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Abstract. The random energy model (REM) is the simplest spin glass model which exhibits replica symmetry
breaking. It is well known since the 80’s that its overlaps are non-selfaveraging and that their statistics satisfy
the predictions of the replica theory. All these statistical properties can be understood by considering that
the low energy levels are the points generated by a Poisson process with an exponential density. Here we
first show how, by replacing the exponential density by a sum of two exponentials, the overlaps statistics
are modified. One way to reconcile these results with the replica theory is to allow the blocks in the Parisi
matrix to fluctuate. Other examples where the sizes of these blocks should fluctuate include the finite size
corrections of the REM, the case of discrete energies and the overlaps between two temperatures. In all these
cases, the block sizes not only fluctuate but need to take complex values if one wishes to reproduce the results
of our replica-free calculations.

Résumé. Le modèle d’énergies aléatoires (REM) est le modèle de verre de spin le plus simple qui présente
une brisure de symétrie des répliques. Il est bien connu depuis les années 80 que ses overlaps ne sont pas
automoyennants et que leurs statistiques sont celles prédites par la méthode des répliques. Ces propriétés
statistiques peuvent être comprises en considérant que les niveaux d’énergie les plus bas sont les points
générés par un processus de Poisson de densité exponentielle. Nous montrons ici dans un premier temps
comment ces statistiques d’overlaps sont modifiées lorsqu’on remplace la densité exponentielle par une
somme de deux exponentielles. Une façon de concilier ces résultats avec la théorie des répliques est de
permettre aux blocs de la matrice de Parisi de fluctuer. D’autres exemples où la taille de ces blocs doit
fluctuer incluent les corrections de taille finie du REM, le cas des énergies discrètes et les overlaps entre deux
températures. Dans tous ces cas, non seulement la taille des blocs fluctue mais elle doit prendre des valeurs
complexes si l’on souhaite reproduire nos résultats obtenus directement, c’est à dire sans utiliser la méthode
des répliques.
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1. Introduction

The introduction by Edwards and Anderson [1] in 1975 of the replica method and of the overlaps
as an order parameter was a big step in the theory of spin glasses [2]. For a spin glass model with
N Ising spins, the overlap q(S,S′) between two spin configurations S ≡ {Si ±1} and S′ ≡ {S′

i ±1} is
defined as

q
(
S,S′)= 1

N

∑
i=1,N

Si S′
i (1)

Qualitatively, the idea was that, because spin glasses have a rugged energy landscape, two typical
spin configurations at equilibrium have, at low temperature, the tendency of being trapped in the
same valley giving rise to a non-zero overlap. Quantitatively, for a spin glass model with quenched
pair interactions J ≡ {Ji , j }

EJ(S) =−∑
i , j

Ji , j Si S j (2)

the overlaps can be characterized by their probability distribution

PJ(Q) =
∑

S
∑

S′ δ
(
q(S,S′)−Q

)
exp

[
−β

(
EJ(S)+EJ(S′)

)]
∑

S
∑

S′ exp
[
−β

(
EJ(S)+EJ(S′)

)] (3)

where β is the inverse temperature. As long as the system is finite (N <∞) this distribution PJ(Q)
is a broad function of Q and depends on the sample J. However in the thermodynamic limit, it
was initially expected that, in the spin-glass phase and for almost all samples J, it becomes a sum
of two delta functions

lim
N →∞

PJ(Q) = 1

2

[
δ

(
Q −qE A

)+δ(
Q +qE A

)]
(4)

and in [1] a mean field theory was developed to determine the value of the Edwards–Anderson
order parameter qE A . (if some odd interactions were added to (2) the limit (4) would reduce to a
single delta function limN →∞ PJ(Q) = δ(Q −qE A)).

Soon after the Edwards Anderson 1975 paper [1], Sherrington and Kirkpatrick [3] considered
the infinite range version of the model (2), for which the mean field approximation was expected
to become exact. Using the replica approach, they could obtain explicit expressions of qE A and
of the average free energy. However they realized that their analytic solution could not be correct
because, at low temperature, it leads to a negative entropy [3] and to a negative variance of the
free-energy [4]

It was only in 1979 that Parisi was able to overcome these difficulties with a Replica Symmetry
Breaking (RSB) scheme which turned out to give the correct free energy for the Sherrington
Kirkpatrick model. Initially, the solution was based on unconventional mathematics such as
using matrices of non-integer size or replacing maxima by minima. It took then a few more years
before the physical interpretation of Parisi’s solution was understood [5–8] and even longer before
it was confirmed by a series of rigorous mathematical proofs [9–12]. See [13] for a recent review of
the theory of spin glasses and replica symmetry breaking. Besides an analytic way of calculating
the exact free energy of the Sherrington–Kirkpatrick model, Parisi’s solution led to a number of
surprising predictions. One of them was that, instead of (4), the distribution PJ(Q) remains broad
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and sample dependent even in the thermodynamic limit (N →∞). Moreover it gave an explicit
way of calculating these fluctuations [6–8].

One way of describing these fluctuations is to consider the cumulative function

Y (Q) = lim
N →∞

∫ 1

Q
PJ

(
Q ′)dQ ′ (5)

which represents the probability that, at equilibrium, two configurations in the same energy
landscape have an overlap larger than Q. According to the RSB theory (see Appendix A), Y (Q)
remains sample dependent even in the thermodynamic limit and its probability distribution
Πµ(Y ) is universal for all the models which can be solved by the RSB theory. This distribution
Πµ(Y ) is indexed by a single parameter 0 ≤ µ ≤ 1 which depends on Q, on the temperature, on
the magnetic field and on all the other parameters which may characterize a specific model. As a
consequence if 〈Y 〉 is known for a given system (where 〈.〉 denotes the average over the samples,
i.e. over the J’s) all the moments of Y are known. For example if 〈Y 〉 = 1−µ, one has

〈Y 〉 = 1−µ ;
〈

Y 2〉= (1−µ)(3−2µ)

3
;

〈
Y 3〉= (1−µ)

(
15−17µ+5µ2

)
15

(6)

A typical shape of the distributionΠµ(Y ) is shown in Figure 1 [7, 14]

Figure 1. The distributionΠµ(Y ) as a function of Y in the case µ= 1/3.

More generally one can consider, for a given sample J, the probability Yk (Q) that k configu-
rations have all their overlaps larger than Q, or the probability Yk,k ′ (Q) that, for two groups of
k and k ′ configurations, all the overlaps between pairs of configurations inside each group are
larger than Q but all pairs between two groups have an overlap less than Q. According to the
RSB theory (see Appendix A), the averages of these Yk or Yk,k ′ over the samples have also explicit
expressions in terms of the parameter µ

〈Yk〉 =
Γ(k −µ)

Γ(k) Γ(1−µ)
;

〈
Yk,k ′

〉= µ Γ(k −µ) Γ(k ′−µ)

Γ(k +k ′) Γ(1−µ)2 (7)
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These satisfy particular cases of the Ghirlanda-Guerra relations [15]: for example it is easy to
check that

〈Yk+1〉 =
〈Y2〉〈Yk〉+ (k −1)〈Yk〉

k
All these statistical properties of the Yk ’s were first derived in 1984 using the replica method

(see Appendix A). In a joint work [16] with Gérard Toulouse in 1985, they were confirmed by a
replica-free calculation for the Random Energy Model (REM).

The goal of the present paper is to exhibit several simple models where these statistical
properties are no longer valid and have to be modified. As explained in Section 3, these models
are cousins of the Random Energy Model, in the sense that the energies of the configurations
are independent random variables and that their properties can be obtained using replica-free
methods. Based on some exact expressions (45)-(46) and (48)-(49) which replace (7) for these
models, we will discuss possible generalizations of the Parisi matrix (see the Appendix A) where
the sizes of the blocks have to fluctuate (sometimes with complex sizes !).

The paper is organized as follows. In Section 2, we recall some well known properties of the
REM and why, in the low temperature phase, the energies can be generated by a Poisson process
with an exponential density. In Section 3, we establish some general expressions allowing us to
calculate non-integer moments of the partition function as well as average overlaps 〈Yk〉,〈Yk,k ′〉
for a Poisson process with an arbitrary density. In the case of an exponential density, this allows
one to recover (7). In Section 4 we consider the case where the density of the Poisson process
is the sum of two exponentials and show how the expressions (7) are modified. We will then
suggest a way of adapting the RSB approach to reproduce these new expressions. This is probably
the simplest case for which the size of the blocks in the Parisi matrix have to fluctuate. A
straightforward generalization to the case of a sum of an arbitrary number of exponentials will
allow us to recover, in a unified way, earlier results on finite size corrections and in the case of
discrete energies. In Section 5 we generalize the approach to consider the overlaps between two
configurations at different temperatures, and show that, again, the size of the blocks of the Parisi
matrix have to fluctuate. Finally, in Section 6, we discuss the replica method for a Poisson REM
with an arbitrary density of energy, and see how the replica scheme has to be modified in this
case.

2. Short review of known results on the REM

In this section, we first recall a few known features of the REM, in particular the fact that, in the
thermodynamic limit, the low temperature properties can be understood by considering that the
energies are the realization of a Poisson process with an exponential density (23).

2.1. The REM with Gaussian energies

The Random Energy model was introduced [17, 18] in 1980 as a simple spin glass model which
exhibits a spin glass transition and which can be solved without resorting to the replica trick.
As for other Ising spin glass models like the Edwards Anderson or the Sherrington–Kirkpatrick
models, there are 2N spin configurations S whose energies are Gaussian random variables

P (E) = 1p
Nπ J

exp

[
− E 2

N J 2

]
(8)

We will set J = 1, for simplicity, in the rest of the paper. The only difference with other spin
glass models is that, in the REM, the energies of different configurations are independent random
variables. Therefore, instead of the interactions J in (2), a given sample J in the REM is specified
by 2N random quenched variables E(S) distributed according to (8). Then the partition function
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Z (β) becomes a sum of 2N independent random variables making many calculations much
easier than for other spin-glass models

Z (β) =
2N∑

S=1
e−βE(S) (9)

Still the REM exhibits a phase transition [17, 18] at some βc .

βc = 2
√

log2 (10)

and, in the thermodynamic limit, the average free is given by

lim
N →∞

〈
log Z (β)

〉
N

=


log2+ β2 J 2

4 for β<βc

β
√

log2 for β>βc

(11)

where 〈.〉 denotes an average over the energies E(S). These properties have been confirmed in a
number of rigorous works [19–22]; for a review see [23] or [24]. Note that the REM is an example
of sums of exponentials of random i.i.d. variables which have been considered in several other
contexts [25, 26].

Many other properties of the REM have been calculated (see [27] for a review) like, finite size
corrections [18, 28–30], the effect of a magnetic field [18], the location of the zeroes in the complex
plane of β [31–33] and the fluctuations of the spectral form factor of chaotic systems [34], the
effect of discrete energies [35–37] or the integer and the non-integer moments of the partition
function [38].

For example, in the low temperature phase (i.e. β > βc ), the negative moments are given [38]
for large N by

〈
Z (β)n〉= (

A

βc
Γ(1−µ)

) n
µ Γ

(
1− n

µ

)
Γ(1−n)

for n < 0 (12)

where

A = eNβc
p

log2

p
πN

(13)

and

µ= βc

β
(14)

In the low temperature phase (see (11)) the extensive part of the energy is constant. This is
because the only configurations S which really contribute to the free energy are those whose
energies are very close to the ground state. These configurations are likely to be very scattered
in phase space and so to have zero overlap between themselves. Therefore, in the large N limit
for almost all samples, PJ(Q) has the form

PJ(Q) = (1−Y2)δ(Q)+Y2δ(Q −1) (15)

where Y2 is the probability of finding at equilibrium two copies of the system in the same
configuration

Y2 =
∑

S e−2βE(S)(∑
S e−βE(S)

)2 (16)

Similarly

Yk =
∑

S e−kβE(S)(∑
S e−βE(S)

)k
; Yk,k ′ =

∑
S̸=S′ e−kβE(S)−k ′βE(S′)(∑

S e−βE(S)
)k+k ′ (17)
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These quantities depend on the sample (i.e. on the realization of the 2N energies E(S)). For the
REM, their sample averages have been calculated in the low temperature phase [16] (see Section 3
for a simple derivation) 〈

Yk Z (β)n
〉〈

Z (β)n
〉 = Γ(k −µ)

Γ(1−µ)

Γ(1−n)

Γ(k −n)
=

k−1∏
j=1

j −µ
j −n

(18)〈
Yk,k ′ Z (β)n

〉〈
Z (β)n

〉 = (µ−n)
Γ(k −µ)

Γ(1−µ)

Γ(k ′−µ)

Γ(1−µ)

Γ(1−n)

Γ(k +k ′−n)
(19)

and they agree with the predictions of the replica theory [6, 7, 30, 39].
Note that setting n = 0, the expressions (18) and (19) reduce to (7). Also by expanding (18) in

powers of n one can see that the free-energy and the overlaps are correlated〈
Yk log Z (β)

〉−〈Yk〉
〈

log Z (β)
〉= Γ(k −µ)

Γ(k)Γ(1−µ)

(
k−1∑
q=1

1

q

)
(20)

2.2. Other distributions of energies

All the above expressions (12), (14)-(20) remain valid for more general distributions of energies.
For example if the distribution (8) of energies E(S) is, for large N , of the form

P (E) ≃
√

G ′′ ( E
N

)
2πN

exp

[
−NG

(
E

N

)]
(21)

where G is a convex function (this would be the case if each energy was the sum of N i.i.d. random
variables distributed according to a continuous distribution), the only change being that the
value of βc and the constant A in (10) and (13) would become

βc =−G ′(ϵc ) ; A =
√

G ′′(ϵc )

2πN
e−Nβcϵc (22)

where ϵc is the minimal solution of log(2)−G(ϵc ) = 0.
Note, as we will see in Section 4, that if the distribution of energies is not of the form (21), in

particular when the energies E(S) take only discrete integer values, the expressions of the overlaps
will be quite different.

2.3. The Poisson process

Overlaps are non-zero only in the low temperature phase of the REM. This is why, in this whole
paper, we limit our discussion to this low temperature phase where only the configurations whose
energies are close to the ground state energy matter. The energies of these configurations for a
given sample can be generated by a Poisson process of density [30]

ρ(E) = A eβc E (23)

which approximates 2N P (E) in the neighborhood of the ground state energy. Depending on the
choice of P (E) in (8) or (21), the amplitude A and βc are given by (10)-(13) or (22). In the next
section we will see that (23) allows one to recover the predictions (7) of the replica approach.

One can notice that, for the density (23), the average partition function 〈Z (β)〉 =∫
ρ(E)dE exp[−βE ] is infinite for all values of β. However, in the low temperature phase

β>βc , (which is the only temperature range where the overlaps are non-zero), Z (β) is finite with
probability 1. (In fact it is easy to prove that for all C > 0

Pro
(

Z (β) <C
)
> Pro(Z1 <C )) Pro(Z2 = 0) >

(
1− 〈Z1〉

C

)
Pro(Z2 = 0) (24)
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where Z (β) = Z1 + Z2 and Z1 represents the contributions to Z of the energies E >Λ and Z2 the
contributions of the energies E <Λ. One has

〈Z1〉 = A
e(βc−β)Λ

β−βc
and Pro(Z2 = 0) = exp

[
−A

eβcΛ

βc

]
By choosing Λ sufficiently negative and C much larger than 〈Z1〉, one can make the r.h.s. of (24)
as close as needed to 1.) We will see in Section 3 that the Poisson process with the density (23)
allows one to recover the known expressions of the negative moments (12) of the REM.

2.4. Link with sums of random variables with a heavy tail

In the low temperature phase, the partition function Z (β) of the REM can be viewed as a sum of
i.i.d. random variables distributed according to a heavy tailed distribution [39]. Let E1 < E2 <
. . .Ep be the p lowest energies of a realization of the Poisson process with density (23). The
probability distribution of these energies is

Pro
(
E1, · · ·Ep

)= Ap exp

[
βc

(
E1 +E2 +·· ·Ep

)− A
eβc Ep

βc

]
On the other hand if one considers a large number M of i.i.d. random positive variables xi

distributed according to a distribution ρ(x) with an heavy tail

ρ(x) ∼ B x−1−µ for large x

and if one orders these xi ’s the distribution of x1 > x2 · · ·xp is given for large M by

P
(
x1, · · ·xp

)= M pρ(x1)ρ(x2) · · ·ρ (
xp

)
exp

[
−M

∫ ∞

xp

ρ(x)d x

]
∼ (MB)p(

x1 x2 · · ·xp
)1+µ exp

[
− MB

µxµp

]
We see that the two previous distributions are identical through the change of variables

xi =
(

MBβ

A

) 1
µ

e−βEi with µ= βc

β

This shows that the partition function Z (β) =∑
i e−βEi is up to a rescaling a sum of i.i.d. random

variables with an heavy tail.

2.5. The p-spin Ising spin glass

The REM is the large p limit of the p-spin model [17, 18] which is a generalisation of the
Sherrington–Kirkpatrick model with an energy given by

EA(S) =− ∑
i1 ≤ i2···ip

Ai1···ip Si1 Si2 · · ·Sip (25)

where the p-spin interactions Ai1···ip are quenched random variables distributed according to

ρ
(

Ai1···ip

)
=

√
N p−1

πp !
exp

−
(

Ai1···ip

)2
N p−1

p !

 (26)

It is easy to see from (25),(26) that the energies E(S) are still distributed according to (8) and that
their covariances are given (for large N ) by〈

E(S)E(S′)
〉≃ N

2

[
q(S,S′)

]p (27)
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Clearly this covariance vanishes in the large p limit when |q(S,S′)| < 1 and it was argued in [17,
18] that in the large p limit, the p-spin model should be equivalent to the REM. Indeed, using
the RSB approach Gross and Mézard [40] were able to calculate the average free-energy as well as
〈Y2〉 in the large p limit and their predictions agree with (10) and (7) with µ given by (14). A RSB
solution for finite p was then developed by Gardner in 1985 [41].

3. The general framework of a Poisson REM

In this section we give a few general formulas (30)-(34) allowing to calculate the moments of the
partition and the average overlaps for a REM whose energies are the points of a Poisson process
of an arbitrary density ρ(E).

3.1. An arbitrary density

For a Poisson REM of density ρ(E), the energies E(S) are the points of a Poisson process of den-
sity ρ(E) meaning that in each infinitesimal interval (E ,E +dE) with dE ≪ 1 there is one config-
uration with probability ρ(E)dE and with probability 1−ρ(E)dE that there is no configuration at
that energy. (If the integral of ρ(E) is infinite, then the number of configurations is infinite with
probability 1. Then the partition function at some low value of β i.e. at high enough temperature
could become infinite. However, in all cases we consider here, only the lowest energy levels mat-
ter in the low temperature phase implying that the negative moments of the partition function
are finite and the overlaps have non trivial values.)

For each realization of the process, one has a sequence of energies E1,E2, · · ·Ep , · · · and the
partition function is by definition

Z (β) =∑
p

e−βEp (28)

Given ρ(E) one can first show that 〈
e−t Z (β)

〉
= eφ(t ) (29)

where

φ(t ) =
∫
ρ(E)dE

(
exp

[
−t e−βE

]
−1

)
(30)

To do so one simply writes that〈
e−t Z (β)

〉
=∏

E

(
1−ρ(E)dE +e−te−βE

ρ(E)dE
)

and because dE ≪ 1 one can exponentiate to obtain (29),(30). Knowing φ(t ), one can then write
the expressions of integer and non integer moments of the partition function. For example for
negative n one has 〈

Z (β)n〉= 1

Γ(−n)

∫ ∞

0
t−n−1d t eφ(t ) for n < 0 (31)

In the same manner (see the proof below) one can show (see (17)) that for n < k〈
Yk Z (β)n〉= 〈

Z (kβ) Z (β)n−k
〉
= 1

Γ(k −n)

∫ ∞

0
t k−n−1d tΦk (t ) eφ(t ) (32)

or 〈
Yk,k ′ Z (β)n〉= 1

Γ(k +k ′−n)

∫ ∞

0
t k+k ′−n−1d tΦk (t )Φk ′ (t ) eφ(t ) (33)

where

Φk (t ) =
∫
ρ(E)dE exp

[
−kβE − t e−βE

]
(34)
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Proof. For example to obtain (32) one can use (see(17)) the fact that

Yk = Z (kβ)

Z (β)k

and that 〈
Z (kβ)e−t Z (β)

〉
=∑

E
ρ(E)dEe−kβE−te−βE ∏

E ′ ̸=E

(
1−ρ(E ′)dE ′+e−te−βE ′

ρ(E ′)dE ′
)

Then one can replace the sum over E by an integral and the product as the exponential of an
integral (in fact the condition E ̸= E ′ can be forgotten). A similar reasoning leads to (33). □

3.2. The case of the exponential density (23)

In this section we show how to recover (12), (18), (19) using (29)-(34) when the density ρ(E) is
exponential. For the density given by (23), the functions φ(t ) and Φk (t ) defined in (30) and (34)
have explicit exact expressions in the low temperature phase (β>βc ).

φ(t ) = A

β
Γ

(
−βc

β

)
t
βc
β ; Φk (t ) = A

β
Γ

(
k − βc

β

)
t
βc
β
−k (35)

(In the high temperature phase, i.e. for β<βc , it turns out that φ(t ) is infinite for the density (23).
There it is no longer appropriate to replace the original REM by a Poisson process with the
exponential density (23).) Using (35) the integrals in (31)-(33) can be computed exactly. One
finds 〈

Z (β)n〉= (
− A

β
Γ

(
−βc

β

))n β
βc Γ

(
1−n β

βc

)
Γ(1−n)

(36)

which is identical to (12) with the definition (14) of µ. One also recovers that way from (32), (33)
the expressions (18), (19) of the overlaps.

4. The double exponential and its consequences

One simple case for which the expressions (18) and (19) of the overlaps are no longer valid is
when the density ρ(E) is a sum of two exponentials. Here we show that one needs to let fluctuate
the parameter µ in these expressions. The generalization to the sum of an arbitrary number of
exponentials will be straightforward. This will allow us to calculate to recover, in a much easier
way, earlier results on finite size corrections or on the effect of discrete energies

4.1. The double exponential case

In this case, the density ρ(E) is
ρ(E) = A1 eβ1 E + A2 eβ2 E (37)

Then (30) and (34) become

φ(t ) = B1 tµ1 Γ(−µ1)+B2 tµ2 Γ(−µ2) (38)

Φk (t ) = B1 tµ1−k Γ(k −µ1)+B2 tµ2−k Γ(k −µ2) (39)

with

Bi = Ai

β
and µi = βi

β
(40)

The relation (31) (after an integration by parts) can be written as〈
Z (β)n〉= −1

Γ(1−n)

∫ ∞

0
t−nd t φ′(t )eφ(t ) (41)
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Then by replacing φ′(t ) using (38) and using again (31), one gets for n < 0〈
Z (β)n〉= B1

Γ(1−µ1)Γ(µ1 −n)

Γ(1−n)

〈
Z (β)n−µ1

〉+B2
Γ(1−µ2)Γ(µ2 −n)

Γ(1−n)

〈
Z (β)n−µ2

〉
which can be written as 〈

Z (β)n〉= ∑
i=1,2

Bi
Γ(1−µi )Γ(µi −n)

Γ(1−n)

〈
Z (β)n−µi

〉
(42)

For the overlaps, starting from (32) withΦk (t ) given by (39) one can repeat the same procedure
to get 〈

Yk Z (β)n〉= ∫ ∞

0
t k−n−1d t

[ ∑
i=1,2

Bi
Γ(k −µi )

Γ(k −n)
tµi−k eφ(t )

]
(43)

which gives 〈
Yk Z (β)n〉= ∑

i=1,2
Bi
Γ(k −µi ) Γ(µi −n)

Γ(k −n)

〈
Z (β)n−µi

〉
(44)

Using (42) one can rewrite (44) as〈
Yk Z (β)n

〉〈
Z (β)n

〉 = ∑
i=1,2

Γ(k −µi )

Γ(1−µi )

Γ(1−n)

Γ(k −n)
Wi (45)

where the weights Wi are given by

Wi = Bi
Γ(1−µi )Γ(µi −n)

Γ(1−n)

〈
Z (β)n−µi

〉〈
Z (β)n

〉 (46)

We see that the average overlaps in (45) have the same expression as in (18) except that now, for
the double exponential (37), the parameter µ fluctuates between two values µ1 or µ2.

The averages of other overlap functions can be derived from (33) in the same way: for example
using the fact that by iterating (42) one has〈

Z (β)n〉= ∑
i=1,2

∑
j=1,2

Bi B j
Γ(1−µi )Γ(1−µ j )Γ(µi +µ j −n)

(µi −n)Γ(1−n)

〈
Z (β)n−µi−µ j

〉
(47)

and one gets, using (39) twice in (33)〈
Yk,k ′ Z (β)n

〉〈
Z (β)n

〉 = ∑
i=1,2

∑
j=1,2

(µi −n)
Γ(k −µi )

Γ(1−µi )

Γ
(
k ′−µ j

)
Γ

(
1−µ j

) Γ(1−n)

Γ(k +k ′−n)
Wi , j (48)

with the weights Wi , j given by

Wi , j = Bi B j
Γ(1−µi )Γ(1−µ j )Γ(µi +µ j −n)

(µi −n)Γ(1−n)

〈
Z (β)n−µi−µ j

〉〈
Z (β)n

〉 (49)

Clearly (48) is a generalization of (19) where the µ’s fluctuate. We see in (49) that the µi ’s are
correlated (as Wi , j ̸= Wi W j ). Note that although the Wi , j is not symmetric under the exchange
µi ↔µ j , the symmetry is restored in the sum (48).

Remark 1. One possible realization of the double exponential density (37) would be to consider
a REM with a total of αN

1 + αN
2 configurations, the first αN

1 configurations having energies
distributed according to P1(E) = exp[−E 2/(N a1)]/

p
πa1 and the last αN

2 according to P2(E) =
exp[−E 2/(N a2)]/

p
πa2. When the parameters α1,α2, a1, a2 satisfy the following condition√

a1 logα1 =
√

a2 logα2 ≡−ϵ
the density ρ(E) near the ground state energy becomes

ρ(E) = 1p
πN a1

exp

[
2

√
logα1

a1
(E −Nϵ)

]
+ 1p

πN a2
exp

[
2

√
logα2

a2
(E −Nϵ)

]
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which is indeed of the form (37). For more general spin glass models, one can imagine that the
double exponential density (37) could also be relevant near a first order transition between two
low temperature phases that exhibit a one step RSB.

4.2. The replica approach in the case of the double exponential

In the appendix A, we recall how to obtain the expressions (7), (18), (19) using the Parisi matrix
shown in Figure 5. We are now going to see that in order to recover the above expressions (45),
(48) one needs to consider matrices of the form shown in Figure 2 and to average over matrices
of this shape by letting the number ni of blocks of size µi to fluctuate.

1

n

µ

µ2

Figure 2. In the case of the double exponential, the overlap matrix of Figure 5 shoud be
replaced by a matrix whose block sizes fluctuate.

Let us imagine that a matrix of overlaps is a n ×n matrix, as in Figure 2, where the diagonal
blocks have varying sizes να so that

n =∑
α
να (50)

The probability that k different replicas chosen among n replicas belong to the same block is

Yk =∑
α

να!

(να−k)!

(n −k)!

n!
(51)

These expressions depend on the number n of replicas and on the sizes να of the blocks. Now if
we allow n and the να’s to take non-integer values, as in the original RSB scheme [42] this can be
written as

Yk =∑
α

Γ(k −να)

Γ(−να)

Γ(−n)

Γ(k −n)
(52)

Similarly

Yk,k ′ =∑
α

∑
α′ ̸=α

Γ(k −να)

Γ(−να)

Γ(k ′−να′ )

Γ(−να′ )

Γ(−n)

Γ(k +k ′−n)
(53)

Let us imagine that the να can take possible valuesµi (in the case of two exponentials there are
two possible values µ1 and µ2 defined in (40)) and let ni be the number of να’s taking the value
µi . Then (50) becomes ∑

i
ni µi = n (54)

and going from one matrix to the other the values of the ni fluctuate (while the µi ’s don’t) keeping
this sum constant.



340 Bernard Derrida and Peter Mottishaw

Averaging over the ni ’s one gets〈
Yk Z (β)n

〉〈
Z (β)n

〉 =∑
i
〈ni 〉 Γ(k −µi )

Γ(−µi )

Γ(−n)

Γ(k −n)
=∑

i

〈ni 〉µi

n

Γ(k −µi )

Γ(1−µi )

Γ(1−n)

Γ(k −n)

which has the form (45) if one identifies

Wi = 〈ni 〉µi

n
(55)

One can interpret the weight Wi as the probability that one among n replicas belongs to a block
of size µi .

The matrix in Figure 2 is characterized by the numbers n1 and n2 of blocks of size µ1 and µ2.
The sizes µ1 and µ2 of the blocks are fixed. Only n1 and n2 fluctuate with the constraint (54) and
to recover (45), (48) one needs to average over n1 and n2. Note that in this picture, although µ1

and µ2 are simply given by (40), the expressions of the weights Wi and Wi , j in (46), (49) are less
explicit as they require the knowledge of negative moments of the partition function.

Similarly〈
Yk,k ′ Z (β)n

〉〈
Z (β)n

〉
=

[∑
i

〈
n2

i −ni
〉 Γ(k −µi )

Γ(−µi )

Γ(k ′−µi )

Γ(−µi )
+∑

i

∑
j ̸=i

〈
ni n j

〉 Γ(k −µi )

Γ(−µi )

Γ(k ′−µ j )

Γ(−µ j )

]
Γ(−n)

Γ(k +k ′−n)
(56)

which has the form (48) if one identifies

Wi ,i =
〈ni (ni −1)〉µ2

i

n(n −µi )
and for i ̸= j Wi , j =

〈ni n j 〉µiµ j

n(n −µi )
(57)

In all cases i.e. whether i = j or i ̸= j , one can interpret Wi , j as the probability that choosing 2
replicas belonging to different blocks, the first one is in a block of size µi and the second one in a
block of size µ j .

4.3. The finite size corrections to the REM

It is straightforward to generalize the above results for the double exponential (37) to the sum of
an arbitrary number of exponentials

ρ(E) =∑
j

A j eβ j E (58)

The density of energies (8) of the REM near the ground state energy can be written as

2N

p
πN

exp

[
−E 2

N

]
=

∫
d y

πN
e−N y2

exp
[(
βc +2i y

)(
E +N

√
log2

)]
(59)

which is of the form (58) if one allows theβ j ’s to take small imaginary valuesβc+2i y . Therefore as
in the double exponential case, this implies that the block sizesµ j (see (40)) can become complex.

Because the possible values of the block sizes µ j = βc+2i y
β are now complex (see (40)), the

weights Wi and the numbers ni may be complex too. Using the fact that y is distributed as in (59),
one gets that for large N 〈

µ2
j

〉
−〈µ j 〉2 ∼− 2

Nβ2

recovering the prediction in equation (55) of [30] that the block size have a negative variance.
(Note that the variance is negative simply because the box sizes µi are complex).
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4.4. The case of discrete energies

The case where the energies take only discrete values can also be treated the same way, for
example if the energies E(S) were sums of N random numbers taking only integer values [35,
37, 43]. In that case the density ρ(E) near the ground state energy could be written as

ρ(E) = A eβc E
∞∑

n=−∞
δ(E −n) =

∞∑
p=−∞

A e(βc+2iπp)E (60)

In this case too, the density ρ(E) is a particular case of (58). Therefore one can use the above
formulas allowing theβ j to take complex valuesβc+2iπp. The block sizesµi ’s then take complex
values. Therefore according to (46), (55) the replica interpretation is that the “probabilities” or
rather the Wp (which do not need here to be positive or even real) that a replica belongs to a

block of size µp = βc+2iπp
β are given by

Wp = A

µp

Γ(1−µp )Γ(µp −n)

Γ(1−n)

〈
Z (β)n−µp

〉
〈Z (β)n〉 with µp = βc +2iπp

β
(61)

One way of illustrating that the statistics of the overlaps are strongly modified is to look at the
distribution Πµ(Y ) drawn in Figure 3 and to compare it to the shape of Figure 1 for continuous
energies.

Figure 3. The distribution Πµ(Y ) when the energies take only integer values. Here like in
Figure 1, β= 3βc .

It is easy to see that changing the amplitude A in (60) to Aeβc has the effect of shifting all
the energies by 1 implying that Πµ and the overlaps remain unchanged. Other changes of A (for
example A → Aeβc x when x is not an integer change the shape of the distribution Πµ(Y ) and the
average overlaps Yk with a periodic dependence on the parameter x (as observed in [37]).

5. The overlaps of the REM at two temperatures

Considering the overlaps between configurations at different temperatures in the same energy
landscape is a way to study temperature chaos [44] (for a review see [45]). It is well known that
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the REM as well as other models, such as directed polymers in a random medium (in their tree
version), do not exhibit temperature chaos [46–49]. Still it is interesting to understand how the
replica approach works to predict these overlaps. A detailed analysis of this question is given
in [50]. In this section we provide an alternative analysis extending the replica-free calculation
of the previous section to the two temperature case and obtaining an expression for the overlaps
that gives an explicit formula in terms of the probabilities of fluctuating block sizes. As in the
case of finite size corrections or of discrete energies (see Section 4) we will see that, in the two
temperature case, the block sizes take complex values.

Let us consider the overlaps between k configurations at inverse temperature β and k ′ config-
urations at inverse temperature β′. For a given sample, the probability Uk,k ′ that all these k +k ′

configurations occupy the same energy level is

Uk,k ′ =
∑

S e−(kβ+k ′β′)E(S)

Z (β)k Z (β′)k ′ = Z
(
kβ+k ′β′)

Z (β)k Z (β′)k ′ (62)

and our goal is to determine the following sample averages 〈Z (β)n Z (β′)n′〉 and
〈Uk,k ′ Z (β)n Z (β′)n′〉 in the low temperature phase. Although there is a perfect symmetry un-
der the exchange (β,k,n) ↔ (β′,k ′,n′), this symmetry is not apparent in some expressions below,
but in fact it is indeed respected.

For negative n and n′, one can repeat what we did in (29)-(31) and write〈
Z (β)n Z (β′)n′〉= 1

Γ(−n)Γ(−n′)

∫ ∞

0
t−n−1d t

∫ ∞

0
u−n′−1du eϕ(t ,u) (63)

where

ϕ(t ,u) =
∫
ρ(E)dE

(
exp

[
−te−βE −ue−β

′E
]
−1

)
(64)

One can rewrite (63) as〈
Z (β)n Z (β′)n′〉= −1

Γ(1−n)Γ(−n′)

∫ ∞

0
t−nd t

∫ ∞

0
u−n′−1du eϕ(t ,u) dϕ(t ,u)

d t
(65)

We are now going to use the following complex integral representation (called the Cahen–Mellin
representation, see for example [51]) of the exponential

e−t =
∫ ∞

−∞
d y

2π
Γ(ν+ i y) t−ν−i y (66)

where ν is real and ν > 0. (In (66) the integral does not depend on ν as long as ν > 0 simply
because the integral path can be deformed without crossing any singulatity.)

For the exponential density (23) and transforming exp[−te−βE ] according to (66) one gets,
(note that in the low temperature phase β>βc and β′ >βc )

dϕ(t ,u)

d t
=−A

∫
dEe(βc−β)E exp

[
−ue−β

′E
]∫ ∞

−∞
d y

2π
Γ(ν+ i y) t−ν−i y e(ν+i y)βE

which, after integrating over E , becomes

dϕ(t ,u)

d t
=− A

β′

∫ ∞

−∞
d y

2π
Γ(ν+ i y) Γ

(
β(1−ν− i y)−βc

β′

)
t−ν−i y u

βc−β(1−ν−i y)
β′ (67)

Then one gets from (65) using (63)

〈
Z (β)n Z (β′)n′〉= A

β′

∫ ∞

−∞
d y

2π

Γ(ν+ i y) Γ
(
β(1−ν−i y)−βc

β′
)

Γ(1−n)Γ(−n′)
Γ(1−n −ν− i y)

×Γ
(
−n′+ βc −β(1−ν− i y

β′

)〈
Z (β)n−1+ν+i y Z (β′)n′− βc

β′ +
β(1−ν−i y)

β′
〉
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in other words〈
Z (β)n Z (β′)n′〉

= A

β′

∫ ∞

−∞
d y

2π

Γ(1−µy ) Γ
(
−µ′

y

)
Γ(1−n)Γ(−n′)

Γ(µy −n)Γ
(
µ′

y −n′
)〈

Z (β)n−µy Z (β′)n′−µ′y
〉

(68)

where

µy = 1−ν− i y and µ′
y =

βc −βµy

β′ (69)

(We have checked (68) against the explicit expression in [50] and we have also checked that
when β = β′ we recover (36).) Comparing with (42) we see that here the n replicas at inverse
temperature β and they are grouped in blocks of sizes µy and the n′ at inverse temperature β′ in
blocks of sizes µ′

y . Each block of size µy is associated to a block of size µ′
y which satisfy

βµy +β′µ′
y =βc (70)

So the µy and µ′
y fluctuate but the relation (70) remains fixed. The imaginary part of the block

sizes fluctuates between −i ∞ and +i ∞, but the real part can be arbitrarily fixed within the
constraints

n <ℜ(µy ) < 1 , n′ <ℜ(µ′
y ) < 0 (71)

which is a result of the requirement for ν > 0 in (66) and that the gamma functions in (68) must
have positive arguments. Combining (70) and (71) we obtain

βc

β
<ℜ(µy ) < min

(
1,
βc −β′n′

β

)
. (72)

(Remember that n′ < 0).
We now turn to the two temperature overlaps defined in (62). With negative n,n′ and positive

integer k,k ′ we can use the same approach as (32) to obtain〈
Uk,k ′ Z (β)n Z (β′)n′〉= 1

Γ(k −n)Γ(k ′−n′)

∫ ∞

0
t k−n−1d t

∫ ∞

0
uk ′−n′−1duΦk,k ′ (t ,u) eϕ(t ,u) (73)

where

Φk,k ′ (t ,u) =
∫
ρ(E)dE exp

[
−βkE −β′k ′E − te−βE −ue−β

′E
]

. (74)

Using the Cahen–Mellin representation (66) we can write this as a contour integral and for
exponential disorder (23) this simplifies to

Φk,k ′ (t ,u) = A

β′

∫ ∞

−∞
d y

2π
Γ(ν+ i y) Γ

(
k ′+ β(k −ν− i y)−βc

β′

)
t−ν−i y u

−k ′− β(k−ν−i y)−βc
β′ . (75)

Substituting in (73) and using (63) gives〈
Uk,k ′ Z (β)n Z (β′)n′〉

= A

β′

∫ ∞

−∞
d y

2π

Γ(k −µy ) Γ
(
k ′−µ′

y

)
Γ(k −n) Γ(k ′−n′)

×Γ(µy −n) Γ
(
µ′

y −n′
)〈

Z (β)n−µy Z (β′)n′−µ′y
〉

(76)

where µy and µ′
y are defined in (69) and must satisfy (70) and (72).

We can express the overlaps in terms of a normalised weight function W (y) similar in concept
to formula (48)〈

Uk,k ′ Z (β)n Z (β′)n′〉〈
Z (β)n Z (β′)n′〉 =

∫ ∞

−∞
d y

Γ(k −µy ) Γ
(
k ′−µ′

y

)
Γ(1−µy ) Γ

(−µ′
y
) Γ(1−n) Γ(−n′)
Γ(k −n) Γ(k ′−n′)

W (y) (77)
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with

W (y) = A

2πβ′
Γ(1−µy ) Γ

(
−µ′

y

)
Γ(1−n)Γ(−n′)

Γ(µy −n)Γ
(
µ′

y −n′
) 〈

Z (β)n−µy Z (β′)n′−µ′y
〉

〈Z (β)n Z (β′)n′〉 . (78)

The weights W (y) can be thought of as the probability that, for a given block, the block size
is µy at inverse temperature β and µ′

y at inverse temperature β′ subject to the condition (70).
However, they are complex and there is some freedom, due the choice of ν in (66), in the choice
of where the contour crosses the real axis. Despite this lack of uniqueness we expect that the
different choices of weights will lead to the same moments for µy and µ′

y .
The above expressions (68)-(72) are clearly non-symmetric under the exchange (n,β,µy ) ↔

(n′,β′,µ′
y ). We believe that very much like for the choice of the real part of µy , there are

many different choices of the distribution of the µy and of the µ′
y which lead to exactly the

same predictions for the moments 〈Z n(β)Z n′
(β′)〉 or of the average overlaps even though the

expressions look different.

µ n’

µ

n

’

’

y y
µ

µ
y

y

Figure 4. The Parisi overlap matrix at two temperatures. The single temperature form
of Figure 5 must be replaced by an (n +n′)× (n +n′) matrix which has fluctuating block
sizes. In addition it has block diagonal parts that represent overlaps between replicas at the
same temperature and off diagonal parts that represent overlaps between the two different
temperatures.

It is difficult to visualise block sizes with real and imaginary parts: in Figure 4 one should
imagine that the fluctuations of the block sizes represent the fluctuations of their imaginary part
while the real parts of these block sizes can remain fixed.

6. The case of a general density ρ(E) and the replica approach

We consider now the case of a Poisson REM with a general density ρ(E). (For technical reasons,
we will assume that

∫
ρ(E)dE = ∞ to ensure that Z (β) ̸= 0 with probability 1. We will also

assume that the average partition function 〈Z (β)〉 is finite at least for large enough β and of the
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form 〈Z (β)〉 = eNΨ(β) in contrast to the exponential densities we considered before for which
〈Z (β)〉 =∞.

The replica approach consists usually in computing various quantities such as moments of
the partition function or overlaps for an integer number n of replicas and then to try to extend
these expressions to non-integer values of n. Here we will see that both for an integer and a
non-integer number n of replicas, one obtains very similar expressions to those obtained in the
previous section for the double exponential density.

6.1. The replica approach for integer numbers of replicas

For integer values of the number of replicas one can establish the following relations (see
Appendix B) which are consequences of (29)-(34)

• For integer n > 0〈
Z (β)n〉= n∑

µ=1

(n −1)!

(µ−1)! (n −µ)!
〈Z (µβ)〉〈Z (β)n−µ〉

(79)

• and integer n ≥ k ≥ 1〈
Yk Z (β)n〉= n∑

µ=1

(n −k)!

(µ−k)! (n −µ)!
〈Z (µβ)〉〈Z (β)n−µ〉

(80)

In (80), as well as everywhere else in this paper, we use the convention that (−n)! = ∞
when n is a positive integer.

• This approach can be extended to obtain similar, but more complicated expressions for
〈Yk,k ′ Z (β)n〉.

One can notice the similarities between (79), (80) and (42), (44). Then as in (45), (46), (48), (49)
we see, by comparing (79) and (80), that one can write〈

Yk Z (β)n
〉〈

Z (β)n
〉 =

n∑
µ=1

(n −k)! (µ−1)!

(n −1)! (µ−k)!
W (µ) (81)

where the weights W (µ) are given by

W (µ) = (n −1)!

(µ−1)! (n −µ)!

〈Z (µβ)〉 〈
Z (β)n−µ〉〈

Z (β)n
〉 (82)

A replica interpretation of W (µ) is that if we choose one replica at random out of the n replicas
the probability that it is in a block of size µ is W (µ). The combinatorial factor in (81) is then
given by the probability that the remaining k − 1 replicas are also chosen from the same block
(see Appendix A). Already, at the level of an integer number n of replicas, we see that, as in (45),
(48), the µ′s can fluctuate.

6.2. When the number n of replicas is not an integer

We are now going to write exact expressions which generalize (79)-(80) to non-integer values
of n. As some expressions may change depending on the range of n, we will consider only
the case n < 0. As shown in the Appendix B, our derivation is based on the Cahen-Mellin
representation (66) of the exponential.

• one gets for n < 0 and n <µ< 1〈
Z (β)n〉= ∫

d y

2π

Γ(1−µ− i y) Γ(µ−n + i y)

Γ(1−n)

〈
Z

((
µ+ i y

)
β
)〉〈

Z (β)n−µ−i y
〉

(83)
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• For n <µ< k〈
Yk Z (β)n〉= ∫

d y

2π

Γ(k −µ− i y) Γ(µ−n + i y)

Γ(k −n)

〈
Z

((
µ+ i y

)
β
)〉〈

Z (β)n−µ−i y
〉

(84)

One can notice the similarity between (79), (80) and (83), (84): the ratios of factorials become
ratios of Gamma functions and the sums over µ become complex integrals over y .

For large N (here N is the system size in, for example, (21)), the integrals (83)-(84) are
dominated by a single saddle point at y = 0 and µ = βc /β when the distribution of energies is
of the form (21) and one recovers (18), (19). One can in principe calculate all the finite size
corrections by analysing the neighbourhood of this saddle point. On the other hand, when
the energies take only integer values, there are several saddle points at the same height which
contribute at µ = (βc + 2πi p)/β and µ′ = (βc + 2πi p ′)/β. By analogy with the case of double
exponential of Section 4, one can say that the sizes of the blocks in the Parisi matrix fluctuate and
take complex values. In fact it is easy to see that the prefactors corresponding to these different
saddle points in (83), (84) coincide with the weights Wp in (61).

7. Conclusion

In this paper we have discussed a number of examples of systems exhibiting one step replica
symmetry breaking but for which the original Parisi scheme has to be modified. The simplest
case is a Poisson REM where the density of energies is a sum of two exponentials (see Section 4).
Our approach is based on developing a recursion relation between the negative moments of the
partition function (see for example (42)). The overlaps can also be expressed in terms of the same
negative moments of the partition function (44). Then taking the ratio we obtain expressions
(45),(46) for the overlaps as a weighted sum of two overlap expressions of the form (18) for the
original REM. We have shown that the replica interpretation of this is that the block size of the
matrix of overlaps is no longer fixed but each block can choose one of two possible block sizes,
µ1 and µ2. The Parisi matrix is still block diagonal, but the block sizes fluctuate, taking either size
µ1 or size µ2 as illustrated in Figure 2. The weights Wi in formula (46) can be interpreted as the
probability of a replica chosen at random being in a block of size µi .

This approach is easily extended to other densities of energies that are sums of an arbitrary
number of exponentials. This allows us to address REMs that have a disorder distribution that
can be represented as a sum of exponentials. An example is the case of finite-size corrections to
the REM where we show that the block sizes fluctuate and take complex values. As a consequence,
the variance of the block sizes is negative and the corresponding weights are complex. Another
example is the REM with discrete energies. Again in the replica approach the block sizes fluctuate
and take complex values. We show (see Section 4) that this gives a very different form for the
distributionΠµ(Y ) (see Figure 3) from the case of Gaussian disorder (see Figure 1).

In Section 5 we addressed the case of overlaps between two different temperatures. A recur-
sion relation between negative moments of the partition functions allows us to obtain an expres-
sion (77) for the overlaps. In the replica approach this can be interpreted as fluctuating block
sizes at the two different temperatures but with a relationship (70) between the block sizes. The
fluctuations in the block sizes are continuous and imaginary. They are also not unique, with some
freedom to chose the real part. However, we expect the overlap expressions and the physical pre-
dictions to be the same for each of the choices.

The REM can be viewed as the paradigmatic model for the one step replica symmetry breaking
transition which is known to occur in other spin glass models like the p-spin Ising model [40,
41] or the p-spin spherical spin glass [52]. The obvious advantage of the REM is that there are
exact approaches that do not depend on the replica method. In the original random energy
model, with Gaussian disorder, both the replica method and the exact methods produce the same
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expression (18) for the overlap in the thermodynamic limit. In this case the replica method uses
Parisi’s replica symmetry breaking scheme with a single step of replica symmetry breaking where
the n replicas are partitioned into blocks of fixed size µ.

Here we saw that rather simple changes in the energy distribution lead to fluctuations of the
block sizes of the overlap matrix. It would be interesting to see whether similar effects can be seen
in more complex models. We think that the best candidates are systems with discrete energies
for which the ground state can be degenerate. These include the directed polymers problem
on a tree [53] when the the energies on each bond take integer values, diluted mean field spin
glass models with interactions Ji j =±1 [54], the binary perceptron [55–59] and the K-sat [60–62].
In all these cases, because the ground state has a non-zero probability of being degenerate, the
overlaps 〈Yk〉 ̸= 1 at zero temperature in contrast with what one would expect from (7) in the
limit µ→ 0, leading to a Πµ(Y ) consisting of a sum of delta-peaks at values Y = 1

p (where p is the
degeneracy of the ground state). One can then wonder whether this kind of shape would survive
at least at low temperature as it does in our Figure 3 or whether it takes the universal shape of
Figure 1 as soon as the temperature is non-zero.

In all the versions of the REM that we considered here, the matrix of overlaps described a
one-step RSB. There is no doubt that one can generalize what we have seen here, i.e. overlap
matrices with fluctuating block sizes, to systems with several steps of RSB, for example by looking
at a generalized random energy model GREM [63] with discrete energies. Clearly the statistics
predicted by the Ruelle cascade [64] would then be modified. A challenging question would be to
see whether the same phenomenon is present in other models with full RSB.

Gérard Toulouse

A la fin des années 70 Gérard Toulouse, en comprenant l’importance du problème des verres
de spins, a entrainé dans son sillage plusieurs jeunes théoriciens qui sont devenus des leaders
mondialement connus. A nouveau au milieu des années 80, il a été l’un des premiers en France
à encourager ses plus jeunes collègues à se lancer dans le domaine des sciences cognitives. Il a ainsi
eu une influence majeure sur toute une génération de jeunes physiciens.

(At the end of the 1970s, Gérard Toulouse, recognised the importance of the spin glass problem
and inspired the interest of several young theorists, who have since become world-renowned
physicists. Again in the mid-1980s, he was one of the first in France to encourage his younger
colleagues to enter the field of cognitive science. He has thus had a major influence on an entire
generation of young physicists.)

Appendix A. The RSB way of computing overlaps

This appendix gives the derivation of (7), (18), (19) based on replicas. In the RSB approach [6–8],
one considers n configurations called replicas, and given an overlap Q, one assumes that these
replicas are organized into n

µ blocks of µ replicas. All pairs of replicas have an overlap larger than
Q if they belong to the same block and an overlap less than Q if they belong to different blocks.
This structure can be represented by the famous n ×n Parisi’s matrices shown in Figure 5.

According the the RSB scheme [7], the average 〈Yk〉 is, in the limit n → 0, the probability that,
k different replicas chosen among the n replicas belong all to the same block

〈Yk〉 = lim
n→0

[
n

µ

µ(µ−1)(µ−2) · · · (µ−k +1)

n(n −1)(n −2) · · · (n −k +1)

]
(85)
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µ n

Figure 5. Parisi’s matrix of overlaps between the n replicas: there are n
µ blocks of µ replicas.

Pairs of replicas inside a block have an overlap larger than Q and pairs of replicas in different
blocks have an overlaps less than Q.

while 〈Yk,k ′〉 is the probability that, choosing k+k ′ different replicas, all the first k ones belong to
one block and the last k ′ ones belong to a different block

〈
Yk,k ′

〉= lim
n→0

n

µ

(
n

µ
−1

) (
µ(µ−1) · · · (µ−k +1)

)(
µ(µ−1) · · · (µ−k ′+1)

)
n(n −1) · · · (n −k −k ′+1)

 (86)

and more generally for p groups

〈
Yk1,···kp

〉
= lim

n→0

(−)p
Γ

(
p − n

µ

)
Γ

(
−n
µ

) Γ(−n)

Γ
(
k1 +·· ·kp −n

) p∏
i=1

Γ(ki −µ)

Γ(−µ)

 (87)

One can then obtain the expressions (6) using the fact that〈
Y 2〉= 〈Y4〉+〈Y2,2〉 ;

〈
Y 3〉= 〈Y6〉+3〈Y4,2〉+〈Y2,2,2〉 (88)

(which can be understood for 〈Y 2〉 by noticing that for replicas 1,2 to be in the same group and
replicas 3,4 to be also in the same group, either 1,2,3,4 are all in the same group or the pair 1,2
and the pair 3,4 belong to different groups. This reasoning can easily be generalized to establish
the expression of 〈Y 3〉 in (88).)

Appendix B. Derivation of various identities of Sections 5 and 6

B.1. An integer number of replicas at a single temperature: derivation of (79),(80)

One way to establish (79) is to expand (as a formal series) in powers of t the following relation
(see (29))

φ′(t )
〈

e−t Z (β)
〉
= d

d t

〈
e−t Z (β)

〉
given that (see (30))

φ′(t ) =
n∑
µ=1

(−)µ tµ−1

(µ−1)!

〈
Z (βµ)

〉+O
(
t n)

Similarly, using the fact that〈
Yk Z (β)k e−t Z (β)

〉
=

〈
Z (kβ)e−t Z (β)

〉
=Φk (t )

〈
e−t Z (β)

〉
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and expanding (34) and 〈e−t Z (β)〉 in powers of t one gets for integer n ≥ 0 :〈
Yk Z (β)k+n

〉
=

n∑
µ=0

n!

µ! (n −µ)!

〈
Z

(
(k +µ)β

)〉 〈
Z (β)n−µ〉

which is the same as (80) if one makes the changes of variables n → n−k,µ→µ−k and one uses
the convention that (µ−k)! =∞ for µ< k.

B.2. A non-integer negative number of replicas at a single temperature: derivation of
(83)-(84)

One can rewrite (31) as〈
Z (β)n〉= −1

Γ(1−n)

∫ ∞

0
t−nd t φ′(t )

〈
e−t Z (β)

〉
for n < 0

Using first the identity (66) valid for real ν> 0〈
Z (β)n〉= −1

Γ(1−n)

∫ ∞

−∞
d y

2π

∫ ∞

0
t−nd t φ′(t )Γ(ν+ i y)t−ν−i y

〈
Z (β)−ν−i y

〉
then an expression of φ′(t ) coming from (30) and then choosing

0 < ν< 1−n

to ensure the convergence of the integral over t , one gets after integrating over t and then over E〈
Z (β)n〉= ∫ ∞

−∞
d y

2π

Γ(−n −ν− i y +1)Γ(ν+ i y)

Γ(1−n)

〈
Z (n +ν+ i y)β)

〉 〈
Z (β)−ν−i y

〉
which reduces to (83) in terms of µ= n +ν.

Similarly from (29),(32) one has〈
Yk Z (β)n〉= 1

Γ(k −n)

∫ ∞

0
t k−n−1d tΦk (t )

〈
e−t Z (β)

〉
which becomes using (34) and (66) for 0 < ν< k −n〈

Yk Z (β)n〉= ∫ ∞

−∞
d y

2π

Γ(k −n −ν− i y +1)Γ(ν+ i y)

Γ(k −n)

〈
Z

(
(n +ν+ i y)β

)〉 〈
Z (β)−ν−i y

〉
and this leads to (84) in terms of µ= n +ν.
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