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Abstract. Metamaterials and metasurfaces are artificial composite media engineered to exhibit extraordinary
properties of wave propagation. In bulk (3D) metamaterials, such extreme properties may result from non-
conventional values of effective homogeneous optical parameters such as the electric permittivity and
the magnetic permeability. These features generally originate in the collective response of the constitutive
structural elements, which have to be of sub-wavelength dimensions to satisfy the requirement of optical
homogeneity, and which have to be highly polarizable to provide efficient optical functions. For visible light
applications, sub-wavelength dimensions imply structuration at the nanoscale whereas high polarizability
can be achieved by optical resonators such as plasmonic or Mie resonators. Metasurfaces, on the other hand,
are 2D equivalent of metamaterials, designed to control the phase, amplitude and possibly polarization of
incident EM waves with subwavelength thickness, using interfacial discontinuities effects. This review shows
how the bottom-up approach based on nano-chemistry and the self-assembly methods of colloidal physical-
chemistry can be used to produce nano-sized tunable magneto-electric resonators which can subsequently
be assembled in bulk nanostructured metamaterials as well as in optically thin metasurfaces. Focusing
mainly on work carried out at the University of Bordeaux over the past decade, we review some of the optical
properties observed in visible light from the fabricated systems. Specific optical experiments and numerical
simulations are of crucial importance for the design of the most efficient structures and the extraction of the
effective optical parameters.

Résumé. Les métamatériaux et les métasurfaces sont des milieux composites conçus pour posséder des pro-
priétés optiques extraordinaires. Dans le cas des métamatériaux tridimensionnels, les propriétés nouvelles
peuvent résulter de valeurs non conventionnelles des paramètres optiques effectifs tels que la permittivité
diélectrique et la perméabilité magnétique. Elles proviennent en général de la réponse collective d’inclusions
fortement polarisables de dimensions sub-longueur d’onde afin d’assurer une réponse optique homogène.
Dans le spectre de la lumière visible, cette contrainte implique une structuration des matériaux à l’échelle na-
nométrique. Une forte polarisabilité peut être assurée par des résonances optiques plasmoniques ou de Mie.
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Les métasurfaces sont les équivalents bidimensionnels des métamatériaux conçus pour contrôler la phase,
l’amplitude et si possible la polarisation des ondes transmises ou réfléchies. Cette revue, centrée essentielle-
ment sur les travaux réalisés depuis une décennie à l’Université de Bordeaux, montre comment l’approche
dite “bottom-up” fondée sur la nano-chimie et les méthodes d’auto-assemblage de la physico-chimie colloï-
dale permet de produire des résonateurs magnéto-électriques accordables de dimensions nanométriques et
de les assembler pour former des métamatériaux ou des métasurfaces résonants. En parallèle, le développe-
ment de simulations numériques et leur association à des mesures optiques spécifiques sont des éléments
cruciaux pour la conception des nanostructures les plus efficaces ainsi que l’extraction de leurs paramètres
optiques effectifs.

Keywords. Metamaterials, Metasurfaces, Self-assembly, Colloids, Bottom-up, Optical resonances.

Mots-clés. Métamatériaux, Métasurfaces, Auto-assemblage, Colloïdes, Méthode ascendante, Résonances
optiques.

1. Introduction

Conceptual notions, such as double-negative materials or artificial magnetic materials, form
the backbone of the metamaterials research field. These notions have been available in the
literature for decades and the seminal article of V. Veselago is one prominent early attempt [1–
4]. However, to materialize, these ideas required modern fabrication techniques capable of
effectively manufacturing the envisioned basic units—the so-called meta-atoms—and arranging
them into a spatially organized ensemble (metamaterials).

Early realizations of metamaterials in the microwave range used classical radio-engineering
manufacturing techniques, such as printed circuitry. However, for reaching higher operating
frequencies, and the visible range, miniaturization to sizes a few tens of nanometers quickly
became necessary as the metamaterials community moved toward the visible [5]. Initial designs
resorted to top-down fabrication: in essence, top-down approaches start from raw pieces of
materials that are carved (etched) into the basic units required to generate the desired properties.
A classical example of a top-down fabricated meta-atom is the split-ring resonator, lying on a
supporting substrate. Etching to the nanoscale with sufficient precision requires state-of-the-art
fabrication facilities equipped with nanolithography devices such as electron beams, ion beams,
extreme UV, etc. This top-down approach led to spectacular and well-known results [5].

In this review article, we will focus on a radically different range of fabrication methods, known
as the bottom-up route [6–8]. This designates in reality a wide array of techniques, whereby meta-
atoms are synthetized and assembled together from raw, primary materials, and subsequently,
arranged spatially into the sought-after meta-structures. In this approach, and for the optical
range, meta-atoms are nanocolloids, the complexity of which will depend on the desired prop-
erties. In physical chemistry, nanocolloids designate a category for microscopic objects with
sizes broadly ranging from a few nanometers to a micrometer. They may be solid nanoparticles,
aggregates, polymer coils, droplets or vesicles [9, 10]. In the case of metamaterials, the required
nanocolloids are most often nanoparticles, or associations of nanoparticles and polymers.

Such a bottom-up approach has become viable only thanks to the extraordinary progress
that was witnessed in nanocolloidal engineering and nanoparticle synthesis over the past three
decades [6, 11, 12], where the variety of shapes, obtainable geometrical constructs, as well as the
variety of usable primary materials (including noble metals and semiconductors) has immensely
widened.

Nanocolloids are obtained, in most cases, in the form of a dispersion of a large number of
nanoparticles in a liquid solvent; the task of collecting and distributing them into a more or
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less dense, well-organized spatial arrangement cannot be done using any means of individual
manipulation.1

Therefore, only massively parallel processes like self-assembly may produce large metama-
terials. Self-assembly designates an ensemble of common and highly efficient processes well-
known in chemical physics, soft condensed matter physics, and biology, leading to organized
two-dimensional or three-dimensional structures of various symmetries. They can either be
spontaneous, occurring under the effect of complex—pair or multi-object—interactions, until
some free energy is minimized; or they can be directed, i.e. assisted by some external template
such as a surface, a host matrix or else guided by external inputs of energy.

There are benefits and drawbacks in using the bottom-up approach compared to the top-
down. On the one hand, top-down fabrication provides more precise and reproducible structures
that are easily modelled in numerical simulations. This makes it straightforward to optimize
and interpret the observed properties. However, samples in most cases are two- or quasi two-
dimensional, with limited lateral sizes. Fabrication is time and energy-demanding and requires
state-of-the-art, cost-intensive facilities.

On the other hand, the bottom-up approach is often less precise, as disorder is intrinsically
introduced with respect to ideal designs, due to the role of thermal energy and entropy in both
the synthesis and assembly stages. On the brighter side, chemistry and self-assembly are low-
tech, table-top fabrication means, both energy-saving and cost-friendly. They are able to produce
materials in greater quantities, making it easier to obtain 3D samples [7, 13, 14].

Globally speaking, it can be stated that the bottom-up routes introduce a trade-off between a
lesser structural precision and a better energy footprint.

This review article is devoted to nanocolloidal metamaterials for optics obtained by the
bottom-up approach. We will focus especially on the research efforts carried out at the University
of Bordeaux over the past decade.

2. Nanocolloidal meta-atoms

As stated in Section 1, the expression meta-atom is often used to denote the basic functional
element of a metamaterial. Some authors find it confusing since a meta-atom is not an atom
(whereas a metamaterial is a material). The wording meta-atom nevertheless underlines its
indivisible nature shared with true atoms (ατoµoσ): the targeted optical function of this element
is lost if its structure is broken into separate pieces. We define in the following the meta-atom as
the smallest structural element that provides the wanted optical property. Once again, the meta
prefix implies that the optical response of the meta-atom goes beyond the properties of natural
materials. Moreover, anticipating that a metamaterial constructed as a collection of meta-atoms
should exhibit homogeneous effective optical parameters, the size of the meta-atoms should be
significantly smaller than the operating wavelength. Optical resonators constitute a major class
of meta-atoms in which an optical response (e.g. the electric polarizability) exhibits a resonant
behavior at some frequency ω0 in the spectral range of interest. Indeed, the resonance may
involve a considerable increase of the optical response upon approaching ω0 hence leading to
extreme values of the effective optical parameters. Moreover, the optical response exhibits a π

phase shift upon crossing ω0 which may lead to counter-intuitive “negative” optical behaviors.
A wide set of multipolar electric and magnetic resonances can in principle be excited by the
impinging electromagnetic wave. The price to pay is the presence of optical losses imposed by

1Indeed, for a volumic (3D) metamaterial operating in the visible, an average density of one to ten active units (nano-
resonators) per wavelength will result in a collection of about 109 to 1012 nanocolloids for a sample with a volume on the
order of a cubic millimeter.

C. R. Physique, 2020, 21, n 4-5, 443-465



446 Alexandre Baron et al.

causality through the Kramer–Kronig relations. This is a high price that is sometimes overlooked
in yet exciting models.

The strategy of the bottom-up approaches to metamaterials reported in this review is to
design, synthesize and assemble nanocolloidal meta-atoms exhibiting optical resonances in the
visible or near infrared range. The requirement of sub-wavelength dimensions implies that the
size of the meta-atoms should lie in the colloidal range from a few tens up to hundreds of
nanometers. Two main classes of optical resonators have been proposed and extensively studied
in the field of metamaterials, namely plasmonic and Mie resonators.

2.1. Plasmonic resonators

In metallic nanoparticles, free electrons oscillate harmonically driven by the electric field of
the light wave. When the exciting frequency matches the natural frequency of the electrons
in a metallic inclusion, the so-called localized surface plasmon resonance (LSPR) occurs. It is
described in a simple way by considering a spherical particle of radius a ¿ λ and permittivity
εNP immersed in a transparent medium of permittivity εm , the dipole moment p induced by the
field E0 of the wave reads

p = 4πa3εm
εNP −εm

εNP +2εm
E0. (1)

The resonance occurs when the real part of the denominator in (1) vanishes, which is made
possible since the real part of the permittivity of the metal is negative below the plasma frequency.
The strength of the induced dipole scales as the volume of the particle but the frequency of the
LSPR in the dipolar approximation depends solely on the nature of the metal and of the host
medium, regardless of the size as long as it satisfies a ¿ λ. LSPR-based systems may indeed
accommodate some degree of size-dispersion. For increasing sizes, higher order multipoles come
into play and the LSPR red-shifts progressively [15]. Dense materials assembled from plasmonic
nanospheres exhibit optical resonances reminiscent of the LSPR resonance of their meta-atoms,
but which are generally affected by the electromagnetic coupling between them, as will be shown
in Section 3 [16].

A major challenge of the field of metamaterials is the generation of artificial optical mag-
netism. Early models have suggested that controlling the magnetic response to light would give
access to spectacular novel properties like super-lensing, cloaking or light steering by transforma-
tion optics [17–19]. The absence of magnetic polarizability in natural materials at visible light and
near IR frequencies is well known [20]. Conventional optics indeed assigns the vacuum value µ0

to the magnetic permeabilityµ. In 1999 however, Pendry et al. suggested that artificial magnetism
could be produced by a resonant inductor-capacitor circuit of subwavelength dimension—split
ring resonators (SRR)—in which the electromagnetic wave could induce a circular current, thus
producing an effective magnetic response [21]. This concept was beautifully illustrated by the ob-
servation of negative refraction in microwaves [22]. It was subsequently extended to higher fre-
quencies by reducing the size of the SRR [5], up to visible light frequencies, where the top-down
techniques used to engrave SRRs on surfaces reach their limits. Alternative models were then
proposed in which the resonant loop that generates the magnetic response is made of a nano-
ring of plasmonic nanoparticles [23–25]. We shall see in Section 2.2 that colloidal interactions
can be used to synthesize 3-dimensional clusters of plasmonic nanoparticles along the models
of Figure 1 and measurements of the magnetic response will be presented. The magnetic com-
ponent of light can also come into play in chiral media. Chirality indeed enables the presence of
a magneto-electric coupling within the constitutive relations of a material [26]. Several authors
have shown that plasmonic resonances could be used to enhance the optical activity of chiral
substances. We mention a few examples of this phenomenon observed in helical clusters of gold
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Figure 1. Models of magnetic meta-atoms. (a) Planar model of a ring of plasmonic
nanoparticles [23]. (b) Octaedron 3D model [24]. (c, d) Simovski–Tretyakov model of
isotropic magnetic nanoclusters [25]. (e, f) Sketch of the electric and magnetic modes in
a plasmonic nanocluster [30].

nanoparticles driven by DNA origami, peptide fibrils templates or silica nanohelices obtained by
mineralization of self-assembled helices of gemini surfactants [27–29].

2.2. Mie resonators

Most nano-antennas and metamaterials were initially designed with plasmonic meta-atoms [5,
31], but it was realized that dielectric meta-atoms could also be used to provide a lot of the
functionalities already achieved with plasmonics. To do so, high-index dielectric nanostructures
can be built to reach the Mie resonance regime, in which the resonance wavelength will typically
be on the order of n × a, where n is the index of refraction of the material and a the typical size
of the resonator. As such, a large variety of all-dielectric metamaterials and metasurfaces have
been proposed [32–34]. Crystalline silicon that exhibits a large refractive index with low losses for
wavelengths above 600 nm is envisioned as a good candidate [35].

In the Mie regime, the scattering of dielectric nanoparticles exhibits electric and magnetic
multipole resonances that are described by the coefficients of the vector spherical harmonic
expansion of the scattered field under plane wave illumination. For a spherical particle, the
electric (magnetic) Mie coefficients an (bn) of order n are given by

{an ,bn} = {m,µ}ψn(mx)ψ′
n(x)− {µ,m}ψn(x)ψ′

n(mx)

{m,µ}ψn(mx)ξ′n(x)− {µ,m}ξn(x)ψ′
n(mx)

(2)

where ψn and ξn are the nth order Ricatti–Bessel and Hankel functions of the first kind and
are functions of the reduced frequency x = nhkr . µ is the magnetic permeability of the sphere
material (assuming it is 1 for the host medium), nS and nh are the indices of refraction of the
sphere and the host medium, m = nS/nh, r is the radius of the particle and k is the free-space
wavector. The presence of magnetic Mie resonances in the visible spectrum opens the way to
optical properties that are not observed in natural materials. A strong magnetic polarizability
may indeed lead to yet unknown magnetic bulk materials or to the realization of Huygen’s sources
exhibiting zero backward scattering.

Nanocolloidal systems enable a tuning of the multipole resonances to achieve a desired op-
tical response. For instance, by carefully tuning the size of a homogenous material with a mod-
erate index of refraction—typically between 1.17 and 2.1—nanoparticles that scatter only in the
forward direction can be achieved. This happens because the first order electric and magnetic
dipoles resonate at similar wavelengths and with comparable amplitudes. When these reso-
nances overlap perfectly in amplitude and in phase, a so-called Huygens dipole is produced, in
reference to the Huygens–Fresnel principle. The concept is the same as the first Kerker condi-
tion, further detailed in Section 4.2 and occurs whenever a1 = b1. Zhang et al. have demonstrated
experimentally direction forward-scattering using Cu2O nanospheres that were synthesized by
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Figure 2. Examples of meta-atoms engineered as Mie resonators. (a) Scanning electron
microscope (SEM) images of Copper oxide nanoparticles that exhibit a strong forward-
scattering behavior due to their moderate refractive index. (b) Forward to backward scatter-
ing ratio as a function of nanoparticle diameter. (a) and (b) are adapted from [36]. (c) Illus-
tration of a 200 nm cluster made of 60 silver nanospheres of diameter (2r ) = 30 nm. (d) The
black line is the total scattering efficiency of the silver cluster shown in (c)—defined as the
ratio of the scattering cross-section efficiency to the geometrical cross-section (πr 2)—as a
function the wavelength of the exciting field. The blue (red) line is the scattering efficiency
due to the electric (magnetic) dipole resonance. (e) Illustration of a dense 13 nanoparticle
cluster made of silicon inclusions with diameters of ∼80 nm. (f) Same as (d) for the silicon
cluster shown in (f). (c), (d), (e) and (f) are adapted from [37]. (g) SEM images of a lithium
niobate nanocube for second harmonic generation in NUV. (h) Scattering cross-sections
of the nanocube shown in (g) as a function of wavelength. The red line is the total scatter-
ing cross-section, the continuous (dashed) blue line is the scattering cross-section of the
electric (magnetic) dipole moment. (g) and (h) are adapted from [38].

wet chemistry (see Figure 2 (a,b)) [36]. The concept is not limited to homogenous spheres.
As a matter of fact, an effective meta-atom can be produced by clustering inclusions of small res-
onators that will exhibit a tailored Mie resonance. For instance in [37], Dezert et al. have shown
theoretically that a cluster of 60 silver nanoparticles will act as a medium exhibiting an effective
refractive index that is in the correct moderate range to act as a Huygens dipole (see Figure 2
(c,d)). Furthermore the same authors show that a dense meta-atom made of 13 silicon inclusions
constitutes a very efficient Huygens dipole with scattering efficiencies much larger that anything
achievable with a hypothetical homogeneous sphere [37] (see Figure 2 (e,f)). It should be noted
that the Hugyens dipole concept can be generalized to multipolar systems as forward-scattering
occurs whenever an = bn for any order n (see also Section 4.2).

Finally, Mie resonances hold great potential to act as meta-atoms for a variety of applications.
A neat example is provided by Timpu et al., who show that lithium niobate (LNO) nanocubes
are excellent candidates for second-harmonic generation in the near ultraviolet (NUV) [38].
Indeed, since the energy band-gap is larger than 4 eV, it exhibits low losses in the visible and
NUV. Furthermore, LNO has a strong second-order nonlinear susceptibility χ(2) in those ranges.
As a result, by selecting the size of LNO nanocubes fabricated by solvothermal synthesis in
the (200 nm–300 nm) range, the authors were able to show SHG emission below 400 nm with
giant enhancements compared to bulk LNO due to the Mie resonances of the nanocube (see
Figure 2 (g,h)).

C. R. Physique, 2020, 21, n 4-5, 443-465



Alexandre Baron et al. 449

2.3. Loss-compensated resonators and nanolasing

Meta-atoms described above use resonant schemes in order to provide a significant electromag-
netic response. Such schemes go along with resonant losses due to the Kramers–Kronig causality
rule. This is even worsened in the often-encountered case of plasmonic resonators in the visible
range, where intrinsic Ohmic losses in the metallic parts are already strong [39]. As a result, the
obtained resonances are broader and weaker than expected ideally.

One of the strategies to mitigate the losses is to associate optical gain materials to the plas-
monic parts in the resonators in what is sometimes called “active plasmonic” designs [40–42].
In the case of plasmonic nanoparticles, it has been shown that resonances can indeed be sharp-
ened, and the associated light emission enhanced, as gain levels are increased [43–45]. Moreover,
when gain in the system is increased enough that it exceeds losses, new regimes of spasing and
nanolasing are observed; this has been evidenced both in top-down-fabricated structures [41,46]
and bottom-up-fabricated ones [46–49].

While experimental realizations for nanoparticle-based nanolasers are still scarce, and inves-
tigation mostly relies on full-wave numerical simulations [47], work initiated at the University
of Bordeaux was based essentially on theoretical analysis. The studied geometries were either
spherical plasmonic nanoparticles immersed in gain, core-shells (with a metal core and active
shell), or conversely, nanoshells (with a metal shell and a gain core).

The polarisability α of the particle can be calculated from (1) as α = p/E0 = 4πa3εm(εNP −
εm)/(εNP +2εm). When the gain level Im(εm) is negative (representing a gain material with neg-
ative losses) and increased in absolute value (increasing gain), the plasmon resonance is ampli-
fied and gradually sharpened [50], or in other terms, the losses in the nanoresonator are compen-
sated. When gain reaches a value such that the imaginary part of the denominator at the plasmon
frequency cancels, a singularity of the polarizability appears as the complete denominator van-
ishes. This was conjectured to be the signature of the onset of spasing/nanolasing [50].

To further investigate the situation theoretically, a detailed electromagnetic description was
set up [51]: using an exact Green function formalism, involving individual active emitters ran-
domly aggregated around a metal nanosphere, the equivalent polarizability of the metal-and-
emitters system was calculated, composed of the direct response from the metal sphere as well
as the contribution arising from the cooperative coupling between emitters and surface plas-
mons. The analysis was based on an eigenvalue decomposition, where the eigenmodes are cou-
pled, hybrid exciton (from the emitters)-plasmon modes. The calculated optical response of the
aggregate indeed showed amplified, loss-compensated plasmon responses as gain was increased.
Moreover, when gain levels becomes high enough, sharp peaks corresponding to coherent light
emission akin to the Dicke effect were found [51], thereby providing some insight into the physi-
cal nature of nanolasing.

In these works, however, as well as in almost all simulation studies on nanoparticle-based
nanolasing available in the literature [47], it is implicitly or explicitly assumed that the energy
provided by the gain is both stationary in time and independent of the intensity of the nanolasing
emission. It is well-known from laser physics that none of these are true in general, as time-
dependent regimes may appear (e.g., oscillations) and non-linear effects such as gain depletion
occur at high intensity.

A more complete theoretical approach was therefore introduced [52] where the plasmonic
response of a homogeneous metal nanoparticle immersed in a sea of surrounding gain elements
(dipole emitters) was studied in a space and time-dependent description. The model integrates a
quantum formalism (optical Bloch equations) to describe the gain and a classical, fully multipolar
treatment for the metal particle. The presence of a lasing threshold was then demonstrated.
For gain levels below the lasing threshold, loss compensation takes place and the nanoparticle
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plasmon is amplified as usual. For gain above the threshold, a lasing instability sets in: an
exponential growth of the emission is initially observed, followed by an energy cascade where
all multipolar modes activate. The intricate nonlinear couplings between these modes control
the state of emission in the long term.

Recently, the nature of the long-term nanolasing state could be calculated in exact form within
the same type of theoretical model, but for a nanoshell geometry, where the core is made of an
active material and the shell is a plasmonic metal [53]. For various aspect ratios of the nanoshell,
steady-state regimes for nanolasing were demonstrated, with remarkably sharp emission lines
with widths as little as 1 nm (and possibly even less with optimization).

In conclusion of this section, situations involving meta-atoms (plasmonic nanoresonators)
coupled to optical gain were studied using increasingly elaborate theoretical models. In all cases,
a gain level threshold was evidenced, above which lasing in the form of sharp emission lines
was found. Below the threshold, plasmon amplification regimes are always found, where the
losses of the “natural” resonance of the meta-atom are gradually compensated as the gain level is
raised.

3. Metamaterials

In the preceding section, we described several types of nano-resonators which can serve as meta-
atoms in the optical wavelength range. In this section, we discuss metamaterials, i.e., materials
obtained by assembling such meta-atoms together. We shall present materials made of meta-
atoms contained into a host-matrix, as well as materials made of dense packings of only meta-
atoms.

Bottom-up techniques can fabricate samples with chemically large numbers of meta-atoms,
meaning that they are not restricted to quasi-surfaces, so that 3D bulk materials can be produced.
Depending on the specific approach, the actual thickness of the samples can be adjusted from
one or a few layers of meta-units up to macroscopic thickness. Therefore, in this section, we
will use the formalism of optically-thick materials, such as the optical index, the electrical
permittivity and the magnetic permeability. Also, effective-medium approaches will be used to
transfer individual meta-atom properties into global, macroscopic ones. This is in contrast with
metasurfaces, which will be discussed in the next section, where the optical thickness is small
compared to the wavelength.

3.1. Tunable index of refraction

Assembling nanocolloidal meta-atoms into 3D (or quasi-3D) materials allows monitoring the
optical index. As mentioned before, self-assembly processes intrinsically introduce some degree
of disorder or defects, hindering the numerical rendering of the assembled materials. Optical
properties are then either fully determined experimentally, or modelled and predicted using
somewhat phenomenological effective medium laws.

A very simple situation [54] is a set of spherical plasmonic resonators (14 nm gold nanopar-
ticles), randomly dispersed into a 3D host matrix (a transparent polymer film), see Figure 3 (a).
Films of thicknesses ranging from about 40 to 150 nm were obtained by spin-coating aqueous dis-
persions of gold nanoparticles and polymer onto a silicon wafer, and their optical properties were
analyzed using spectroscopic ellipsometry. Due to the plasmonic resonance, the introduction of
increasing amounts of gold nanoparticles generates increasing variations in the optical indices
of the film. For example, at 6% gold volume fraction, the extracted optical index shows a wide
resonance in the visible range, with the refraction index n displaying variations n = 1.66±0.13,
see Figures 3(b) and (c).
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Figure 3. (a) Polymer film with gold nanoparticles [54]. (b, c) Films with 1.6% (b) and 5.7%
(c) gold volume fraction. Experimental index of refraction n and extinction coefficient k
extracted from ellipsometry (black continuous line). Fits by the classical Maxwell Garnett
EMA (red dashed line), by a unimodal ellipsoidal Maxwell Garnett EMA (blue dashed line)
or by a bimodal ellipsoidal EMA (green dashed line).

More surprisingly, it was found that even for a low volume fraction of gold nanoparticles
( f ∼ 1%–5%), the observed plasmonic resonance was affected by electromagnetic coupling be-
tween particles, due to disorder and inevitable local inhomogeneities in particle density, which
bring some particles close together. As a consequence, even for such dilute systems, the clas-
sical Maxwell Garnett Effective Medium Approximation (EMA) failed to predict the measured
indices (Figure 3 (b)). Such couplings could be taken into account phenomenologically, us-
ing a modified Maxwell Garnett EMA based on a random distribution of ellipsoidal polariz-
abilities, since couplings can in effect be represented as deformations of the polarizability ten-
sor of individual particles [54], while the nanoparticles actually are and remain spherical. This
simple effective model for interparticle couplings proved successful: in simple cases, a uni-
modal distribution of ellipsoidal polarizabilities was enough to provide reasonably good fits of
the experimental data with only two free parameters (Figure 3 (b)). Using bimodal distribu-
tions (Figure 3 (c)) made it even possible to reproduce more complex cases where the reso-
nance presented a shoulder in the red; the bimodal population suggested that particles could
be categorized into weakly vs. strongly coupled resonators. Such modified Maxwell Garnett
EMAs present the advantage of relying on physically meaningful parameters and provide a
general tool for the phenomenological description of plasmonic couplings in various disor-
dered nanocomposites, without resorting to advanced (and often impractical) effective-medium
theories.

Inhomogeneity in the inter-particle distance can be drastically reduced by encapsulating the
plasmonic particles in a unalterable dielectric shell of well-defined thickness. Dense thin films
of such core(silver)-shell(silica) nanoparticles were fabricated by several successive Langmuir–
Schaefer transfers of a monolayer of nanoparticles at the water–air interface onto a silicon
substrate. Their refractive index exhibits a sharp resonant behavior which is nicely reproduced
by a single Lorentz oscillator (Figure 4) [55]. Thicker 3D materials can be made by controlled
evaporation of a dispersion of plasmonic meta-atoms in microfluidic devices, and the effective
refractive index of the final bulk metamaterials can be tuned by controlling the shape, the size
and the density of the resonators (Figure 5) [13].
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Figure 4. (a) TEM view of core-shell nanoparticles. The diameters of the particle and of the
Ag@SiO2 core are 83±4 nm and 27±3 nm respectively. Inset is a sketch of the structure of a 3-
layer film deposited on a silicon substrate by the Langmuir–Shaefer technique. (b, c) Plots of
the real (b) and imaginary (c) part of the refractive index of metamaterial films as a function
of the number of layers (adapted from [55]).

Figure 5. Examples of effective refractive index of 3D composite plasmonic materials made
of dense assemblies of silver cubes in (a) and gold spheres in (b). The dots are obtained by
direct retrieval from the ellipsometric data, while the continuous lines are a fit to a Tauc–
Lorentz model [13].

Although the high volume fraction of metal in self-assembled 3D systems precludes the use of
simple mixing rules for the calculation of the effective refractive index, the ellipsometric studies
show that the materials behave as homogeneous resonant metamaterials [13].

3.2. Topological darkness

The cancellation of the TM reflection from a transparent medium at Brewster’s angle is well-
known. If losses are introduced via an imaginary part of the optical index, the exact Brewster’s
extinction disappears. Nevertheless, an exact cancellation of the TM or TE reflection can be
reached in thin absorbing films deposited on an absorbing substrate as will be shown below.

For a homogeneous film on a flat surface, the amplitude reflection coefficient of the TM wave
is given in standard textbooks

rTM = rTM,1 + rTM,2e2iβ

1+ rTM,1rTM,2e2iβ
(3)

where β = (2π/λ)N1d cosφ1 is the propagation constant inside the medium, rTM,1(2) is the
reflection coefficient from the top (1) and bottom (2) interface, N1 = n+ik is the refractive index of
the film, d its thickness,λ the wavelength in vacuum andφ1 denotes the direction of the refracted
beam within the film. The solutions of the extinction condition display multiple branches shown
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Figure 6. (a) Sketch of the optical geometry. The dark point corresponds to R = 0 (destruc-
tive interference). (b) Theoretical extinction lines computed numerically for a homoge-
neous film of index N1 = n + ik deposited on a silicon substrate at constant angle of inci-
denceφ0 = 50◦ and TM polarization. Colors red, orange, yellow, green and blue correspond,
respectively, to thicknesses d of 350, 300, 280, 250 and 200 nm. Note that more than one ex-
tinction branch may exist for each thickness (only shown for thicknesses 350 and 300 nm
for sake of clarity). Different angles of incidence result in different sets of lines. Similar sets
of extinction lines are found for TE polarization (adapted from [56]).

Figure 7. (a) SEM micrographs of a monolayer of core-shell nanoparticles
Au(14 nm)@SiO2(11 nm) transferred on a silicon substrate by the Langmuir–Blodgett
technique. (b) 3D views showing the dispersion curve of a 2-layer film of core-shell parti-
cles Au(48 nm)@SiO2(18 nm) (dark green) and the theoretical extinction curves computed
for three angles of incidence (AOI). (c) details of the crossing region showing the strong
dependence on the AOI. The figure is adapted from [57].

in Figure 6 in (n, k, λ) axes for a particular value of the angle of incidence (AOI = 50◦) and for
different thicknesses.

A dark point arises when the dispersion curve of a film (n(λ),k(λ)) crosses a line rTM = 0. For a
film of given thickness on a given substrate, the only experimental parameter is the angle of inci-
dence which must be adjusted to reach the dark point. The existence of the intersection is guar-
anteed by the Jordan theorem [56]. We illustrate this effect in Figure 7 with experiments carried
out on a thin film of core-shell nanoparticles made of a gold core (diameter 14 nm) surrounded
by a silica shell (thickness 11 nm) deposited by successive Langmuir–Schaefer transfers onto a

C. R. Physique, 2020, 21, n 4-5, 443-465



454 Alexandre Baron et al.

Figure 8. Illustration of the high sensitivity of a plasmonic sensor based on the dark point.
The ellipsometric angles Ψ (a) and ∆ (right) are computed and plotted for increasing but
weak variations of the refractive index of the ambient medium. Note the strong effect on the
phase Ψ which provides much higher sensitivity than ∆. (c) Variations of the ellipsometric
angles ∆ (blue line, left scale) and Ψ (red line, right scale) in the vicinity of the dark point.
Helium is injected above the film at t = 200 s and t = 700 s, air is injected at t = 450 s. Note
the large variation of∆∼ 100◦ for a change of 2.4×10−4 in the refractive index N0 of the gas.
The film is a transparent polymer loaded with 10% vol. gold nanoparticles spin coated on a
silicon wafer. The thickness is 179 nm, the dark point is found at AOI = 69.6◦ and λ =
616 nm.

silicon wafer [57]. A resonant dispersion produces a large exploration of the (n,k) space, which
favors the occurrence of the dark condition (see Figure 7), but the presence of a plasmonic reso-
nance is in fact not required to observe a dark point, and it may actually occur either near [58] or
away [59] from the resonance, providing in the later case a low-loss phase jump effect.

The dark phenomenon is easily detected by spectroscopic ellipsometry measuring the ratio of
the TM to TE reflection coefficients ρ = rTM/rTE = tanΨe−i∆. At the dark point, Ψ vanishes and
the phase∆ undergoes a sharp jump equal to π. The steep variation of the phase can be exploited
for ultra-sensitive sensing [56, 60].

Figure 8 (a,b) illustrates the variation of Ψ and ∆ for weak variations of the refractive index
of the ambient medium. Figure 8 (c) shows an application to the detection of weak variations
of the refractive index of a gas. A phase shift of 100◦ is observed when air is replaced by helium
in the ambient medium above the film. The change in refractive index is 2.4×10−4 which yields
a sensitivity of the phase on the order of 4× 105 deg/RIU. Figure 8 (c) shows that a detection
accuracy better than 10−5 RIU is easily achieved, which is comparable to SPR instruments based
on photodiode arrays for instance [61].

This example shows that the total extinction of the reflection due to destructive interferences
in a thin absorbing film (topological darkness), similar to the Brewster’s extinction on a transpar-
ent medium, can be used for sensing with a high sensitivity.

3.3. 3D isotropic optical magnetism

The magnetism of matter is vanishingly small in natural materials at high frequencies. Paramag-
netism and ferromagnetism are slow process that are usually extremely inefficient at frequencies
larger than the GHz and diamagnetism typically exhibits magnetic susceptibilities χm on the or-
der of 10−4 at best. As a consequence, the relative magnetic permeability µ is equal to one for
all optical materials in optics and electromagnetism at such frequencies. Natural diamagnetism
occurs—in a semi-classical description—because impinging electromagnetic fields induce local
polarization currents in atoms or molecules due to circulating charges such as an electron, re-
sulting in an angular momentum that itself produces a magnetic dipole moment m. However,
these dipole moments are very weak at optical frequencies [20].
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Figure 9. Three-dimensional magnetic metamaterial at optical frequencies. (a) Spectral
variations of the retrieved magnetic permeability µ of the metamaterial. (b, c) Scanning
electron micrographs of the self-assembled metamaterial at two different scales. Figure
adpated from [14].

Plasmonic raspberry systems such as those presented in Section 2.1 (see Figure 1(c–f)) con-
ceptually play the same diamagnetic role as the atom, because circulating plasmonic currents are
created that produce an effective magnetic dipole moment near the plasmon resonance wave-
length. This resonance wavelength is large compared to the size of the nanosystem [62]. Fur-
thermore, they have pseudo-spherical symmetry, which means that their behavior does not de-
pend on the directions of the electric and magnetic fields incident on the material. As a result,
they are ideal to serve as the building blocks of a three-dimensional isotropic metamaterial that
will exhibit a resonance in the magnetic permeability µ. This contrasts with most realizations of
magnetic metamaterials that have been proposed thus far by the top-down approach that were
mainly two-dimensional and composed of anisotropic meta-atoms [5].

Using a microfluidic evaporation technique aiming at (meta)materials fabrication [13, 63, 64],
a three-dimensional metamaterial composed of these raspberries is produced by flowing the
solvent containing the colloids through a micro-channel. The solvent eventually evaporates
through a semi-permeable membrane and a dense three-dimensional ensemble is molded into
the channel. The final metamaterial is truly bulk and constitutes a chunk 100µm wide, 5µm deep
and several mm long.

For all practical purposes, this means that at optical frequencies the metamaterial may be con-
sidered as semi-infinite, and a variable angle spectroscopic ellipsometric analytical retrieval pro-
cedure enables the unambiguous determination of the spectral variations of ε(λ) and µ(λ) [14].
The obtained metamaterial reveals a resonant behavior of the magnetic permeability µ with a
real part ranging from 0.8 to 1.45 as shown on Figure 9 (a). This corresponds to a magnetic sus-
ceptibility comprised between −0.2 and 0.45, three orders of magnitude higher than the highest
natural—static—diamagnetic susceptibility. As far as the authors know, this is the first realization
of a bulk magnetic metamaterial exhibiting reflexion properties in visible light which are correctly
described by an effective isotropic permeability parameter. A tutorial on the direct experimental
retrieval procedure is given by Flamant et al. [65].

3.4. Hyperbolic dispersion

Another type of nanostructures referred to as hyperbolic metamaterials has been proven very
promising, as it exploits anisotropy effects to monitor the propagative modes via engineering
of the dispersion relation. Indeed, hyperbolic metamaterials present, in some spectral range,
two components of the dielectric permittivity tensor ε with opposite signs, as if the material
behaved like a metal (εi < 0) along at least one direction and like a dielectric (ε j > 0) along at
least another. Because of this extraordinary anisotropy, the isofrequency surfaces open up into
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Figure 10. Block copolymer based lamellar metamaterial. (a) Scanning electron micro-
graph evidencing the regular uniaxial nanostructure. (b, c) Real part of the ordinary and
extraordinary permittivities as a function of wavelength for increasing volume fraction f of
gold NPs in the lamellae. Figure adapted from [66].

hyperboloids, instead of ellipsoids in a natural material. The extended shape of the isofrequency
surfaces allows for propagating waves with large wavevectors, which would be evanescent waves
in a natural material. This unique property of propagating high-k waves opens possibilities
for imaging with subwavelength resolution. In addition, the phase space volume between two
hyperboloids for two values of frequency is infinite, which corresponds to an infinite density
of photonic states. Finally, the peculiar dispersion relation gives rise to a number of specific
properties, from subwavelength modes to emission engineering, as reviewed in a number of past
reports [67–70].

Anisotropic metal-dielectric nanostructures with a hyperbolic dispersion law in the visible
wavelength range have been produced with either lamellar stack or cylinder array geometries.
Metal-dielectric multilayers are often grown by physical vapor deposition, using either sputter-
ing or evaporation, while cylinder arrays are often produced via the growth of aligned nanowires
within porous templating matrices [71] as well as electron beam lithography [72]. As a mat-
ter of fact, nanostructuration and anisotropy, along with some degree of long-range order, are
spontaneously arising in several self-assembled “soft matter” systems as surfactant organized
phases [73], liquid crystals [74], organized nanoparticles, and block copolymers [75]. 3D self-
assembly in the form of magnetic NPs chains, induced by the application of an external magnetic
field to a ferrofluid, creates a sufficient anisotropy to achieve hyperbolic dispersion laws [76, 77].
Carbon nanotubes packed and aligned by filtration can also constitute hyperbolic metamate-
rials [78]. Block copolymers present many advantages for the design of anisotropic nanocom-
posites. They are the result of covalently linking two or more long polymer chains, each called
a block, with a chemical nature that can be chosen within a very wide range of chemical func-
tions. Most polymers are incompatible with one another and phase separate in a blend, but be-
cause they are covalently linked, distinct blocks of a block copolymer can segregate only as far
as the size of the macromolecule, which results in the formation of nanodomains of each block
in the solid material. The morphology and degree of order of these nanodomains are fully con-
trolled by the number and relative length of the blocks, while their size directly depends on the
whole macromolecule molar mass [79]. By hybridizing an aligned block copolymer nanostruc-
ture with gold precursors, Wang et al. have produced periodic lamellar stacks of period 28 nm, of
alternating layers of pure polymer (dielectric) and layers of composite of polymer loaded with a
variable density of 7 nm gold nanoparticles [66]. For large gold loading and close to the plasmon
resonance of the nanoparticles, the lamellar stack presents ordinary and extraordinary compo-
nents of the dielectric function of opposite signs, as evidenced by spectroscopic ellipsometry and
shown on Figure 10, demonstrating the potential of this fabrication route for self-assembled bulk
hyperbolic metamaterials.

C. R. Physique, 2020, 21, n 4-5, 443-465



Alexandre Baron et al. 457

4. Metasurfaces

Metasurfaces are 2D equivalent of metamaterials, designed to control the phase, amplitude
and possibly polarization of incident EM waves with subwavelength thickness, using interfacial
discontinuities effects (see for instance [80]). Metasurfaces rely on the tailored light scattering of
sub-wavelength resonators organized in thin films.

4.1. Large surfaces

Just as for 3D assemblies, bottom-up routes for the organization of nano-objects on surfaces
rely on constrained hydrodynamics or templating by patterned substrates in order to direct
and benefit from self-assembly phenomena, with the major advantage of providing low-cost,
large-scale fabrication routes. For instance, dewetting phenomena on topographically patterned
substrates have led to silver NPs arrays presenting surface lattice resonance modes [81]. While
the size, shape or complex geometry of nanoresonators can tailor their responses, in terms of
light absorption and scattering, the relation between these responses and the properties of a
metasurface made of the assembled resonators will be computable only if the assembly process
results in a surface of good homogeneity. Templating may be a good process to target such
homogeneity. A combination of lithography-based topographically patterned substrates and
confined drying conditions of a colloidal suspension can lead to well-controlled 2D assembly [82]
as demonstrated for instance by an anisotropic appearance in the far-field in the case of aligned
nanorods [83]. Templating can also be performed using low-tech wafer-wide spin-coated block
copolymer thin films (<50 nm). They constitute chemically patterned substrates, on which
metal or dielectric nano-objects can be attached [84] or grown [85–88]. They can also be used
as nanometric masks for lithography-like fabrication methods [89, 90]. At the University of
Bordeaux, such large scale block copolymer thin films have been used to produce tunable
gold nanoresonators in fingerprint-like structures illustrated in the Figure 11, insuring a global
azimuthal isotropy together with inter-particle distance homogeneity [86]. The tunable aspect
ratio of the resonators strongly affects the optical response of the surface nanostructure on a
silicon substrate. Indeed, a description of the optical properties of the samples was derived from
ellipsometry data in reflection in terms of an effective optical index, even though the index of so
thin films may not be defined independently of the measurement conditions [91,92]. In Ref. [86],
increasing the in-plane aspect ratio of the nanoresonators to 2, while keeping the nanostructure
thickness constant, was achieved by tuning a simple fabrication process parameter and led to
an increase of the index up to 3.2, against ∼1.6 for a nanostructure with same gold density and
resonators of aspect ratio 1.

4.2. Flat optics

The recent surge in metasurfaces has shown that it is possible to conceive a wide variety of flat
optical components that operate thanks to the careful engineering of the amplitudes and phases
of the fields scattered by individual resonant objects [34,93]. Bottom-up nanocolloidal routes can
play a role here notably thanks to the large amounts of nanoresonators they can produce and the
vast surfaces that can be coated by various self-assembly techniques. The variety of meta-atoms
that can be synthesized makes it possible to tailor the resonances of the electric dipole moment
(p) as well as the magnetic dipole moment (m) both in amplitude and in resonance wavelength.

For instance, when a particle has the property that |p| = |m|, the so-called first Kerker condition
is reached and a Huygens dipole is produced [94]. The Huygens dipoles emit spherical waves
solely in a direction u such that (u,p,m) forms a direct trihedron. This dipole is named after
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Figure 11. SEM images of gold nanoparticle arrays formed on a silicon wafer using a PS-b-
P2VP block copolymer template by immersion in a 1 wt% aqueous gold precursor solution
for (A) 1 h, (B) 48 h and (C) 120 h [86]. Scale bars = 100 nm.

Christiaan Huygens as it corresponds to the fictitious point sources of secondary spherical
wavelets from the Huygens–Fresnel principle [95]. As a result, when the meta-atom is excited by
an impinging plane wave, scattering only occurs in the direction of the exciting wave. This means
that a surface composed of these meta-atoms are reflection-less and exhibit a transmission close
to unity, these are Huygens metasurfaces [96]. Furthermore the fact that both dipolar resonances
are super-imposed means that a full range of dephasing is accessible on the [0,2π] interval and
virtually any wavefront may be shaped and flat optical components may be produced, such as
prisms or lenses. Huygens sources can be obtained with several systems such as those described
in Section 2.2, by exploiting the Mie resonances of homogenous nanoparticles that have the right
dispersion and size to reach the Huygens regime, or else by using the clusters system proposed
by Dezert et al. [37]. It was demonstrated that clusters of plasmonic or dielectric inclusions were
good candidates to produce flat lenses and prisms [97]. This 2π phase-shift occurs over narrow-
spectral ranges and as a result group-velocity dispersion may be large. This potentially means that
metasurfaces composed of isotropic Huygens sources could be used for temporal pulse shaping
as was proposed by Decker et al. [96] in the case of a periodic metasurface. But since ordering
does not play a role, disordered metasurfaces could be used and this is adapted to the bottom-up
platform.

Additional types of flat optical components such as filters may be produced. The cases of
resonant perfect absorbers is discussed below.

4.3. Perfect absorbers

In many circumstances, it may be useful to have a material that absorbs all of the incoming
radiation. This concept is certainly applicable to photovoltaics or even some classes of sensors for
instance. Furthermore, Kirschoff’s law of thermal radiation roughly states that the emissivity of a
body is equal to its absorptivity at a given temperature [98]. This means that a perfectly absorbing
metamaterial or metasurface may act as a great thermal emitter, or else, due to its thermal activity,
it may act as an insulator or bolometer.

Bottom-up colloidal metasurfaces may also play a role in this field, since the metasurface
inherits its property from the properties of meta-atoms. Film-coupled metasurfaces acting as
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Figure 12. Nanocolloidal Perfect Absorbers. (a) Perfect absorbing metasurface composed
of film coupled silver nanocubes ranging from 75 to 140 nm in size deposited on a
gold evaporated film and spaced a few nanometers above the gold film. (b) Wavelength-
dependence of the reflectivity exhibiting a resonant dip at λ≈ 650 nm. The photograph on
the right-hand side of the graph show that large areas can be covered. (c) Illustration of a
canonical metasurface composed of nanocolloids. The metasurface inherits its radiation
properties from the scattering properties of the multipoles of the colloids. (d) Top graph:
absorption (black), transmisttance (blue) and reflectance (red) spectrum of a perfect ab-
sorber composed of a periodic array of germanium nanoclusters. Bottom-graph: multipo-
lar decomposition of the nanocluster in the array. (e) Metasurface composed of core-shell
nanocolloids containing a silver core and a n-doped silicon shell. (f) Absorption spectrum
of the core-shell metasurface. (a) and (b) are adapted from [102]. (c) and (d) are adapted
from [103]. (e) and (f) are adapted from [104].

perfect absorbers have been demonstrated by Moreau et al. [99]. They are composed of silver
nanocubes deposited on gold films with a separating dielectric gap layer of a couple of nanome-
ters typically. The gap layer is composed of alternating positively and negatively charged poly-
electrolytes deposited on the gold surface by dip-coating. The surfaces operate in reflectance and
exhibit a resonance dip in the reflectance at a wavelength that is determined by the nanocube
size and gap thickness. The amplitude of the resonance is governed by the surface fill frac-
tion [100, 101]. Akselrod et al. have shown that such perfect absorbers could cover and conform
to large areas (see Figure 12 (a,b)) [102].
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Alternatively, it is also possible to produce perfect absorbers, that operate as transmissive
monolayers of nanocolloids resonantly absorbing all the impinging light. For instance, a design
was proposed by Radi et al. consisting in a periodic square array composed of core-shell nanocol-
loids containing a silver core and a n-doped silicon shell [104] (see Figure 12 (e)). These systems
may resonantly act as Huygens dipoles (see Section 4.2), which ensures that no reflection from
the metasurface occurs. Furthermore, they show that the perfect absorption condition is reached
when both the electric and magnetic polarizabilities (αe and αm respectively) of the core-shell in
the metasurface satisfies the following relation

µ0

ε0
αe = ε0

µ0
αm = i

S

ω
(4)

where S is the area of the unit cell of the periodic array and µ0 is the free-space magnetic
permittivity. Figure 12 (f) shows that unity absorption is achieved for this system near a frequency
equal to 300 THz.

It was shown recently by Dezert et al. that the nanocolloids do not have to be dipolar and that
multipolar systems can be used in a periodic array to achieve perfect absorbtion (see Figure 12
(c)) [103]. Indeed, what is required is (i) that the sum of odd multipole modes be equal to the
sum of even multipole modes, which is a generalization of the famous first Kerker condition
(see Section 4.2) and produces Huygens multipoles (i.e. no back-scattering) and (ii) that they
both be real and equal to a specific value such that zero-transmission occurs. The condition is
summarized by the following relation

∞∑
n=1

On =
∞∑

n=1
En = k2S

π
(5)

where On (En) is the nth order odd (even) multipole and k is the free-space wavevector. This
property, will ensure that the field radiated by all mutipoles will interfere destructively in the
backward direction and reflectance will be cancelled. As a result of this generalization, several
designs of perfect absorbing metasurfaces can be proposed. Figure 12 (d) provides an example
where near unity absorption is achieved at optical wavelengths, with an array composed of
germanium nanoclusters, which operate in a severely multipolar regime.

These designs have great potential for bottom-up nanocolloidal metasurfaces operating at
optical frequencies.

5. Conclusion

The examples given in this review illustrate some advantages of the bottom-up approach over
top-down fabrication routes for the realization of metamaterials operating in visible light. The
extreme versatility of nanochemistry enables the large-scale synthesis of finely engineered meta-
atoms. Moreover, self-assembly, relying solely on colloidal interactions, or directed-assembly,
benefiting from external guiding constraints, enable the fabrication of bulk materials at little
energy cost. In this way, assembling more than 109 meta-atoms in a volume of 106 µm3 is
routinely achieved. The successful observation of an isotropic effective magnetic permeability
different from the vacuum value µ0 in an optically thick metamaterial follows from this ability to
produce and assemble a large number of resonators.

Bottom-up metamaterials nevertheless face many difficult challenges. Nanochemistry and
self-assembly result in statistical distributions of the shape, size and ordering of the meta-
atoms. For optical functions requiring a high precision in the response and the location of
each meta-atom, like planar lenses, some top-down fabrication processes seem inescapable.
On the other hand, if homogeneous effective optical properties are sought for, some degree of
structural disorder at scales shorter than the wavelength has little impact. The random packing
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of the magnetic meta-atoms is even necessary to enable the validity of an effective magnetic
permeability parameter [14].

Increasing the optical response of the meta-atoms is another important challenge. In particu-
lar, higher values of their magnetic polarizability are needed for the production of Huygens meta-
surfaces or mu-near-zero (MNZ) materials. Silver has proved to be more efficient than gold in the
raspberry model [14,62]. Mie-resonators made of high-index dielectric seem particularly promis-
ing for future materials [32, 105]. Increasing the magnetic response of the meta-atoms may how-
ever affect the validity of the permeability parameter µ and stimulate more theoretical work. In-
deed, artificial magnetism is an effect of spatial dispersion of the permittivity that cannot in prin-
ciple be reduced to a second-rank tensor µi j [106].

Optical losses constitute a major limitation for most applications of metamaterials in optics.
Compensation of losses by addition of a gain medium excited by optical pumping is a complex
and costly process that may be reserved for research studies or specific applications. The impact
of losses can nevertheless be limited by using dielectric instead of plasmonic resonators or by
reducing the optical thickness in metasurfaces. On the other hand, the Ohmic losses of plasmonic
resonators are welcome for applications requiring a local source of heat like heat therapy.
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