class of disturbances of the normal mode type, Ψ′ = Ψ̂(z)exp(i k(x − ct ))sin l y , is considered.
The wave number k is real; l = nπ/L, where n is an integer; the parameter c, generally speaking,
is complex and is a proper, spectral parameter of the problem. The basic flow is unstable if c
has a positive imaginary part. Discarding the continuous spectrum of the problem, which does
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not lead to instability, we arrive from (24) to the equation d 2Ψ̂/d z2 − (k2/n2)Ψ̂ = 0. Its general
solution has the form

Ψ̂= A coshλz +B sinhλz, λ2 = N 2

f 2

(
k2 + l 2) . (26)

Taking into account the boundary conditions, we have a system of two homogeneous equations
with two unknowns A and B , which can be considered real. Equating the determinant of this
system to zero, we obtain the characteristic equation for determining the eigenvalue c

c2 = Λ
2

λ2

(
λH

2
−coth

λH

2

)(
λH

2
− tanh

λH

2

)
. (27)

Since λH/2 > tanh(λH/2), the value α = λH critical for instability is found from the equation
αc = coth(αc /2), which has an approximate solution αc ≈ 2.4. When α> αc then the solution to
the problem is a superposition of two neutral modes. Forα<αc , there are two complex conjugate
imaginary roots, i.e. instability is long-wave in nature. The maximum growth rate of the unstable
mode kci is achieved at n = 1, and moreover, we can further consider a wide channel so that
l 2 ≪ k2 and αmax =λmax H ≈ 1.61.

The wavelength of the fastest growing disturbances is given by Lmax = (2π/1.61)LR . Here
LR = N H/ f is the baroclinic Rossby deformation radius. The growth rate of this fastest growing
mode is equal to (cf. [47]) (kci )max ≈ 0.31ΛH/LR = 0.31Λ f /N . This formula is widely used for
estimations. Baroclinic instability is also referred to as sloping, or slantwise, convection in a
Coriolis force field [34, 45, 47]. If the fluid motion is to release available potential energy, which is
stored in a main zonal flow, and convert it into the perturbation kinetic energy, then fluid particle
paths must have a slope between that of the surfaces z = const and b = N 2z − f Λy = const . For
the Eady model the maximum rate of such a release is accompanied by the fluid particle path
along the bisectrix of an angle φ≈ tanφ= f Λ/N 2 ≪ 1 between the surfaces.

In Eady’s model the horizontal spatial scale of the baroclinic instability L∗ is set by the vertical
scale H of the domain, unlike the Charney’s [4] baroclinic approach for a semi-infinite domain
with account for the beta-effect (cf. [47]). In Charney’s model the vertical scale is defined by
d−1 = d−1

β
+ H−1

0 , where dβ = ( f 2
0 /N 2)(Λ/β) and H0 is the density scale height [45]. Here, f0 is

a representative value of the Coriolis parameter. This means that if dβ ≪ H0 then L∗ = N dβ/ f0;
if the inequality is reversed then L∗ = N H0/ f0. In Charney’s model the maximal growth rate of
unstable disturbances σ is of order Λ f0/N , regardless of which vertical scale, either dβ or H0, is
used. It is also exactly the scale for the growth rate in Eady’s model.

Above, the normal mode method was used for analysis. An alternative is the approach based
on consideration of Eady edge waves, proposed in [56] and developed in [57, 58] (see also [53]).
Baroclinic instability is interpreted as a result of the interaction of these edge waves. The
results coincide with those obtained by the normal mode method, but some additional useful
results are obtained. Thus, this approach allows us to estimate the phase shift between waves
concentrated at the lower and upper boundaries, respectively. For maximally rapidly growing
disturbances with αmax ≈ 1.61, this angle is ≈ 47.8◦ [53]. In addition, this approach allows us to
determine the characteristics of optimal (fastest growing) disturbances. This refers to nonmodal
transient disturbances with instantaneous growth rate which, in virtue of the nonnormality of
the linearized dynamical operator, can on finite timescales exceed the growth rate of normal
modes, and these transients can stay growing beyond the Eady cutoff scale [56, 59]. Unlike the
normal mode method, the results significantly depend on the metric used: total energy, kinetic
energy, potential energy on end-walls, etc. For two-dimensional disturbances (in the case of
no dependence on y) maximization of γ = E−1(dE/d t ), where E is the total energy, cf. (19),
shows that the maximum of γopt (α) is achieved in the limit of long waves α → 0 and γopt (α)
monotonically decreases along with an increase in α. The line γopt (α) touches the Eady normal
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mode growth rate curve (kci )(α) in a point α ≈ 1.915, which means that the normal mode is an
optimal disturbance only for α ≈ 1.915, which exceeds αmax ≈ 1.61. In this case, the phase shift
between the edge Eady waves is ≈ 73.22◦ [53]. In a more general approach, for a fixed point in
time (optimization time), an initial disturbance is sought that maximizes the ratio F = E(t )/E(0),
where E(0) is the initial energy. In particular, for the optimization time t = 5(N /Λ f ), the wave
number corresponding to the maximum energy ratio is equal to αopt ≈ 1.2. Details are given in
the review [53].

Taking into account Ekman friction at the lower and upper rigid end-walls is reduced to
replacing the impermeability condition w ′ = 0 with the condition w ′ = wE =±(hE /2)∇2Ψ′ at the
end-walls at z =∓H/2. Here hE = (2ν/ f )1/2 is the thickness of the Ekman boundary layer, and ν
is the kinematic viscosity of the fluid. It is assumed that hE ≪ H/2. In this case, the characteristic
equation for determining the eigenvalues is replaced by [34]

c2 −2i c
Λ

λ
F coth(λH)− Λ

2

λ2

[(
λH

2
−coth

λH

2

)(
λH

2
− tanh

λH

2

)
+F 2

]
= 0. (28)

Here,

F = 1

2

hE N 2
(
k2 + l 2

)
kΛ f

(29)

is the frictional parameter. When taking into account Ekman dissipation for the total energy E in
the Eady model, cf. (19), we get the equation

d

d t

∫ ∫ ∫
1

2

(
(∇Ψ)2 + f 2

N 2

(
∂Ψ

∂z

)2)
d xd yd z

=−
∫ ∫

Σ−
f

hE

2
(∇Ψ)2d xd y −

∫ ∫
Σ+

f
hE

2
(∇Ψ)2d xd y (30)

with a positive definite dissipative function; here, the levels Σ± correspond to z =±H/2, respec-
tively. As follows from this equation, for sufficiently deep annular containers, which are typically
used in laboratory experiments, the influence of Ekman friction is relatively small [34].

At c → 0, i.e. on the neutral stability curve if the principle of exchange of stabilities [60] is
accepted, equation (28) reduces to the equality to zero of the expression in square brackets in (28).
The minimum of the first term in these brackets is −0.09 [61]. When F 2 < 0.09, there are two roots
of this equation with respect to α=λH , which, according to [61], define the boundaries between
the lower (upper) symmetric regimes and the wave regime, which are observed in the laboratory
experiment.

When F 2 = 0.09 then these roots merge and the critical value of the Ekman friction is given by

hE

H
= 0.3

Λ f L

πN 2H
. (31)

In intermediate calculations, the most favorable value for instability l = π/L was used and it
was also assumed that k = π/L, which maximizes the right side of (31). If following [61] we
take (Λ f L)/(N 2H) = 0.4, which is a reasonable choice for a laboratory experiment where this
expression describes the ratio of the interior horizontal to the interior vertical temperature
contrast, then the right side of (31) is equal to 0.12/π ≈ 0.04. It then follows from (31) that the
baroclinic instability of an interior zonal flow is impossible if hE /H > 0.04 in the considered
experimental setup.

In the above, we considered the analytically simplest symmetric case of two identical Ekman
layers at the lower and upper end-walls. However, the asymmetric case of only one Ekman layer
on the lower rigid end-wall and its absence on the upper free end-wall corresponds better to
the conditions of the laboratory experiment. This more complex case was analyzed in [62]. In
the same work, a model account was taken of the possible variation of the squared frequency of
buoyancy N 2(z) in the Eady problem.
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Rejecting the assumption f = const and accounting for the β-effect introduces significant
mathematical difficulties into the problem, related with necessity to account for critical levels
that correspond toΛz − c = 0. This leads to the appearance of a countable set of weakly unstable
normal modes. However, a numerical analysis shows that the growth rate of the fastest growing
two-dimensional deep mode (l = 0,α = O(1)) is very insensitive to variations in the beta-effect.
For example, (kci )max = 0.31Λ f /N at γ = 0 and (kci )max = 0.286Λ f /N at γ = 10 [63]. Here,
γ = βH N 2/Λ f 2

0 is the Charney–Green number [4, 63]. More details can also be found in [47]
and [53].

Note that the surface quasi-geostrophic (SQG) model is conceptually close to the Eady
model [64, 65]. For constant N and f , the analysis of instability within the framework of the
Eady model can in fact be carried out starting from equation

∇2Ψ+ f 2

N 2

∂2Ψ

∂z2 = 0, (32)

as was shown by [53].

2.3. Two-layer model

The simplest way to account for the β-effect in the problem of baroclinic instability is within the
framework of the two-level Phillips model [66]. Here, we will consider a quasi-geostrophic model,
consisting also of two layers of immiscible liquids but which may be a slightly closer analogue
with respect to conditions of a laboratory experiment. The top layer has a thickness H1, and the
liquid in it has a density ρ1. For the lower layer, such characteristics will be H2 and ρ2, where
ρ2 > ρ1. A reduced acceleration due to gravity g ′ = g (ρ2 −ρ1)/ρ1 is introduced. The equations of
the quasi-geostrophic two-layer model are reduced to conservation laws ([47, p. 213])

∂

∂t
qi + J (Ψi , qi ) = 0, i = 1,2, (33)

where

q1 =∇2Ψ1 −m2
1(Ψ1 −Ψ2)+ f0 +βy (34)

q2 =∇2Ψ2 +m2
2(Ψ1 −Ψ2)+ f0 +βy + f0

ηb

H2
, (35)

with m2
i = f 2

0 /(g ′Hi ). Indices i = 1,2 refer to the upper and lower layers, respectively. In this case,
in (34) the condition is used that the vertical velocity at the top of the upper layer vanishes (the
“rigid lid” approximation); in (35) the function ηb describes the bottom topography. A systematic
slope of the bottom, such that the effective thickness of the lower layer linearly decreases with
increasing coordinate y , is mathematically equivalent to the beta effect. This is the basis for a
practical way to model the beta effect in rotating containers.

For the basic flow that does not depend on the horizontal coordinates, the necessary condition
for instability at ū1 − ū2 > 0 has the form

m2
2 (ū1 − ū2) >

(
β+ f0

H2

dηb

d y

)
, (36)

where it is assumed that ηb linearly depends on the coordinate y . In the case when H1 = H2 = H/2
and dηb/d y = 0, condition (36) coincides with what occurs for a two-level model if g ′ = H N 2/2.
When ū1 − ū2 < 0 the instability condition takes the form

m2
1 (ū2 − ū1) >β. (37)
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In both cases, instability requires vanishing either d q̄1/d y , cf. (34), or d q̄2/d y , cf. (35); see
also [45]. The marginal stability curve at dηb/d y = 0 is given (in our notation) by the equation
(see [45, p. 562])

β2 (
m2

1 +m2
2

)2 +2β(ū1 − ū2)k4 (
m2

1 −m2
2

)−k4(ū1 − ū2)2 (
4m2

1m2
2 −k4)= 0. (38)

If we substitute ū1 − ū2 = β/m2
2, cf. (37) at dηb/d y = 0, then the wave number at the minimum

critical shear is equal to k+ = (m2
2(m2

1 + m2
2))1/4; at ū1 − ū2 = −β/m2

1, cf. (14), it will be k− =
(m2

1(m2
1 + m2

2))1/4 (ibid.). When m2
1 = m2

2 = m2 these formulas transform into the formula
k = 21/4m.

A two-layer model targeted at the interpretation of laboratory experiment results was pro-
posed in Lorenz [67]; see also [68, p. 222]). In this model, the stream function of the horizontal
flow in the upper and lower layers of equal thickness H/2 is Ψ+ τ and Ψ− τ; the buoyancy in
these layers is θ+σ and θ−σ; the velocity potential of the irrotational part of the horizontal flow
in these layers is −χ and χ. If the Coriolis parameter f is constant and the static stability σ varies
only with time, the equations of the model take the form

∂

∂t
∇2Ψ+ J

(
Ψ,∇2Ψ

)+ J
(
τ,∇2τ

)= 0, (39)

∂

∂t
∇2τ+ J

(
Ψ,∇2τ

)+ J
(
τ,∇2Ψ

)= f ∇2χ, (40)

∂

∂t
θ+ J (Ψ,θ) = σ̄∇2χ,

∂

∂t
σ̄=−θ∇2χ. (41)

Here, a bar denotes a horizontal average. This system of equations is rendered closed by the
thermal wind equation ∇2τ = (1/4)(H/ f )∇2θ. With neglect of the time variations of σ̄, the
system reduces to the two-layer Phillips model. An exact match is obtained by setting θ =
f (Ψ1 −Ψ2)/(H/2) and σ̄= N 2H/2.

Baroclinic instability has also been discussed for mean flows that depend on z and y , relative
to disturbances that do not depend on the coordinate x along the flow, called symmetric baro-
clinic instability. A model with constant N and f has been discussed for an ideal fluid by [69].
Viscous and thermally conductive fluids have been studied by [48] and [70].

Finally we note that all the models discussed above were formulated in Cartesian coordinates.
For application to the annulus the theoretical analysis has to be carried out in cylindrical coor-
dinates. No surprises are to be expected with regard to the basic processes. However, due to the
curvature of the streamlines in the cylindrical system, certain new effects may occur. It should
also be mentioned that boundary layers, i.e. Ekman layers at the top and bottom boundaries and
Stewartson layers at the vertical walls, influence the flow in the experimental cavity and might
have an effect on the stability as well (see Section 3.7.1). In these regions quasi-geostrophic the-
ory is not valid. Nevertheless, quasi-geostrophic numerical models have been rather successful
capturing the essential features of experimental annulus data [71].

There may not be a direct comparison in the literature of all the theoretical results on baro-
clinic instability, which are discussed in this section, with experimental results on rotating annuli
and their applications discussed in this review. However, fundamental theoretical results con-
stitute the ideological basis of laboratory modeling, and theory and laboratory experiment com-
plement and enrich each other. The third major player on this scene is the numerical model-
ing, which often helps establish a link between theory and laboratory experiment. For instance,
numerical simulations of baroclinic wave flows in a rotating cylindrical annulus based on the
Boussinesq Navier–Stokes equations, which form the basis of the quasi-geostrophic theory de-
scribed in this section, have been successfully compared with laboratory measurement data (e.g.,
[72]).
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Figure 5. Fourier-analyzed 500hPa synoptic pattern of a state with maximum available
eddy energy for wavenumber 3 (right), figure taken from [73] (with permission). Surface
temperature anomaly (EOF1) measured at the BTU lab for ∆T = 4 K, Ω= 4.8 rpm, d = 13.5
cm (left). The southwest-northeast ridge line tilt imlies a northward/inward momentum
transport.

3. Applications

3.1. Flow regimes and heat flux

3.1.1. Unblocked flow

A theory for the atmospheric general circulation should have at its center a theory for the
eddy heat transport, v ′T ′, where overbar means a zonal average, prime means a departure from
the zonal average, v is the meridional velocity and T the temperature. Usually this transport is
parameterized via v ′T ′ =−DTy , where the index y means a meridional derivative. D is a constant
transport coefficient and it connects the transport with the meridional temperature gradient. D
is, on the other hand, determined by characteristic length and velocity scales; however, it is not
so obvious what these scales should be [74]. Moreover, the static stability is usually considered as
a part of the background state but in fact it is a dynamic variable that varies strongly in space and
time. The eddies in Earth’s midlatitude atmosphere are part of the atmospheric macro-turbulence
and at the end understanding this turbulence is essential for a theory of poleward heat transport.

The differentially heated rotating annulus is an experiment well suited to study and test ideas
on the heat transport for different flow regimes and under different boundary conditions. As
mentioned above, the experimental flow can be seen as an analog for atmospheric eddies and is
therefore a good testbed for theoretical considerations on atmospheric flows. To illustrate this,
Figure 5 shows an example of an atmospheric wavenumber 3 pattern of the 500hPa pressure level
and a corresponding surface temperature pattern (EOF1) from an annulus experiment. The tilt
of the patterns implies a northward/inward flux of momentum.

The heat transport in the annulus has been measured by [75], later by [44] and [76]. Without
rotation but differential heating, the flow is resticted to boundary layers and a Hadley-type
circulation can be observed. In the center of the cavity almost no motion can be seen and, in
equilibrium, a stable vertical stratification is established. According to the experiments by [44]
and [76], in this regime, the Nusselt number Nu, measuring the ratio between the total heat
transport and the one by conduction alone, is about 13. When rotation is started, the thermal
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Figure 6. Left: A comparison of the variation of Nu with Ω for the cases of a bounded and
free annulus. Figure taken from [78] (with permission). Right: Experimental and numerical
total heat transport. Figure taken from [25] (with permission).

wind (4) produces azimuthal flow components with a vertical shear. However, as long as the
flow is axisymmetric (no baroclinic instability) the radial component needs to be ageostrophic
since, due to azimuthal symmetry, there is no azimuthal pressure gradient. Hence, radial flow
is mainly in the Ekman layers and in fact the meridional streamfunction looks similar as in the
nonrotating case. However, the isotherms in the center of the cavity are sloping and the radial
temperature gradient is enhanced there compared to the nonrotating case. In the experiments
by [44, 76], for the axisymmetric regime withΩ ̸= 0, Nu goes down to about 10 following a power
law Nu ∝Ω−3/2 (see Figure 6 (right)).

When rotation is further increased, the slope of the isotherms and the vertical shear in the
bulk of the cavity increases and the azimuthal flow becomes baroclinically unstable (see the first
transition in Figure 1). In the wave regime, Nu remains rather constant at about 10, no matter
whether the azimuthal wavenumber is 2,3 or 4. Compared with the decline of Nu ∝ Ω−3/2 for
the hypothetic case of no baroclinic instability this is an amazing difference in the inward heat
transport which is not fully understood from a theoretical viewpoint. Note that [44] suggested
that the paper by [77] showed better agreement with the experimental results.

3.1.2. Blocked flow

There have been a number of experimental studies implementing a barrier in the annulus that
fully or partly blocked the flow in the azimuthal direction [38, 78, 79]. For a complete blocking,
as in the oceans, Bowden and Eden [78] pointed out that an azimuthal pressure gradient can
exist and heat can then be advected due to a geostrophic boundary current along the barrier. In
contrast to the free axisymmetric regime with a decline of Nu asΩ−3/2, no decline can be seen for
the blocked flow (see Figure 6 (left)). For the latter, no regular wave regime exists and for largerΩ,
Nu becomes somewhat smaller but remains constant when Ω is further increased. Nu is larger
for the blocked flow over the full range ofΩ considered. Similar results have later be found by [79].

The Antarctic Circumpolar Current is not blocked but has a prominent bottleneck, the Drake
Passage. With a view on this situation, Harlander et al. [38] used a barrier that partially blocked
the flow at the bottom and the inner wall. They measured the surface heat flux using velocity
and temperature data for a single set of parameters in the wave regime. In that case baroclinic
instability was present. However, the waves were not steady but showed a life cycle: downstream
of the barrier the waves vanished but further downstream the waves recovered and reached
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a steady state at the entrance of the narrows. The surface heat flux was computed from the
combined PIV and surface temperature data with and without the barrier. The authors noticed
that at the surface, Nu was almost an order of magnitude smaller with the barrier. Moreover,
in the region where the baroclinic wave amplitude weakened, the radial heat flux was reversed
and pointed from the inner to the outer wall. More recently, in a paleoclimate context, Vincze
et al. [80] studied the effect of closing and opening the Drake Passage combining numerical
modeling and lab experiments. This work is discussed in more detail in Section 3.6.

We note that experiments measuring the flow in the meridional plane of the baroclinic cavity
are few in number (see Section 3.4 for Lagrangian data). However, numerical models suggest [31,
41, 81] that in the wave regime the meridional streamfunction can show a multi-cell structure
depending on the aspect ratio Γd of the annulus. This will also alter the part of the heat flux
related to the advection in the boundary layers.

3.1.3. Flux parameterization

The thermally driven rotating annulus is well suited to test parametrization schemes. Perez
et al. [76] tested the mentioned closure for baroclinic eddy transport, v ′T ′ = −DTy numerically,
but surprisingly found only a weak correlation between v ′T ′ and Ty . A much better correlation
was found between the potential vorticity flux q ′T ′ and qy . On the basis of the numerical data
they were able to deduce the eddy diffusivity Dq using linear regression. In a further step,
[76] implemented eddy parametrizations into numerical annulus models to check whether the
models can reproduce data from DNS simulations. A more detailed review of these activities is
described in [25].

Quite recently, using a two-layer quasi-geostrophic model, Gallet and Ferrari [82] developed a
predictive scaling theory for the eddy kinetic energy, temperature fluctuations and the meridional
heat flux of baroclinic turbulence. Later, this so called vortex-gas scaling regime was tested
by applying a Boussinesq Eady model of baroclinic instability [83]. The authors showed that
their predictions could be carried over from the quasi-geostrophic to the fully three-dimensional
Boussinesq model. It would certainly be of great interest to test the scaling experimentally by
using the annulus experiment, but this is a task for future research. We finally note that ideas
for testing parameterizations for internal gravity waves using annulus experiments have been
considered in [84].

3.2. Wave interactions, vacillations and turbulence

Linear stability theory describes well the onset of instability and it was successfully applied for
explaining the typical Ta − RoT -stability diagram as shown in Figure 1, see also [34, Fig. 15].
However, after a short period of growth consistent with linear instability, the waves in a baroclinic
cavity do not grow anymore but are saturated by nonlinear processes. This saturation does
not necessarily result in a steady wave state. In fact, a regime of regular nonlinear oscillations
strictly periodic in time, called vacillations, was discovered by [85] and [35], modeling baroclinic
instability in a rotating differentially heated annulus. Hide [85] initially discovered what is
now known as structural vacillation, or what was at one time called tilted-trough vacillation,
e.g. [86], or wave shape (or form) vacillation [87]. Pfeffer and Chiang [86] and also Fowlis and
Pfeffer [88] made important advances in discovering amplitude vacillations, that is, vacillations
in the amplitudes of eddies and not in the orientation of troughs and ridges (see [89] for an
earlier and [18] for a later review). In the time that followed, attempts were made to detect a
periodic, or quasi-periodic, regime in the analysis of real atmospheric data, which bears some
resemblance to the zonal index cycle in the atmosphere (e.g. [90]). The observed oscillations of
energy parameters in the atmosphere with a period of about 24 days and their connection with
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baroclinic instability are described in [73]. Figure 5 (right) shows the wavenumber 3 geopotential
height field at a state of maximum available potetial energy and this state is in fact part of an
atmospheric vacillation cycle. The minimum state occurred three weeks earlier and shows a
similar pattern than the one displayed but with smaller amplitude and with maxima and minima
that are shifted further towards the pole.

The occurrence of vacillations is an important feature of the nonlinear dynamics of perturba-
tions of a basic baroclinic flow. This characteristic reflects the fulfillment of the energy conserva-
tion law in the adiabatic and inviscid case and is not related to the specific structure of the flow,
cf. [53]. In this regard, the nonlinear oscillatory regime of flow instability in a two-layer quasi-
geostrophic model was studied in [91], where the mechanism of occurrence of oscillations is de-
scribed in terms of a time-periodic energy exchange between an unstable baroclinic wave and
the background flow. For the two-level, quasi-geostrophic model of [67], which was assumed to
be adiabatic and frictionless, Merelees [92] obtained an exact formula for the oscillation period
(in terms of the complete elliptic integral of the first kind); this period, however, depends sen-
sitively on the initial conditions. In a slightly dissipative case, the direct effect of dissipation on
linear baroclinic instability is negligible, but dissipation can affect nonlinear oscillations in the
long run (cf. [93]). Alternatively, on the attractor of a dissipative system, a kind of compensation
of the effects of nonlinear instability and dissipation may occur, resulting in (almost) periodic os-
cillations (orbits), and nonlinear oscillations (vacillations) in a conservative system could serve
as approximations for these orbits.

Here, we mention also the pioneering results of [94] on the existence of a limit cycle for small
(but non-zero) viscosity in a quasi-geostrophic two-layer model at small deviations of the param-
eters from critical values. This type of oscillation has the desirable property that the ultimate os-
cillation is independent (in detail) of the initial conditions. Such vacillations are indeed observed
in such (slightly) dissipative systems as the laboratory analogues of the atmosphere [12], although
in laboratory experiments we are inevitably faced with a dissipative/forced fluid system. Never-
theless, the results obtained are qualitatively very similar to those obtained in the framework of
conservative systems. If we consider that the occurrence of nonlinear oscillations (vacillations)
is a consequence of the conservation of energy, then this similarity is explained by the exact con-
servation of energy for a conservative system and the energy conservation on average over the
period of oscillation for a dissipative/forced system.

The line of research initiated by Pedlosky [91, 94] was further developed e.g. in [95] and
in [96]. Pedlosky and Thomson [97] developed a weakly nonlinear theory of baroclinic instability
of time-dependent flows, which exhibits finite-amplitude periodic oscillations of the limit cycle
type when studying the nonlinear dynamics of parametrically unstable perturbations. Früh [18]
reviews the amplitude vacillation in baroclinic flows based on experimental data, computational
fluid dynamics, and low-order numerical models. The vacillation phenomenon, which occurs in
various geophysical contexts, is addressed, e.g., in [98–101] and [102].

The above discussion mainly focused on amplitude vacillations, but for the route to irregular
flows and geostrophic turbulence at higher rotation rates, structural vacillations are also impor-
tant. Such vacillations have been described as an interaction between a small number of wave
modes [67]. However, although mathematically elegant, this picture might not be complete. Uka-
jil and Tamaki [87] performed numerical simulation of structural vacillations in a rotating fluid
annulus and revealed that the vacillations can be interpreted as the behavior of baroclinic waves
affected by a weak barotropic instability. In view of the more irregular features observed in ex-
periments with structural vacillations small-scale instabilities might also play a role (see also the
discussion at the end of Section 3.7.4). The onset of structural vacillations is usually rather aprupt
as was discussed by [103].
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For higher rotation rates, the onset of structural vacillations is often a harbinger of the irregular
flow state or geostrophic turbulence [14]. For the latter, energy power spectra show a slope
between −3 and −4. The shallower spectrum can be explained following the theory by [104],
a steeper spectrum might be due to sharp fronts and filaments [105] that frequently occur in
geostrophic turbulence. On the basis of data from annulus experiments, [106] studied spectral
energy transfers and recently Rodda and Harlander [107] detected a power spectrum with slopes
of −3 for the large and −5/3 for the small scales in an experiment with a small aspect ratio.
However, the latter case was not in a turbulent regime. Read [25] stated in his review nine years
ago that highly resolved experimental data on temperature and velocity are really needed to
better understand energy exchanges in the turbulent regime and that is still true today.

3.3. Jet streams

Earth’s atmospheric Polar Jet was an early motivation for laboratory experiments, as noted in
the Introduction. The Subtropical Jet, and various oceanic interior jets, distinct from lateral
boundary currents, raised further questions about their origins, relation to the general symmetric
or "overturning" circulation in the oceanic context, and the relation to eddy forcing. From the
early periods of experimentation to the present, interest in the banded structure of giant planets
has also brought the concept of zonal jets into the foreground of research with the annulus.

Waves, eddies, and jet-like currents or streams are often present together in planetary atmo-
spheres, oceans, and in the laboratory annulus experiments themselves. Sometimes the separa-
tion or distinction between these various circulation elements is not clear, or is confounded by
variability, or depends on the interpretation of flow regime. The flow in wave regimes of the an-
nulus, for example, recognized for connecting the inner and outer boundaries and for carrying
heat meridionally (from an outer heat source to an inner heat sink for example), is analogous
to jet streams in a portion of Earth’s atmosphere. But this regime is not representative of jets in
Earth’s ocean, with its much smaller deformation radius LR compared to basin size. The situation
can be described by the basic thermal Rossby parameter of the system, RoT = L2

R /L2, see (8) with
L the characteristic length scale, where the oceanic regime is represented by a smaller value of
RoT . Note that the Taylor number in the ocean is far larger than that in the laboratory, but labo-
ratory results suggest that after transition to the geostrophic turbulence beyond a value of about
108, the regime is relatively independent of Ta.

The organization of the turbulent regime into quasi-zonal jets relies on the β-effect. The
sloping surface of rotating tanks, either free or with a lid, provides a topographic beta-effect,
investigated early on by [108], and more thoroughly by [106] into the stronger nonlinear flow
regimes. While there is skepticism concerning the representation of β by a sloping upper or
lower boundary, since it does not produce a true interior mean vorticity gradient, experimental
results clearly imply an important effect. That small-scale convective motion, generated by
either cooling at the surface or heating from below, can also lead to larger scale baroclinic flow
structure including jets was developed in experiments by, for example, [109]. Their experiment
used a parabolic bowl to produce a net thickness gradient, or potential vorticity gradient, and
gave rise to azimuthal jets. Experiments on the large table at Grenoble, also forced with small-
scale convection, showed that jets were produced consistent with a generation mechanism by
Reynolds stresses [110].

The recognition of the role of jets in the ocean arising from baroclinic instability was slower
to develop. Eventually, observations showed deep zonal jet structures with several candidate
mechanisms, including the baroclinic instability of the meridional flow [111]. Modeling efforts
also suggested alternate explanations not involving baroclinic instability via the arrested decay of
long Rossby waves [112]. Similar to the case of small-scale forcing of larger scale flow structures
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in the laboratory, interior mixing in the presence of topography has been implicated as well in
the development of zonal jets [113].

In experimental configurations with a beta-effect, the introduction of a Rhines length scale,
Lβ = (U /β)1/2, U being a characteristic eddy velocity, produces another parameter, L2

β
/L2, where

L is the annulus’ gap width, that becomes useful for distinguishing the regimes for which jets
appear in the baroclinic annulus. In the laboratory setting, [36] showed multiple jet structure
in an annulus in a regimes with small values of this parameter, thought to be relevant to the
largest and broadest zonal flow in the ocean, the Antarctic Circumpolar Current, present in
the circumpolar open channel between Antarctica and the southern continents. This current
system is known to be composed of multiple zonal jets, as many as ten or so, typically with one
or two dominant at any particular time and place. Intermitency and meridional jet migration
characterize the longer time evolution of this system [36]. We note finally that multiple jet
formation has also been studied experimentally using a mechanical forcing [114].

Multiple jets in baroclinic flow resolved in the annulus have become profoundly relevant
paradigms for circulation in Earth’s ocean and atmosphere, and on other planets as well. For
additional background and newer developments see the review on jets in this collection.

3.4. Chaotic transport

Lagrangian or chaotic transport is of interest in any branch of geophysical fluid dynamics in
which the transport and mixing of fluid, fluid properties, and material moving in the fluid is
relevant. The theory was developed as part of dynamical system theory and later applied to
different fields in physics including fluid mechanics. In our context, transport properties in a
meandering jet are in the center of attention. The Gulf Stream and the intense flow connected to
the polar vortex are examples of meandering jets that show many features in common with the
flow in the baroclinic wave experiment.

The motion of passive particles, not affecting the flow, follow the equation

d x⃗

d t
= v⃗ (⃗x, t ), (42)

where x⃗ = (x, y, z) is the particle position in the 3D space and v⃗ = (u, v, w) is the velocity vector
in this space. For a given velocity, solutions of (42) are the trajectories of the particles. Note that
invariants of adiabatic flows like potential vorticity or potential temperature (or temperature in
Boussinesq models) can be considered as tracers as well, however, they are not passive since they
affect the flow.

In the bulk of the fluid within a baroclinic wave tank the flow is nearly 2D. Then we can
introduce a streamfunction ψ(x, y, t ) and write

d x

d t
= u(x, y, t ) =−∂ψ

∂y
,

d y

d t
= v(x, y, t ) = ∂ψ

∂x
, (43)

where ψ is a Hamiltonian and x and y the canonically conjugated variables [115]. In this case,
chaotic transport can be studied by the methods from Hamiltonian dynamics.

To illustrate particle transport within a 2D meandering jet we consider the following stream-
functions

ψ
(
x ′, y, t

)= c y +ψ0

(
1− tanh

( y − yc

λ/cosα

))
+ϵψ1

(
x ′, y, t

)
, (44)

with yc = A sinkx ′, α= tan−1(Ak coskx ′), 0 < ϵ< 1, and

ψ
(
x ′, y, t

)= c y +ψ0 yc sin y +ϵψ1
(
x ′, y, t

)
, (45)

where x ′ is in a reference frame that moves with the constant speed c, i.e. x ′ = x − ct and k
is a zonal wave number. The amplitudes are constant and are denoted by ψ0 and A. Here ψ1
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Figure 7. Two meandering jets, one localized in an open shear flow (top) (44), and one
in a channel with walls oriented in the zonal direction (45). The black dots are hyperbolic
(saddle) fixpoints, the red dots elliptic (oscillatory center) fixpoints. We used k = A =ψ0 = 1,
c = 1/2, λ=π/6, and ϵ= 0.

is a time dependent perturbation of the primary wave. The former jet (44) corresponds to a
localized meandering jet in an open shear flow [116] (see Figure 7, top), the latter one (45) to a
meandering channel flow with walls oriented in the zonal direction [117] (see Figure 7, bottom).
These examples are in a sense “clinical” versions of realistic jets for which a mathematical analysis
is simpler than for its real counterparts.

The dots in Figure 7 mark fixpoints, i.e. points at which the left hand side of (43) vanishs.
The red dots denote elliptic center points, surrounded by closed streamlines. In contrast, the
black dots stand for hyperbolic saddle points located on streamlines that separate regions of
meandering and circulating flows. In the reference frame in which the flow is displayed in
Figure 7, the streamlines correspond with trajectories. Streamlines separating meandering and
circulating flows are hence transport barriers for the flow: fluid exchange between the two regions
is impossible since no trajectories can cross the transport barrier that itself is formed by a flow
trajectory.

Transport barriers play a fundamental role in atmospheric as well as oceanic sciences. For ex-
ample, mixing events at the edge of the Antarctic polar vortex play a key role for the transport of
ozone and heat in this region [119, 120] and thus have an impact on the southern hemisphere
weather and climate [121]. In such large-scale vortices potential vorticity (PV) can be used as
a tracer [122]. Transport barriers for PV are related to steep PV gradients found at the edge of
the polar vortex. The same steep gradients occur in mid-latitude jets making meridional PV ex-
changes difficult. Spreading of pollutants play an important role in the global ocean. Forecasting
the motion of polluted water, e.g. following an oil spill is essential to keep environmental dam-
age within limits and in this context transport barriers are very relevant [123]. A recent extensive
review on transport barriers is given by [124].
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(a) (b)

Figure 8. a) Uranine visualization of a wavenumber 3 baroclinic wave at depth 1 cm from
the surface. For this visualization experiment, the tank revolution was Ω = 5 rpm, and
the temperature difference was ∆T = 4 K. Center points are given in red, saddle points
in light blue. b) Contour lines of ∥∇M (b)∥ showing attracting material curves computed
at initial time t0 = 0s and τ = 6600s. The calculations are based on the kinematic model
developed by [118] using PIV velocity and temperature data from the experiment shown in
a). A perturbation has been applied to the kinematic model that leads to a break up of the
transport barriers. Figure taken from [118] (with permission).

Mixing events can be triggered by adding time dependence in the streamfunctions (44), (45),
i.e. by using ϵ ̸= 0. For mixing, the saddle points marked as black dots in Figure 7 have a very
significant meaning. The reason is that streamlines intersecting with saddle points are either so
called stable or unstable material manifolds (also called hyperbolic manifolds). These hyperbolic
manifolds mark regime boundaries. In the case sketched in Figure 7 we see either a meandering
jet regime or vortex regime with closed streamlines. The hyperbolic manifods break up when ϵ

is nonzero and the streamfunction becomes time dependent. Then mixing takes place along the
hyperbolic manifolds close to the saddle points.

The mixing and its connection to saddle points can be observed in the baroclinic wave tank.
Figure 8(a) shows an example of a baroclinic wave with azimuthal wave number 3. Center points
are given in red and saddle points in light blue. The two flow regimes, vortex flow and meandering
jet, can clearly be distinguished. However, fluid mixing has obviously taking place and this is due
to (a weak) time dependency and a breakup of hyperbolic manifolds close to the blue points. It
is easy to recognize that the flow shown as an example corresponds to the streamfunction (45),
displayed in Figure 7 (bottom). The straight channel displayed has wave number 1 (4 saddle
points) in contrast to the wave with wave number 3 (3×4 saddle points) in the annular channel
of Figure 8(a).

Apart from these rather theoretical considerations, mixing in jet streams has also been the
subject of intensive experimental research. Sommeria et al. [125] studied the transport of
particles in a barotropic jet. The jet was produced in a rotating annulus with sources and sinks at
the bottom. The bottom had conical shape to mimic a β-plane. The jet results from an instability
due to the radial shear of the flow. The initially unstable jet profile is first broadened due to
barotropic instability until it is stabilized by the beta effect. The sources and sinks in the annulus
create a steep PV gradient in the jet’s center forming a transport barrier for tracers. Using the
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same experimental apparatus, Behringer et al. [126] heuristically fitted a kinematic model to the
experimental data. Then they studied how transport barriers depend on the number of waves
included in the model, and found that the addition of a third wave can break the transport barrier
if the wave amplitudes exceed the width of the jet.

In addition to the consideration of jets caused by barotropic instability, three-dimensional jet
streams formed by baroclinic instability have been studied using a differentially heated rotating
annulus (see Figure 3). Saguta and Yoden [127] numerically studied Lagrangian motion in a
steady baroclinic annulus wave. They subdivided the Lagrangian flow into different regions: the
upper-level and lower-level jets, the cyclonically and anticyclonically trapped regions, and the
inner, outer and lower boundary layers. Although the particle paths always showed some chaotic
behaviour, the particles usually visit these regions in an organized way. However, inside the
cyclonic and anticyclonic vortices particles were usually not found implying that these regions
were separated from the flow by transport barriers. Interesting also is the Lagrangian view of the
heat transport. The fluid particles absorb heat at the heated outer boundary layer and release it
at the inner cooled boundary layer. In between, they carry the heat without much loss.

Later, Tajima et al. [128] tried to reproduce the numerical findings by experiments inserting
ink at different positions in a steady baroclinic wave field. They found that the structure of the
cyclonic and anti-cyclonic vortices are composed of a well-isolated core region but split into
separate upper and lower layers. Next to the core a transition zone was found where fluid particles
can travel towards and from a vortex’ outside but usually not to its core region. A more quatitative
view on chaotic trajectories in the 3D baroclinic wave flow was taken by [129]. Many features
observed by [127] could be experimentally confirmed. However, from the tracking data alone it
was not possible to derive measures for transport and mixing on the basis of the chaotic particle
motions.

Keane et al. [130] showed that finite scale Lyapunov exponents (FSLEs) are useful to find
boundaries between different regions of the differentially heated rotating annulus flow identified
earlier by [127]. Keane et al. further considered Eulerian symmetry measures (ESMs) as an
alternative or supplement to FSLEs. Very recently, Agaoglou et al. [118] quantitatively constructed
a kinematic model (43) from simultaneous measurements of the temperature and the horizontal
flow of a baroclinic wave experiment. In time-dependent dynamical systems stable and unstable
manifolds as well as the structures around elliptic center points can be visualized by using
Lagrangian Descriptors (LDs). This diagnostics has been introduced by [131] and was first
applied in ocean dynamics. The LD that was used in [118] was the M-function defined as

M(x0, t0,τ) =
∫ t0+τ

t0−τ
∥v(x(t ), t )∥ d t , (46)

where the norm ∥ · ∥ measures the length of the velocity vector and τ denotes the integration
time. At a given initial time t0, the function M(x0, t0,τ) measures the arclength that is traced by
the trajectory starting at x0 = x(t0). The M function is powerful tool to disentangle a complex
dynamics and this approach has many applications in oceanic and atmospheric sciences. A
review can be found in [132]. The integral in (46) can be divided into two parts, M = M ( f ) +M (b).
The first term integrates from t0 to t0 + τ and the second from t0 − τ to t0. The forward
component, M ( f ), elaborates structures of stable manifolds, and M (b), can find structures of
unstable manifolds. In [118] the interest was on attracting material curves and the analysis was
restricted to M (b).

Figure 8(b) highlights singular features in ∥∇Mb∥, the modulus of the gradient emphasizing
singularities in M (b) even more clearly. Singular features in M are associated with the existence
of invariant unstable manifolds. In Figure 8(b), Agaoglou et al. [118] used τ = 600 s and applied
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a perturbation to the kinematic model. This perturbation allows for mixing across the jet by
destroying invariant tori.

Dye dispersion processes in geostrophic turbulence were studied using rotating annulus
experiments by Jánosi et al. [133], in the thermal Rossby number range of RoT = 0.01–0.1. In
each run a 1 ml drop of standard fluorescent dye was injected at the water surface, and its
dispersion was evaluated from video recordings taken from above, by determining the total
area covered by the dye cloud, and its azimuthal extent as a function of time. The results were
compared with passive tracer propagation simulations driven by global reanalysis wind fields
(i.e. semi-empirical wind fields, based on measured data but interpolated to achive uniform
global coverage). They found that in this irregular wave regime the horizontal extent of the tracer
cloud increases linearly in time (Batchelor scaling) for intermediate timescales (“weeks”) in the
atmosphere and in the experiment as well.

3.5. Blocking

In meteorology, the term “atmospheric blocking” describes the formation and development
of large-scale high pressure patterns in the midlatitude troposphere that are nearly stationary,
highly persistent and block or redirect migratory cyclones. This causes long-term weather
anomalies, heat waves and draughts in summer and cold spells in winter, and has profound
impact on midlatitude weather and climate conditions, not only over the region in which the
blocking occurs but over upstream and downstream areas as well.

The axis of blocking highs (blocks) usually has a slight tilt with height, i.e. blocking highs are,
to a good first approximation, barotropic structures. However, the existing small tilt provides
feeding of blocking highs not only due to migratory eddies (cyclones and anticyclones) [134], but
also at the expense of the available potential energy stored in the main zonal flow [135], i.e. due
to the action of baroclinic instability.

In Charney and Straus [136], by generalizing the work [137] to the case of a baroclinic at-
mosphere, a two-layer atmospheric model was considered taking into account the orography of
the Earth. The highly truncated solution of the governing quasi-geostrophic equations, by using
the Galerkin method, was shown to allow multiple equilibria, associated with resonantly forced
Rossby waves, one of which corresponds to the atmospheric blocking. Maintaining this blocking
state requires large values of the equator-pole temperature difference ∆T and is associated with
both the so-called orographic (form-drag) instability, which is already present in the barotropic
atmosphere [137], and with the baroclinic instability of the main zonal flow.

A competing point of view on the mechanism for the forcing and supporting a blocking
high treats it as a regional phenomenon forced by migratory cyclones and baroclinic energy
conversion [138]. To the major extent this corresponds to dipole-type [139] and omega-type
blocking [140]. A conceptual model of these two types of blocking in terms of correspondingly a
pair (dipole) and a system of three (tripole) Kirchhoff point vortices was introduced in [141] and
further developed in [142] and [143]. There is a point of view that orography is not necessary for
the blocking occurrence but does support its development (see [144]; and references therein).

With an increase in ∆T and a corresponding increase in the available potential energy stored
in the main flow, the degree of its baroclinic instability increases. As a consequence, the Lorenz
energy cycle of the atmosphere [145] intensifies. This leads to intensification of westerlies
and of large-scale jet streams in the atmosphere and, as a reverse reaction, to an increase in
the frequency of atmospheric blocking. The latter is Rossby’s [146] famous scenario for the
emergence of atmospheric blocking; see also [139]. A key ingredient of Rossby’s theoretical
scheme is accounting for the beta-effect. The observed increase in the frequency of blocking
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in the winter season compared to the summer season, as well as an increase in the frequency of
blocking during global cooling (e.g., [147, 148]), are highly consistent with this scenario.

Meanwhile, the last two decades have demonstrated an increase in blocking frequency ac-
companying general warming at high-latitudes (Arctic Amplification), the mechanism of which
is not entirely clear. A widely accepted paradigm in the climate community is that the shift to
a less zonal type of circulation facilitates meridional excursions of air masses and, in particular,
provokes blocking action [149]. Various aspects of reproducing future trends in blocking activity
by climate models are discussed in [150] and in [151].

Kurgansky [152] attempted to unify the above paradigm with Rossby’s ideas using a two-
zone atmospheric circulation model over a hemisphere. The surface area of the proportion
of extratropical zone occupied by migratory eddies (cyclones and anticyclones) was accepted
as a measure of baroclinic instability (baroclinic chaos) over the hemisphere. The principle
of maximum of the (informational) entropy of this eddy regime was applied to determine the
climate equilibrium latitude of the boundary between the two zones. The model inference was
obtained that the area occupied by blocking highs, which is formally included in the extratropical
zone but free of eddies, increases with both global cooling (increase in ∆T ) and global warming
(decrease in∆T ). At the same time, modern conditions (more precisely, the conditions of the end
of the 20th century) correspond to the minimum of blocking action.

An interesting attempt was made in [153] to reveal the dynamic mechanism explaining the
increase in blocking frequency along with a decrease in ∆T . These authors proceeded from
the fact that, unlike the classical mechanism of baroclinic instability, the decisive role here
is played by motions on a planetary scale, the so-called geostrophic motions of the second
type [154]. Therefore, the momentum equations reduce to the Sverdrup relation, which describes
the balance of the meridional advection of the planetary vorticity and the vertical stretching of
the vortex tubes. The subtle point is that in this case the Boussinesq approximation is abandoned
and the average (standard) density of the atmosphere is assumed to decrease exponentially with
scale height H . Basically, an anelastic approximation is used. In this case, the Sverdrup relation
takes the form

βv = ∂w

∂z
− w

H
. (47)

For specific calculations, a two-layer atmospheric model is used. The atmospheric layer under
consideration of thickness H is divided into two sublayers: lower 0 ≤ z ≤ H/2 and upper H/2 ≤
z ≤ H . Relation (47) and the buoyancy equation, both differentiated with respect to z, are written
at the levels z = H/4,3H/4. The thermal wind equation is used in the differentiated equation (47),
and the vertical velocity field is eliminated between the equations obtained. For the parabolic
vertical velocity profile

w = wm
z

H

(
1− z

H

)
(48)

adopted in the cited work, due to the second term on the right-hand side of (47), the asymmetry
necessary for baroclinic instability to occur arises between the equations of the upper and lower
layers. According to [153], this instability is possible if the following inequalities are satisfied (in
our notation)

0 ≤∆U ≤ 1

2
βL2

R , (49)

where ∆U is the velocity shear of the main flow between the upper and lower levels and LR =
N H/ f0 is the Rossby deformation radius. Unlike the classical criterion of baroclinic instability
in the two-level Phillips model, here the instability is favored by small values of the vertical
velocity shear ∆U , that is by small values of ∆T , while the beta effect is a destabilizing factor.
More details about the problem statement and its solution can be found in the cited work.
An interesting question, especially in terms of possible applications to laboratory experiments,
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is whether such instability can manifest itself in some baroclinic fluid model, but within the
Boussinesq approximation? In other words, to what extent is it necessary to abandon Boussinesq
approximation?

Figure 9. Time-averaged stream function contours derived from experimental data for
(A) zonal and (B) blocked flow. The Rossby numbers for the zonal and blocked flows are
0.33±0.02 and 0.22±0.02, respectively. The tops of the ridges are indicated by dashed lines,
and the profile of each ridge is shown by black curves outside the rim of the round panels.
The black dots indicate the horizontal location of a hot-film probe. Figure has been taken
from [155] (with permission).

We have described the state of research into the blocking phenomenon in more detail here
because we believe that the baroclinic experiment in conjunction with numerical modelling is
well suited to clarifying fundamental processes mentioned above. Most experimental studies
on blocking focus on the aspect of flow/topography interactions. Weeks et al. [155] used the
barotropic experimental setup by [125] to understand transitions between blocked and zonal
flows in an rotating annulus with large-scale topography. An example of a block and a zonal
flow situation is displayed in Figure 9. When the flow is blocked a much larger variability of the
wave could be observed. Weeks et al. [155] conjectured that the two states correspond to two
basins of attraction, connected by a heteroclinic orbit. For the observed multiple equilibria the
wave/topography interactions are essential. However, note that even in the absence of topogra-
phy, switches between different baroclinic regimes have been observed for the flat bottom ther-
mally driven annulus [34] as well as for a two-layer setup using water for the upper and a dilute
sugar solution for the bottom layer [156].

More recently, in a series of papers, wave/topography interactions and blocking have been in-
vestigated in more detail with the Hide setup of the differentially heated rotating annulus. The
authors of [100, 157] and [158] studied topographic resonance and multiple flow regimes. In
particular, Marshall and Read [158] found a “stationary-transition” regime where oscillations be-
tween a stationary wavenumber-3 flow and axisymmetric or chaotic flows could be found. Wave-
zonal-flow and wave-wave interactions (triads) were part of detected nonlinear instabilities. In
a follow-up study, the same authors [37] replaced the wavenumber-3 topography by an isolated
ridge that partially blocked the flow. Using this configuration, the occurrence of multiple baro-
clinic flow states have been studied. Again wave triads could be found, this time two triads have
been noted sharing a wavenumber-1 mode. Finally, Marshall and Read [159] demonstrated that
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blocking can also be induced by a local thermal forcing. Analogies with the atmospheric Walker
circulation have been drawn and it was suggested that for the Martian atmosphere it is the ther-
mal forcing that leads to its dominant low-wavenumber flow structures.

The β-effect plays an important role for baroclinic instability and also for the special charac-
teristics of multiple flow regimes. The studies [34, 156, 157], and [100] considered an f -plane,
[37, 125, 155, 158], and [159] used a β-plane, by mounting a sloping bottom or slanted top lid.

As has become clear with the above the occurrence and the frequency of blocking depends on
the meridional (radial) temperature gradient. This gradient shows natural fluctuations but also
changes due to climate change. Blocking will hence be influenced by these changes [150]. In the
following section, findings on changes in the frequency of extreme events from baroclinic wave
tank experiments will be discussed.

3.6. Climate and extreme values

Earth’s atmospheric circulation at mid-latitudes and the propagation of Rossby waves is driven
by the large-scale meridional gradient of the air temperature. Therefore, as the change of the
characteristic “Equator-to-pole” temperature contrast parameter∆T impacts the thermal Rossby
number RoT , it may also affect the general character of the flow. In the Earth system ∆T exhibits
periodic (seasonal) changes through a year, superimposed onto a decreasing trend which has
been observed in the weather stations and satellite data throughout the past decades, in parallel
with the ongoing global warming. Temperature increase in the Arctic since 1979 has been
reported to be more than four times larger than the increase of the global average, a process
referred to as Arctic amplification [160].

The decreasing RoT influences the “waviness” of the polar jet stream separating the colder
polar domain from the warmer mid-latitudes, as well as the typical extent of its North-to-
South detours and the wind speeds in it. The conceptual baroclinic annulus model of the mid-
latitude circulation provides a remarkable test bed for investigating Rossby waves in a system
whose dynamics are driven by a temperature contrast ∆T prescribed by the thermal boundary
conditions at the cylindrical sidewalls, and Coriolis force. Experiments in this configuration
can help disentangle the complex causal connections of processes which cannot be studied
separately in the real Earth system, and provide useful input to the problem of whether or not the
wavier jets emerging due to Arctic amplification are also associated with stronger temperature
extremes.

A convincing demonstration of the fact that nonlinear statistical features of daily mid-latitude
temperature fluctuation time series from the atmospheric boundary layer can generally be
reproduced in a rotating annulus experiment was performed by Gyüre et al. in 2007 [161]. Their
seminal paper contrasted the time-reversal asymmetry of daily temperature time series from
meteorological station data of the Global Daily Climatology Network (GDCN, compiled by the
National Climatic Data Center), considering one day temperature differences. They found that
the number of subsequent warming steps (i.e. consecutive days where the temperature is higher
than on the previous day) is significantly larger than the number of cooling steps in the mid-
latitudes, regardless of the length of the investigated records. In other words: large abrupt cooling
events are typically followed by slower gradual warming. This strong asymmetry fades away if
not consecutive days but larger time differences are compared, as the “memory” (persistence) of
weather phenomena is known to have a timescale of a few days, after which the correlation – and
the nonlinear, time-asymmetric behavior – vanishes.

In the rotating annulus of the Budapest von Kármán Laboratory (with RoT = 0.01–0.075 and
Ta = 4.47 ·109–2.8 ·1010, well within the irregular Rossby wave regime) Gyüre et al. implemented
analogous measurements with temperature sensors placed in the vicinity of the bottom plate
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of the tank, which recorded “daily” temperatures for approx. 5 − 6000 revolutions. In these
experiments the same marked asymmetries (with the quantitative agreement of the evaluated
time-reversal asymmetry parameters) were observed as in the station data, underlying the phys-
ical analogy between the quasi-geostrophic turbulence of the troposphere and the differentially
heated rotating annulus.

The above experiment featured constant thermal boundary conditions. In the dynamics of
a changing climate a fundamental theoretical problem lies in the very definition of “climate”:
the Earth system is a nonstationary one, yet, the empirically obtainable measures of the climate
state are time averages of certain observables (e.g., global mean temperature). Changing climate
implies that on the decadal timescale the “average” behavior itself is also evolving, making
the statistical interpretation of the results problematic, mostly in situations where the climate
change is abrupt. Theoretically, as introduced by Rameiras et al. [162] for nonlinear systems
subject to time-dependent driving and specifically in climatology by Ghil et al. [163], a consistent
definition of climatic averages (and other statistics) in such systems could only be achieved via
ensemble- (and not time-) averaging. The statistics over a multitude of “parallel histories” has
to be considered, each subjected to the very same time-dependent external driving. Then, one
can obtain “ensemble statistics” for each time instant t of the changing climate, a distribution
with respect to which, for instance, the extremity of a given measured data point (e.g. daily
temperature value) can be evaluated.

Obviously, since only a single realization of the actual Earth system exists, such empirical mea-
sures cannot be obtained for the real climate. However, experimental (and numerical) models
can be repeated many times under identical pre-defined time-dependent forcing scenarios. Then
the comparison of the obtained ensemble statistics with the traditional temporal statistics from
a single experiment can teach us important lessons about the nature of such systems.

Results from a climate-change-inspired baroclinic annulus experiment featuring an ensemble
of nine experiments with identical time-dependent ∆T (t ) temperature contrast forcing were
reported in [164]. The runs were conducted in the small rotating annulus of the Brandenburg
University of Technology (BTU) shown in Figure 3 with parameters Ta = 9.18 · 108 and RoT =
0.013–0.041. From each ensemble member pointwise temperature time series throughout 3300
revolutions (“days”) were evaluated, with the onset of ‘climate change’ occurring exactly at half
time: before that ∆T , which was then followed by an exponential decay ∆T ∼ e−t/τ with τ≈ 360
revolutions.

In the experiments, traditional single-realization statistics – e.g. standard deviations – and
their ensemble-based counterparts were compared. It was found that based on the traditional
methods (calculating temporal standard deviations of different time intervals) the change in
the characteristic amplitude of the irregular temperature fluctuations was often not detectable,
whereas in terms of the ensemble statistics the onset of the ∆T decrease clearly resulted in a
marked increase of the ensemble standard deviation. This observation implies that a changing
climate in a certain sense is more “sensitive” to the small perturbations than a quasi-stationary
one, but the size distribution of temperature fluctuations obtained from an individual realization
does not necessarily reveal this property. Even in a stationary climate model, however, the effect
of the equator-to-pole ∆T on the extreme temperatures in the mid-latitude weather is far from
being trivial. A series of experimental works conducted in baroclinic annuli were dedicated
to explore jet stream variability and the character of temperature distributions as a function
of ∆T . Rodda et al. [165] performed series of runs in the BTU small annulus (see Figure 3),
where various values of (constatnt)∆T were set, and the temperature statistics were obtained via
infrared thermographic imaging of the free water surface. The results confirmed that a smaller
∆T yields slower eastward propagation of the jet along the boundary of the Rossby wave, and
also indicated that (with decreasing∆T ) the variability of temperatures decreases – the histogram
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Figure 10. Histograms (a) and Fourier spectra (b) of fluctuations in temperature time series
from rotating annulus experiments (BTU small tank). The coloring follows the logarithm
of the thermal Rossby number RoT for each experiment. Apparently, with decreasing
RoT – proportional to temperature contrast ∆T – the histograms become narrower, but
the “small-slope” spectral domain (indicating less correlated behavior) widens, implying
decreasing persistence. Figure taken from [167] (with permission).

of temperature fluctuations becomes narrower – at the “polar” and mid-radius domains of the
tank, but increases at the “subtropical” region, closer to the outer rim, with decreasing ∆T . This
finding was also in qualitative agreement with the NCEP reanalysis data based on actual weather
station observations. The study showed that extreme events (defined as temperature values out
of the 2-StDev interval around the mean) become more frequent if ∆T is set lower, even if these
extremes are milder.

Similar conclusions were reported recently in the numerical minimal modeling of Rossby
waves by Geen et al. [166], and in the experimental work of Vincze et al. [167], where the scaling
of the width of the temperature fluctuation histograms, and the spectral properties of the time
series were analyzed in a broader range of RoT , combining experiments from the large annulus
at the Geophysical Fluid Dynamics Institute (GFDI) of the Florida State University, and the small
tank at BTU. The authors found that the width of temperature fluctuation histograms in the
vicinity of the bottom of the tank at mid-radius scales linearly with RoT , and also reported that
the persistence (correlation timescale) of the “weather” in the tank decreases with ∆T , hence
in the sense of greater unpredictability, the weather indeed becomes more extreme with the
decreased∆T , but this is not associated with the widening of the range of temperature anomalies
(Figure 10).

Harlander et al. [168] conducted an extremely long (24-hour) rotating annulus experiment
– at fixed stationary values of RoT and Ta – where “daily” surface temperature fields were
analyzed, and the largest spatial mean temperatrue within each “month” (30-revolution interval)
was logged. The so-called shape, scale, and location parameters of the generalized extreme value
(GEV) distribution function were fitted to the empirical histogram of these monthly maximum
values, and the resulting values were compared to those obtained via an identical procedure from
8-year series of daily atmospheric data. The comparison showed a good agreement, indicating
that this laboratory model be a useful tool for investigating extreme event distributions of the
climate system.
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In the oceanic system, the only region of the planet where a dominantly zonal flow – analogous
to the atmospheric jet stream – in the ocean can make a full circle around the globe without get-
ting deflected by a meridional continental boundary is the Southern Ocean, where the strongest
near-surface ocean current, the Antarctic Circumpolar Circulation (ACC) is to be found. This cur-
rent is thought to be largely, but not entirely, wind-driven. The ACC has a particularly important
climatic effect: it blocks warm tropical meridional ocean currents from reaching Antarctica, thus
helping to maintain the continent’s permanent ice cover. It is known from paleoclimate records
that the glaciation of Antarctica happened roughly about the same geological epoch as the open-
ing of the Drake Passage, where earlier the circumpolar flow had been interrupted by a conti-
nental bridge connecting the tip of South America and the Antarctic Peninsula. Both events took
place at the Eocene-Oligocene transition (EOT) 34 million years ago, but their causal connections
are still matter of debate. Bozóki et al. [169], and Vincze et al. [170] performed experiments in
baroclinic annuli with the standard configuration, and a closed Drake Passage-like version where
the azimuthal flow was blocked with a full-depth radial (“meridional”), thermally insulating wall.

They found that in the “closed” case a persistent azimuthal temperature gradient emerged
whose magnitude scales linearly with the “meridional” temperature contrast. Furthermore,
seemingly contradicting paleoclimatic data, the presence of the radial barrier yielded lower
values of the surface temperature in the tank than those in the “open” experiments. This
difference can be explained by the importance of the role ice-albedo feedback plays in an EOT-
like transition, an aspect that is not captured in the laboratory setting. This idea was confirmed by
numerical simulations conducted in a numerical global climate model, where the comparison of
“closed” and “open” configurations could be made both with and without sea ice feedback. These
runs indeed yielded opposite effects on sea-surface temperature and are therefore consistent
with both the laboratory experiment and the paleoclimate data.

3.7. Internal waves and small-scale instabilities

At least for shallow atmospheres like the one of the Earth, the apect ratio Γd = d/L of the
experiment is too large for parameter similarity. As long as Bu is small enough, this does not
have a fundamental effect for the large-scale dynamics under consideration. On the other hand,
it is a problem when the generation of small-scale waves is considered. The differentially heated
rotating annulus is a stratified rotating fluid that not only supports long Eady and Rossby waves
but also short inertia-gravity waves (IGWs). For strongly (weakly) stratified rotating fluids such
waves occur in the frequency band f < ω < N (N < ω < f ). The atmosphere of the Earth and
the upper ocean are strongly stratified (N / f ≈ 102) (whereas the deep ocean is weakly stratified
only). It is therefore of interest to look for the occurrence of IGWs in the baroclinic wave tank.

3.7.1. Boundary layer instabilities

In the atmosphere, there are different main source mechanisms for IGWs: flow over moun-
tains, convection, and jets and fronts [84]. For the baroclinic wave experiment, there is another
source and this is boundary layer instability. Jacoby et al. [171] observed short period waves in
the vicinity of the inner cooled cylinder of their differentially heated rotating annulus experiment
and corresponding numerical simulations. Analysing their data they were able to prove that the
waves fall nicely into the inertia-gravity wave band. Using the dispersion relation

ω=
(

f 2m2 +N 2
(
k2 + l 2

)
k2 + l 2 +m2

)1/2

+Uk, (50)

with f = 2Ω the Coriolis parameter, N the buoyancy frequency, U the azimuthal mean flow, and
(k, l ,m) the wave vector, one finds from their experiment with f = 4.06 rad/s, N = 0.5 rad/s,
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U = 0.066 mm/s and a wave vector (k, l ,m) = (2π/0.1,2π/0.2,2π/1.1) cm−1 an intrinsic frequency
ofω= 1.01 rad/s. We see that, in contrast to atmospheric conditions, the experiment in [171] was
in the weakly stratified regime with N <ω< f . As we will see later, this situation is rather typical
for baroclinic wave experiments with an aspect ratio (comparing fluid depth, d , and gap width,
L) of order one.

To explain the excitation of these waves, Jacoby at al. [171] applied the convective boundary
layer model from [172]. In this model a viscous fluid with kinematic viscosity ν is bouded by an
infinite vertical wall. The wall has a constant vertical temperature gradient. Moreover, between
the wall and the fluid there is a fixed horizontal temperature difference with respect to the fluid
far in the interior. Along the wall, a thermal boundary layer of constant thickness δB is considered
in which the amplitude of the vertical velocity W is large. Gill and Davey [172] plotted Pr 1/2Re
against the vertical wave number where Pr is the Prandtl and Re = p

2W δB /ν is the Reynolds
number. Numerically, Jacoby at al. [171] found that for their experimental parameters the critical
Reynolds number is exceeded in the boundary layer of the cooled inner vertical wall of the
annulus.

Based on direct numerical simulations with high-resolution pseudospectral methods a de-
tailed study on small-scale instabilities occurring in a baroclinic cavity has been carried out [173].
In an experiment with a Prandtl number of 16 andΩ= 0.5125 rad/s these authors observed small-
scale fluctuations connected to baroclinic waves. These small-scale fluctuations occur for vacil-
lating baroclinic waves studied with Ω = 0.5125 rad/s, but also for steady baroclinic waves that
could be found for smallerΩ. Using similar arguments as given in [171] they showed that the fluc-
tuations correspond with inertia-gravity waves, occurring again in the regime of small frequency
ratio N / f = 0.17. In contrast to [171], the authors emphasized that the IGWs are attached to
the baroclinic waves and they develop a somewhat more sophisticated theory beyond the model
by [172] that does not include rotational effects. However, the inner cold wall of the annulus plays
an important role in [173], too. The latter authors showed that the small-scale fluctuations propa-
gate vertically along the inner cold wall over three “ridges” following their baroclinic wave-3 flow.
Towards the upper part of the cavity the characteristics of the IGWs developed to almost inertial
waves with vertical propagation only. This latter feature might be due to the fact that in the whole
cavity N < f with a particular small N in the upper region of the annulus.

According to [173], the instability in the lower part of the downward flow along the inner wall is
ultimately caused by Kelvin-Helmholtz instability. These authors find numerically that the local
Richardson number, Ri = N 2/U 2

z , falls below the critical value of 1/4, signaling shear instability.
This instability invokes resonant over-reflection, that is, a density overturn was observed close
to the inner wall along the bottom boundary layer, associated with the presence of a reversal
flow and a stagnation point. The scenario described is strongly reminiscent of the one which
has already been described by [174]. It should be noted that critical Ri values cannot be found
everywhere along the inner edge but only where the cold baroclinic vortices are in contact with
the inner wall. Therefore, the instability exciting IGWs is intimately linked to the large-scale
baroclinic wave field.

In a further study, von Larcher et al. [43] took a close look on the small-scale features at the
cooled inner and heated outer wall by using two different numerical models and experimental
data. In Figure 11 isosurface snapshots of the small-scale instabilities in the vertical sidewall
regions are displayed. It could be shown that only the structures at the inner wall (Figure 11(a))
correspond to IGWs able to radiate into the bulk of the baroclinic cavity. In contrast, the ripples
at the outer wall (Figure 11(b)) are not IGWs and they are due to inertial instability rather than
the thermal boundary layer instability. These features remain trapped to the boundary layer of
the outer wall and cannot propagate inward, in contrast to the IGWs generated at the inner wall
that propagate outward.
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(a) (b)

Figure 11. Isosurface snapshots of the small-scale instabilities in the vertical sidewall
regions simulated with the EULAG model. a) T = 296.15 K, and b) T = 291.15 K. It should be
noted that the holes in a) are due to the fact that the specific value of the isosurface is not
given there at the time increment shown. Figure from [43] (with permission).

A necessary condition for inertial instability in an ideal fluid was discovered by [175], taking
into account the general rotation of the fluid, it reads d(U (r )r +Ωr 2)2/dr ≤ 0, where U (r ) is
the azimuthal flow. For the differentially heated rotating annulus this criterion is insufficient
since there is not only an azimuthal velocity but also a vertical velocity, W , at the outer wall. The
criterion found by Hart and Kittelman [176] is more appropriate and it reads

2Ωcosγ

(
2Ωcosγ+ d | Ũ |

dr

)
< 0, (51)

where Ũ is the velocity tangent to the wall at angle γ with tanγ= W /U . This criterion is fulfilled
in regions where the ripples in the outer boundary layer can be found. However, stratification has
been neglected in the stability criterion (51).

3.7.2. Imbalance

It is compelling to use the differentially heated rotating annulus to study another IGW gen-
eration mechanism, spontaneous imbalance at baroclinic jets and fronts, which is an important
source for the occurrence of IGWs in the atmosphere [177]. For the large-scale atmospheric flows,
Froude number, F r = U /N H , (also the centrifugal Froude number F rc = Ω2L/g ), Rossby num-
ber Ro = U /2ΩL, and the aspect ratio H/L are much smaller than one. To reach similarity be-
tween the experiment and natural flows, these nondimensional parameters need to be small in
the experiment as well. Using a suitable differential heating and rotation this is possible; however,
compared to the atmosphere, the aspect ratio is typically too large in the experiment.

This situation is of particular relevance here, because the aspect ratio determines not only the
instability of the baroclinic waves but also the special characteristics of IGWs. Put simply, keeping
the radial temperature difference ∆T constant but reducing the depth H leads to larger N . The
reason is that the temperature difference between the inner and outer wall also determines the
difference between the surface and the bottom. This implies that for the standard setup of the
baroclinic wave tank with H/L ≈ 1, the ratio N / f < 1 and not ∼ 102 like in the atmosphere. In
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contrast to the atmosphere, small-scale IGWs will be strongly affected by rotation (see [178, 179]
for more details).

The importance of the aspect and frequency ratio for baroclinic instability can be seen from
the Burger number given in equation (6) where L = b − a is the annulus’ gap width and d the
annulus’ fluid depth. For baroclinic instability, according to [5], a critical value of Bu depends on
the horizontal wave numbers. For experiments with the baroclinic cavity we usually see a radial
wave number of one (i.e. a structure ∼ sinπy , 0 ≤ y ≤ 1, where y is the radial direction). For
baroclinic instability, Bu needs to be smaller than 0.58/(1+k2/π2) where k is the azimuthal wave
number. Hide and Mason [34] found that for baroclinic wave experiments the azimuthal wave
number depends on the geometry of the annulus,

π

4

(b +a)

(b −a)
≤ k ≤ 3π

4

(b +a)

(b −a)
. (52)

Figure 12. The critical ratio N / f in logarithmic scale over the wave number k for the
small BTU tank (d/L = 1.60, solid line) and the large BTU tank (d/L = 0.17, dashed-dotted
line). N / f = 1 is shown by the thin dotted line. The figure should be compared with [178,
Figures 3c and 5c].

Figure 12 shows the wave number range and N / f at the critical value for Bu for the small
((a,b) = (4.5,12)cm) and the large ((a,b) = (30.0,70.0)cm) baroclinic cavity at the Brandenburg
University of Technology (BTU). Obviously, the frequency ratio is larger (smaller) than 1 for the
large (small) tank experiments. Therefore, for conducting IGW-related experiments with regard
to atmospheric conditions, experimental setups with a small aspect ratio are more suitable.

To our knowledge, the first systematic study of the interaction between the large-scale nearly
balanced flow and ageostrophic IGWs in a baroclinic wave tank was done by Lovegrove et
al. [29]. These authors used a two layer setup with two immiscible fluids of different density,
and baroclinic instability was not due to differential heating but a mechanical forcing. The upper
lid of the experiment rotated slightly faster than the bottom driving the necessary vertical shear in
the horizontal velocity. The aim was to find interactions between the balanced baroclinic waves
that have basically no horizontal divergence, and the unbalanced or ageostrophic IGWs. Verified
via (50), IGWs were found in flow regimes with amplitude vacillations and they were located
mainly along the baroclinic fronts. Since the waves could be found during certain phases of the
amplitude vacillation cycle, Lovegrove et al. [29] assumed that imbalance of the large-scale flow
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generates the IGWs. This work was continued by [180] and they could show that for parameters
that determine a baroclinic wave transition region, the IGWs play a role in terms of azimuthal
wave number selection.

Somewhat later, Williams et al. [30] investigated the source mechanism for the IGW wave gen-
eration in more detail. The two possible mechanisms considered were spontaneous adjustment
of the large-scale flow, and Kelvin–Helmholtz shear instability. The authors found that for stable
baroclinic waves, the small scale waves can be found only for subcritical bulk two-layer Richard-
son numbers, defined as Ri = 2g ′δE /r 2∆Ω2, where g ′ is reduced gravity, δE = (ν/Ω)1/2 is the
upper/lower Ekman layer thickness, ν kinematic viscosity, and r the radius. For unstable baro-
clinic waves, they found agreement between the spatial locations of IGW emission and regions
in which the model Lighthill/Ford IGW source term is large, implying that the short waves in the
baroclinically unstable case are freely propagating IGWs generated by spontaneous adjustment
of the large-scale flow [181].

In a later work Williams et al. [182] confirmed the existence of spontaneous emission in
their experiment, which implied an inevitable emission of IGWs for Rossby numbers of the
same order as in the ocean and the atmosphere. They speculated that the emission of IGWs
by mesoscale eddies may be a relevant process providing energy for mixing in the deep ocean.
However, Flór et al. [183] questioned spontaneous emission as the dominant source mechanism
for the experimentally observed IGWs. With their own experiments, they proposed that a special
shear instability called Hölmböe instability is responsible for the IGWs. Note that this instability
occurs in a two-layer fluid with a sharp interface by a resonance between an IGW and a wavelike
background disturbance where the background shear varies vertically. Flór et al. [183] argued that
for the generation of IGW radiation in a two-layer baroclinic cavity, Hölmböe instability could
also be a candidate in addition to spontaneous emission.

For a closer connection to atmospheric conditions, Borchert et al. [178] did numerical simula-
tions for a classical differentially heated rotating annulus with a heated outer and a cooled inner
wall. For such a setup, a continuous thermal stratification develops. They considered two dif-
ferent geometries, similar to the two baroclinic wave experiments available at the BTU lab (see
Figure 12). In their simulations they found IGWs generated at the inner vertical boundary layer
as in [171] as well as at the frontal zone of the baroclinic waves. The latter have been attributed
to spontaneous emission, however, these IGWs look very different from the one shown by [29].
That the patterns actually correspond to IGWs has been tested by a modal decomposition, based
on linear IGW theory. In the solutions by [178] the scale-separation between the IGWs and the
baroclinic waves was not so clear as in [29]. However, the IGWs in the large and small annulus
configurations resemble, in their spatial structure, those observed in simulations of an idealized
life cycle of an unstable baroclinic wave in the atmosphere (see e.g. [184]).

The numerical findings by [178] have been studied experimentally by [179] and [107]. The
first evidence of IGWs in the continuously stratified annulus was reported but it became clear,
that in spite of a good agreement with respect to the baroclinic waves, the experimentally
derived buoyancy frequency N deviated from the one found numerically. The largest values of
N occurred along the baroclinic jet axis and, in contrast to the numerical data, the IGWs in the
experiment seemed to be trapped in the jet region.

Using data from the large BTU annulus configuration (see Figure 12), following [185] and
separating the spectra into vortex and a wave components, Rodda and Harlander [107] could
reproduce atmospheric spectra showing a −3 slope for the baroclinic waves but a −5/3 slope for
the “meso-scale” part in which the IGWs occur. By computing the ratio between the divergent
and the rotational component of the kinetic energy and checking the local Rossby number
Rol =| ζz | / f , where ζz is the vertical vorticity and f is the Coriolis parameter, [107] concluded
that linear IGWs are responsible for the shallow part of the spectrum. This conclusion was drawn
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from the fact that the energy ratio was larger than one in regions where Rol < 1 [186].
We mention finally baroclinic wave tank experiments that deviate from the classical setup by

adding a continuous salt stratification to the thermal stratification [187]. The reason for this setup
was a better control of the N / f ratio. The experiments were done with a small tank setup and,
as we discussed above, this usually implies a small frequency ratio. However, adding a linear salt
stratification gives additional freedom in adjusting N / f . This experiment was, in fact, the first to
prove the existence of IGWs on fronts for a case with continuous stratification.

3.7.3. Topography

Remarkably, the best investigated IGW source in the atmosphere is not well studied in the
context of baroclinic tank experiments. Interactions between topography and baroclinic waves
of similar length scales have been studied mainly with regard to blocking (see Section 3.5). On the
other hand there is a large literature on channel experiments on IGW geneneration by topography
and the wave radiation into the flow (for a review see e.g. [188]). However, for the classical
baroclinic cavity setup, for which the zonal flow is determined by the thermal wind relation (4),
experiments have been conducted with topography having a characteristic length larger than the
Rossby deformation radius, LR = (UT (b−a)/(Ω))1/2 and the focus was on the interaction between
topography and planetary Rossby waves.

Recently, however, Stewart et al. [9] modified the setup by differentially rotating a small-scale
topography with respect to the tank (and also to UT ). In this case, the experiments are closer to
the IGW experiments reviewed in [188] and the interaction between the topographically excited
IGWs with baroclinic eddies could be studied. For the excitation of IGWs, the topographic Froude
number F rB =U /N hB , with hB the height of the topography, should be one or larger. This can be
reached by using the mentioned differentially moving ridge. (Note that Stewart et al. [9] defined
a lee wave Froude number as F r−1

B .) The authors found that standing features, in particular
upstream internal bores play an important role for steering the flow. Such features occurred over
a wide range of flow speeds but only when the internal Froude number, F ri = nπF r , where n is
the vertical mode number, is smaller than one.

3.7.4. Convection

Convection can trigger IGWs in the atmosphere e.g. when deep convection deforms the
tropopause which in turn emitts IGWs into the strongly stratified stratosphere [84]. Such proceses
have been studied experimentally and we just give two recent references for an overview, [189]
and [190]. In the context of baroclinic wave experiments this has, with one exception, not been
investigated. Recently, Abide et al. [191] studied numerically surface effects in a large free-surface
differentially heated rotating annulus. Knowing that small aspect ratio setups are more suitable
for generating atmosphere-like IGWs, one must on the other hand take into account that there is
a significant heat exchange at the free surface. It was found in [191] that the onset of baroclinic
instability can be suppressed if the ambient temperature is higher than the mean temperature
at the surface. Moreover, if the temperature of the environment is lower than the surface mean
temperature, small-scale IGW-like features can be seen at the surface which are almost certainly
caused by convective instability. These findings have not been confirmed experimentally. In
the experiments, evaporation and the corresponding cooling can also affect the stability of the
surface layer.
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To round off the section, we can finally ask what role IGWs might play for the transition from
the regular baroclinic wave regime to geostrophic turbulence. Using direct numerical simulation
to investigate the flow in an air-filled baroclinic cavity, Read et al. [42] showed that small-scale
fluctuations gradually break the regularity of the baroclinic waves, leading to structural wave
vacillations before the transition to geostrophic turbulence. However, for an air-filled annulus
with Prandtl numbers smaller than one, the small-scale features did not correspond with IGWs.
Later, Randriamampianina and Crespo del Arco [173] speculated that IGW generation and not
only small-scale fluctuations might be a relevant process for the transition. However, to our
knowledge, this question on the role of IGWs for the transition process could not be conclusively
answered yet.

3.8. Benchmarks

Experimental minimal models provide superb test-beds for the fine-tuning and validation of
complex circulation models of the ocean and the atmosphere. Systematic tests of numerical
codes operational in weather forcasting are especially hard to perform, as it is challenging to sep-
arate the inaccuracies arising from erroneous numerical implementation and those originating
from our incomplete understanding of the processes of Earth’s weather system. In the laboratory-
based systems, however, all governing equations and boundary conditions are fairly well known
and can be adjusted or controlled. Hence, if one uses the weather forcasting codes and numeri-
cal methods to simulate the experiment’s model flow, the discrepancies cannot be blamed on the
complexity of climate, but must be attributed to improper implementation.

In the framework of the MetStröm collaboration (2008–2014) the rotating annulus served
as a reference experiment and the model flow was simulated by five different working groups
and GCMs, using various numerical approaches, solvers and subgrid-scale parametrization
methods [192].

The regular-type Rossby waves on the free water surface of the BTU small annulus have been
analyzed in benchmark experiments covering a wide range of rotation rates (and fixed ∆T ), also
applying different initial conditions (spin-up and spin-down). Five groups of the collaboration
have conducted numerical simulations in the same parameter regime using different approaches
and solvers trying to reproduce the laboratory results. The experimentally and numerically
obtained baroclinic wave patterns have then been contrasted in terms of various parameters,
most notably their dominant wave numbers and drift rates. The study found that although most
of the numerical codes were rather successful in predicting the waveform of the Rossby waves,
almost all of them consistently underestimated their drift rates.

A similar approach – testing operational weather forecasting methods in the rotating annulus –
has been followed by Young and Read [193]. They built a forecasting system for the annulus based
on the same principles and techniques which are regularly applied by the British MetOffice for
atmospheric predictions. Their results showed that a range of flow regimes could be accurately
predicted, and forecasts in the regular wave flow regime performed well. Forecasts in the
amplitude and structural vacillation flow regimes, however were found to be less accurate in
terms of predicting wave drift rates and wavenumber transitions.

4. Conclusions

In the struggle to understand the atmospheric general circulation [145, 194], the differentially
heated rotating annulus has certainly made a contribution in spite of the fact that boundary
layers have a more significant effect on the flow in the annulus compared to the flow of Earth’s
atmosphere. It is also true that laboratory analogues such as the thermally driven rotating annuli
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are not exact experimental simulation models, however, they do contain important elements of a
complex dynamics that enable a deeper understanding of fundamental aspects and relationships
and are hence fully complementary to numerical simulations. The same could be said for the
other two basic experiments used also in the context of geophysical flows: the Rayleigh–Bénard
(RB) and the Taylor–Couette (TC) experiment. In a sense, the Hide–Fultz experiment reviewed
here, combines RB-convection and TC-shear and adds (background) rotation and is hence, with
a view on geophysical fluid dynamics, the most “complete” of the trio.

Last year, the Royal Society celebrated the 100 year anniversary of Taylor’s fundamental 1923
paper [195] by a two volume special issue [196, 197]. It is quite a remarkable coincidence that in
the same year, Exner [198] did the first experiments on baroclinic instability. More precisely, he
operated his experiment in a baroclinically unstable irregular regime where other experimenters
before him considered the stable azimuthal regime only [199]. Although of course Taylor’s work
had a far greater impact on the development of fluid mechanics than Exner’s article, we can
humbly celebrate the 100 year anniversary of the first Hide-Fultz-type experiment with baroclinic
instability with this review.

Environmental flows remain challeging [200] and the thermally driven rotating annulus will
continue to play a role in the development of theories for convective rotating flows and further as
a reference experiment to test numerical models and parameterizations. Numerical models have
certainly developed to a level of greater performance, but direct numerical simulations are hardly
possible, especially for the large experiments shown in Figure 3. The larger experiments have a
free surface and surface effects like surface heat flux or evaporation become more important.
These additional boundary conditions make numerical calculations even more time consuming.
However, over the last years codes that allow for massively parallel computations have been
developed for rotating stratified fluids [201]. Recently one such code was applied to stratified
Taylor-Couette flows [202] and it seems possible in the near future to do direct numerical
simulations also for large experimental setups. Finally, we note that even for smaller tanks, long
simulations, which are necessary, e.g. to answer questions about extreme values, can currently
be done only with great effort.

We pointed out that apart from baroclinic instability other types of instability generating
small-scale inertia gravity waves are also an inherent part of the annulus fluid dynamics. In the
atmosphere, such waves play a fundamental role for the large-scale atmospheric circulation [84].
Hence it is certainly a future task to understand better the interactions of these very different flow
scales in the annulus and to uncover the role that the small-scale waves play for the transition
to turbulence. Also, nonmodal instability might be worth considering in this context and first
attempts have been made to estimate such modes from annulus data [203, 204]. An extensive
review on nonmodal instability can be found in [205]. Transient growth is possible only when the
linearized Navier-Stokes operator is non-normal and this is usually the case in shear flows. At
this point it seems appropriate to refer again to the remarkable similarity in the mathematics of
barotropic (shear) and baroclinic instability [194].

Additionally, as pointed out by [206] and recently cited by [9], “modern technologies and anal-
ysis techniques have spawned a renaissance in laboratory experiments as these new approaches
can provide new insights into processes, like rotating stratified turbulence, that remain challeng-
ing and/or infeasible to explore via numerical simulations.” Two of the modern technologies we
would like to mention here. One is combining laser induced fluoresence (LIF) with particle im-
age velocimetry (PIV). Caudwell et al. [207] have shown that this technique is well suited for con-
vective flows with a reasonable accuracy of 0.2◦ C with respect to temperature. A simultaneous
measurement of the velocity field allows for a calculation of key parameters like the Richardson
number or the heat flux in the interior of the fluid. LIF used a temperature sensitive dye like Rho-
damine B. When this substance is excited with a green laser (532 nm), it emits light in the range
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from 565 nm to 585 nm, depending on the temperature of the Rhodamine particles. Since PIV
works with light sources of, for example, 532 nm, a wavelength outside the sensitivity of Rho-
damine, these two methods can be used simultaneously if suitable filters are used.

The other method we wish to mention is 3D Lagrangian particle tracking [208]. This method
allows for the detection of the position, speed, and acceleration of particles in 3D and gives hence
a 3D view on a large number of particle tracks. Apart from the attempts described in Section 3.4,
the 3D structure of the flow in the baroclinic annulus has not been studied. Many problems
related to transport and mixing in geophysical flows are still open and could be attacked by
particle tracking. Also, diagnostic tools that have been developed (see, e.g. [209]) to predict
the spreading of pollutants could be used in annulus experiments together with 3D particle
tracking. As described above for PIV, particle tracking could be combined with LIF to obtain the
temperature along particle tracks. Of course, another condition is that all of these experimental
techniques need a good optical access to the fluid chamber.
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