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1. Introduction

Laboratory analogues of hawking radiation could provide insight into many of the outstanding
questions surrounding black hole evaporation [1–3]. Bose–Einstein condensates (BEC) provide
fertile ground for possible analogue models. The long wavelength perturbations of a condensate
are described by an effective scalar field theory with a background metric. Given the appropriate
background velocity field, the analogue metric can have horizons that produce Hawking radia-
tion in the form of pseudo-quanta in the condensate field. This note focusses on one particular
aspect of Hawking radiation, which is the stability of the Hawking stress-energy at the Cauchy, or
innermost horizon, of a black hole.

Analogue models with two horizons are of particular interest because they were used in the
first experiments that produced Hawking radiation in the laboratory [4, 5]. Early theoretical
investigations of the two-horizon system by Corley and Jacobson [6] revealed the possible ex-
istence of a laser effect. If the effective scalar field theory has a dispersion relation of the form
ω2 = k2 + k4/Λ2, the Hawking radiation outside the horizons grows exponentially, implying an
instability of the vacuum state. Later work, by Parentani and others, which did not rely on the
WKB approximation used by Corley and Jacobson, found a more nuanced situation with evi-
dence for a laser effect depending on the particular set-up [7, 8]. Following Steinhauer’s experi-
ment, there have been a number of attempts to examine the laser phenomenon and reproduce
the experimental results by solving the Gross–Piteavski equation for the mean condensate field
with various forms of noise added to mimic the quantum fluctuations [9–11]. The results appear
to be rather dependent on the approach that is followed.

In this note, we focus only on the long wavelength dynamics of the two horizon system in one
spatial dimension. The methods used are generalisations of the conformal methods introduced
by Christensen and Fulling [12]. By introducing an effective scalar-dilaton model we shall see that
closed form expressions can be obtained for the hawking flux and energy density of the Hawking
radiation. We shall show that, even when we drop the superluminal modes, there is a vacuum
instability. This instability is recognisable to relativists as the analogue to the destabilisation of
the Cauchy horizon of a black hole due to vacuum polarization [13, 14].

The Cauchy horizon has been of long-standing interest in relativity. Traversing the Cauchy
horizon would allow views of the singularity inside the black hole and signal a breakdown of
the cosmic censorship principle. Instability of the Cauchy horizon would in this respect be a
desirable thing [15, 16], but there has been a recent reawakening of interest in the issue and the
possibility that physical objects could traverse the Cauchy horizon unscathed [17, 18].

The results below describe in detail how energy accumulates on the analogue Cauchy horizon,
usually referred to in analogue gravity context as the white hole horizon. The analysis is limited
to long wavelength modes, but allows for density and sound speed variations. In practice, either
the short wavelength modes or non-linearities will regularise the energy density at the analogue
Cauchy horizon, but extending beyond long wavelengths requires a full mode analysis beyond
the scope of the simple treatment presented here. Hopefully, the analysis below may help guide
future numerical work that covers the dynamics on all scales.

2. The spacetime geometry

Analogue gravity is based on the fact that the velocity potential for waves in an Eulerian fluid
satisfy the relativistic wave equation with an analogue metric, the Unruh metric [1]. In one
dimension (1D),

d s2 = a

c

{
−

(
c2 − v2

f

)
d t 2 −2v f d tdr +dr 2

}
, (1)
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where v f (r ) is the background fluid velocity and c(r ) is the sound speed. (It is convenient to take
v f < 0 and c > 0.) The extra factor a(r ) is the density in the Unruh metric, but in 1D the wave
equation is independent of a and we can choose a as we wish.

The metric diagonalises using the time coordinate τ= t + r∗, where

dr∗ = v f dr

c2 − v2
f

. (2)

Then the metric takes a Boyer–Lindquist form,

d s2 = a
{−B(r )dτ2 +B(r )−1dr 2} (3)

where

B(r ) =
c2 − v2

f

c
. (4)

Black hole horizons occur at the roots ri of B(r ) = 0, i.e. v f =±c.

Figure 1. Schematic diagram of a two-horizon fluid flow with horizons at rc and rh .

Figure 2. Plot of a typical two-horizon fluid flow with velocity v f (blue) and sound speed c
(red) with two horizons where v f =−c.

The Penrose diagram for this spacetime is constructed from null Kruskal coordinates as
follows. First, define a new stretched coordinate r∗,

dr∗ = c dr

c2 − v2
f

(5)

There are singularities in r∗ at the horizons, but this definition can be used for the entire range of
r providing we use a principle value prescription. Let κi = B ′(ri )/2 = c ′+v ′

f , then r∗ →−∞ at any
horizon where κi > 0 and r∗ →∞ at any horizon where κi < 0. In the region near the horizon, we
define

Ui =−e−κi (τ−r∗)

Vi = eκi (τ+r∗)

These null coordinates vanish at the horizon ri and the metric in regular there. They allow us
to extend the metric across the horizon. In the Penrose diagram, lines of constant Ui and Vi

have slope ±45◦ respectively. The full Penrose diagram is constructed by patching these regions
together to cover the entire range of r .
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Figure 3. Penrose diagrams for the analogue black hole (left) and the rotating black hole
(right). The horizons are labelled rh and rc . In region 2 of the analogue hole, rc < r < rh ,
right moving waves are left-moving in the original coordinates and so they end up dragged
to the horizon rc .

Figure 4. Penrose diagrams for the analogue black hole with a circular topology (left) and
the rotating black hole in de Sitter space (right). The latter has an additional horizon, the
cosmological horizon, at r = rcos . In region 1 of the analogue hole, right moving waves
travel round the circle and meet the horizon at rc . The topology of regions 1 and 2 are the
same in both cases if we unwind the circle and work with the periodic potential.

Figures 3 and 4 show the Penrose diagram for a flow which is superluminal between two fixed
horizons r = rc and r = rh , of opposite surface gravity. There are two cases, a linear one with
−∞< r <∞, and a circular topology with periodic potential. An odd feature is that each horizon
appears multiple times in the Penrose diagram, depending in whether waves are approaching
from the left or the right. The horizon at rc is a Cauchy horizon for region 2, i.e. wave motion
in region 3 cannot be predicted from initial data in region 2. Furthermore, waves falling in from
region 1 “pile up” along the horizon at rc [19]. Note that this horizon has some similarities also
to a white hole, because null geodesics exit region 2 into region 3 across r = rc . In the literature,
the upflow horizon rh in usually referred to as the black hole horizon and the downflow rc as the
white hole horizon.

Figure 3 shows the Penrose diagram of a four dimensional rotating black hole for comparison.
The topology of the space spanned by the (compactified) Kruskal coordinates for regions 1 and
2 is very similar. The differences lie mostly in the future extensions of the spacetime beyond the
Cauchy horizons. Is seems reasonable to regard the horizon at rc as an analogue to the Cauchy
horizon of a black hole.
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3. From BEC to scalar-dilaton theory

This part of the story is not new and is only told is outline [20, 21]. First, there is the action for the
mean BEC field ψ(r, t ),

S =
∫ {

i

2
ħψ∂tψ− i

2
ħψ∂tψ− ħ2

2m
∂rψ∂rψ− 1

2
g (ψψ)2 +µψψ−Vψψ

}
dr d t , (6)

where g is the effective self-coupling in one dimension and µ sets the density scale. The
inhomogeneous trapping potential V drives a background flow in the condensate. Potentials
in the transverse directions (not shown here) confine the condensate so that it behaves as a 1D
system. The action is expanded about the time independent background, which has velocity v
and sound speed c,

ψ=p
ρe iθ(1+δψ), v =ħ∂rθ/m, gρ = mc2 (7)

At quadratic order, letΨ= (δψ,δψ)T , the perturbed action reads

S[Ψ] =
∫
ρ

{
i

2
ħΨ†σz (∂t + v∂r )Ψ+ ħ2

4m
Ψ†∂2

rΨ− 1

2
Ψ†HΨ

}
dr d t (8)

where σi are the Pauli matrices and

H = gρσx + gρ1. (9)

The field equation for the backgrounds ρ and v have been used. Next, diagonalise the matrix H,
by introducing the normalised eigenvectors u and u′, such thatσz u = u′. Introduce (Bogoliubov)
normal modes ϕ and conjugate momenta p,

Ψ=−iϕu +ħ−1pu′ (10)

In these fields,

S[ϕ, p] =
∫
ρ

{
p (∂t + v∂r )ϕ− 1

2

ħ2

2m

(
∂rϕ

)2 − 1

2ħ2

( ħ2

2m

(
∂r p

)2 +2mc2p2
)}

dr d t (11)

Finally, consider the long wavelength limit where the field p is composed mainly of Fourier
modes with k ≪ ξ−1, where the healing length ξ = ħ/mc. For consistency, we should check if
this is consistent with the Hawking radiation. The Hawking spectrum is in the desired wavelength
range if kB TH ≪ħc/ξ. The formula for the Hawking temperature (see later) is kB TH ∼ħv ′

f , which
implies that the background velocity field should not vary very much on the scale of the healing
length. This not unreasonable in actual experiments.

In the long wavelength limit, p ≈ħ2(2mc2)−1(∂t + v∂r )ϕ, and eliminating p gives

S[ϕ] = ħ2

2m

∫
ρ

{
1

2c2

[
(∂t + v∂r )ϕ

]2 − 1

2
(∂rϕ)2

}
dr d t . (12)

We rewrite the action in geometrical form by introducing the fluid metric,

g−1|g |1/2 = c

{
− 1

c2 (et + ver )⊗ (et + ver )+er ⊗er

}
. (13)

The action has a pseudo-geometrical form,

S[ϕ] = ħ2

2m

∫ {
−1

2
gµν

(
∂µϕ

)(
∂νϕ

) |g |1/2
}
ρ

c
dr d t (14)

In three spatial dimensions, the factors after the bracket can be absorbed by the inverse metric.
However, in 1D this is not possible and the ρ/c = (ρm/g )1/2 term is always present. The system
can be viewed instead as a model with an external dilaton fieldΦ,

Φ=−1

4
ln

( ħ2ρ

4mg

)
. (15)
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Then

S[ϕ] =−ħ
∫ {

1

2
gµν

(
∂µϕ

)(
∂νϕ

)
e−2Φ

}
|g |1/2dr d t . (16)

This is still a conformally invariant model, i.e. the field equations are invariant under rescaling of
the metric and we can make an arbitrary choice of the factor a in the metric. Different choices
would, however, have an effect on the energy density (see later).

In the (τ,r∗) coordinate system, the field equation for φ= e−Φϕ becomes

∂2
τφ−∂2

r∗φ+ (
ρ−1/4∂2

r∗ρ
1/4)φ= 0 (17)

Note that this equation is scattering problem with potential ρ−1/4∂2
r∗ρ

1/4. The Hawking flux
from a single horizon in this model has a grey-body spectrum with transmission coefficients
determined by the scattering potential. However, the potential is very small in flows where ρ
only varies when close to the horizon.

4. Scalar-dilaton theory

Much is known about scalar-dilaton theory in 2D because it was used to describe the back-
reaction of Hawking radiation on the black hole spacetime [22–25] (the CGHS model). An
effective action approach similar to the one used below has been used for analogue black
holes [26, 27], but previous work has only been applied to a single horizon and without the dilaton
field.

First off, note that the stress-energy tensor of the scalar ϕ is not conserved because of the
external dilaton field Φ. Fortunately, the action is in geometric form and we can apply general
covariance to obtain the modified conservation rules. Consider an infinitesimal diffeomorphism
δgµν = 2ξ(µ;ν) and δΦ=Φ;µξµ, then covariance implies

δS =
∫ {

2
δS

δgµν
ξ(µ;ν) + δS

δΦ
Φ;µξµ

}
dµ= 0 (18)

Hence

∇µT µ
ν = δS

δΦ
∇νΦ (19)

In the quantum theory, this becomes an operator equation and we have

∇µ〈T µ
ν〉 = δΓ

δΦ
∇νΦ (20)

where Γ[gµν,Φ] is the effective action with the external metric gµν and dilaton fieldΦ.
The most important result for completing the theoretical description is the trace anomaly. This

was mired in controversy for a while, but in the end the correct result was given by Dowker [28]〈
T µ

µ

〉= ħ
24π

(
R −6Φ;µΦ

;µ+4Φ;µ
µ
)

(21)

Bousso and Hawking demonstrated that it is possible to write down an effective action which is
consistent with the trace anomaly [29]. After correcting the trace anomaly in Bousso’s work,

Γ=− ħ
48π

∫ {
1

2
R□−1R −6Φ;µΦ

;µ□−1R +4ΦR

}
dµ (22)

The inverse d’Alembertian□−1 is less problematic than may first appear. For example, in the fluid
metric R =−□ ln |aB |, and we apply the simple rule □−1□= 1. This effective action has been used
extensively in discussions of the back reaction of Hawking radiation, but it should be noted that
this action is not an exact result. Nevertheless, we continue with this action as in previous work.
The functional derivative

δΓ

δΦ
=− 1

12π
R − 1

4π

(
Φ;µ□−1R

)
;µ (23)
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We can now combine with (20) to obtain a complete set of equations that can be solved for the
stress tensor 〈T µ

ν〉.
Before moving on, consider energy conservation in this model. Suppose there is a symmetry

along the timelike vector kµ, i.e.

kµ;ν+kν;µ = kµΦ;µ = 0 (24)

It follows that ∇µ(kνT µ
ν) = 0, and the corresponding conserved charge is

H =−
∫
Σ

T µ
νkνnµdS, (25)

where nµ is the normal to the surface Σ. For the Unruh metric, k t = 1, nt = (ac)1/2 and
dS = (a/c)1/2dr ,

H =−
∫
Σ

a T t
t dr (26)

It is possible to verify that this integral is equal to the Hamiltonian of the model, and we read off
the physical energy density to be −a T t

t .

5. Fluxes

In this section we solve equations for the stress energy tensor of the Hawking radiation in the
long-wavelength limit. In two dimensions, the three components of stress energy, namely the
energy density, pressure and flux can be determined from the two conservation laws and the
trace anomaly, the latter being the only place where quantum field theory is used [12].

It is convenient to work in the (τ,r ) coordinate frame where the metic is diagonal. We
introduce the energy density E(τ,r ), pressure P (τ,r ) and flux F (τ,r ),

E =−〈
T τ

τ

〉
, P = 〈

T r
r
〉

, F =−〈
T r

τ

〉
. (27)

The energy and momentum conservation law ∇µ〈T µ
ν〉 = (δΓ/δΦ)∇νΦ becomes

aĖ =−(aF )′ (28)

aB−1Ḟ =−(aBP )′+ 1

2
(aB)′(−E +P )+ (aB)Φ′ δΓ

δΦ
(29)

Note that F satisfies the usual flux conservation law and E is the phonon energy density in the
laboratory frame if we choose a = 1. For the present, we remain agnostic on the choice of a.

The trace anomaly T µ
µ =−E+P = q(R−6Φ;µΦ

;µ+4Φ;µ
µ), where q =ħ/24π. For our metric (3),

R = B a′2

a3 − B a′′

a2 − a′B ′

a2 − B ′′

a
, (30)

We use the trace anomaly to eliminate the energy density from the equations. Remarkably, the
right side of the momentum equation is an exact derivative, and the equations become

aBṖ =−B(aF )′ (31)

aḞ =−B
(
aBP − f

)′ (32)

where

f (r ) =−q

4
B ′2 − q

2

BB ′(aρ)′

aρ
− q

4

B 2a′2

a2 − q

2

B 2a′ρ′

aρ
+ 3q

16

B 2ρ′2 ln |aB |
ρ2 (33)

Noting that B∂r = ∂r∗ , the equations combine into a wave equation

∂2
τ

(
aBP − f

)−∂2
r∗

(
aBP − f

)= 0 (34)

Hence the general solution is

aBP =Φ(v)+Ψ(u)+ f (r ) (35)
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where u = τ− r∗ and v = τ+ r∗. Substituting back for F ,

aF =Ψ(u)−Φ(v) (36)

and for the energy

aBE =Φ(v)+Ψ(u)+h(r ) (37)

where h(r ) = f (r )−aB〈T µ
µ〉,

h(r ) =−q

4
B ′2− q

2

BB ′(aρ)′

aρ
− 5q

4

B 2(aρ)′2

(aρ)2 +q
B 2(aρ)′′

aρ
+ 5q

8

B 2ρ′2

ρ2 +qBB ′′+ 3q

16

B 2ρ′2 ln |aB |
ρ2 . (38)

Finally, we want expressions for the energy and fluxes in the physical t ,r coordinate system.
Let β= v f /c, then

−T t
t =E −βB−1F =−β−1

aB
Ψ+ β+1

aB
Φ+ h

aB
(39)

T r
r =P −βB−1F =−β−1

aB
Ψ+ β+1

aB
Φ+ f

aB
(40)

−T r
t =F = 1

a
Ψ− 1

a
Φ (41)

These are totally general, exact, closed expressions for the quantum stress tensor in the long
wavelength limit. However, in practice, we have to integrate (2) and (5) to obtain u and v in a
given fluid flow, so some numerical computation is necessary.

5.1. Boundary conditions for the two-horizon case

So far there are two functions Ψ and Φ which depend on the initial conditions, but also are con-
strained by regularity conditions at the horizons. In the two-horizon case with linear topology,
there are three distinct regions with different coordinate charts for u. The solution forΨ in region
i will be denoted byΨi (u). The v coordinate has the same form in each of the regions, and there
is a single functionΦ(v).

At the horizons, β→−1, B → 0 and h →−qκ2. Regularity of the energy density T t
t requires

that

at r = rh : Ψ1(∞) = 1

2
qκ2

h Ψ2(∞) = 1

2
qκ2

h (42)

at r = rc : Ψ2(−∞) = 1

2
qκ2

c Ψ3(−∞) = 1

2
qκ2

c (43)

These relations will be sufficient to show that the energy density will increase without limit near
the Cauchy horizon whatever the initial conditions. Note that, in the fluid flow, at the horizons
κi = c ′+ v ′

f and v f =−c.

5.1.1. Equal surface gravities

The conditions onΨ2 imply that a static solution withΨ2 constant can only be achieved when
the surface gravities have the same magnitude. In this case, settingΦ= 0 and a = 1 and q =ħ/24π
gives the Hawking flux κ2/48π for a massless scalar field. It is worthwhile noting here that the flux
we obtain implies a flux transmission coefficient T = 1, when we would expect T < 1. This odd
conclusion is dependent only on the trace anomaly, which is supposed to be independent of the
quantum state. It would clearly be desirable to resolve this apparent discrepancy.
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We have

−T t
t =− β−1

48πB
κ2 + h

B
(44)

T r
r =− β−1

48πB
κ2 + f

B
(45)

−T r
t = 1

48π
κ2 (46)

For a circular topology, the constant flux winds around the circle. For the linear topology, we have
the unrealistic situation with the flux extending to infinity, due to having a static, and therefore
eternal, black hole.

Figure 5. Energy density of the Hawking radiation for the two horizon case, with |κc | = |κh |.

A plot of the energy density shows considerable enhancement around each horizon (Figure 5),
compared to the asymptotic value. However, the energy is finite, whereas the flow with equal
surface gravity can sometimes be unstable to the black hole laser instability [30]. This instability
is related to complex roots of the dispersions relation not present in the large wavelength limit
we are considering here.

5.1.2. Zero flux initial condition

The initial conditions depend in detail on how the experiment is set up. We will consider the
case where there is no Hawking flux and no pressure at t = 0. The initial conditions are then
provide restrictions on theΨ andΦ functions,

Ψi (u) =−1

2
f (r ) at t = 0 (47)

Φ(v) =−1

2
f (r ) at t = 0. (48)

In order to use these in the general solution, we have to relate u and v to r and t . The
simplest way of finding explicit expressions for the Hawking flux is to convertΨ andΦ into partial
differential equations. Using u = t + r∗− r∗, and ∂uΦ= ∂vΨ= 0,

∂tΦ= (
c − v f

)
∂rΦ, (49)

∂tΨi =−(
c + v f

)
∂rΨi . (50)

After solving these equations, the functions Ψi and Φ are substituted back into the general
solutions.

The Hawking flux and the energy density for the flow in Figure 1 are shown in Figure 6 and
Figure 7. The flow is moving from the right and the event horizon is also on the right. There are
transient bursts of radiation before the flux from the evvnt horizon settles down to the Hawking
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Figure 6. Hawking radiation for the two horizon case, with |κc | < |κh | and zero initial flux.
The distance unit is the healing length of the sub-luminal region. The Hawking flux is the
blue patch emerging from the event horizon (left). The energy density is plotted (right) and
shows the concentration around the horizons, although the instability shows up better in
the next set of plots.

Figure 7. The Cauchy horizon instability is shown developing in the energy density from
t = 0 (left) to t = 20 (right). The energy density in the sub-luminal regions approaches the
static result shown in grey.

value. The energy plots in Figure 7 show the build up of energy at the Cauchy horizon. The grey
curve is the static caseΦ= 0,Ψ= qκ2

h which diverges at the Cauchy horizon.

6. Conclusion

We have seen how the energy accumulates on the analogue Cauchy horizon in the long wave-
length approximation to waves on a BEC. As the energy builds up, the short wavelengths become
more important. It then becomes necessary to move on to the complete mode analysis using
numerical summation methods. Nevertheless, the scalar dilaton approach gives some analytical
insight into the Hawking flux and the relation between an analogue system and Cauchy horizon
instability.
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