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Abstract. As a contribution to a memorial volume, we provide a comprehensive discussion of resonant
configurations in analogue gravity, focusing on its implementation in atomic condensates and combining
review features with original insights and calculations. In particular, we jointly analyze the analogues of the
Andreev and Hawking effects using a microscopic description based on the Bogoliubov approximation. We
perform a detailed study of the thermality of the Andreev and Hawking spectra for canonical black-hole
solutions, finding that both can be described by a gray-body distribution to a very good approximation.
We contemplate several resonant scenarios whose efficiency to enhance anomalous scattering processes is
compared to that of non-resonant setups. The presence of quantum signatures in analogue configurations,
such as the violation of Cauchy–Schwarz inequalities or entanglement, is analyzed, observing that resonant
configurations highly increase the entanglement signal, especially for the Andreev effect. We also discuss
how these results have served as inspiration for the rapidly expanding field of quantum information in high-
energy colliders. Finally, we study the physics of black-hole lasers as further examples of resonant analogue
structures, distinguishing three stages in its time evolution. For short times, we compute the linear and
non-linear spectrum for different models. For intermediate times, we generalize the current analysis of the
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BHL–BCL crossover. For long times, we discuss the emerging concept of spontaneous Floquet state and its
potential implications.

Résumé. En guise de contribution à ce volume commémoratif, nous proposons une discussion approfondie
des configurations résonnantes en gravité analogue, en nous concentrant sur leur mise en œuvre dans les
condensats atomiques et en combinant une revue de la littérature avec des analyses et des calculs originaux.
En particulier, nous analysons conjointement les analogues des effets Andreev et Hawking en utilisant une
description microscopique basée sur l’approximation de Bogoliubov. Nous réalisons une étude détaillée de la
thermalité des spectres d’Andreev et de Hawking pour les solutions canoniques de trous noirs, en constatant
que les deux peuvent être décrits par une distribution de corps gris avec une très bonne approximation.
Nous envisageons plusieurs scénarios résonants dont l’efficacité pour améliorer les processus de diffusion
anormaux est comparée à celle de configurations non résonantes. La présence de signatures quantiques dans
les configurations analogues, telles que la violation des inégalités de Cauchy–Schwarz ou l’intrication, est
analysée. Nous observons que les configurations résonantes augmentent fortement le signal d’intrication,
en particulier pour l’effet Andreev. Nous discutons également de la façon dont ces résultats ont servi
d’inspiration pour le domaine en pleine expansion de l’information quantique dans les collisionneurs de
haute énergie. Enfin, nous étudions la physique des lasers à trous noirs comme autres exemples de structures
analogues résonantes, en distinguant trois étapes dans leur évolution temporelle. Pour les temps courts, nous
calculons le spectre linéaire et non linéaire pour différents modèles. Pour les temps intermédiaires, nous
généralisons l’analyse actuelle du croisement BHL–BCL. Pour les temps longs, nous discutons du concept
émergent d’état de Floquet spontané et de ses implications potentielles.

Keywords. Analog gravity, Quantum gases, Andreev processes, Quantum information, High-energy colliders,
Time-crystals.
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1. Introduction

In the 70s, Stephen Hawking [1] predicted, on the basis of a semiclassical calculation (in which
fields are quantized but the background spacetime is treated as classical), that black holes
spontaneously emit radiation with a Planckian spectrum. This became known as Hawking
radiation, one of the most celebrated predictions of modern theoretical physics. As it involves
thermodynamics, quantum mechanics, and general relativity, understanding Hawking radiation
is regarded as the first step towards a quantum theory of gravity. However, its detection in
an astrophysical scenario is quite unlikely because its effective temperature of emission, the
Hawking temperature, is of the order of TH ∼ 10−8 K for a black hole of several solar masses, much
lower for instance than the temperature of the cosmic microwave background, TCMB ≃ 2.7 K.

It was later noted by Unruh [2] that the equations of motion describing the fluctuations of an
irrotational flow are formally analogue to those of a massless scalar field in a curved spacetime
described by the so-called acoustic metric. This connection established the rich field of analogue
gravity, where tabletop experiments are used to replicate gravitational effects in a controlled
setup. A number of vastly different systems have been proposed for implementing analogue
experiments, including atomic Bose–Einstein condensates [3, 4], water waves [5, 6], non-linear
optical fibers [7, 8], ion rings [9, 10], quantum fluids of light [11, 12], and even superconducting
transmon qubits [13].

In the specific case of Hawking radiation, the subsonic/supersonic regions of a flowing fluid
are akin to the exterior/interior of a black hole, since sound cannot travel upstream in a super-
sonic flow, in the same way as light is trapped inside a black hole. As a result, the analogue of the
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event horizon is provided by the subsonic/supersonic interface, and Hawking radiation is asso-
ciated with the spontaneous emission of correlated phonons into the subsonic and supersonic
regions. A classical stimulated version of this emission has been observed in hydraulic [6, 14]
and optical [8] analogues. Due to their intrinsic quantumness, well-controlled behavior, and low
temperature, Bose–Einstein condensates are the most promising candidates to exhibit the gen-
uine Hawking effect, of a quantum nature. Indeed, the study of quantum field theory in curved
spacetimes using atomic condensates can be regarded as another paradigm of quantum simula-
tion [15].

From the theoretical point of view, the initial proposal of Ref. [3] was subsequently expanded
in a number of works [16–27]. From the experimental point of view, the first analogue black hole
in an atomic condensate was achieved by the Technion group in 2010 [4]. After progressively
improving the setup [28–30], the Technion experiment provided the first claimed detection of
the Hawking effect in 2016 [31], which was later confirmed by a precise agreement with the
theoretical predictions [32, 33], including the measurement of the Hawking temperature and the
observation of the stationarity of the spontaneous emission of Hawking radiation. The detection
of the Hawking effect is far from being the end of the road for the field, and analogues of the
dynamical Casimir effect [34], Sakharov oscillations [35], superradiance [36], inflation [37], Unruh
effect [38], quasi-normal ringdown [39], backreaction [40] or cosmological particle creation [41],
have also been observed in the laboratory.

Interestingly, subsonic/supersonic interfaces in condensates provide yet another insightful
conceptual connection, since it was shown [42] that there also takes place the analogue of
the Andreev reflection in superconductors [43], where an electron (hole) incident on a nor-
mal/superconductor interface from the normal side is reflected as a hole (electron). The An-
dreev reflection has already been observed in superconductors [44, 45], as well as in superfluid
3He [46, 47], but there is not yet experimental evidence of this behavior in condensates.

During the quest for the detection of the Hawking effect, it was proposed [21] that setups in-
volving multiple internal reflections, similar to those occurring in a Fabri–Perot interferometer,
might be advantageous due to the non-thermal character of the resulting spectrum. The prece-
dent existed of the black-hole laser (BHL) [48], where multiple internal reflections on a pair of
horizons result in an increasing unstable output of Hawking radiation. Moreover, it was later
shown that resonant configurations may enhance the quantum contribution of the Hawking ef-
fect [23, 26].

In this work, we provide a comprehensive discussion of resonant analogue configurations in
atomic condensates and their most important features, including an original unified analysis of
the Andreev and Hawking effects. We will devote special attention to key contributions from
Renaud Parentani, highlighted throughout the article.

We begin by providing a general introduction to gravitational analogues in atomic conden-
sates in Section 2. In this respect, the work by Macher and Parentani [19, 49], along with that of
Recati, Pavloff and Carusotto [20], represented a milestone, since it established the microscopic
analogy of the Hawking effect without resorting to any effective metric. This microscopic ap-
proach is the framework upon which we will develop our results. In particular, we draw an in-
teresting analogy between the Bogoliubov–de Gennes (BdG) equations and the relativistic Klein–
Gordon equation, which provides an insightful way to address the quantization of the problem.
We discuss how the bosonic version of the Andreev reflection emerges in the interior of an ana-
logue black hole [42] and gives rise to a spontaneous emission of quasiparticles, to which we refer
as the Andreev effect, in analogy with the Hawking effect. We assess the thermality of canonical
analogue configurations, finding that their Andreev spectrum is also Planckian to a very good
approximation due to its universal scaling at low frequencies [23], an unnoticed result in the
literature.
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Section 3 is devoted to the study of Andreev–Hawking processes in resonant analogue struc-
tures. Resonant Andreev scenarios have been also considered in normal/superconductor junc-
tions [50]. Here, we examine a double barrier structure with alternating supersonic and sub-
sonic segments in the region between the two barriers, in whose original proposal Parentani di-
rectly contributed [21]. Another setup analyzed in this section is a resonant flat-profile struc-
ture, involving a stationary homogeneous flowing condensate with a piecewise modulated speed
of sound, first discussed in Ref. [23]. Our results show that the Andreev signal is also highly en-
hanced by resonant peaks in the spectrum, and it may even become larger than the Hawking
signal, in contrast with typical analogue configurations.

It was noticed that an optical lattice, with its characteristic multiple barrier structure, might
enhance some of the properties of a resonant structure [51, 52]. The second part of Section 3
addresses the long-lasting quasi-stationary outcoupling of a condensate through an optical
lattice, which may have an ideal uniform or a Gaussian shape, with a characteristic time scale
much longer than that of conventional black-hole configurations.

Section 4 analyzes the quantumness of the Andreev and Hawking effects by borrowing con-
cepts and techniques from quantum optics [53]. This approach has also been recently advocated
in the original gravitational scenario [54]. With the help of these tools, we jointly characterize
the Andreev and Hawking effects as the spontaneous production of hybrid Andreev–Hawking
modes from the non-degenerate parametric amplification of the vacuum. The quantumness
of the Andreev–Hawking effect is evaluated through different quantum correlations such as the
violation of Cauchy–Schwarz (CS) inequalities or entanglement. Originally, the violation of CS
inequalities by quantum Hawking radiation was first discussed in Ref. [23]. In an almost par-
allel effort, Busch and Parentani [25], as well as Finazzi and Carusotto [24], analyzed the en-
tanglement of Hawking radiation in condensates using the generalized Peres–Horodecki crite-
rion [55]. The inspiring visit of Renaud Parentani to our group in Madrid in November 2013 mo-
tivated us to unify both approaches within a common framework in Ref. [26]. All these tech-
niques were later employed in the detection of the entanglement of Hawking radiation in the 2016
experiment [31].

In the last part of Section 4, we briefly discuss how the study of quantum correlations in the
Andreev–Hawking effect has motivated the research on quantum information in high-energy
colliders [56]. This has rapidly become an emergent field of research by itself, which has already
achieved its first milestone with the pioneering observation of entanglement in quarks by the
ATLAS and CMS collaborations at the Large Hadron Collider (LHC) [57, 58], representing also the
highest-energy detection of entanglement ever. A pedagogical introduction to this fascinating
topic for a readership outside the high-energy field is presented in Ref. [59].

Section 5 addresses the emergence of a black-hole laser in resonant configurations. In an
atomic condensate, the BHL effect arises because of its superluminal dispersion relation, which
allows the radiation reflected at the inner horizon to travel back to the outer one, further
stimulating the production of Andreev–Hawking radiation [60–66]. Other analogue setups have
been proposed to observe the BHL effect [67–70]. The work by Parentani and collaborators [63,64]
was instrumental in determining the properties of a BHL, including the first full microscopic
BdG computation of the spectrum of dynamical instabilities, in analogy with the microscopic
derivation of the Hawking effect [19, 20]. Parentani and Michel also pioneered the study of
the non-linear regime of a BHL [71], achieved once the initial instability has grown up to
saturation, and the numerical study of its dynamics [72], in parallel to the work by Muñoz
de Nova, Finazzi and Carusotto [73].

Our discussion of the black-hole laser further extends the original work of Parentani in all
the stages of its time evolution. At short times, using the protocol to construct BHL solutions of
Ref. [74], we compute the linear and non-linear spectrum for different BHL models, including
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that of a double barrier structure, original of the present work. Our results confirm all the trends
anticipated in Ref. [71].

At intermediate times in the evolution of a BHL, one has to take into account the Bogoliubov–
Cherenkov–Landau (BCL) mode present in the supersonic region [75], which is analogous to the
undulation in hydraulic setups [76]. Because of its zero-frequency, the BCL mode is resonantly
excited by any obstacle in the flow and overshadows the BHL effect in real experiments [30,33,77].
The BHL–BCL problem has attracted a number of studies in the theoretical literature [33, 77–84],
and the observation of the BHL effect still remains a major challenge in the analogue field. Here,
we generalize the discussion in Ref. [84] of the BHL–BCL crossover, originally based on a flat-
profile model, underlining the crucial role played by the Z2 symmetry of a quantum BHL, first
predicted by Michel and Parentani [71].

For sufficiently long times, the BHL displays a dynamical phase diagram where it can only
reach two states [73, 85]: the true non-linear ground state or the so-called Continuous Emission
of Solitons (CES) state, which represents a realization of a spontaneous Floquet state [86]. The
original conception of spontaneous Floquet state was heavily influenced by richful discussions
with Renaud Parentani during the visit of one of us (JRMdN) to Orsay in 2015. Here we analyze in
detail the CES state arising from a flat-profile BHL solution, and discuss interesting implications
of spontaneous Floquet states, including a specific and tangible realization of time operator in
quantum mechanics.

The inspiration of Renaud Parentani, and in some cases his direct involvement, is a common
thread of the work discussed in this article.

2. Andreev and Hawking effects in atomic condensates

2.1. Gross–Pitaevskii and Bogoliubov–de Gennes equations

We begin by reviewing the basic concepts and techniques for the study of atomic condensates.
We consider the following general second-quantization Hamiltonian for interacting bosons [87]:

Ĥ =
∫

dx Ψ̂†(x)

[
− ħ2

2m
∇2 +V (x, t )+ g

2
Ψ̂†(x)Ψ̂(x)

]
Ψ̂(x), (1)

where m is the mass of the atoms, V (x, t ) is some external potential, and the bosons interact
through the contact pseudopotential W (x−x′) = gδ(x−x′) [88]. The field operator Ψ̂(x) satisfies
the canonical commutation relation [Ψ(x),Ψ†(x′)] = δ(x − x′), which leads to the Heisenberg
equation of motion

iħ∂t Ψ̂(x, t ) =
[
− ħ2

2m
∇2 +V (x, t )+ gΨ̂†(x, t )Ψ̂(x, t )

]
Ψ̂(x, t ). (2)

Close to T = 0, the condensate can be described by a coherent state, characterized by a macro-
scopic wavefunctionΨ(x, t ) that is normalized to the total particle number,∫

dx |Ψ(x, t )|2 = N . (3)

Quantum fluctuations around the condensate are accounted by expanding the field operator
around its coherent expectation value (see Section 4.1 for a thorough discussion on coherent
states) as

Ψ̂(x, t ) =Ψ(x, t )+ ϕ̂(x, t ). (4)

Plugging this expansion into Equation (2) yields, at leading order, the time-dependent Gross–
Pitaevskii (GP) equation,

iħ∂tΨ(x, t ) =
[
− ħ2

2m
∇2 +V (x, t )+ g |Ψ(x, t )|2

]
Ψ(x, t ), (5)
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and, at linear order in the quantum fluctuations, the time-dependent Bogoliubov–de Gennes
(BdG) equations

iħ∂t Φ̂= M(t )Φ̂, Φ̂=
[
ϕ̂

ϕ̂†

]
, M(t ) =

[
N (t ) A(t )

−A∗(t ) −N (t )

]
, (6)

where

N (t ) =− ħ2

2m
∇2 +V (x, t )+2g |Ψ(x, t )|2, A(t ) =Ψ2(x, t ). (7)

The GP equation is thus a non-linear Schrödinger equation that describes the condensate dy-
namics, where the non-linearity stems from the interactions between the condensate atoms,
while the linear dynamics of the quantum fluctuations is governed by the BdG equations. No-
tice that the BdG equations also describe the linear dynamics of the fluctuations of the GP wave-
function Ψ′(x, t ) around a reference solution Ψ(x, t ), Ψ′(x, t ) = Ψ(x, t )+ϕ(x, t ), resulting in the
substitution ϕ̂→ϕ in Equation (6).

We focus on time-independent configurations, V (x, t ) = V (x), and consider stationary con-
densates, which are accounted by

Ψ̂(x, t ) = [
Ψ0(x)+ ϕ̂(x, t )

]
e−iµt/ħ, (8)

µ being the chemical potential. This results in the time-independent GP equation

µΨ0(x) =
[
− ħ2

2m
∇2 +V (x)+ g |Ψ0(x)|2

]
Ψ0(x), (9)

and the stationary BdG equations

iħ∂t Φ̂= M0Φ̂, Φ̂=
[
ϕ̂

ϕ̂†

]
, M0 =

[
N0 A0

−A∗
0 −N0

]
, (10)

where now

N0 =− ħ2

2m
∇2 +V (x)+2g |Ψ0(x)|2 −µ, A0 =Ψ2

0(x). (11)

Since M0 is time-independent, any solution to the stationary BdG equations can be expanded in
terms of a complete set of eigenmodes

M0zn = ϵn zn , zn ≡
[

un

vn

]
. (12)

The matrix operator M0 is non-Hermitian and it can possess complex eigenvalues, representing
dynamical instabilities which grow exponentially in time. For the present moment, we assume
that the system is dynamically stable and ignore the presence of Nambu–Goldstone modes; we
will come back later to this issue in Section 5.

Even though M0 is non-Hermitian, the BdG eigenmodes do form an orthonormal basis under
the inner product

(zn |zm) ≡ 〈zn |σz |zm〉 =
∫

dx [u∗
num − v∗

n vm], (13)

with 〈zn |zm〉 the standard scalar product for two spinors and σi the usual Pauli matrices. This is
becauseΛ≡σz M0 is indeed Hermitian, and thus M0 is pseudo-Hermitian, i.e.,

(zn |M0zm) = 〈zn |Λzm〉 = 〈Λzn |zm〉 = (M0zn |zm), (14)

which implies the conservation of the inner product between solutions of the BdG equations and
the orthogonality between eigenmodes,

(ϵm −ϵ∗n)(zn |zm) = 0. (15)
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Actually, the conservation of the norm for any solution z of the BdG equations, iħ∂t z = M0z,
can be derived from a continuity equation, in analogy with the Schrödinger equation (see
Equation (44)),

∂t (z†σz z)+∇∇∇· j = 0,

j =− iħ
2m

[
u∗∇∇∇u −u∇∇∇u∗+ v∗∇∇∇v − v∇∇∇v∗]

,
(16)

where u, v are the components of the spinor z and j is the quasiparticle current.
However, in contrast to the Schrödinger case, both M0 and the inner product are not positive

definite. Indeed, by noticing that σx M∗
0 σx =−M0 and σxσzσx =−σz , we can define a conjugate

mode as z̄n ≡σx z∗
n , which has opposite eigenvalue and norm

M0 z̄n =−ϵ∗n z̄n , (zn |zm) =−(z̄n |z̄m)∗. (17)

This symmetry stems from that of the field spinor Φ̂, which is self-conjugate, ˆ̄Φ = Φ̂. Unless
otherwise stated, the modes zn are chosen with positive norm, (zn |zn) = 1.

The above properties of the inner product suggest that the correct analogy for the BdG
equations should rather be established with the Klein–Gordon (KG) equation for an Hermitian
scalar field, [

□− m2c2

ħ2

]
φ̂= 0, □≡ ∂µ∂µ =∇2 − 1

c2 ∂
2
t , (18)

where we take the Minkowski metric as ηµν = diag[−1,1,1,1]. By invoking its canonical mo-
mentum Π̂(x), which satisfies the equation of motion Π̂ = ħ∂t φ̂ and the commutation relation
[φ̂(x),Π̂(x′)] = iδ(x−x′), the KG equation can be recasted as the BdG equations (10),

iħ∂t Φ̂= M0Φ̂, Φ̂=
[
φ̂

iΠ̂

]
, M0 =

[
0 1

H0 0

]
, (19)

with H0 ≡−(ħc∇)2 +m2c4. The KG modes are derived from the eigenvalue problem

M0zn = ϵn zn , zn ≡
[
φn

χn

]
, (20)

equivalent to the more usual equation ϵ2
nφn = H0φn . Notice that M0 is again non-Hermitian,

whileΛ=σx M0 is, which implies the conservation of the KG inner product

(zn |zm) ≡ 〈zn |σx |zm〉 =
∫

dx [φ∗
nχm +χ∗nφm]. (21)

Conjugate solutions are defined now as z̄n ≡ σz z∗
n , since σz M∗

0 σz =−M0 and σzσxσz =−σx , so
Equation (17) is satisfied. Moreover, the field spinor is also self-conjugate; this property can be
directly traced back here to the Hermitian character of the field φ̂.

The field spinor can be expanded in terms of the complete set of eigenmodes {zn , z̄n}. In both
BdG and Hermitian KG cases, the self-conjugate character of Φ̂ implies that this expansion is of
the form

Φ̂(x, t ) =∑
n

ân(t )zn(x)+ â†
n(t )z̄n(x), (22)

where ân(t ) ≡ (zn |Φ̂(t )) is the quantum amplitude of the mode zn . The canonical commutation
rules for the field spinor can be expressed in matrix form as

[Φ̂(x),Φ̂†(x′)] =σiδ(x−x′), (23)

with σi the Pauli matrix characterizing the corresponding inner product, Equations (13), (21).
Using this relation, it is straightforward to prove that the quantum amplitudes ân behave as
bosonic annhihilation operators,

[ân , â†
m] = [(zn |Φ̂), (Φ̂|zm)] = (zn |zm) = δnm , (24)
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whose equation of motion is simply

iħ∂t ân = (zn |M0Φ̂) =ħωn ân =⇒ ân(t ) = âne−iωn t , (25)

ħωn = ϵn being the frequency of the mode. Hence, we arrive at the usual result

Φ̂(x, t ) =∑
n

ân zn(x)e−iωn t + â†
n z̄n(x)eiωn t . (26)

Remarkably, this expansion allows to diagonalize the KG Hamiltonian in an elegant and compact
way:

ĤKG = 1

2

∫
dx Π̂2 + (ħc)2|∇∇∇φ̂|2 +m2c4φ̂2 = 1

2
(Φ̂|M0Φ̂) =∑

n
ϵn

(
â†

n ân + 1

2

)
. (27)

In the BdG case, the field expansion diagonalizes the grand-canonical Hamiltonian
K̂ = Ĥ −µN̂ , with

N̂ =
∫

dx Ψ̂†(x)Ψ̂(x) (28)

the particle-number operator. After expanding up to quadratic order, in the spirit of the Bogoli-
ubov approximation, one obtains:

K̂ ≃ K0 +K ′
V + 1

2 (Φ̂|M0Φ̂) = K0 +KV +∑
n
ϵn â†

n ân , (29)

where K0 ≡ K [Ψ0] is the mean-field energy of the condensate, obtained by replacing Ψ̂ by Ψ0,
and

K ′
V = 1

2

∫
dx [ϕ̂†, N0ϕ̂+ A0ϕ̂

†] =−1

2

∑
n
ϵn〈zn |zn〉,

KV = K ′
V + 1

2

∑
n
ϵn =−∑

n

∫
dx ϵn |vn |2 (30)

are c-number contributions arising from the zero-point motion of the quasiparticles. Notice
that the grand-canonical Hamiltonian K̂ is the one governing the dynamics instead of Ĥ , since
we have extracted the global phase e−iµt/ħ in Equation (8). In fact, the time-independent GP
equation (9) is precisely the condition for Ψ0 to be an extreme of the grand-canonical energy K ,
which leads to the identification of the non-linear GP eigenvalue as the chemical potential µ, and
to the absence of linear terms in the field fluctuations in Equation (29). The precise nature of the
extreme is obtained by considering small fluctuations of the stationary GP wavefunction:

δK ≡ K [Ψ′
0]−K [Ψ0] ≃ 1

2 (Φ|M0Φ) = 1
2 〈Φ|Λ|Φ〉,

Ψ′
0(x) = Ψ0(x)+ϕ(x), Φ=

[
ϕ

ϕ∗
]

. (31)

If Λ is a positive-definite operator, then Ψ0 is a minimum and the system is energetically stable.
In that case,

〈zn |Λ|zn〉 = (zn |M0zn) = ϵn(zn |zn) > 0, (32)

so all energies are positive, ϵn > 0, and the ground state is the quasiparticle vacuum ân |0〉 = 0.
If Λ is not positive definite, we can have negative-energy modes, denoted as anomalous, while
positive-energy modes are denoted as normal. As a result, the system is energetically unstable.

In general, the quantum state ρ̂ of an ensemble of bosons at thermal equilibrium at a temper-
ature T is

ρ̂ = e−βK̂

Z
, (33)
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with β = 1/kB T and Z = Tr(e−βK̂ ) the partition function. Within the Bogoliubov approximation,
this leads in an energetically stable condensate to a thermal Planckian distribution for the
quasiparticle occupation number:

〈â†
n âm〉 = Tr(â†

n âm ρ̂) = δnm

eβϵn −1
. (34)

2.2. Gravitational analogy

We now review how the original gravitational analogy [2] was established using a fluid flow.
Specifically, we consider the Euler equations for an ideal irrotational barotropic flow,

0 = ∂tρ+∇∇∇· J, J = ρv,

[∂t +v ·∇∇∇]v ≡ Dtv =− 1

m
∇∇∇V − 1

ρ
∇∇∇P (35)

where ρ is the mass density of the fluid, J is the current, V is some external potential (e.g., gravity),
Dt is the total derivative, and P is the local pressure. The irrotationality condition ∇∇∇×v = 0 implies
that the flow is potential, i.e., v = ∇∇∇φ. By invoking the barotropic condition, P = P (ρ), we can
arrive at a simplified equation for the flow potential φ,

0 = ∂tρ+∇∇∇· (ρ∇∇∇φ),

∂tφ = −|∇∇∇φ|2
2

− V

m
−h(ρ),

dh

dρ
= 1

ρ

dP

dρ
. (36)

In the usual case of an isentropic flow, h(ρ) is the specific enthalpy. The gravitational analogy
emerges when considering small fluctuations δρ, δφ of the density and the flow potential around
a certain background solution characterized by ρ, φ. Specifically, after expanding up to linear
order, we get

Dt
δρ

ρ
= − 1

ρ
∇∇∇· (ρ∇∇∇δφ),

Dtδφ = −c2 δρ

ρ
, c2 ≡ dP

dρ
, (37)

c being the local speed of sound. By combining both equations, one arrives at a single equation
for the flow potential fluctuations that can be rewritten as

□δφ=∇µ∇µδφ= 1p−g
∂µ(

p−g gµν∂νδφ) = 0, (38)

which is precisely the covariant form of the KG equation (18) for a massless scalar field in a curved
spacetime described by the metric

gµν(x) = ρ(x)

c(x)

[−[c2(x)− v2(x)] −vT (x)
−v(x) δi j

]
, x ≡ (t ,x), (39)

whose line element simply reads

ds2 = ρ(x)

c(x)
[−c2(x)dt 2 +|dx−v(x)dt |2]. (40)

The metric gµν is known as the hydrodynamic (or acoustic) metric, and parametrizes a whole
class of metrics. Thus, we can use fluid flows, accessible to us in the laboratory, to study gravita-
tional phenomena that can be mimicked by an acoustic metric. Specifically, we can address the
physics of black holes since the acoustic metric presents horizons at the subsonic/supersonic in-
terfaces, where v(x) = c(x), denoted as acoustic horizons. In fact, the Schwarzschild metric can
be rewritten using the Gullstrand–Painlevé coordinates as a stationary acoustic metric with

c(x) = c, v(x) = c

√
rS

r

x

r
, rS = 2GM

c2 , (41)
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where rS is the Schwarzschild radius. Thus, the exterior/interior of a black hole is analogous to the
subsonic/supersonic regions of a flowing fluid. A more thorough discussion about ergoregions
and horizons in acoustic metrics is presented in Ref. [89].

In condensates, the gravitational analogy emerges within the Bogoliubov formalism in the so-
called hydrodynamic approximation. For that purpose, we invoke the Madelung decomposition
of the GP wavefunction,

Ψ(x, t ) =
√

n(x, t )eiθ(x,t ), (42)

which leads to a pair of hydrodynamic equations after rewriting the time-dependent GP equa-
tion (5) in terms of the condensate phase and density:

0 = ∂t n +∇∇∇· (nv), v = ħ∇∇∇θ
m

,

ħ∂tθ

m
= ħ2

2m2
p

n
∇2pn − v2

2
− V

m
− g n

m
. (43)

The first line is a continuity equation, from where we identify the particle current

J = nv =− iħ
2m

[
Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗]

(44)

and the flow velocity v; notice that n = |Ψ|2 is the particle density of the condensate, related to
the mass density as ρ = n ·m. Since v is proportional to the gradient of the phase, the resulting
flow is irrotational, with a flow potential φ = ħθ/m. The second line provides the dynamics for
the potential flow, from where we can identify the local pressure as

h = g n

m
=⇒ P = g n2

2
. (45)

The only genuine quantum-mechanical term involving ħ in Equation (43) is the so-called quan-
tum potential

Q ≡− ħ2

2m
p

n
∇2pn. (46)

Hence, in the hydrodynamic approximation, where Q is negligible, the GP equation reduces to
the Euler equation for an ideal irrotational barotropic flow, from where the gravitational analogy
is retrieved, as originally shown in Ref. [3].

Further insight on the quantum aspects of the gravitational analogy can be obtained from
the time-dependent BdG equations (6). By using the relative quantum fluctuations, ϕ̂(x, t ) ≡
Ψ(x, t )χ̂(x, t ), we arrive at

iħDtχ̂= [
Tn +mc2] χ̂+mc2χ̂†, Tn ≡− ħ2

2mn
∇∇∇· (n∇∇∇), (47)

where the speed of sound is simply found to be c2 = h = g n/m. The relative quantum fluctu-
ations can be in turn expressed in terms of the more physical density and phase fluctuations
from

Ψ̂(x, t ) =Ψ(x, t )+ ϕ̂(x, t ) =Ψ(x, t )[1+ χ̂(x, t )] =
√

n(x, t )+δn̂(x, t )ei[θ(x,t )+δθ̂(x,t )]. (48)

Expanding up to linear order in the density and phase fluctuations yields

δn̂(x, t ) = n(x, t )[χ̂(x, t )+ χ̂†(x, t )],

δθ̂(x, t ) = − i

2
[χ̂(x, t )− χ̂†(x, t )].

(49)
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We can then rewrite the BdG equations (47) as

Dt
δn̂

n
= − 1

n
∇∇∇·

[
n∇∇∇ħδθ̂

m

]
,

Dt
ħδθ̂
m

= −
[

Tn

2m
+ c2

]
δn̂

n
. (50)

So far, within the Bogoliubov approximation, these equations are exact, resulting from a change of
variables {ϕ̂,ϕ̂†} → {δn̂,δθ̂}. Now, if we assume that we are in the Thomas–Fermi regime, where
the background condensate density smoothly varies on a sufficiently large length scale, in the
long-wavelength limit we can neglect the contribution of Tn at the r.h.s. of the second line. This
precisely amounts to work in the hydrodynamic approximation, where all the contributions from
the quantum potential are neglected, and we retrieve the quantum version of Equation (37), from
where we find that □δθ̂ = 0.

Therefore, in condensates, the gravitational analogy emerges in the hydrodynamic approx-
imation (equivalent to work in the long-wavelength limit of the BdG equations above a con-
densate within the Thomas–Fermi regime) as an equation of motion for the phase fluctuations
which mimics that of a massless scalar field in a curved spacetime described by an acoustic
metric (39).

2.3. Microscopic Hawking effect

Due to the low temperature and genuine quantumness of Bose–Einstein condensates, the grav-
itational analogy allows to study there the Hawking effect, which is translated into the sponta-
neous emission of phonon radiation by an acoustic horizon. In a pair of seminal works, it was
shown by Macher and Parentani [19], and by Recati, Pavloff and Carusotto [20], that the Hawk-
ing effect can be studied within the full microscopic Bogoliubov framework without the need of
invoking the hydrodynamic approximation or even any metric at all.

We now derive the Hawking effect from a microscopic approach along the lines of Refs [19,20].
For simplicity, hereafter we focus on one-dimensional (1D) condensates, where x will label the
1D spatial coordinate. Acoustic horizons are then reduced to discrete points where the flow
undergoes a subsonic/supersonic transition.

We start by considering a stationary GP plane-wave solution

Ψ0(x) =p
nei(qx+θ0). (51)

The associated BdG spectrum, resulting from Equation (12), is also described by plane waves with
wavevector k and energy ϵ=ħω, as given by the dispersion relation

(ω− vk)2 =Ω2(k) = c2k2 + ħ2k4

4m2 = c2k2
[

1+ (kξ)2

4

]
, (52)

where

c =
√

g n

m
, v = ħq

m
(53)

are the homogeneous sound and flow speeds. This is nothing else than the usual Bogoliubov
dispersion relation Ω(k) for a homogeneous condensate at equilibrium plus a Doppler shift
ω → ω − vk, resulting from the background condensate flow, which tilts the sound cones.
Remarkably, the Bogoliubov dispersion relation is superluminal, with the healing length
ξ≡ħ/mc playing the role of a Planck length scale that controls the UV physics.
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Figure 1. Dispersion relation of a homogeneous flowing condensate. The blue/red lines
signal the ± branches of Equation (55). (a) Subsonic regime with Mach number M = v/c =
0.5. (b) Supersonic regime with Mach number M = v/c = 2. For a certain frequency below
the cutoff frequency ωmax, all wavevectors are purely real (horizontal dashed line). The
BCL mode has zero frequency and finite wavevector kBCL (black square). (c) Schematic
spacetime diagram of the modes in (a)–(b) when placed in an analogue black hole, where
the upstream/downstream region is subsonic/supersonic. The position of the acoustic
horizon is signaled by a vertical solid black line. Incoming/outgoing modes are depicted
as solid/dashed lines. Horizontal arrows indicate the characteristic correlations of both the
Hawking and Andreev effects.

For given ω, the dispersion relation (52) provides 4 wavevectors, labeled as ka(ω) and given
by the roots of the fourth order polynomial, which can be either real (describing propagating so-
lutions) or complex (describing exponentially growing/decaying solutions). The corresponding
BdG spinor for each wavevector ka reads

sa,ω(x) = eika (ω)x

p
2π|wa (ω) |

[
ei(qx+θ0)ua(ω)

e−i(qx+θ0)va(ω)

]

[
ua(ω)
va(ω)

]
= Na(ω)

ħk2
a (ω)

2m + [ω− vka (ω)]

ħk2
a (ω)

2m − [ω− vka (ω)]



Na(ω) =
(

m

2ħk2
a (ω) |ω− vka (ω)|

) 1
2

, (54)

with ua(ω), va(ω) the usual Bogoliubov components for a homogeneous condensate, satisfying
|ua(ω)|2−|va(ω)|2 =±1, and wa(ω) ≡ [dka(ω)/dω]−1 the group velocity, included here in order to
normalize the propagating modes in frequency domain, (sa,ω|sa,ω′ ) = ±δ(ω−ω′); all normaliza-
tion factors can be removed for complex wavevector solutions, where they do not play any role.
It is easy to check that the dispersion relation (52) possess the symmetry ka(ω) =−ka(−ω), which
implies s̄a,ω = sa,−ω. Hence, the ± branches of

ω(k) = vk ±Ω(k), (55)

depicted in blue (red) in Figure 1, respectively, are conjugate of each other, with the ± sign also
corresponding to the norm of the modes.

The dispersion relation displays two qualitatively different regimes, depending on whether the
flow is subsonic (v < c) or supersonic (v > c). In the subsonic regime, Figure 1a, there are 2 real
wavevectors and 2 complex ones. The propagating solutions are labeled as u − in and u −out,
where “in” (“out”) indicates if the group velocity is positive (negative); the motivation behind this
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notation will become clearer later. The flow is energetically stable since all modes have positive
energy. In the supersonic regime, Figure 1b, for any frequency −ωmax < ω < ωmax, there are 4
different propagating solutions, where the cutoff frequency ωmax is given by

ωmax = vkmax −Ω(kmax),

(kmaxξ)2 = M 2 −4+M
p

M 2 +8

2
,

(56)

M = v/c being the Mach number, with M > 1 for a supersonic flow. The “in” (“out”) label is re-
verted here and now indicates if the group velocity is negative (positive). The d1 modes are those
normal, with positive energy, while the d2 modes are those anomalous, with negative energy. The
presence of the anomalous d2 modes reveals the energetic instability of a supersonic flow. This
is a consequence of the Landau criterion for superfluidity, which predicts the appearance of a
zero-frequency mode in a supersonic flow, the celebrated Bogoliubov–Cherenkov–Landau (BCL)
mode, with a finite wavevector ħkBCL = 2m

p
v2 − c2 computed byΩ(kBCL) = vkBCL (black square

in Figure 1b). This results in the coherent excitation of the BCL mode by the presence of any ob-
stacle in a supersonic flow, spoiling its superfluidity [75]; see Equation (202) and ensuing discus-
sion for more details. Nevertheless, supersonic flows are dynamically stable [90], since energetic
instability is only a necessary condition for dynamical instability, but not sufficient [91]. This is
directly seen from Equation (32): the presence of complex modes (dynamical instability), which
have zero norm by virtue of Equation (15), necessarily implies thatΛ cannot be a positive-definite
operator (energetic instability).

We are now in a position to study a black-hole (BH) solution, defined here as a station-
ary 1D GP solution with two asymptotic homogeneous regions, one subsonic and one super-
sonic, flowing from subsonic to supersonic. When the flow travels from supersonic to sub-
sonic, we have a white hole (WH) solution, the time reversal of a BH (obtained simply by
conjugation of the wavefunction). Continuity of the GP wavefunction implies that both BH
and WH solutions always possess, at least, one acoustic horizon, where v(x) = c(x). We de-
note the region between the two asymptotic regions, in which the acoustic horizon is located,
as the scattering region. The emergence of BH configurations is expected on quite general
grounds, since it was shown by Michel, Parentani and Zegers [27] that stationary asymptotically
uniform flows are attractor solutions, providing an analogue version of the celebrated no-hair
theorem.

By convention, for BH solutions, we take the flow velocity always positive, so the upstream
subsonic region (labeled as “u”) is located at x →−∞, while the downstream supersonic region
(labeled as “d”) is located at x → ∞. This convention hence matches the notation previously
introduced in Figure 1, since “in” modes are incoming (traveling towards the horizon), and “out”
modes are outgoing (traveling outwards). The asymptotic flow velocity, sound speed, and healing
length, are labeled as vu,d ,cu,d ,ξu,d .

The BdG modes of a BH solution are asymptotically given in terms of linear combinations of
the plane-wave spinors si−in/out,ω of Equation (54), i = u,d1,d2, representing the different in-
coming and outgoing scattering channels. Throughout this work, we operate just with positive
frequencies ω > 0, and the remaining part of the spectrum is obtained by conjugation. In par-
ticular, the scattering problem for any positive frequency 0 <ω<ωmax involves the normal u,d1
channels, and the conjugate of the anomalous d2 channel (horizontal dashed line in Figure 1),
so sd2−in/out,ω has negative norm. The retarded (“in”) scattering states z(+)

i ,ω are global eigenmodes
of the stationary BdG equations (12) with positive frequency, presenting unit amplitude in the
asymptotic incoming channel i and zero in the other incoming channels. The amplitude of the
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asymptotic “out” scattering channels is determined by the S-matrix, as usual in scattering theory.
For example, the scattering state z(+)

d2,ω asymptotically reads

z(+)
d2,ω (x →−∞) = Sud2 (ω) su−out,ω(x),

z(+)
d2,ω (x →∞) = sd2−in,ω(x)+Sd1d2 (ω) sd1−out,ω(x)+Sd2d2 (ω) sd2−out,ω(x).

(57)

Similar expressions can be provided for the remaining “in” scattering states. The advanced (“out”)
scattering states z(−)

i ,ω(x) are the outgoing analogues of the “in” states, having unit amplitude in
the outgoing channel i and zero in the other outgoing channels. They are characterized by the
inverse of the scattering matrix S(ω),

z(−)
i ,ω(x) = ∑

j=u,d1,d2
S−1

j i (ω)z(+)
j ,ω(x). (58)

A schematic spacetime diagram of these modes is presented in Figure 1c. Retarded scattering
states are characterized by one incoming channel (solid lines), which is eventually scattered into
the outgoing channels (dashed lines). In contrast, advanced scattering states are labeled by just
one outgoing channel, whose time-reversed trajectory scatters at the horizon into all incoming
channels.

By invoking the conservation of the quasiparticle current (16) for an arbitrary linear combina-
tion of “in” scattering states, it is shown that the S-matrix is pseudo-unitary, i.e.,

S†ηS = η≡ diag(1,1,−1). (59)

Thus, S ∈U (2,1), which implies S−1 = ηS†η. A direct consequence of the pseudounitarity of S is
that the scattering states are orthonormal,

(z(+)
i ,ω|z(+)

j ,ω′ ) = (z(−)
i ,ω|z(−)

j ,ω′ ) = ηi jδ(ω−ω′). (60)

Since they form a complete orthonormal basis, the quantum fluctuations of the field operator
can be expanded in terms of the scattering states as

Φ̂(x) = ∑
I=u,d1

∫ ∞

0
dω [z(+)

I ,ω(x)âI (ω)+ z̄(+)
I ,ω(x)â†

I (ω)]+
∫ ωmax

0
dω [z(+)

d2,ω(x)â†
d2(ω)+ z̄(+)

d2,ω(x)âd2(ω)].

(61)

A similar expression can be written using the “out” scattering states after replacing z(+)
i ,ω(x) by

z(−)
i ,ω(x), and the “in” quantum amplitudes âi (ω) by the “out” ones b̂i (ω), which are related through

the scattering matrix as  b̂u

b̂d1

b̂†
d2

=
 Suu Sud1 Sud2

Sd1u Sd1d1 Sd1d2

Sd2u Sd2d1 Sd2d2

 âu

âd1

â†
d2

 . (62)

This is a Bogoliubov relation, mixing annihilation with creation operators. It stems from the
anomalous character of the z(±)

d2,ω scattering states, which have a negative norm inherited from
the corresponding anomalous scattering channels, and hence their amplitudes behave as cre-
ation instead of annihilation operators (see Equation (24) and ensuing discussion). In the fol-
lowing, we reserve lowercase Latin indices i , j to label all channels, i = u,d1,d2, while uppercase
Latin indices I , J just label normal channels, I = u,d1. Lowercase Latin indices a,b will label gen-
eral BdG modes, either outgoing or incoming, either propagating or not. In addition, the normal-
normal and anomalous-anomalous scattering processes (characterized by the S-matrix elements
S I J ,Sd2d2) are denoted as normal, while the normal-anomalous and anomalous-normal scatter-
ing processes (characterized by the S-matrix elements Sd2I ,S I d2) are denoted as anomalous.
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The origin of the Hawking effect is the degeneracy of the vacuum of the Bogoliubov theory,
revealed by the anomalous sector of K̂ ,

K̂H ≡∑
i , j

∫ ωmax

0
dω ħωâ†

i (ω)ηi j â j (ω) =∑
i , j

∫ ωmax

0
dω ħωb̂†

i (ω)ηi j b̂ j (ω). (63)

Both the incoming vacuum âi (ω) |0in〉 = 0 and the outgoing vacuum b̂i (ω) |0out〉 = 0 satisfy
K̂H |0in〉 = K̂H |0out〉 = 0. However, they do not represent the same quantum state, as can be seen
from the non-vanishing population of normal outgoing modes in the incoming vacuum,

〈0in| b̂†
I (ω)b̂I (ω′) |0in〉 = δ(ω−ω′)|S I d2(ω)|2 ̸= 0. (64)

The Hawking effect is recovered for I = u, representing a spontaneous outgoing flux of particles
in the subsonic region (i.e., the exterior of the black hole) in the absence of incoming radiation.
This emission is correlated with that of anomalous outgoing d2 modes into the supersonic region
(horizontal arrow in Figure 1c), which are referred to as the partner modes of the Hawking effect.

The case I = d1 is characterized by the anomalous reflection coefficient Sd1d2, representing
the bosonic analogue of an incident hole that is reflected as a particle in the normal side of
a normal/superconductor junction, the celebrated Andreev reflection. In analogy with the
Hawking effect, throughout this work we will refer to the spontaneous emission of normal
outgoing d1 modes into the supersonic region as the Andreev effect. Once again, this emission
is correlated with that of anomalous outgoing d2 modes (horizontal arrow in Figure 1c). A
discussion of the equivalence between the Andreev scattering picture and the spontaneous
emission of quasiparticle pairs in the context of normal/superconductor interfaces was given
in Refs [92, 93]. In general, by invoking the Ginzburg–Landau (GL) order parameter, which obeys
a non-linear Schrödinger equation equivalent to the time-independent GP equation (9), we can
extend the analogy with superconductivity and identify normal metals with supersonic regions,
and superconductors with subsonic regions. In fact, the physics of real black holes and the
physics of superconductors are in close relationship [94, 95].

2.4. Analytical BH solutions

We present here canonical analytical BH solutions in condensates. In the following, we set units
and rescale the GP wavefunction as

ħ= m = cu = kB = 1, Ψ0 →p
nuΨ0. (65)

The simplest BH solution is provided by the flat-profile model, originally introduced in
Ref. [18], where the plane waveΨ0(x) = eiqx is a solution of the GP equation (5) at all times since
the coupling constant g (x, t ) and the external potential V (x, t ) are tuned in such a way that

g (x, t )nu +V (x, t ) = Eb , (66)

with Eb some constant energy that can be subtracted from the Hamiltonian. Nevertheless, even
though the flow velocity is constant and homogeneous, v(x, t ) = q , the BdG modes do experience
non-trivial dynamics as the sound speed is c2(x, t ) = g (x, t )nu ; see Equation (50).

In particular, we can choose a time-independent piecewise homogeneous dependence for the
coupling constant, g (x, t ) = g (x), where the BdG solutions within each homogeneous region
are spanned by the plane-wave spinors (54), thus allowing for simple analytical calculations.
Specifically, for the BH solution, we take

g (x)nu =
{

1, x < 0,
c2

2 , x ≥ 0,
(67)
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Figure 2. Upper row: Sound (solid blue) and flow (dashed red) velocity profiles for different
BH solutions with subsonic Mach number q = 0.5. (a) Flat profile. The shaded area
indicates the supersonic region, where c2 = 0.25. (b) Waterfall potential. The shaded
area indicates the region where the step potential V (x) = −V0Θ(x) is present. (c) Delta
barrier. The arrow indicates the position of the delta potential V (x) = Zδ(x). Lower
row: (d)–(f) Hawking (solid blue) and Andreev (solid red) spectra of the BH solutions
above. Dashed gold (cyan) line is a gray-body fit of the Hawking (Andreev) spectrum,
Equation (81). Inset: Frequency-dependent Hawking (solid black) and Andreev (solid
magenta) temperatures Tu,d1(ω), Equation (82). Horizontal dashed green line marks the
predicted Hawking temperature for a soliton, Equation (79).

with c2 < q < 1, c2 being the supersonic speed of sound and q representing the subsonic Mach
number. Hence, we reach a BH solution whose acoustic horizon is placed at x = 0, as depicted in
Figure 2a.

However, in practice, the flat-profile condition (66) is extremely challenging to implement
experimentally. More realistic models of BH configurations only involve external potentials V (x),
which can be easily manipulated in the laboratory, leaving the interaction strength g constant.
Consequently, since the current J is uniform for a stationary 1D solution as dictated by the
continuity equation (first line of Equation (43)), we simply have that

c(x) =
√

n(x), v(x) = J

n(x)
= J

c2(x)
. (68)

Typically, these BH solutions are described by a gray soliton in the upstream region

Ψ0(x) = ei(qx+θ0)[q + iγq (x −x0)],

γq (x) ≡
√

1−q2 tanh(
√

1−q2x). (69)

A gray soliton exponentially approaches a subsonic plane waveΨ0(x) −−−−−→
x→±∞ eiqx since γq (±∞) =

±
√

1−q2, with q < 1 the asympotic Mach number Mu = q . In our units, q is also the minimum
soliton amplitude as well as the value of the conserved current, J = q . In the downstream region,
the BH solutions are given by the supersonic plane wave

Ψ0(x) = cd eivd x , vd = q

c2
d

, (70)
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with cd < vd the corresponding supersonic sound and flow velocities; notice that vd is fixed by
current conservation once cd is given.

For example, the waterfall configuration [22] accelerates the atoms to supersonic speeds by
means of an attractive step potential of the form

V (x) =−V0Θ(x), V0 = 1

2

(
q2 + 1

q2

)
−1, (71)

whereΘ(x) is the Heaviside function. This gives rise to a stationary GP wavefunction

Ψ0(x) =
{

eiqx [q + iγq (x)], x < 0,

qei x
q , x ≥ 0,

(72)

which corresponds to half a gray soliton for x < 0, and a homogeneous supersonic flow with
cd = q < vd = 1/q for x > 0, where the attractive potential is present. The resulting BH solution
is represented in Figure 2b. The waterfall configuration is quite relevant because it provides a
simple theoretical model of the Technion experiment [4, 30–33].

Another possibility is to use a repulsive localized potential, which can be modeled by a delta
barrier of the form

V (x) = Zδ(x), Z =
(1− c2

d )
√

c2
d −q2

2c2
d

. (73)

This delta potential introduces a discontinuity in the derivative of the GP wavefunction,Ψ′
0(0+)−

Ψ′
0(0−) = 2ZΨ0(0). The resulting BH solution is similar to that of the waterfall model:

Ψ0(x) =
{

ei(qx+θ0)[q + iγq (x −x0)] x < 0,

cd eivd x , x ≥ 0,
(74)

where x0,θ0 are such that the wavefunction is continuous and

cd =
√

q2 +
√

q4 +8q2

2
, vd = q

c2
d

. (75)

This BH solution is represented in Figure 2c.
Remarkably, the scattering states associated to these BH solutions can be also computed

analytically because the stationary BdG solutions for a gray soliton (69) are known (see Ref. [21]
for the technical details). They take a similar form to the homogeneous solutions (54), namely

ζa,ω(x) = eika (ω)x

p
2π|wa(ω)|

[
ei(qx+θ0)ua,ω(x)

e−i(qx+θ0)va,ω(x)

]
,

[
ua,ω(x)
va,ω(x)

]
= Na(ω)


(
1+ ka(ω)

ω

[
ka(ω)

2
+ iγq (x −x0)

])2

−
(
1− ka(ω)

ω

[
ka(ω)

2
+ iγq (x −x0)

])2

 ,

Na(ω) = ω√
8k2

a(ω)|ω− vka(ω)|
. (76)

In fact, ζa,ω(x) −−−−−→
x→±∞ sa,ω(x) as the soliton asymptotically approaches a subsonic plane wave

eiqx , whose dispersion relation yields the wavevectors ka(ω). Thus, the scattering states z(±)
i ,ω for

the waterfall (72) and delta (74) BH solutions are obtained by matching at x = 0 the upstream
soliton spinors ζa,ω with the corresponding downstream supersonic plane-wave spinors sa,ω;
notice that in the subsonic region one also needs to include the evanescent solution ζev,ω with
complex wavevector kev(ω) which exponentially decays at x →−∞, Imkev(ω) < 0. The flat-profile
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BH solution does not even involve the soliton spinors ζa,ω(x) because the upstream region is also
homogeneous, and the subsonic plane-wave spinors sa,ω(x) are used instead.

The resulting anomalous scattering coefficients |Sud2|2, |Sd1d2|2 characterizing the Hawking
and Andreev effects for each BH solution are depicted in Figures 2d–f as solid blue and red lines,
respectively. We can compare these results, fully derived within the BdG microscopic framework,
with the predictions from the gravitational analogy in the hydrodynamic limit [16]

|Sud2(ω)|2 = 1

e
ω

TH −1
, |Sd1d2(ω)|2 = 0, (77)

where TH is the Hawking temperature, given here by [89]

TH = 1

2π

∣∣c ′(xH)− v ′(xH)
∣∣ , (78)

with xH the position of the acoustic horizon. Notice that, for the flat-profile configuration, this
temperature is formally infinite due to the discontinuity of the sound speed. On the other hand,
for the waterfall and delta configurations, it is easy to see that the acoustic horizon of a gray
soliton (69) is placed where c(x) = v(x) = q

1
3 , yielding a predicted Hawking temperature

TH(q) = 3

2π
(1−q

2
3 )

√
1−q

4
3 ≤ TH(0) = 3

2π
< 1

2
. (79)

A necessary condition for the validity of the hydrodynamic approximation is that TH ≪ωmax.
It is easily seen from Equation (56) that kmax ≤ vd and that ωmax ≤ v2

d /2; these inequalities are
saturated in the infinite supersonic Mach number limit, cd = 0. For the flat-profile configuration,
this implies a relatively small cutoff frequency as ωmax ≤ q2/2 < 1/2. For the delta and waterfall
configurations, we respectively have that

ωmax ≤ 8

(q +
√

q2 +8)2
< 1, ωmax ≤ 1

2q2 . (80)

As suggested in Ref. [22], we can check the agreement with the gravitational analogy by
fitting the Hawking spectrum to a gray-body distribution. We also extend this fit to the Andreev
spectrum as

|S I d2(ω)|2 = ΓI

e
ω

TI −1
, (81)

where ΓI is a gray-body factor and TI is the effective temperature of the spectrum. In the
hydrodynamic limit, we can expect Γu ≃ 1 and Tu ≃ TH. The result of the fit for the Hawking
(Andreev) spectrum is depicted as a dashed gold (cyan) line in lower row of Figure 2. Another
way to quantify the Planckianity, proposed by Macher and Parentani [19], is an ω-dependent
temperature, defined through

|S I d2(ω)|2 ≡ 1

e
ω

TI (ω) −1
. (82)

Tu,d1(ω) is shown in the inset of lower Figure 2 as a solid black (magenta) line. In the Hawking
case, we can compare the result with the predicted Hawking temperature (79), indicated as a
horizontal dashed green line.

A gray-body distribution displays an excellent agreement with the Hawking and Andreev
spectra in all cases, even for the flat-profile model (Figure 2d), where the system is far from
the hydrodynamic regime and the predicted Hawking temperature is formally infinite. The
agreement is particularly good at low frequencies because, in general, the scattering coefficients
|Si d1(ω)|2, |Si d2(ω)|2 display a universal scaling ∼1/ω at low frequencies [23] (the remaining
column |Si u(ω)|2 approaches a finite value in this limit). A gray-body distribution can reproduce
exactly this behavior up to corrections O(ω),

Γ

e
ω
T −1

≃ ΓT

ω
− Γ

2
+O(ω). (83)
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Regarding the effective temperatures TI (ω), we observe that Tu(ω) depends very mildly on the
frequency, approaching the predicted Hawking temperature in the low-frequency limit, while
Td1(ω) depends more strongly on the frequency. This is quite natural, since there is no analytical
prediction of a Planckian distribution for the Andreev spectrum. The effective temperature
Td1(ω) also measures the strength of the Andreev effect, which satisfies |Sd1d2(ω)|2 ≪ |Sud2(ω)|2
for both the waterfall and delta models, as expected from the gravitational prediction (77), and
|Sd1d2(ω)|2 ∼ |Sud2(ω)|2 for the flat profile. This difference is due to the sharpness of the flat-
profile horizon, far from the hydrodynamic limit.

In the waterfall case, low subsonic Mach numbers imply large supersonic Mach numbers,
so ωmax ≃ 1/2q2 (see Equation (80)). This large cutoff frequency makes dispersive effects
important at intermediate frequencies ω≲ωmax, explaining the strong deviations of Tu(ω) from
the predicted Hawking temperature as well as the dominance of the Andreev effect, Td1(ω) >
Tu(ω) (inset of Figure 2e). Nevertheless, the relevant part of the Hawking spectrum is still
Planckian (solid blue and dashed gold lines in main Figure 2e), with Tu(ω) ≃ TH, because it
is restricted to the low-frequency dispersionless regime due to the smallness of the Hawking
temperature, TH ≪ωmax.

Finally, close to ωmax, the Planckianity is necessarily spoiled for both the Hawking and An-
dreev spectra since there the anomalous coefficients |S I d2(ω)|2, |Sd2I (ω)|2 vanish as a power law
∼pωmax −ω [23]. This is revealed by the departure from the gray-body fit, especially in the flat-
profile case, and by the sudden drop of TI (ω) in all configurations.

3. Resonant Andreev–Hawking radiation

The thermal character of the Andreev and Hawking spectra discussed above makes quite difficult
to isolate their signal in a real experiment, as it can be quite easily misidentified or overshadowed
by another background thermal component. It was suggested by Zapata, Albert, Parentani and
Sols [21] that resonant BH configurations could provide a strategic advantage due to their highly
non-thermal frequency dependence. We discuss in this section how resonant BH configurations
emerge in gravitational analogues and propose possible experimental realizations based on the
use of optical lattices.

3.1. Resonant BH configurations

The first proposed model of resonant BH configuration [21] consisted of a condensate flowing
through a double-delta barrier

V (x) = Z

[
δ

(
x + L

2

)
+δ

(
x − L

2

)]
. (84)

The resulting BH solution, represented in Figure 3a, corresponds to a gray soliton for x < −L/2
and a supersonic homogeneous plane wave for x > L/2, with the same relation between the
parameters q,cd , vd as for the delta BH solution, Equation (75). The difference is that now the
value of Z is not fine-tuned as in Equation (73), and the stationary GP solution is described by
a cnoidal wave for |x| < L/2, given in terms of elliptic functions (see Ref. [21] for the technical
details). Specifically, for a certain value of the asymptotic subsonic flow velocity q , there are only
stationary GP solutions for Z ∈ [Zmin(q), Zmax(q)], and the number of available solutions grows
with the interbarrier distance L, displaying an increasing number of cnoidal periods. These BH
solutions may include several local acoustic horizons, always an odd number of them to ensure
that there is a global transition from an asymptotic subsonic flow to a supersonic one.

The above configuration can be easily generalized to provide analytical BH solutions by com-
bining the three models of Figure 2, which yield piecewise homogeneous GP equations, whose
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Figure 3. Upper row: Sound (solid blue) and flow (dashed red) velocity profiles for different
resonant BH solutions. (a) Double delta. The asymptotic subsonic flow velocity is q = 0.01.
The arrows indicate the position of the delta barriers, whose amplitude is Z = 2.2. The
length of the resonant cavity is L ≈ 3.62. (b) Resonant flat-profile. The global flow velocity is
q = 0.75. The shaded area indicates the supersonic resonant cavity of length L = 20, where
the speed of sound is c2 = 0.25. The downstream supersonic sound speed is c3 = 0.5. Lower
row: (c)–(d) Hawking (solid blue) and Andreev (solid red) spectra of the BH solutions above.

solutions are known. As a result, an analytical resonant BH solution is typically given by ei-
ther a gray soliton or a homogeneous subsonic wave in the upstream region, by a homoge-
neous supersonic plane wave in the downstream region, and by a cnoidal wave in between;
the GP wavefunction in each region is characterized by the same global current J and chemical
potential µ.

A particularly simple model of resonant BH solution, represented in Figure 3b, was provided
in Ref. [23] by using a flat-profile piecewise configuration

g (x)nu =


1, x < 0,

c2
2 , 0 ≤ x ≤ L,

c2
3 , x > L,

(85)

with c2,c3 < q .
Regarding the Andreev and Hawking spectra, they are computed by solving the scattering

problem between the asymptotic upstream and downstream channels, similar to that which was
solved for the non-resonant BH solutions. However, now there are two matchings, one with the
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upstream region and one with the downstream region. Due to the periodic character of a cnoidal
wave, the corresponding BdG solutions take the form of Bloch waves; analytical solutions can be
obtained with the help of mathematical tables (see for instance Ref. [96]). In practice, a numerical
integration of the time-independent BdG equations for given frequency ω is quite efficient as
these can be recast as a simple 4×4 linear system of first-order ordinary differential equations. In
the case of the flat-profile resonant configuration, this is not needed, as all the modes involved in
each region are the plane-wave spinors of Equation (54).

The Andreev and Hawking spectra for the BH solutions of Figures 3a,b are presented in
Figures 3c,d, respectively. In the case of the double delta barrier, Figure 3c, we observe that apart
from the universal thermal 1/ω peak of |S I d2(ω)|2 at low frequencies, there is a strongly non-
thermal peak close to ≃0.6ωmax. This is because the two delta barriers behave as a Fabry–Perot
resonator for the anomalous scattering processes of the Andreev and Hawking effects. We note
that, as for the single delta barrier, |Sd1d2(ω)|2 ≪|Sud2(ω)|2.

In the resonant flat-profile case, Figure 3d, we observe a similar trend, i.e., apart from the
universal thermal peak at low frequencies, there is a highly non-thermal peak at large frequencies.
However, unlike for the double delta barrier case, here the Andreev signal is larger than the
Hawking signal, |Sd1d2(ω)|2 > |Sud2(ω)|2. This highlights that resonant structures may also be
useful to enhance the Andreev effect, which is suppressed with respect to the Hawking effect
in typical non-resonant configurations. It must be noted that, even though the cavity is much
longer than for the double delta barrier, the spectrum only displays one peak. This is due to
the smallness of the cutoff frequency ωmax for the flat-profile configuration, resulting in low
frequencies for the spectrum that are translated into small wavevectors, whose inverse provides
the typical length scale for the occurrence of resonances.

3.2. Black hole from an outcoupled condensate through an optical lattice

The resonant configurations discussed above displayed a single resonant peak in the spectrum.
Interestingly, the opposite limit of a long cavity with many resonant peaks can be experimentally
reproduced with the help of an optical lattice, a major paradigm in AMO physics [97–99]. In
particular, Ref. [51] provided a thorough numerical study of the quasi-stationary BH resulting
from the outcoupling of a condensate through an optical lattice, which we proceed to discuss.

A 1D optical lattice can be created from the interference of two fixed-phase lasers of wave-
length λ whose wavevectors form an angle θ [100]. The resulting potential can be written as

V (x, t ) =V (t ) f (x −L)cos2 [kL(x −L)] (86)

with kL = π/d and d = λ/[2sin(θ/2)] the lattice period. In the above equation, f (x) is a
dimensionless function that characterizes the global shape of the optical lattice, accounting for
its finite size in real experiments, while V (t ) represents its (possibly time-dependent) amplitude.

In our specific configuration, we assume that our condensate is confined by a high-amplitude
barrier placed at x = 0, modeled by a hard-wall boundary condition for the GP wavefunction
Ψ(0, t ) = 0. The position L in Equation (86) plays the role of the approximate localization of the
lattice, chosen here to be repulsive, so the condensate is essentially confined between 0 ≤ x ≲ L.
The lattice amplitude is gradually lowered from V0 to V∞ as

V (t ) =
{

V0, t ≤ 0,
V∞+ (V0 −V∞)e−t/τ, t > 0,

(87)

where τ is the characteristic timescale of the process. This causes the condensate to outcouple
through the optical lattice from the initial reservoir.
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Quantitatively, the problem is described by the time-dependent GP equation[
−∂

2
x

2
+V (x, t )+|Ψ(x, t )|2

]
Ψ(x, t ) = i∂tΨ(x, t ), (88)

where the initial condition Ψ(x,0) =Ψ0(x) is the wavefunction describing the equilibrium con-
densate, which is solution of the time-independent GP equation[

−∂
2
x

2
+V (x,0)+|Ψ0(x)|2 −µ0

]
Ψ0(x) = 0, Ψ0(0) = 0, (89)

with the chemical potential µ0 determined by the normalization condition (3). This chemical
potential also defines some relevant physical scales: density n0 ≡ µ0, length ξ0 ≡ 1/

p
µ0, velocity

c0 ≡ p
µ0, time t0 ≡ 1/µ0, and temperature T0 ≡ µ0. Typical orders of magnitude for 87Rb are

ξ0 ∼ 0.1−1 µm, t0 ∼ 10−4–10−3 s, c0 ∼ 0.1−1 mm/s, and T0 ∼ 1–10 nK. The lattice period satisfies
d > λ/2 ≳ ξ0 while the lattice amplitude can essentially take any value; we choose V0 ≫ µ0 and
V∞ ≳ µ0, so the lattice goes from providing a tight confinement to allow some leakage. On the
other hand, we require τ≫ t0, so the barrier lowering is adiabatic and does not introduce further
distortions in the condensate flow, and L ≫ ξ0, so we are in the Thomas–Fermi regime where
Ψ0(x) ≃ p

n0 is the bulk value (for 0 ≲ x ≲ L) of the condensate amplitude. Therefore, we can
regard L as the approximate size of the reservoir, containing N ∼ n0L particles.

The time evolution of Ψ(x, t ) is displayed in Figure 4, computed from numerical integration
of Equation (88). In the first row, we consider an ideal finite optical lattice, determined by an
envelope

f (x) =χ
(

x + d
2

Llat

)
, (90)

χ(x) being the characteristic function of the interval [0,1]. Thus, a lattice with instantaneous
uniform amplitude V (t ) extends from x0 = L − d/2 to x1 = x0 + Llat, where the lattice length
is chosen such that it contains an integer number of periods nosc ∼ 10–50, Llat ≡ noscd and
V (x0) =V (x1) = 0.

In Figure 4a, we represent the time evolution of the sound speed profile c(x, t ), proportional
to the square root of the local density, c(x, t ) = |Ψ(x, t )| = p

n(x, t ) (this choice improves the
visibility of the condensate outside the reservoir as compared to using the density itself). After
some transient times t ∼ 104t0, the condensate achieves a quasi-stationary regime in which it
flows through the lattice and eventually leaks outside. The sound and flow velocity profiles in
the quasi-stationary regime are shown in Figure 4b, where we observe that a BH configuration is
achieved, with the downstream supersonic region located outside the lattice.

We can quantify the degree of quasi-stationarity by defining a local chemical potential as

µ(x, t ) ≡−1

2

∂2
xΨ(x, t )

Ψ(x, t )
+V (x, t )+|Ψ(x, t )|2. (91)

For a stationary solution, µ(x, t ) = µ is real and constant. The current is also constant and
uniform for a 1D stationary solution. However, this latter condition is impossible to fulfill strictly,
since the current is zero at x = 0 due to the hard-wall boundary condition, while the leaked
downstream flow carries a non-zero flux. Hence, there must be a current gradient, which, via the
continuity equation, implies a time-dependent density. This also implies a non-homogeneous
time-dependent complex chemical potential as

∂t lnn = 2Imµ. (92)

Nevertheless, in practice, such dependence can become so weak that one can neglect it, effec-
tively achieving a quasi-stationary regime. This regime should be characterized by a sufficiently
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Figure 4. Time evolution of an initially confined condensate which is outcoupled through
an optical lattice. Upper row: Ideal optical lattice (90) with L ≈ 125ξ0, d ≈ 2.36ξ0, and
nosc = 30. The lowering time is τ = 500t0. (a) Time-dependent profile of the sound speed,
c(x, t )/c0, with c(x, t ) = |Ψ(x, t )|. (b) Sound (solid blue) and flow (dashed red) velocity
profiles of the quasi-stationary regime, evaluated at the last snapshot of (a). The initial
sound speed profile is depicted in solid green (the initial flow velocity is identically zero),
while the optical lattice envelope is shown as a black line. (c) Time evolution of the average
chemical potential µ̄(t ) (solid black) and its relative fluctuations σ(t ) (solid red). The
instantaneous conduction bands (energy gaps) of the optical lattice are depicted as white
(gray) bands. Lower row: (d)–(f) Same as (a)–(c) but for a Gaussian optical lattice (96) with
L ≈ 1480ξ0, d ≈ 1.73ξ0, and w̃ ≈ 220.5ξ0.

uniform local chemical potential µ(x, t ), with small relative spatial fluctuations σ(t ) around its
instantaneous average value µ̄(t ),

µ̄(t ) ≡
∫ Lg

0 dx |Ψ(x, t )|2µ(x, t )∫ Lg

0 dx |Ψ(x, t )|2
,

σ(t ) ≡ 1

µ̄(t )

[∫ Lg

0 dx |Ψ(x, t )|2|µ(x, t )− µ̄(t )|2∫ Lg

0 dx |Ψ(x, t )|2

] 1
2

, (93)

where Lg is the total length considered for the average. Typically, Lg is chosen well inside the
downstream region, and the results are quite insensitive to its specific value.

The time evolution of the real part of the average chemical potential µ̄(t ) and its relative fluc-
tuations σ(t ) is depicted in Figure 4c (imaginary values can be neglected as Im µ̄∼ 10−6–10−7µ0).
In order to understand their relation with V (t ), we also represent the instantaneous band struc-
ture of the lattice, computed using the linear Schrödinger equation since the non-linear interact-
ing term is negligible within the lattice due to the smallness of the density. Specifically, the low-
est conduction band is placed between E0(t ) and E1(t ), with a width ∆c (t ) = E1(t )−E0(t ), where
dimensional arguments show that

E0,1(t ) = ER F0,1[ζ(t )], ζ(t ) ≡ V (t )

16ER
, (94)
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with F0,1 increasing functions of the dimensionless parameter ζ that can be computed perturba-
tively,

F0(ζ) = 8ζ−8ζ2 +O(ζ4),

F1(ζ) = 1+4ζ−2ζ2 +O(ζ4),
(95)

and ER ≡ k2
L/2 the recoil energy of the lattice. In general, the solutions to the 1D Schrödinger

equation with a sinusoidal potential can be obtained in terms of Mathieu functions. In practice,
the functions F0,1 can be easily evaluated numerically [51]. The resulting time-dependent con-
duction band (energy gap) is depicted as a white (gray) band. As we can see, the condensate
smoothly approaches the bottom of the asymptotic conduction band, since tunneling is expo-
nentially suppressed for µ0 < E0. In this regime of small leaking, the fluctuations of the chemical
potential can become extremely small, σ(t ) ∼ 10−4, ensuring a high-degree of quasi-stationarity.

The formation of a quasi-stationary BH can be then easily understood from energetic argu-
ments: in the upstream region, where the reservoir is placed, the flow velocity is negligible and
the chemical potential is merely due to interactions, i.e., µ̄ ≃ nu and vu ≃ 0. Due to the conser-
vation of the chemical potential as well as the small density there, in the downstream region the
condensate flows with a high velocity vd ∼ √

2µ̄≫ cd , becoming supersonic. By continuity, this
implies that there must be an acoustic horizon somewhere within the lattice. In the bulk of the
lattice, the wavefunction is a Bloch wave, which is preferred to be subsonic due to its energetic
stability [91]. Thus, the acoustic horizon must be placed at the right edge of the lattice, as seen in
Figure 4b.

In the second row of Figure 4, we analyze a more realistic Gaussian envelope

f (x) = e
−2 x2

w̃2 , (96)

with w̃ the effective beam waist, which plays a similar role to Llat for the ideal optical lattice. We
require the length hierarchy

d ≪ w̃ ≪ L, (97)

where the second condition is imposed in order to have a sufficiently large and homogeneous
condensate reservoir. The first condition is satisfied for typical waists, and implies that the overall
Gaussian amplitude behaves as a spatially adiabatic envelope, so the potential can be regarded
locally as an ideal optical lattice with an amplitude VA(x, t ) [101–103]:

V (x, t ) = VA(x, t )cos2[kL(x −L)],

VA(x, t ) ≡ V (t )exp

[
−2

(
x −L

w̃

)2]
.

(98)

We observe in Figures 4d,e the same trends as for the ideal lattice case, namely, a quasi-stationary
BH solution is achieved for sufficiently long times. Due to the hierarchy (97), we only depict the
vicinity of the lattice peak L −2.5w̃ ≤ x ≤ L +2.5w̃ to better observe the structure of the horizon;
in turn, at this scale, the lattice structure cannot be resolved and the oscillations of the flow and
sound velocities appear as broadened lines. In Figure 4f, the average chemical potential also
descends towards the bottom of the conduction band, achieving a highly quasi-stationary regime
where the relative fluctuations σ(t ) are also insignificant, σ(t ) ∼ 10−4. The band structure is now
evaluated at the lattice peak x = L, where the local conduction band is determined by the energies
E0,1(x, t ) obtained by taking ζ(x, t ) = VA(x, t )/16ER in Equation (94). The fact that the lattice
maximum is the transmission bottleneck can be understood from the increasing character of
the asymptotic energies E0,1(x) ≡ E0,1(x,∞) with respect to the lattice envelope VA(x) ≡VA(x,∞).
Thus, in order to place the chemical potential within the local conduction band across the whole
lattice, it must be satisfied

E0(x) ≤ E0(L) <µ0 < ER < E1(x), (99)
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where we have used that F1(0) = 1, so E1(0) = ER. This implies that the asymptotic lattice
amplitude V∞ must be below a certain critical value Vc so the condition E0(L) < ER is met, which
can be derived from

F0

(
V∞

16ER

)
< 1 =⇒V∞ <Vc, Vc ≈ 2.33ER. (100)

Another remarkable feature is that the acoustic horizon is now placed exactly at the lattice
peak (vertical dashed black line in Figure 4e). This is no coincidence and a detailed local lattice
calculation explicitly proves that the acoustic horizon must be placed at the extremes of the lattice
envelope [51]. This is in agreement with another result derived for a smooth potential within the
hydrodynamic approximation, stating that the acoustic horizon must be located at the potential
maximum [104].

We summarize now the computation of the scattering matrix for the above quasi-stationary
BH solutions, where the interested reader can consult Ref. [52] for more details. From Equa-
tion (91), and by invoking the time-dependent GP equation (88), it is easily shown that
i∂t lnΨ(x, t ) =µ(x, t ). Hence,

Ψ(x, t ) =Ψ(x, ts )e−i
∫ t

ts dt ′µ(x,t ′) ≡Ψ∞(x, t )e−iRe µ̄(t−ts ), (101)

where the rightmost term provides a definition for Ψ∞(x, t ). If one chooses ts well inside
the quasi-stationary regime, when µ(x, t ) ≃ µ̄ ≃ Re µ̄, then one can approximate Ψ∞(x, t ) ≃
Ψ(x, ts ) = Ψ∞(x, ts ) ≡ Ψ∞(x). Thus, we can work with a fully stationary BH solution whose
chemical potential is µ = Re µ̄, and compute the Andreev and Hawking spectra from the S-
matrix by solving the associated BdG scattering problem, where the external potential is the
asymptotically stationary optical lattice, V (x) = V∞(x) ≡ V (x, t = ∞). Specifically, the time-
independent BdG equations for givenω are numerically integrated and eventually matched with
the corresponding scattering channels at the asymptotic homogeneous subsonic (the upstream
bulk of the condensate reservoir) and supersonic (the downstream leaking flux) regions.

However, a major difficulty arises for the computation in the Gaussian lattice, since its large
size makes that exponentially growing modes, corresponding to local Bloch waves with complex
wavevector, explode above the propagating modes, making the matching equations singular
within computer accuracy. This is known in general as the Ωd problem [105], emerging in
a wide range of scenarios, ranging from the propagation of ultrasonic and electromagnetic
waves in multilayered media [105, 106] to Anderson localization [107]. Possible methods to deal
with this specific Ωd problem in the BdG context are the Global Matrix method [105] or QR
decomposition [107].

As expected, the resulting Hawking and Andreev spectra display a highly non-thermal struc-
ture. In particular, since the energy contribution from the speed of sound is negligible as com-
pared to that from the lattice potential, one can analyze the spectrum in terms of the underlying
Schrödinger problem, characterized by the band structure shown in Figures 4c,f. Thus, two main
qualitative regimes arise: ωmax <∆c , where the spectrum is cut at its natural cutoff frequency, and
ωmax >∆c , where the spectrum is abruptly cut by the upper end of the conduction band. Hence,
an optical lattice can behave as a low-pass filter of Andreev–Hawking radiation, which may have
potential applications in quantum transport and atomtronics [108].

4. Quantum Andreev–Hawking radiation

Although resonant configurations are highly non-thermal as shown in the previous sections,
this does not automatically imply that the observation of a non-thermal Hawking spectrum is
a signature of the Hawking effect. This is because the BdG equations describe at the same time
the linear dynamics of both perturbations of the GP wavefunction and quantum fluctuations of
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the field operator around the mean-field expectation value. Moreover, the quantum state of the
system may be a highly thermal state. Thus, the observed non-resonant spectrum can result
from the coherent or thermal stimulation of Hawking radiation by a classical source, instead
of arising from a zero-point quantum origin. The same applies to the Andreev effect. In this
section, we discuss how to unambiguously signal the genuine quantum character of the Andreev
and Hawking effects, as opposed to classical stimulation, using different types of quantum
correlations.

4.1. Lessons from quantum optics

A major front of the quantum-classical frontier is present in the field of quantum optics, from
where we can borrow a number of concepts and techniques; the interested reader is referred to
Ref. [53] for a pedagogical introduction to quantum optics and a thorough discussion of a number
of fundamental quantum topics in that context.

For simplicity, we begin by considering a single bosonic mode (as can be that of a photon)
whose amplitude is given by an annihilation operator â. The corresponding Hilbert space is the
Fock space spanned by the number states |n〉, â†â |n〉 = n |n〉, n = 0,1,2 . . . . A coherent state is an
eigenstate of the annihilation operator, â |α〉 =α |α〉 , α ∈C, and can be expressed as

|α〉 = e−
|α|2

2

∞∑
n=0

αn

p
n!

|n〉 = D(α) |0〉 , D(α) ≡ eαâ†−α∗ â , (102)

where D(α) is the displacement operator, which is unitary, D†(α) = D−1(α) = D(−α). The
coherent states form an overcomplete basis of the Hilbert space since

|〈α|β〉|2 = e−|α−β|
2 ̸= 0,

∫
d2α

π
|α〉〈α| =

∞∑
n=0

|n〉〈n| = 1, (103)

with d2α ≡ dαx dαy , α = αx + iαy . Another relevant class of quantum states are the squeezed
states

|ε〉 = S(ε) |0〉 , S(ε) ≡ e
ε∗ â2−ε(â†)2

2 , ε≡ r ei2θ, (104)

where S(ε) is the squeezing operator, also unitary as S†(ε) = S−1(ε) = S(−ε). These squeezed
states are the vacuum of the annihilation operator b̂, b̂ |ε〉 = 0, arising from the Bogoliubov
transformation

b̂ = S(ε)âS†(ε) = â coshr + â†ei2θ sinhr. (105)

By noticing that â2, (â†)2, â†â+ââ† form a closed Lie algebra (actually, they form a representation
of su(1,1)), one can rewrite the squeezing operator in normal order as

S(ε) = 1p
coshr

e−
g
2 (â†)2

e f â† âe
g∗
2 â2

, (106)

with g = ei2θ tanhr and f =− lncoshr . This allows to readily express the squeezed states as

|ε〉 = 1p
coshr

∞∑
n=0

(−1)nei2nθ

p
2n! tanhn r

2n ·n!
|2n〉 . (107)

The most general quantum state in this Hilbert space is described by a density matrix ρ̂ of the
form

ρ̂ =
∞∑

n,m=0
ρnm |n〉〈m| , (108)

which is completely determined by its characteristic function

χ(η) ≡ 〈eηâ†−η∗ â〉 = Tr[eηâ†−η∗ â ρ̂]. (109)
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One can also work with its normal and anti-normal versions

χN (η) ≡ 〈eηâ†
e−η

∗ â〉,
χA(η) ≡ 〈e−η∗ âeηâ†〉.

(110)

Alternative representations to the Fock expansion (108) are provided by the distributions
resulting from the Fourier transform of the characteristic functions:

P (α) ≡
∫

d2η

π2 e(η∗α−ηα∗)χN (η),

Q(α) ≡
∫

d2η

π2 e(η∗α−ηα∗)χA(η),

W (α) ≡
∫

d2η

π2 e(η∗α−ηα∗)χ(η).

(111)

All of them are quasi-probability distributions, properly normalized,∫
d2α P (α) =

∫
d2αW (α) =

∫
d2αQ(α) = 1, (112)

but do not describe disjoint events since coherent states are not orthogonal, and can even take
negative values, opening the door to genuine non-classical behavior.

The Glauber–Sudarshan P function is equivalent to a diagonal representation in the coherent
basis,

ρ̂ =
∫

d2α P (α) |α〉〈α| , (113)

since its momenta provides the normal-ordered expectation values

〈(â†)n âm〉 =
∫

d2α (α∗)nαmP (α), (114)

which are those typically characterizing correlation functions. This is where the crucial role of the
P function in the understanding of the classical-quantum frontier emerges: if it is non-negative,
P (α) ≥ 0, we can understand these correlations as statistical averages over a continuous classical
variable α with a probability distribution given precisely by P (α). Thus, quantum states with
a non-negative P function can be regarded as classical, admitting a conventional probabilistic
description in terms of a stochastic complex amplitude. Examples of classical states are coherent
states, chaotic states, as well as quantum thermal states. On the other hand, number states
and squeezed states are intrinsically non-classical as they do not even have a well-defined P-
representation.

The Q-function yields the anti-normal expectation values

〈âm(â†)n〉 =
∫

d2α (α∗)nαmQ(α), (115)

and it is easily evaluated by inserting the identity representation (103) in Equation (110),

Q(α) = 〈α|ρ̂|α〉
π

, (116)

so it is non-negative and bounded, 0 ≤Q(α) ≤ 1/π.
Finally, the Wigner function W (α) characterizes symmetric expectation values such as

1

2
〈â†â + ââ†〉 =

∫
d2α |α|2 W (α). (117)

Further insight on the physical meaning of the Wigner function is obtained when working with
the usual coordinate-momentum representation

â = q̂ + ip̂p
2

, α= q + ipp
2

, (118)
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whose eigenstates are labeled as |q〉, |p〉, respectively. After proper normalization, the Wigner
distribution in phase space reads

W (q, p) = 1

2π

∫
dq ′

〈
q − q ′

2

∣∣∣∣ ρ̂ ∣∣∣∣q + q ′

2

〉
eipq ′

. (119)

Its marginal distributions

W (q) =
∫

dp W (q, p) = 〈q |ρ̂|q〉 ≥ 0,

W (p) =
∫

dq W (q, p) = 〈p|ρ̂|p〉 ≥ 0
(120)

are the spatial and momentum distributions of the quantum state. As a result, the Wigner func-
tion represents a quantum version of the classical Boltzmann distribution function. However, it is
not necessarily positive, and the presence of negative values W (q, p) < 0 is hence another quan-
tum signature. Indeed, the negativity of the Wigner function is a stronger condition than that of
the Glauber–Sudarshan function as they are related through the convolution

W (α) = 2

π

∫
d2β e−2|α−β|2 P (β), (121)

derived by noting that χ(η) = e−|η|
2/2χN (η). For instance, squeezed states do have a positive

Wigner representation, while number states do not. An interesting approach to quantum optics
from phase space can be found in Ref. [109].

All the above concepts can be straightforwardly extended to multipartite Hilbert spaces de-
scribing an ensemble of bosonic modes. Of particular interest is the case of bipartite systems
composed by two modes, labeled as i , j , whose corresponding annihilation operators are âi , j .
Their Hilbert space is spanned by the Fock product states |ni n j 〉 ≡ |ni 〉⊗ |n j 〉, and accordingly
coherent states and quasi-probability distributions now have two complex arguments (αi ,α j ).
For example, the P-representation reads

ρ̂ =
∫

d2αi d2α j P (αi ,α j ) |αiα j 〉〈αiα j | . (122)

Nevertheless, there are genuine bipartite quantum states which cannot be expressed as a
product of monomode states. One example is the two-mode squeezed state

|ε〉i j ≡U (ε) |00〉 , U (ε) = e
ε∗ âi â j −εâ†

i â†
j . (123)

In the same fashion of Equations (106), (107), it is shown that

|ε〉i j =
1

coshr

∞∑
n=0

(−1)nei2nθ tanhn r |nn〉 . (124)

Remarkably, the reduced state

ρi = Tr j (|ε〉i j i j 〈ε|) = 1

cosh2 r

∞∑
ni=0

(tanhr )2ni |ni 〉〈ni |, (125)

is then a thermal state, whose equivalent temperature for a mode with energy ϵ is obtained by
e−βϵ = tanh2 r . The two-mode squeezed state is a non-classical state and it is of paramount
importance in quantum optics because it describes the time-evolution of the so-called non-
degenerate parametric amplifier, where one of the modes is designed as the signal and the other
as the idler [53].
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4.2. Cauchy–Schwarz violation

Experimentally, the quantumness of a bipartite state, such as the two-mode squeezed state (123),
can be characterized through the measurement of the first

gi j ≡ 〈â†
i â j 〉, ci j ≡ 〈âi â j 〉, (126)

and second-order correlation functions

Γi j ≡ 〈â†
i â†

j â j âi 〉 ≥ 0. (127)

Since they are normal-ordered expectation values, they can be computed from the P-
representation (122). Interestingly, for classical states, P (αi ,α j ) ≥ 0, and we can write the
averages as a scalar product

gi j =
∫

d2α P (αi ,α j )α∗
i α j ≡ (αi ,α j )C , (128)

with ci j = (α∗
i ,α j )C and Γi j = (|αi |2, |α j |2)C . By invoking the Cauchy–Schwarz (CS) inequality

|(αi ,α j )C | ≤
√

(αi ,αi )C (α j ,α j )C , (129)

one can prove that classical states obey the inequalities

|gi j |2 ≤ gi i g j j ,

|ci j |2 ≤ gi i g j j ,

Γi j ≤
√
Γi iΓ j j . (130)

The violation of any of the above classical CS inequalities requires a negative-valued P function, a
genuine signature of quantumness. The first violation of a CS inequality in photons was observed
in 1974 [110]. In condensates, CS violation has been also observed in 2012 [111].

Actual mathematical CS inequalities that are never violated can be proven for quantum
operators, which we now review along the lines of the enlightening discussion from Adamek,
Busch and Parentani [112]. For two operators Â, B̂ , one can associate a scalar product to a
quantum state ρ̂ as

(Â, B̂)Q ≡ 〈Â†B̂〉 = Tr[Â†B̂ ρ̂], (131)

which satisfies the usual properties of a scalar product, including the quantum CS inequality

|〈Â†B̂〉|2 ≤ 〈Â† Â〉〈B̂ †B̂〉. (132)

Notice that the only assumption here is that ρ̂ is a physical quantum state, specifically, a non-
negative operator, and this is satisfied by definition. We can now derive the quantum versions
of the CS inequalities (130), which are then strict mathematical inequalities. For instance, by
substituting Â = âi and B̂ = â j in Equation (132), we find

|gi j |2 = |〈â†
i â j 〉|2 ≤ 〈â†

i âi 〉〈â†
j â j 〉 = gi i g j j . (133)

This is the same CS inequality as in the classical case, so it is always verified. However, taking
Â = â†

i and B̂ = â j yields

|ci j |2 = |〈âi â j 〉|2 ≤ 〈âi â†
i 〉〈â†

j â j 〉 = (gi i +1)g j j . (134)

Interestingly, the quantum CS inequality leaves the possibility of violating the classical CS in-
equality |ci j |2 ≤ gi i g j j . In order to quantify this violation, we define the CS witness

∆i j ≡ |ci j |2 − gi i g j j , (135)
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and denote the condition ∆i j > 0 as quadratic CS violation. For the second-order correlation
function, the associated quantum CS inequality is obtained by setting Â = â†

i âi and B̂ = â†
j â j ,

|Γi j |2 = |〈â†
i âi â†

j â j 〉|2 ≤ 〈â†
i âi â†

i âi 〉〈â†
j â j â†

j â j 〉 = (Γi i + gi i )(Γ j j + g j j ), (136)

which also leaves the possibility of violating the classical CS inequality |Γi j |2 ≤ Γi iΓ j j , as quanti-
fied by the CS witness

Θi j ≡ Γi j −
√
Γi iΓ j j . (137)

In analogy to the quadratic CS violation, we refer to the conditionΘi j > 0 as quartic CS violation.
Remarkably, the origin of the violation of classical CS inequalities can be pin-pointed to the
non-commutativity of quantum operators, a property present at the very core of quantum
mechanics.

4.3. Entanglement

Entanglement is perhaps the most genuine quantum feature. It has been observed in a wide
variety of systems as different as photons [113], neutrinos [114], quarks [57, 58], mesons [115],
atoms [116], molecules [117, 118], superconductors [119], nitrogen-vacancy centers in dia-
mond [120], and even macroscopic diamond itself [121]. In general, entanglement is defined
as the non-separability of the quantum state of a system [122]. In turn, a quantum state in a bi-
partite Hilbert space is said to be separable iff it can be written as a convex sum of product states,

ρ̂ =∑
n

pn ρ̂
(i )
n ⊗ ρ̂( j )

n ,
∑
n

pn = 1, pn ≥ 0, (138)

where ρ̂(i ),( j )
n are states within the Hilbert subspaces associated to the i , j modes, respectively.

Classical states are separable, as directly seen from Equation (122).
In order to characterize entanglement, we make use of the generalized Peres–Horodecki

(GPH) criterion [55], which extends the celebrated Peres–Horodecki (PH) criterion [123, 124] to
continuous systems. The PH criterion results from the fact that, if ρ̂ is separable, its partial
transpose ρ̂t with respect to one of the subsystems is also a physical density matrix and, in
particular, a non-negative operator. Thus, the PH criterion states that, if ρ̂t is not non-negative,
then ρ̂ is necessarily entangled. For 2×2 and 2×3 systems, the PH criterion is a necessary and
sufficient condition for entanglement; in general, it is only a sufficient condition.

In order to obtain the partial transpose ρ̂t of a density matrix ρ̂, we make use of its Wigner
function in phase space, W (X ), computed through the analogous version for bipartite systems of
Equation (119), where we gather the phase-space variables in a single vector X ≡ [qi , pi , q j , p j ]T .
Without loss of generality, we take the partial transpose with respect to the subsystem j , which
amounts to transpose the matrix elements of ρ̂ with respect to the Hilbert subspace of the mode
j . It is straightforward to show then that the Wigner distribution Wt (X ) associated to ρ̂t is simply
given by

Wt (X ) =W (ΛX ), Λ= diag[1,1,1,−1]. (139)

Another way to put it is that the transposition operation amounts to a time reversal transforma-
tion in the Wigner function.

The effects of this seemingly innocuous transformation can become critical, as revealed when
evaluating the uncertainties of the phase-space operators

Ŷ =
4∑

α=1
uα∆X̂α, (140)
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where X̂ ≡ [q̂i , p̂i , q̂ j , p̂ j ]T is the quantum version of the phase-space vector X , ∆X̂ ≡
X̂ − 〈X̂ 〉, and uα are the components of an arbitrary four-dimensional complex vector u.
Due to the positiveness of the scalar product (131), 〈Ŷ †Ŷ 〉 ≥ 0, which in compact vector
notation reads

u†Mu ≥ 0, Mαβ = 〈∆X̂α∆X̂β〉. (141)

This is an alternative expression of the uncertainty principle, holding for any complex vector u,
which implies that M must be a non-negative matrix, M ≥ 0.

For its computation, we separate the matrix M into its symmetric and antisymmetric part as

M = V + i
L

2
,

Vαβ = 〈{∆X̂α,∆X̂β}〉
2

,

iLαβ = 〈[∆X̂α,∆X̂β]〉 = 〈[X̂α, X̂β]〉.

(142)

where {. . .} is the anticommutator. The matrix V is the symmetric covariance matrix and, since
it contains symmetric expectation values, it is readily evaluated with the help of the Wigner
distribution,

〈Xα〉 =
∫

d4X XαW (X ),

〈{∆X̂α,∆X̂β}〉
2

=
∫

d4X ∆Xα∆XβW (X ).

(143)

On the other hand, the commutators between phase-space operators are proportional to the
identity, and thus L is a 4×4 matrix independent of the state ρ̂,

L =
[

J 0
0 J

]
, J =

[
0 1
−1 0

]
, (144)

J being the symplectic matrix in two dimensions.
The above decomposition not only allows to evaluate M , but it also provides a straightforward

way to derive the corresponding uncertainty principle for ρ̂t . Indeed, since its Wigner function
Wt (X ) satisfies Equation (139), it is immediate to see that the condition 〈Ŷ †Ŷ 〉t ≡ Tr[Ŷ †Ŷ ρ̂t ] ≥ 0
is equivalent to Mt ≥ 0, with

Mt ≡ Vt + i
L

2
, Vt =ΛVΛ. (145)

We can finally formulate quantitatively the GPH criterion: if ρ̂ is separable, ρ̂t must be a
physical state satisfying the uncertainty principle, which implies Mt ≥ 0. Therefore, if Mt

is not non-negative, the state is entangled. Notice that, since M is always non-negative
as the original ρ̂ is a physical density matrix, by the Sylvester–Jacobi criterion, Mt is non-
negative iff det Mt ≥ 0. The conditions det M ,det Mt ≥ 0 are respectively equivalent to P ±

i j ≥ 0,
where

P ±
i j ≡ det Ai det A j + ( 1

4 ∓detCi j )2 − tr(J Ai JCi j J A j JC T
i j )− 1

4 (det Ai +det A j ) (146)

and the matrices Ai , A j ,Ci j are the 2×2 blocks forming the covariance matrix V ,

V =
[

Ai Ci j

C T
i j A j

]
. (147)

We can put together both conditions by defining the GPH function P i j as

P i j ≡ det Ai det A j + ( 1
4 −|detCi j |)2 − tr(J Ai JCi j J A j JC T

i j )− 1
4 (det Ai +det A j ), (148)
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where P i j < 0 is a sufficient condition for entanglement. This is the entanglement witness that
results from the GPH criterion. Notice that, whenever detCi j ≥ 0, ρ̂ is separable, because then
P i j =P +

i j ≥ 0, so only states with detCi j < 0 can be entangled.

In the usual case where the expectation values of the operators 〈X̂α〉 = 0 vanish, the matrices
Ak ,Ci j are expressed in terms of the first-order correlation functions as

Ak = (
gkk + 1

2

)
I2 +

[
Re ckk Im ckk

Im ckk −Re ckk

]
, k = i , j ,

Ci j =
[

Re(gi j + ci j ) Im(gi j + ci j )
Im(−gi j + ci j ) Re(gi j − ci j )

]
.

(149)

Alternatively, we can work directly with the operators X̂α instead of their fluctuations ∆X̂α. This
allows to prove that quadratic CS violation is a sufficient condition for the fulfillment of the GPH
criterion. Indeed, suppose that Mt ≥ 0. Then, we can define an associated scalar product as
(u, v)t ≡ u†Mt v , satisfying the CS inequality |(u, v)t |2 ≤ (u,u)t (v, v)t . By choosing

u = 1p
2


0
0
1
i

 , v = 1p
2


1
i
0
0

 , (150)

we obtain the quadratic CS inequality |ci j |2 ≤ gi i g j j . Thus, quadratic CS violation implies that
the matrix Mt is not non-negative, and hence the GPH criterion is satisfied.

More generally, from the definition of separability, Equation (138), we can apply the following
chain of CS inequalities if the state is separable,

|ci j | = |〈âi â j 〉| =
∣∣Tr[âi â j ρ̂]

∣∣= ∣∣∣∣∑
n

pn〈âi 〉n〈â j 〉n

∣∣∣∣
≤ ∑

n
pn |〈âi 〉n〈â j 〉n | ≤

∑
n

pn

√
〈â†

i âi 〉n〈â†
j â j 〉n

≤
√∑

n
pn〈â†

i âi 〉n

√∑
n

pn〈â†
j â j 〉n =√

gi i g j j , (151)

where 〈Â〉n ≡ Tr[Â(ρ̂(i )
n ⊗ρ̂( j )

n )]. Thus, quadratic CS violation is a sufficient condition for entangle-
ment. However, the above derivation does not work for quartic CS violation. As a counterexam-
ple, the product of two number states ρ̂ = |nm〉〈nm|, with n,m > 0, is clearly a separable state
that nevertheless violates the quartic CS inequality.

Technically, the GPH criterion here explained is only a sufficient condition for the negativity
of ρ̂t ; in general, an infinite set of sufficient and necessary conditions for the negativity of ρ̂t ,
based on higher-order CS violations, can be derived [125]. For multipartite entanglement, the
role of the CS inequality is played by the Hölder inequality [126], which is a generalization of the
CS inequality. However, in practice, the GPH criterion provides a very powerful and simple tool to
signal entanglement. In particular, for bipartite Gaussian states, the GPH criterion is a sufficient
and necessary condition for entanglement [55].

4.4. Cauchy–Schwarz violation and entanglement in Andreev–Hawking radiation

We finally switch back to analogue gravity and, in particular, we apply the above techniques to the
study of Andreev–Hawking radiation in condensates. We first note that the mean-field formalism
can be alternatively described in the Schrödinger picture by a coherent ansatz of the form

|Ψ〉 = e
∫

dx
[
Ψ(x,t )Ψ̂†(x)−Ψ∗(x,t )Ψ̂(x)

]
|0〉MB , (152)
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where |0〉MB is the many-body vacuum containing no bosons, Ψ̂(x) |0〉MB = 0. When this ansatz
is inserted into a variational principle, such as the Dirac-Frenkel one, the time-dependent GP
equation (5) is retrieved.

The genuine quantum character of the Andreev and Hawking effects is revealed by reexamin-
ing the relation of Equation (62). After some algebra [26], it is shown that any matrix S ∈U (2,1)
can be written as S = B †SPA A†, with

SPA =
 eiφ 0 0

0 e−i2θ coshr sinhr
0 sinhr ei2θ coshr

 ,

A =
UA 0

0
0 0 1

 , UA ≡ 1

sinhr

[−Sd2d1 S∗
d2u

Sd2u S∗
d2d1

]
,

B =
UB 0

0
0 0 1

 , UB ≡ 1

sinhr

[−Sd1d2 Sud2

S∗
ud2 S∗

d1d2

]
,

(153)

where

eiφ = detS,

ei2θ coshr = Sd2d2,

sinhr =
√
|Sud2|2 +|Sd1d2|2 =

√
|Sd2u |2 +|Sd2d1|2.

(154)

Since the matrices UA ,UB are unitary, the above transformation amounts to a change of basis in
the normal u −d1 sector, [

âs

âAH

]
=U †

A

[
âu

âd1

]
,

[
b̂s

b̂AH

]
=U †

B

[
b̂u

b̂d1

]
. (155)

In this new basis, the scattering of the spectator (s) channel is a fully normal, unitary process. On
the other hand, the normal hybrid Andreev–Hawking (AH) channel couples to the anomalous d2
channel as [

b̂AH

b̂†
d2

]
=

[
e−i2θ coshr sinhr

sinhr ei2θ coshr

][
âAH

â†
d2

]
. (156)

Apart from a trivial phase, this is precisely the same Bogoliubov relation arising from a two-
mode squeezed operator U (ε), Equation (123). Moreover, the unitary transformation (155) does
not change the incoming or outgoing vacua. As a result, the “in” vacuum can be regarded as a
two-mode squeezed state for the “out” modes, and the spontaneous production of outgoing AH
modes simultaneously describes both the Andreev and Hawking effects,

〈0in| b̂†
AH (ω)b̂AH (ω′) |0in〉 = δ(ω−ω′)sinh2 r (ω) = δ(ω−ω′)

[|Sud2(ω)|2 +|Sd1d2(ω)|2] . (157)

Thus, in the quantum optics jargon, the joint AH effect is nothing else than a non-degenerate
parametric amplifier, where the outgoing AH mode is the signal and the outgoing partner d2
mode is the idler. Furthermore, as discussed in Equation (125), the reduced state for the AH
mode is a thermal state, in analogy with the original prediction of Hawking. Notice, however, that
this transformation applies independently to each frequency, which results in a ω-dependent
effective temperature.

Although the AH mode is very appealing from the theoretical point of view, in practice, the
channels i , j = u,d1,d2 are still more convenient since (i) they are located in separated physical
regions and (ii) quantum states are typically defined in this basis. Specifically, a most relevant
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class of quantum states is the family of incoherent Gaussian states characterized by the following
first and second-order momenta in the incoming basis:

〈âi (ω)â j (ω′)〉 = 〈âi (ω)〉 = 0

〈â†
i (ω)â j (ω′)〉 = ni (ω)δi jδ(ω−ω′).

(158)

Since the state is Gaussian, any higher-order momentum can be put in terms of these expectation
values via Wick theorem. The above class of states includes thermal states of incoming modes. A
typical choice [19,25] is that where the incoming modes have thermalized in the comoving frame
of the condensate,

ni (ω) = 1

eβΩi−i n (ω) −1
, (159)

with Ωi−i n(ω) = Ω(ki−i n(ω)) the comoving Bogoliubov frequency in the corresponding asymp-
totic region; see Equation (52). In order to assess the quantumness of the AH effect for incoher-
ent Gaussian states (158), we compute the first- and second-order correlation functions of Equa-
tions (126) and (127) for the “out” modes at given ω,

gi j (ω) ≡ 〈b̂†
i (ω)b̂ j (ω)〉,

ci j (ω) ≡ 〈b̂i (ω)b̂ j (ω)〉,
Γi j (ω) ≡ 〈b̂†

i (ω)b̂†
j (ω)b̂ j (ω)b̂i (ω)〉,

(160)

where we obviate all Dirac delta factors; a discussion on how to regularize the infinities resulting
from δ(ω= 0) is present at the beginning of Section 4.5.

From the previous definitions, it is easy to show that the only non-zero first-order correlations
are

g I J = α†
I ·αJ ,

gd2d2 = |αd2|2 −1,

cI d2 = α†
d2 ·αI .

(161)

On the other hand, since we are working with Gaussian states, the second-order correlation
functions are expressed in terms of the first-order ones as

ΓI J = g I I g J J +|g I J |2 = |αI |2|αJ |2 +|α†
I ·αJ |2,

Γd2d2 = 2g 2
d2d2 = 2(|αd2|2 −1)2,

ΓI d2 = |cI d2|2 + g I I gd2d2 = |α†
d2 ·αI |2 +|αI |2(|αd2|2 −1).

(162)

In the above equations, we have compacted the notation by defining the complex vector

αi (ω) ≡

 Si u(ω)
p

nu(ω)

Si d1(ω)
√

nd1(ω)

Si d2(ω)
√

nd2(ω)+1

 . (163)

This is equivalent to working with complex vectors αi with components (αi ) j = Si j , and whose
scalar product is given by the metric g = diag[nu ,nd1,nd2 +1].

With the help of the above results, we quantify the quartic and quadratic CS violations
using ∆i j (ω) and Θi j (ω), Equations (135), (137), respectively. Notice that, as explained after
Equation (133), no CS violation is possible for gud1. Moreover, the condition for quartic CS
violation in the normal u − d1 correlations is equivalent to that for quadratic CS violation,
Θud1 = ∆ud1 = |gud1|2 − guu gd1d1 ≤ 0. Thus, only the anomalous correlations characterizing the
Andreev and Hawking effects can give rise to genuine quantum correlations, quantified by

∆I d2 = |α†
d2 ·αI |2 −|αI |2(|αd2|2 −1),

ΘI d2 = ∆I d2.
(164)
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Similarly, only anomalous processes can be entangled. Since our state is Gaussian, entanglement
is equivalent to the condition P I d2(ω) < 0, Equation (148), where the GPH function reads

P I d2 =−∆I d2[(g I I +1)(gd2d2 +1)−|cI d2|2]. (165)

Since (g I I +1)(gd2d2 +1) ≥ |cI d2|2, Equation (134), we observe that, for the class of states (158),
entanglement, quadratic and quartic CS violations are all equivalent conditions, ∆I d2(ω) >
0. Therefore, we can use ∆I d2(ω) simultaneously as both entanglement and CS witness. By
invoking the pseudounitarity of S, Equation (59), a simple explicit expression for ∆I d2 can be
derived:

∆I d2 = |S I d2|2(1+nu +nd1 +nd2)−|Sd2d1|2nu −|Sd2u |2nd1

−|S I ′u |2nd1nd2 −|S I ′d1|2nund2 −|S I ′d2|2nund1, (166)

where here I ′ = d1,u is the complementary normal channel to I = u,d1.
We compute ∆I d2(ω) for different BH solutions assuming a thermal quantum state in the in-

coming channels, Equations (158), (159). In particular, at zero temperature, there is entangle-
ment across the whole Andreev–Hawking spectrum,

∆I d2(ω,T = 0) = |S I d2(ω)|2 > 0. (167)

At finite temperature, ni (ω) ̸= 0; in particular, nu(ω) is the only divergent occupation number
since Ωu−in(ω) ∼ ω at low frequencies, while the other comoving frequencies are finite at zero
frequency since their wavevector is ki−in(ω = 0) = kBCL, i = d1,d2. Moreover, by invoking
pseudounitarity and noting that |Si j (ω)|2 ∼ 1/ω only for j = d1,d2, we have that |S I d2|2 < |Sd2d1|2
in this regime, which implies that there is no entanglement close to ω ≃ 0 at finite temperature.
On the other side of the spectrum, ω ≃ ωmax, |S I d2(ω)|2 ∼ p

ωmax −ω, and entanglement is lost
again.

The results for the non-resonant BH solutions of Figure 2 are depicted in Figure 5. We observe
that, for the flat-profile model (left column), entanglement only survives at low temperatures and
high frequencies for both Andreev and Hawking radiation. However, for the delta and waterfall
models (center and right columns, respectively), entanglement is present even at relatively high
temperatures of the order of the chemical potential for the Hawking effect (upper row), with
a significant reduction of the entanglement signal for the Andreev effect (lower row). These
features can be understood from (i) the smallness of ωmax for the flat-profile model results in
large occupation numbers ni (ω) even at low temperatures, and (ii) for the delta and waterfall
models, |Sd1d2(ω)|2 ≪|Sud2(ω)|2 in the relevant part of the spectrum, explaining the reduction of
the Andreev entanglement.

The above picture is modified for the resonant structures of Figure 3, as shown in Figure 6.
For the double-delta configuration (left column), there is a strong entanglement signal near
the resonant peak, close to the zero-temperature value even at high temperatures for both
the Andreev and Hawking effects. For the resonant flat-profile configuration (right column),
although entanglement is lost for low temperatures because of the smallness ofωmax, the Andreev
entanglement signal is now larger than the Hawking one close to the resonant peak since there
|Sd1d2(ω)|2 > |Sud2(ω)|2. These results clearly demonstrate the potential of resonant structures
for studying the quantumness of the AH effect, in particular that of the Andreev effect, greatly
attenuated in non-resonant structures.

To conclude the discussion, we examine the physical implications of both incoherent and
Gaussianity conditions. Gaussianity results from the BdG approximation, see Equation (29), and
it is only expected to be broken in a strongly interacting regime beyond Bogoliubov. In 1D, this
regime is only achieved at low densities (see discussion after Equation (207)). On the other hand,
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Figure 5. Entanglement witness ∆I d2 as function of ω for an incoherent thermal Gaussian
state, Equations (158), (159). Different colors label different temperatures, as indicated in
the legend of each panel. (a)–(c) ∆ud2 for the BH solutions of Figures 2a–c. (d)–(f) Same as
(a)–(c) but for ∆d1d2.

Table 1. Logical relations between the different quantum criteria considered here, where
CS2, CS4 stand for quadratic and quartic CS violations, and EI means “Entanglement
independent”

Incoherent Gaussian CS4 CS2 GPH
✓ ✓ ⇔ GPH ⇔ GPH ⇔ Entanglement
✓ × EI ⇔ GPH ⇒ Entanglement
× ✓ EI ⇒ GPH ⇔ Entanglement
× × EI ⇒ GPH ⇒ Entanglement

incoherence results from a stationary description in which the incoming modes that eventually
scatter at the horizon are populated in the asymptotic regions, for instance by a thermal bath.

If we remove the incoherence in the incoming basis but not Gaussianity, the GPH criterion is
still equivalent to entanglement. However, the quadratic CS violation becomes only a sufficient
condition for the GPH criterion and the quartic CS violation is then independent of the GPH cri-
terion (see Equation (150) and subsequent discussion). On the other hand, if we remove Gaus-
sianity but not incoherence, the GPH criterion, now only a sufficient entanglement condition, is
independent from the quartic CS violation but equivalent to the quadratic CS violation. For a
general state which is neither Gaussian nor incoherent in the incoming basis, the quadratic CS
violation is only a sufficient condition for the GPH criterion, which in turn is a sufficient con-
dition for the presence of entanglement; all of them are independent from quartic CS violation.
The above logical relations are summarized in Table 1.

4.5. Experimental considerations and conceptual exports

Experimental proposals for the detection of CS violation and entanglement in an analogue
context were performed using time-of-flight (TOF) techniques in Ref. [23] (see also Ref. [127]),
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Figure 6. Entanglement witness ∆I d2 as function of ω for an incoherent thermal Gaussian
state, Equations (158), (159). Different colors label different temperatures, as indicated in
the legend of each panel. (a)–(b) ∆ud2 for the resonant BH solutions of Figures 3a,b. (c)–(d)
Same as (a)–(b) but for ∆d1d2.

and density–density correlations in Ref. [128]. A regularization procedure for the infinities arising
from the Dirac delta factors ignored in Equation (160), based on the use of windowed Fourier
transforms, was presented in Refs [23, 26] for each experimental scheme, respectively. The
first claimed observation of the Hawking effect [31] was indeed based on the detection of the
quadratic CS violation ∆ud2 > 0 from the measurement of density–density correlations. Later
observations of the Hawking effect [32, 33], although exhibiting a more accurate agreement with
the theoretical prediction for the Hawking correlations cud2(ω), did not address the question
of entanglement or CS violation. Entanglement in the Andreev–Hawking effect still represents
an active topic of research, and it can be of interest for quantum technologies, since then an
analogue horizon behaves as a source of entangled phonons.

Remarkably, the concepts and techniques discussed here to signal quantum correlations can
be exported to qudits through the P-representation developed in Ref. [129]. For simplicity, we
consider the particular case of a qubit, i.e., a two-level quantum system consisting of two states
|+〉 , |−〉. Furthermore, for the sake of definiteness, we identify these states as spin projections
along the z-axis of a spin-1/2 particle, σz |±〉 = ±|±〉, although the discussion can be trivially
adapted to any type of qubit by using the pseudospin formalism.
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The quantum state of a spin-1/2 particle is described by a 2×2 density matrix of the form

ρ = ∑
n,m=±

ρnm |n〉〈m| = I2 +B ·σ
2

(168)

with In the n × n identity matrix and σ a vector containing the Pauli matrices. The Bloch
vector B fully determines the quantum state, representing the spin polarization of the particle,
B = 〈σ〉 = Tr[σρ], where we have invoked the trace orthogonality of the Pauli matrices, Tr[σi ] = 0,
Tr[σiσ j ] = 2δi j . The above expression can be regarded as the qubit version of the Fock expansion
(108), where the spin states |±〉 play the role of the number states |n〉. Actually, the Fock space of
a fermion mode is also a qubit, spanned by the two number states |n〉, n = 0,1.

The analogue of the coherent states |α〉 are the spin-coherent states |n̂〉,
|n̂〉 = cos

θ

2
e−i φ2 |+〉+ sin

θ

2
ei φ2 |−〉 , (169)

which are spin eigenstates with maximum projection along the direction of the unit vector
n̂ = [sinθcosφ, sinθ sinφ,cosθ], (n̂ ·σ) |n̂〉 = |n̂〉. These states also form an overcomplete basis
as

|〈n̂|n̂′〉|2 = 1+ n̂ · n̂′

2
,

1

2π

∫
dΩ |n̂〉〈 n̂| = ∑

n=±
|n〉〈n| = 1, (170)

where Ω is the solid angle associated to the unit vector n̂. Moreover, there are spin-squeezed
states for larger total spin [130], which play a central role in metrology.

The spin-coherent basis allows for a P-representation,

ρ =
∫

dΩ P (n̂) |n̂〉〈 n̂| ,
∫

dΩ P (n̂) = 1. (171)

The function P (n̂) is also a quasi-probability distribution, representing the spin analogue of the
Glauber–Sudarshan P-function. Since the density matrix (168) is diagonalized in the |±n̂〉 basis,
with n̂ ∥ B, P (n) can be always chosen as non-negative for one qubit.

Genuine quantum signatures arise when considering two spin-1/2 particles, labeled as i , j ,
whose total quantum state is described by a 4×4 density matrix

ρ = I4 +Bi ·σi +B j ·σ j +σi ·C ·σ j

4
, (172)

with σi , j a vector containing the Pauli matrices in each subspace, Bi , j the individual spin polar-
izations, and C the spin-correlation matrix. From the definition of separability, Equation (138),
and by using that any one-qubit state is diagonalized in the spin-coherent basis, we find that sep-
arability for two-qubit states is equivalent to the existence of a non-negative P-representation,

ρ =
∫

dΩi dΩ j P (ni ,n j ) |ni ni 〉〈ni n j | , P (ni ,n j ) ≥ 0. (173)

Hence, the absence of a non-negative P representation is automatically a signature of entangle-
ment. This implies that any CS violation is then a sufficient condition for entanglement. For
instance,

|Tr[C]| = |〈σi ·σ j 〉| =
∣∣∣∣∫ dΩi dΩ j P (ni ,n j )ni ·n j

∣∣∣∣
≤

∫
dΩi dΩ j P (ni ,n j )|ni ·n j |

≤
∫

dΩi dΩ j P (ni ,n j ) = 1 (174)

is a classical CS inequality, based on the non-negativity of the P-function. Qualitatively, we can
understand this CS inequality as the fact that the classical average of the scalar product of two
unit vectors (such as the spin orientations ni ,n j ) is never larger than one. Thus,

∆≡−Tr[C]−1 > 0 (175)

represents a CS violation that provides an entanglement witness.
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Using the analogies above as a pipeline, and inspired by the techniques discussed here for
the study of quantum Andreev–Hawking radiation, as well as by the fact that the Standard Model
is based on a relativistic quantum field theory in a flat spacetime, it was recently shown that
quantum correlations can be also studied at the LHC [56]. In particular, it was proven that the
spin quantum state of a pair of top-antitop quarks, the most massive fundamental particles
known to exist, can be fully reconstructed from their decay products, implementing the so-called
quantum tomography in quantum information jargon. This is possible because the large top
mass is translated into a short lifetime that avoids any other process, including hadronization, to
affect its spin before the decay.

Another remarkable source of inspiration was the study of quantum steering in Hawking ra-
diation by Robertson, Michel and Parentani [131], which directly motivated the analysis of steer-
ing in top quarks [132]. In general, the study of quantum information in high-energy physics is
becoming an active topic of research (see for instance Refs [133–143]); the interested reader is re-
ferred to Ref. [59] for a pedagogical introduction to the topic, aimed at an audience outside par-
ticle physics. Moreover, the experimental proposal of Ref. [56] has been implemented by both
the ATLAS and CMS collaborations [57, 58], leading to the first observation of entanglement in
quarks and to the highest-energy entanglement detection ever achieved. Specifically, the entan-
glement witness (175) was directly measured from the angular distribution of the separation be-
tween the leptons arising from the top-antitop decay, obtaining ∆ > 0 with more than 5σ (the
standard candle for discovery in particle physics), which also represents the violation of a CS
inequality.

5. Black-hole lasers

Another main topic of research involving resonant analogue configurations is the so-called
black-hole laser (BHL) [48]. The BHL emerges in a configuration similar to that of resonant
BH solutions, but now the asymptotic downstream region is again subsonic. As a result, a
BHL displays a pair of BH/WH horizons, and the resulting finite-size supersonic cavity be-
comes unstable due to the successive bouncing of Andreev–Hawking radiation between the
horizons.

Qualitatively, we can understand the BHL instability as the partner d2 modes from the
Andreev–Hawking effect being reflected at the WH horizon as d2-in modes that bounce back to-
wards the BH, further stimulating the production of Andreev–Hawking radiation and thus leading
to a process of self-amplification, similar to that occurring in a lasing cavity. Quantitatively, the
BHL effect is characterized by a discrete BdG spectrum of dynamical instabilities, computed by
extending the usual scattering problem (see Equation (76) and subsequent discussion) to com-
plex frequencies and retaining only the asymptotically bounded modes outside the cavity. This
procedure bears some resemblance to the computation of the discrete spectrum of bound states
for an attractive potential in the Schrödinger equation, where the usual scattering problem for
positive energies is extended to negative energies, keeping only the exponentially decaying solu-
tions at infinity.

A systematic procedure for the quantization of the unstable lasing modes was provided by
Finazzi and Parentani [64]. For simplicity, we discuss the case of a single unstable BdG mode
zI with complex frequency ω = γ+ iΓ, where γ is the real, oscillatory part of the frequency, and
Γ is the imaginary part of the frequency, determining the growth rate of the instability. We also
assume that the mode is non-degenerate, which means that γ ̸= 0 so ω ̸= −ω∗. In general, any
dynamically unstable mode zI has associated a stable mode zS with frequency ω∗ [60]. Their
eigenvalue equation reads

M0zI =ωzI , M0zS =ω∗zS , (176)
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with M0 the BdG matrix operator, Equation (12). Because of their complex frequency, both
modes have zero norm (zS |zS ) = (zI |zI ) = 0; see Equation (15). However, we can choose their
normalization such that

(zS |zI ) =−(z̄I |z̄S ) = 1. (177)

Properly normalized states are defined through

Z+ ≡ 1p
2

(zI + zS ), Z− ≡ 1p
2

(z̄I − z̄S ), (178)

satisfying

(Z+|Z+) = (Z−|Z−) = 1, (Z̄−|Z+) = (Z−|Z+) = 0. (179)

As a result, their quantum amplitudes

â± = (Z±|Φ̂) (180)

do behave as proper annihilation operators (see Equation (24)). Their time evolution is easily
derived from the quantum amplitudes of the original complex eigenmodes,

âI = (zS |Φ̂) = 1p
2

(â++ â†
−), âS = (zI |Φ̂) = 1p

2
(â+− â†

−) (181)

which are not annihilation operators as [âI , â†
I ] = [âS , â†

S ] = 0, [âI , â†
S ] = [âS , â†

I ] = 1. Nevertheless,
they evolve as expected from Equation (25),

i∂t âI = (zS |M0Φ̂) =ωâI =⇒ âI (t ) = âI e−iωt ,

i∂t âS = (zI |M0Φ̂) =ω∗âS =⇒ âS (t ) = âS e−iω∗t .
(182)

To invert the relation, it is quite convenient to employ matrix notation. First, Equation (181) can
be rewritten as [

âI

âS

]
=U

[
â+
â†−

]
, U ≡ e−i π4 σyσz = 1p

2

[
1 1
1 −1

]
. (183)

The matrix U =U † =U−1 describes a spin inversion in the x–y plane plus a rotation ofπ/2 around
the y-axis, satisfying Uσx,zU † = U †σx,zU = σz,x and UσyU † = U †σyU = −σy . In this notation,
the time evolution of the amplitudes of the complex modes simply reads[

âI (t )
âS (t )

]
=

[
e−iωt âI

e−iω∗t âS

]
= e−iγt eΓtσz

[
âI

âS

]
. (184)

As a result, we trivially find[
â+(t )
â†−(t )

]
=U †

[
âI (t )
âS (t )

]
= e−iγt eΓtσx

[
â+
â†−

]
= e−iγt

[
coshΓt sinhΓt
sinhΓt coshΓt

][
â+
â†−

]
. (185)

This is a similar evolution to that of a non-degenerate parametric amplifier. This can be better
seen by examining the contribution from these modes to the field spinor Φ̂ of Equation (22),

Φ̂L = Z+â++Z−â−+ Z̄+â†
++ Z̄−â†

− = zI âI + zS âS + z̄I â†
I + z̄S â†

S . (186)

When inserted into the Bogoliubov expansion for the grand-canonical Hamiltonian (29), which
governs the dynamics, we obtain an orthogonal contribution to that of the regular Bogoliubov
sector with real frequencies,

K̂L = 1

2
(Φ̂L|M0Φ̂L) = [â†

I â†
S ]

[
0 Ω∗

Ω 0

][
âI

âS

]
= [â†

+ â−](γσz −Γσy )

[
â+
â†−

]
= γ(â†

+â+− â†
−â−)+ iΓ(â†

+â†
−− â+â−), (187)
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where we neglect zero-point contributions. This is precisely the same Hamiltonian of a non-
degenerate parametric amplifier (see Equation (123) and ensuing discussion). Another remark-
able feature of dynamical instability is that there is no well-defined vacuum for the unstable
modes [144]. This is immediately seen by noticing that any Bogoliubov transformation[

b̂+
b̂†−

]
= euσx

[
â+
â†−

]
=

[
coshu sinhu
sinhu coshu

][
â+
â†−

]
, (188)

leaves invariant K̂L, with each b̂± giving rise to a different vacuum.
The above derivations can be easily adapted to the case of a degenerate unstable mode, γ= 0.

This implies thatω=−ω∗, so zI , zS are proportional to z̄I , z̄S . In particular, one can set z̄I = zI and
z̄S =−zS , and thus Equation (177) is again satisfied. However, now there is only one independent
normalizable mode

Z ≡ 1p
2

(zI + zS ), Z̄ ≡ 1p
2

(zI − zS ), (189)

whose amplitude â = (Z |Φ̂) is a proper annihilation operator. Consequently, Equation (183) now
reads [

âI

âS

]
=U

[
â
â†

]
, (190)

giving rise to the time evolution[
â
â†

]
= eΓtσx

[
â
â†

]
=

[
coshΓt sinhΓt
sinhΓt coshΓt

][
â
â†

]
, (191)

which results from the grand-canonical Hamiltonian

K̂ = iΓ
(â†)2 − â2

2
. (192)

This is indeed the Hamiltonian of a degenerate parametric amplifier, where the same mode is
both the signal and the idler. Interestingly, this Hamiltonian is, after a trivial phase transforma-
tion, that of an unstable harmonic oscillator,

Ĥ =ω p̂2 − q̂2

2
=−ω (â†)2 + â2

2
. (193)

The resulting time-evolution operator e−iĤ t is just the squeezing operator (104) with a linearly
increasing amplitude ε = −iωt . Therefore, dynamically unstable modes can be understood
as unstable harmonic oscillators, in contrast to the regular Bogoliubov modes of purely real
frequency, which behave as normal harmonic oscillators.

Returning to the BHL, the above quantization procedure is applied separately to each un-
stable lasing mode. Due to the exponential parametric amplification of the lasing modes, at
some point the Bogoliubov approximation ceases to be valid and one needs to take into ac-
count higher-order interacting terms to describe the dynamics. Consequently, we separate our
discussion of the BHL effect following the three different stages of its time evolution: (i) short
times, when the dynamics is still governed by the linear BdG equations; (ii) intermediate times,
when the evolution is driven solely by the dominant unstable mode up to the saturation regime,
where the full interacting Hamiltonian is required again; and (iii) long times, when the sys-
tem reaches its final state after the collapse of the metastable state achieved in the saturation
regime.
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Figure 7. (a)–(c) BHL solutions resulting from mirroring the BH solutions of Figures 2a–c.
(d)–(f) Linear BdG spectrum of dynamical instabilities for the BHL solutions of (a)–(c). Solid
(dashed) lines represent the imaginary (real) part Γn (γn) of the complex frequencyωn . The
dash-dotted blue line is the inverse of the round-trip time. Solid (dashed) vertical lines
mark the critical lengths Ln (Ln+1/2). (g)–(i) Non-linear spectrum of stationary GP solutions
Ψn for the background configurations of (a)–(c), where the color code is chosen to match
the associated lasing modes in (d)–(f). The density profile of the initial BHL solutions (a)–(c)
is depicted as solid blue.

5.1. Short times: linear and non-linear spectra

The microscopic derivation of Ref. [64] was extended in another seminal work by Michel and
Parentani [71] using a simple analytical model based on the flat-profile configuration, Figure 2a,
where the flow velocity is homogeneous, v(x) = q , and the speed of sound is changed to c(x) =
c2 < q for |x| < L/2, Figure 7a (we still set the asymptotic subsonic sound speed to cu = 1). We
label this stationary BHL solution asΨBHL.

The discrete BdG spectrum of complex frequencies arising fromΨBHL is depicted in Figure 7d
as a function of L. The critical lengths of the cavity L = Ln at which the nth dynamically unstable
mode emerges (vertical solid lines) are given by

Ln = ϕ0 +2πn

kBCL
= L0 +nλBCL , n = 0,1. . . (194)

where

ϕ0 = 2arctan

√√√√ 1−q2

q2 − c2
2

, kBCL = 2
√

q2 − c2
2 . (195)
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This equation can be simply understood as that, after some threshold length L0 = ϕ0/kBCL at
which the first unstable lasing mode appears, the cavity gives birth to a new unstable mode
each BCL wavelength λBCL = 2π/kBCL. The lasing modes are initially degenerate, i.e., they
have purely imaginary frequency, ωn = iΓn . For lengths L > Ln+1/2, with Ln+1/2 obtained
by inserting half-integer values n + 1/2 in the above equation (vertical dashed lines), the nth
unstable mode becomes non-degenerate, developing a non-vanishing real part of the frequency
γn ̸= 0.

The dominant mode is that with the largest growth rate Γn , and determines the overall growth
rate Γ of the lasing instability, Γ = maxn Γn . For short cavities, this is typically the mode with
the largest n. However, as the cavity becomes longer and longer, the competition between the
different unstable modes becomes stronger and stronger. We can compare these exact results
with an estimation for the growth rate resulting from the qualitative picture of bouncing Hawking
radiation, Γ ∼ 1/τRT, with τRT the roundtrip time for a zero-frequency d2 mode to travel back
and forth between the horizons; the zero-frequency choice is motivated by the small value
of γn for the dominant mode observed in the plot. The result is depicted in dashed-dotted
blue line, finding that it provides a decent estimation for long cavities. An elaborated WKB
calculation shows a much more accurate agreement with the exact BdG results [71]; however,
it completely misses the existence of degenerate unstable modes, which are the dominant
ones in short cavities. Thus, WKB prescriptions can only be used reliably in the long-cavity
limit.

Interestingly, the work by Michel and Parentani [71] further established a perfect correspon-
dence between the emergence of dynamical instabilities in the BdG spectrum and the emergence
of non-linear stationary solutions in the GP equation Ψn(x), n = 0,1. . . . Specifically, these are
stationary GP solutions for the same underlying Hamiltonian that are smoothly connected (as
a function of L) to ΨBHL, sharing the same conserved current J and chemical potential µ. The
correspondence is shown in Figure 7g, where the spectrum of stationary non-linear GP solu-
tions for the largest value of L in Figure 7d is represented using the same color code of the as-
sociated lasing modes. The GP solution Ψn(x) first emerges at L = Ln as a sinusoidal oscillation
around the supersonic cavity with the BCL wavelength (see for instance Ψ3(x) in dashed-dotted
magenta), eventually becoming a non-linear cnoidal wave as the cavity enlarges. These solu-
tions have lower grand-canonical energy (31) than the original BHL solutionΨBHL, following the
hierarchy

K [Ψ0] < K [Ψ1] < K [Ψ2] < ·· · < K [ΨBHL]. (196)

Michel and Parentani [72] conjectured that all of them are also dynamically unstable ex-
cept for the ground state solution Ψ0(x), which accumulates particles in the cavity in or-
der to become fully subsonic and evaporate the horizons. It can be proven that the degen-
eracy breaking at L = Ln+1/2 of the nth unstable mode can be also attributed to the emer-
gence of a new non-linear GP solution, but this one is asymmetric and contains one soli-
ton minimum outside the cavity, thus being energetically unfavored with respect to the sym-
metric solutions Ψn(x) (i.e., their density |Ψn(x)|2 has even parity with respect to the cen-
ter of the lasing cavity). Remarkably, this non-linear spectrum of solutions is similar to
that arising in a superconductor/normal/superconductor junction [145] due to the GP–GL
correspondence.

More realistic BHL models were developed in Ref. [74], where it was shown that any BH
solution leading to a homogeneous supersonic region, as those of Figure 2, can be mirrored to
produce a WH solution by parity inversion of the Hamiltonian and time-reversal symmetry of
the GP wavefunction. By matching the two BH/WH solutions in the homogeneous supersonic
region, one obtains a symmetric BHL solution ΨBHL(x) with a homogeneous lasing cavity of
arbitrary length L. Indeed, the flat-profile BHL solution of Figure 7a is a particular example of
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this general result. Two more examples are the attractive well and double-delta BHL solutions of
Figures 7b,c, obtained from the corresponding waterfall and delta BH solutions of Figures 2b,c.
Their spectrum of dynamical instabilities is computed in Figures 7e,f, which exhibits the same
trends as the flat-profile case. In particular, the critical lengths Ln at which a new dynamical
instability emerges are also given by Equation (194), where

ϕ0 =π, kBCL = 2
√

v2
d − c2

d = 2

√
1

q2 −q2, (197)

for the attractive-well BHL solution, while for the double-delta BHL solution

ϕ0 = 4arcsin

√
1− r

2
, kBCL = 2

√
v2

d − c2
d , r = c2

d

√√√√ 2(M 2
d −1)

2Z 2c2
d +

√
q4 +8q2(1− c2

d )
, (198)

with Md = vd /cd = q/c3
d the supersonic Mach number and Z the amplitude of the delta bar-

rier; see Equations (72)–(74) and ensuing discussion for the details of the waterfall and delta con-
figurations. Each lasing mode has again associated a non-linear symmetric GP solution Ψn(x)
smoothly connected to ΨBHL(x) as a function of the cavity length, Figures 7h,i. Moreover, the
nth unstable mode also becomes non-degenerate at L = Ln+1/2, coinciding with the emergence
of an asymmetric GP solution. The inverse of the roundtrip time still provides an estimation for
the growth rate that improves for long cavities. In summary, all the trends predicted by Michel
and Parentani in Ref. [71] are further confirmed by these alternative BHL solutions. The only ex-
ception is the appearance of a dynamical instability in the attractive square well for 0 < L < L0,
labeled as the short-length (SL) mode in Figure 7e. This instability is not related to the BHL effect
itself but its origin lies in the fact thatΨBHL(x) is here smoothly connected to the soliton solution
(69) when no potential is present (L = 0). However, the soliton has larger energy than the homo-
geneous plane waveΨ0(x) = eiqx , which in turn is smoothly connected to the actual ground state,
labeled as GS in Figure 7h. Thus, the SL mode is simply a consequence of the energetic instability
of the BHL solution for any L > 0. This provides further numerical evidence for the conjecture of
Ref. [72]: in flowing scattering configurations, energetic and dynamical instability are equivalent
conditions.

5.2. Intermediate times: quantum amplification in the BHL–BCL crossover

The exponential amplification of the dominant lasing mode drives the linear Bogoliubov dynam-
ics for times Γt ≳ 1 until the saturation regime, when it typically reaches the non-linear station-
ary GP solution with the largest n. However, due to the energetic instability of the supersonic cav-
ity, the exponential growth of the dominant lasing mode can be overshadowed by the coherent
stimulation of the BCL wave resulting from the presence of an obstacle in the flow. For instance,
as originally shown in Refs [80, 81], this can be the case of the WH horizon itself in highly time-
dependent configurations, far from the fine-tuned stationary BHL solutions of Figure 7. More-
over, since the real part of the frequency of the dominant mode is very small, it contains wavevec-
tors close to that of the BCL mode, something that greatly complicates their clear distinction in
real setups [30, 33, 77–84]. All of this leads to a strong competition between the BCL and BHL
mechanisms.

We can understand coherent BCL stimulation from a simple model based on linear response
theory [75]. We consider a general stationary condensate, solution of the time-independent GP
equation (9). At t = 0, a small external perturbation described by a potential W (x, t ) is introduced.
Expanding the GP wavefunction as

Ψ(x, t ) = [
Ψ0(x)+ϕ(x, t )

]
e−iµt (199)
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in the time-dependent GP equation (5) leads, at linear order in the external perturbation, to the
classical BdG equations with a source,

[iħ∂t −M0]Φ(x, t ) = iW (x, t )zθ(x),

Φ(x, t ) =
[
ϕ(x, t )
ϕ∗(x, t )

]
, zθ(x) =

[−iΨ0(x)
iΨ∗

0 (x)

]
, (200)

where zθ is the zero-frequency Nambu–Goldstone mode associated to the spontaneous U (1)-
symmetry breaking by the coherent GP wavefunction [146]; see Equation (230) and ensuing
discussion. This equation can be solved by performing a classical expansion in terms of the
complete set of BdG eigenmodes, analogous to that of Equation (22),

Φ(x, t ) =∑
n

an(t )zn(x)e−iωn t +a∗
n(t )z̄n(x)eiωn t , (201)

where we subtract here the intrinsic time evolution of each mode. This leads to

∂t an = eiωn t (zn |W (t )zθ) =⇒ an(t ) =
∫ t

0
dt ′ eiωn t ′ (zn |W (t ′)zθ). (202)

Thus, for sufficiently long times, the amplitude of the collective modes, corresponding here to
the BdG modes, is determined by the Fourier spectrum of the external perturbation, as expected
from the usual theory of linear response. In the specific case of a supersonic condensate,
since the BCL mode has zero-frequency, it is resonantly stimulated by any static obstacle in the
supersonic flow: this is precisely the origin of Landau criterion for superfluidity. Notice that this
stimulation is coherent, imprinted on the GP wavefunction, and thus it has a completely classical
nature.

In order to study the BHL–BCL crossover, we first model the initial background condensate
(before the BHL and/or BCL onsets) within the bulk of the lasing cavity by a supersonic plane
wave of the form Ψ0(x) ≃ p

n0eiq0x , with an associated healing length ξ0. For the analysis, we
focus on the expectation values of the density and its correlations, measurable in the laboratory
through in situ imaging after averaging over ensembles of repetitions of the experiment [28,
30–33]. After expanding the density in terms of the quantum fluctuations of the background
condensate, one obtains

n̂(x, t ) = Ψ̂†(x, t )Ψ̂(x, t ) = n0 +δn̂(1)(x, t )+δn̂(2)(x, t ),

δn̂(1)(x, t ) =Ψ∗
0 (x)ϕ̂(x, t )+Ψ0(x)ϕ̂†(x, t ) =−iz†

θ
σzΦ̂,

δn̂(2)(x, t ) = ϕ̂†(x, t )ϕ̂(x, t ),

(203)

where we separate the linear contribution in the field fluctuations δn̂(1)(x, t ) (the same of Equa-
tion (49), obtained within the BdG approximation), from the quadratic contribution δn̂(2)(x, t ).
Since dimensional analysis implies that the quantum fluctuations aroundΨ0 scale as ϕ̂∼ 1/

√
ξ0,

we have the scalings

δn̂(1) ∼
√

n0

ξ0
, δn̂(2) ∼ 1

ξ0
. (204)

Using these results, we characterize the BHL and BCL mechanisms through the first-order
correlation function

G (1)(x, t ) ≡ 〈n̂(x, t )〉
n0

−1, (205)

which measures the amplitude of the developing density modulation above the background
condensate, and the normalized density–density correlation function

G (2)(x, x ′, t ) ≡ n0ξ0g (2)(x, x ′, t ), (206)



46 Juan Ramón Muñoz de Nova et al.

Figure 8. Schematic depiction of the three different regimes of the BHL–BCL crossover
using an analogy with an unstable pendulum. (a) Quantum BHL: Quantum fluctuations
cause the unstable equilibrium position to collapse due to the Heisenberg uncertainty
principle. (b) Classical BHL: A small kick on the pendulum displaces it some angle θ

from the unstable equilibrium position, falling down with a well-defined classical trajectory
as a result. (c) BCL: An external force (horizontal arrows) pushes the pendulum out of
equilibrium, governing the dynamics instead of gravity.

which in turn measures the quantum fluctuations around the density modulation, g (2)(x, x ′, t )
being the relative density–density correlation function

g (2)(x, x ′, t ) ≡ 〈n̂(x, t )n̂(x ′, t )〉−〈n̂(x, t )〉〈n̂(x ′, t )〉
n2

0

≃ 〈δn̂(1)(x, t )δn̂(1)(x ′, t )〉
n2

0

∼ 1

n0ξ0
, (207)

where we take the leading contribution in the Bogoliubov approximation. The relative density–
density correlation function g (2) provides the relative amplitude of the quantum fluctuations, so
we can regard (n0ξ0)−1 as the initial strength of the quantum fluctuations, which must be small
for the Bogoliubov approximation to be valid, n0ξ0 ≫ 1. On the other hand, the normalization
of G (2) ensures that it is a dimensionless function that does not depend explicitly on n0 in the
Bogoliubov approximation, only implicitly through the healing length ξ0. Since both BHL and
BCL mechanisms involve modes with well-defined wavevectors within the lasing cavity, we will
use the Fourier transforms in the supersonic region of the above observables as figures of merit,

G (1)
peak(t ) ≡ maxk |G (1)(k, t )|,

G (2)
peak(t ) ≡ maxk,k ′ |G (2)(k,k ′, t )|.

(208)

In real space, this peaked Fourier structure is translated into a ripple in the ensemble-averaged
density profile and into a checkerboard pattern in the density–density correlations, respectively.

By borrowing the analogy with an unstable pendulum from Equation (193), we can distinguish
three main regimes in the BHL–BCL crossover, represented in Figure 8, depending on the inter-
play between quantum fluctuations and classical BCL stimulation, where the former are con-
trolled by the dimensionless amplitude

AQF ∼ ϕ̂

Ψ0
∼ δn̂(1)

n0
∼ 1√

n0ξ0

≪ 1, (209)

while the latter is controlled by the relative amplitude of the coherent BCL wave with respect to
the background condensate,

ABCL ∼ ϕ

Ψ0
. (210)
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5.2.1. Quantum BHL

When ABCL ≪ AQF ≪ 1, the BHL instability is purely triggered by quantum fluctuations
(e.g., there is no BCL stimulation, ABCL = 0), and the dynamics is driven by the parametric
amplification of the dominant lasing mode zI , whose frequency and quantum amplitude are
ω = γ+ iΓ and âI , respectively. The contribution of the dominant mode to the quantum field
fluctuations is

Φ̂(x, t ) ≃ eΓt
[

zI (x)e−iγt âI + z̄I (x)eiγt â†
I

]
. (211)

In a quantum BHL, the phase of the amplitude of the dominant mode is expected to be random
and hence we can take 〈âI âI 〉 ≃ 0. This assumption yields that G (1)

peak,G (2)
peak behave as

G (1)
peak(t ) ∼ 〈δn̂(2)〉

n0
∼ e2Γt

n0ξ0
,

G (2)
peak(t ) ∼ n0ξ0

〈δn̂(1)δn̂(1)〉
n2

0

∼ e2Γt . (212)

Hence, for a quantum BHL, the correlation functions G (1)
peak(t ), G (2)

peak(t ) scale quadratically in the

field fluctuations. In the case of G (1)
peak, this is because the Z2 symmetry of a purely quantum BHL

sets 〈ϕ̂(x, t )〉 = 0 and thus, 〈δn̂(1)(x, t )〉 = 0, as originally discussed by Michel and Parentani [72].
In the pendulum analogy, the unstable equilibrium position is the initial BHL solution and

gravity is the lasing instability. Due to the Heisenberg uncertainty principle, the unstable equi-
librium position collapses at the quantum level, and then the pendulum falls, Figure 8a. This
is akin to the parametric amplification of the lasing instability, where the Z2 symmetry can be
understood as that of the unstable equilibrium position of the pendulum.

The exponential growth of the dominant mode ceases when the system reaches the saturation
regime, corresponding to one of the stationary GP solutions of the spectrum (typically, that with
the largest n), where the density modulation becomes of the order of the background density
itself, G (1)

peak ∼ 1; see lower row of Figure 7. Since this saturation stems from the amplification

of the quantum fluctuations of the dominant mode, we also have that g (2)
sat ∼ 1. As a result, the

saturation values of both correlation functions are roughly

G (1)
sat ∼ 1 ∼ e2Γtsat

n0ξ0
,

G (2)
sat ∼ n0ξ0 ∼ e2Γtsat ,

(213)

where tsat is the time needed to reach saturation,

tsat ∼ lnn0ξ0

2Γ
. (214)

5.2.2. Classical BHL

Here, AQF ≪ ABCL ≪ 1, so BHL amplification still dominates the dynamics but the seed of
the instability is now the classical amplitude of the BCL wave in the condensate, leading to a
well-defined mean-field trajectory. Specifically, the perturbation of the flow gives a classical
coherent amplitude to the dominant lasing mode through the stimulation of the BCL wave (see
Equation (199) and subsequent results), which is then exponentially amplified as

Φ(x, t ) ≃ eΓt [
zI (x)e−iγt aI + z̄I (x)eiγt a∗

I

]
. (215)

Hence, 〈δn̂(1)〉 ̸= 0, and the Z2 symmetry is broken,

G (1)
peak(t ) ∼ 〈δn̂(1)〉

n0
∼ ABCLeΓt . (216)
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Precisely because of its classical deterministic character, at the linear level the BCL amplitude
does not show up in the density–density correlation function, and G (2)

peak(t ) still follows Equa-
tion (212) in this regime. Therefore, the Z2 symmetry-breaking implies now

G (1)
peak(t ) ∼ eΓt , G (2)

peak(t ) ∼ e2Γt . (217)

In the pendulum analogy, a classical BHL is akin to separate the pendulum some small
angle θ from its equilibrium position, which consequently falls following a well-defined classical
trajectory, Figure 8b. Here, the angle θ plays the role of the Cherenkov amplitude ABCL that seeds
the BHL instability, breaking the original Z2 symmetry of the problem.

In the saturation regime, G (1)
peak ∼ 1, which now implies that

G (1)
sat ∼ 1 ∼ ABCLeΓtsat . (218)

Therefore, the saturation time is predicted to behave as

tsat ∼− ln ABCL

Γ
, (219)

and then

G (2)
sat ∼ e2Γtsat ∼ A−2

BCL. (220)

5.2.3. BCL

When the BCL amplitude is highly non-linear, AQF ≪ ABCL ∼ 1, it dominates the mean-field
dynamics towards the saturation regime, overshadowing the lasing mechanism. Since the BCL
stimulation depends on the specific perturbation of the flow (see Equation (202)), in general, no
analytical formula is available for the evolution of G (1)

peak(t ),G (2)
peak(t ). In the pendulum analogy, the

BCL regime is akin to applying a strong external force to the pendulum that overcomes gravity,
Figure 8c, so its evolution depends on the specific force.

Regarding saturation, a large BCL amplitude is no longer described by linear response theory,
but it rather requires the full GP equation. The saturation amplitude then scales as G (1)

sat ∼ A2
BCL

by definition of BCL amplitude. Regarding the density fluctuations G (2), the sharp peaked
structure of the BCL wave now acts as a new mean-field background over which fluctuations
evolve. This gives rise to a checkerboard pattern in the correlation function whose origin is
completely different to that from a BHL, which there stems from the exponential amplification of
the quantum fluctuations of the lasing modes, with wavevectors close to the BCL one. Therefore,
we can expect G (2)

sat = F (ABCL), where F is in general a monotonically increasing function of
ABCL that also depends on the other parameters of the background flow. Due to the strong BCL
stimulation, the saturation time is essentially limited by tsat ≳ τBCL, where τBCL is the time that it
takes the BCL wave to expand along the whole lasing cavity.

5.2.4. Upshot

All the above scalings were originally derived in Ref. [84] within a model based on a flat-profile
BHL solution (Figure 7a) with a delta barrier placed exactly at the WH horizon to stimulate BCL
radiation, which allows to isolate the contribution of both mechanisms to the dynamics, finding
a good agreement with numerical results. Interestingly, it was also stressed there that each
regime of the BHL–BCL crossover can be characterized according to its efficiency as a quantum
amplifier. Specifically, we measure the quantum amplification using the relative density–density
correlations, following Equation (207). In the initial state,

g (2)
peak(t = 0) ∼ 1

n0ξ0
≪ 1, (221)
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Table 2. Summary of the different scalings for the three regimes of the BHL–BCL crossover:
quantum BHL, classical BHL, and BCL

G (1)
peak(t ) G (2)

peak(t ) G (1)
sat G (2)

sat tsat Monotonic

Quantum BHL ∼e2Γt /n0ξ0 ∼e2Γt ∼1 ∼ n0ξ0 ∼ lnn0ξ0/2Γ No

Classical BHL ∼ABCLeΓt ∼e2Γt ∼1 ∼e2Γtsat ∼ A−2
BCL ∼− ln ABCL/Γ No

BCL – – ∼A2
BCL F (ABCL) ≳τBCL Yes

There is no analytical prediction for G (1)
peak(t ),G (2)

peak(t ) in the BCL regime since they depend on

the particular stimulation source. F (ABCL) is an increasing function of ABCL and τBCL is the
time that it takes the BCL wave to reach the BH horizon. The column “Monotonic” indicates a
monotonic dependence on the background parameters of the flow.

which is the input of the quantum amplifier, while the output is the saturation value g (2)
sat. This

implies that the gain of the quantum amplifier G is directly proportional to the saturation value
G (2)

sat since

G ≡ g (2)
sat

g (2)
peak(t = 0)

∝ n0ξ0g (2)
sat =G (2)

sat. (222)

For each regime, we find

GQBHL ∼ n0ξ0,

GCBHL ∼ e2Γtsat ,

GBCL ∼ F (ABCL).

(223)

This means that a quantum BHL behaves as a non-linear quantum amplifier, since it amplifies the
initial quantum fluctuations up to the same saturation amplitude g (2)

sat ∼ 1, so the gain depends
on the input amplitude 1/n0ξ0. On the other hand, classical BHL and BCL do behave as linear
quantum amplifiers (i.e., their gain does not depend on the initial quantum strength 1/n0ξ0). In
a classical BHL, the gain is exponentially large in the saturation time tsat, which in turn decreases
with the BCL amplitude ABCL. This is because tsat is the lasing time during which the exponential
amplification of quantum fluctuations takes place. Hence, for increasing ABCL, the system starts
closer to the saturation regime and less amplification is needed to reach it. In the BCL regime, the
gain is exponentially smaller as compared to that of a classical BHL since there is no microscopic
mechanism of exponential amplification, and the enhancement of quantum fluctuations stems
just from the large BCL modulation of the background mean-field density. This also implies
that the function F (ABCL) determining the gain increases with ABCL, in stark contrast with the
decrease expected for lasing amplification. Thus, the dependence of the gain with respect to the
BCL amplitude can be used to distinguish between classical BHL and BCL in experiments.

It is also remarkable that, in the quantum BHL and BCL regimes, the behavior of G (1)
peak,G (2)

peak
is correlated since they are dominated by the same mechanism (either exponential amplification
of quantum fluctuations or classical BCL stimulation), while classical BHL is a hybrid regime
where G (1)

peak has a classical nature while G (2)
peak has a quantum one. Another qualitative criterion

of distinguishability is the non-monotonic behavior of the growth rate of the density ripple and
the checkerboard pattern of the density–density correlations with respect to the parameters
determining the background flow (for instance, the cavity length L, as shown in central row
of Figure 7), in contrast with the smooth behavior expected for BCL stimulation. This non-
monotonicity is a typical feature of resonant structures, and it is also observed in the peak
structure of the Andreev–Hawking spectrum discussed in Section 3 [21]. A summary of the main
results for each regime is presented in Table 2.
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5.3. Long times: spontaneous Floquet states

As explained, the lasing instability grows up to the saturation regime, where it reaches a certain
stationary GP solution. However, this solution is also dynamically unstable, with a lifetime much
longer than that of the initial BHL solution, and eventually collapses. After some (possibly
very long) transient, where the system may intercept a number of intermediate metastable GP
solutions, it was numerically observed [73] that the flat-profile BHL of Figure 7a only has two
possible fates: it either reaches the true ground state (solid black line in Figure 7g) or the so-
called Continuous Emission of Solitons (CES) state, where the system self-oscillates periodically
while continuously emitting solitons into the downstream region. Due to its periodic nature, the
CES state has been argued to be the bona-fide black-hole laser [73].

Both trajectories are represented in Figures 9a,b, where we show the time evolution of the
density |Ψ(x, t )|2 for two different flat-profile BHL configurations where some initial noise has
been added to trigger the BHL instability. We take a short cavity L = 2 in both cases since that
implies a large growth rate for the lasing instability as well as only one stationary GP solution
in the non-linear spectrum, the ground state Ψ0(x), considerably shortening the transient to-
wards the final state. In Figure 9a, for q = 0.7,c2 = 0.2, the system directly reaches the stable
ground state Ψ0(x) in the saturation regime (vertical red stripe centered at x = 0). After fur-
ther increasing the initial flow velocity to q = 0.9, Figure 9b, the system also approaches the
ground state by increasing the density in the cavity while expelling a gray soliton upstream to
conserve particle number; however, now the flow velocity is high enough to drag the soliton back
to the cavity (blue half-rings at the left of the vertical red stripe), which then passes to the down-
stream region and travels along the flow (diagonal blue lines downstream). The process is ac-
companied by the emission of waves (diagonal yellow lines upstream) to ensure conservation
of particle number and energy. The passage of the dragged soliton through the cavity restarts
the cycle, giving rise to a periodic behavior; this is the physical mechanism behind the CES
state.

The final state only depends on the background parameters of the flow (L, q,c2), being quite
insensitive to the particular details of the transient or the initial noise. This gives rise to a dy-
namical phase diagram, shown in Figure 9c as a function of (L, q) for fixed c2 = 0.2. Above
the green region of dynamical stability (denoted as DS), whose upper boundary is given by
the condition L = L0(q,c2) (see Equations (194), (195)), the initial BHL solution first asymptot-
ically reaches the ground state, denoted as GS (blue region). Above some critical flow velocity
q = qc (L,c2), numerically obtained, the final state is the CES state (red region), which can be then
regarded as a non-linear extension of the Landau criterion. Later work [85] numerically showed
that the final fate of BHL solutions from an attractive well (Figure 7h) is also either the ground
state or the CES state, suggesting the universality of the long-time behavior of a BHL. Moreover,
it was observed that the same CES state can be reached even without starting from a BHL so-
lution, indicating that the CES state is an intrinsic state of the system, and not some fine-tuned
trajectory.

This observation, along with the periodicity of the CES state, led to identify a novel type
of quantum state [86]: the so-called spontaneous Floquet state, which is a state of a time-
independent Hamiltonian that oscillates like a Floquet state due to many-body interactions,
without the need of external periodic driving. The emergence of a spontaneous Floquet
state can be easily understood from the time-dependent GP equation for a time-independent
Hamiltonian, which is a non-linear Schrödinger equation of the form

i∂tΨ(x, t ) = HGP(x, t )Ψ(x, t ), HGP(x, t ) =−∂
2
x

2
+V (x)+ g (x)|Ψ(x, t )|2, (224)
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Figure 9. (a) Spatio-temporal density profile |Ψ(x, t )|2 for an initial flat-profile BHL solu-
tion with c2 = 0.2, L = 2 and q = 0.7. Some random noise is initially added to trigger the
BHL instability. (b) Same as (a) but now q = 0.9. (c) Dynamical phase diagram as a function
of (L, q) with fixed c2 = 0.2 for the final state of a flat-profile BHL, where SB denotes that
the cavity is subsonic and DS denotes the dynamically stable region. (d) Fourier spectrum
|Ψ(x,ω)|2 of the simulation in (b) once in the CES state.

where we allow for a possible inhomogeneous coupling constant (as it is the case of a flat-profile
BHL configuration). Notice that the only possible time dependence of HGP(x, t ) results from
that of the GP wavefunction itself. A periodic density |Ψ(x, t )|2, as that of the CES state, implies
an effective periodic Hamiltonian, HGP(x, t +T ) = HGP(x, t ), where T is the oscillation period.
Self-consistently,Ψ(x, t ) becomes a Floquet state of its own periodic Hamiltonian,

Ψ(x, t ) =Ψ0(x, t )e−iµ̃t , Ψ0(x, t ) =
∞∑

n=−∞
un(x)e−inω0t , (225)

with Ψ0(x, t +T ) =Ψ0(x, t ), ω0 = 2π/T , and µ̃ the quasi-chemical potential, defined modulo ω0.
By inserting this expansion into the GP equation, we get self-consistent equations for the Floquet
components un(x),

nω0un(x) =
[
−∂

2
x

2
+V (x)− µ̃

]
un(x)+

∞∑
m=−∞

∞∑
k=−∞

g (x)u∗
k (x)uk+n−m(x)um(x). (226)

The CES state provides a particular example of spontaneous Floquet state, as can be seen from
its Fourier transform Ψ(x,ω), represented in Figure 9d. We observe that the Fourier spectrum
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consists of a series of equispaced lines at frequencies ω= µ̃+nω0, which can be identified as the
Floquet components un(x). The dominant Floquet component has a frequency of the order of
the initial chemical potential ω ≃ q2/2 (notice that for the flat-profile BHL solution we subtract
the interacting contribution to the chemical potential, as discussed after Equation (66)), which
we can identify as a non-trivial quasi-chemical potential µ̃ ̸= 0.

Interestingly, the concept of spontaneous Floquet state can be extended to any many-body
system whose dynamics can be described by a variational ansatz that leads to an effective
self-consistent Hamiltonian like the GP equation, as proven in Ref. [86]. This includes several
canonical many-body descriptions such as the MultiConfiguration Time-Dependent Hartree
method for bosons and fermions [147, 148], the Hartree-Fock equations for fermions [149], or
the Gutzwiller ansatz in Bose–Hubbard models [150].

Furthermore, since a spontaneous Floquet state breaks the time-translation symmetry of
the underlying Hamiltonian, the CES state represents a realization of continuous time crys-
tal [151, 152]. This in stark contrast with discrete time crystals [153–156], arising in conven-
tional, driven Floquet systems, where the periodicity is imposed by a subharmonic response
to the external driving, and the resulting symmetry breaking is discrete, not continuous. Actu-
ally, the CES state was shown [86] to satisfy typical time-crystal criteria of robustness (against
the presence of time-dependent disorder or variations of the parameters of the Hamiltonian),
independence from the initial state, and universality (i.e., it is a feature of a wide class of
Hamiltonians).

For instance, a simple realization of the CES state is achieved by quenching an attractive
delta barrier V (x) = −Zδ(x) at t = 0 in a homogeneous flowing condensate with velocity q ,
described by an initial GP wavefunction Ψ(x,0) = eiqx . The resulting dynamics is deterministic,
and the final state of the system is described by a similar dynamical phase diagram, solely
function of (Z , q), which only displays the ground state at low velocities and the CES state
at high velocities, Figure 10a. The GS/CES phase diagram is an example of dynamical phase
transition [157–159], where the ground state is the symmetry-unbroken phase, with continuous
time translation symmetry, while the CES state is the time-crystalline phase, with discrete time
translation symmetry. Indeed, as predicted by Renaud Parentani himself during our visit to
Orsay in 2015, the oscillation frequency ω0 of a CES state exhibits a critical behavior close
to the phase transition, where the critical exponents αq ,αZ for q, Z (obtained from a fit in
Figure 10b) are both approximately αq ≃ αZ ≃ 0.50, strongly suggesting a possible analytical
derivation.

Another remarkable feature of a spontaneous Floquet state is that it conserves energy due
to the time-independence of the underlying Hamiltonian, unlike conventional Floquet systems.
After developing the so-called (t ,φ) formalism within the generalized Gibbs ensemble [160–162],
Ref. [163] showed that spontaneous Floquet states have a unique conserved magnitude, the
Floquet charge F , whose conjugate thermodynamic variable is the frequency ω. This allows
to identify spontaneous Floquet states as isofloquetic, conserving the total energy, and driven
Floquet states as isoperiodic, conserving the Floquet enthalpy, I = E −ωF , in analogy with
isochoric and isobaric systems, respectively. This characterization gives rise to the so-called
Floquet thermodynamics, which describes Floquet systems with the same thermodynamical
tools as in stationary states.

The quantum fluctuations of a spontaneous Floquet state in an atomic condensate are
described by the BdG equations resulting from the expansion Ψ̂ = [Ψ0(x, t ) + ϕ̂(x, t )]e−iµ̃t ,
namely

i∂t Φ̂= M0(t )Φ̂, M0(t ) =
[

N0(t ) A0(t )
−A∗

0 (t ) −N∗
0 (t )

]
, (227)
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Figure 10. (a) Dynamical phase diagram as a function of (Z , q) for the final state of an
initially subsonic flowing condensate Ψ(x,0) = eiqx in which an attractive delta barrier
V (x) = −Zδ(x) is quenched at t = 0. (b) Critical behavior of the CES frequency ω0 close
to the phase transition along the green lines in (a), where the red line represents a fit to a
power law. Main panel: Velocity dependence. Inset: Delta-strength dependence.

where

N0(t ) = −∂
2
x

2
+V (x)+2g (x)|Ψ0(x, t )|2 − µ̃,

A0(t ) = g (x)Ψ2
0(x, t ) (228)

are periodic operators. Consequently, the BdG matrix M0(t ) is a periodic linear operator, de-
scribed by conventional Floquet theory, so its spectrum is given in terms of quasi-energy bands,

[M0(t )− i∂t ]zε,ν(t ) = εzε,ν(t ), (229)

with zε,ν(x, t+T ) = zε,ν(x, t ), ε the quasi-energy (defined again moduloω0), and ν a discrete index
labeling the solution. This BdG expansion also results from a conventional Floquet state, which
takes the same form of Equation (225) but the period T there is imposed by the external driving,
while for a spontaneous Floquet state T is spontaneously chosen by the system.

Of particular interest is the presence of Nambu–Goldstone (NG) modes. In a stationary
context, if the GP wavefunction spontaneously breaks one of the continuous symmetries of the
Hamiltonian in such a way that, if Ψ0(x) is a stationary GP solution, then Ψα(x) = e−iαGΨ0(x) is
another stationary GP solution, a zero-energy NG mode emerges in the BdG spectrum:

M0zα = 0, zα =
[
∂αΨ0

∂αΨ
∗
0

]
=

[ −iGΨ0

i(GΨ0)∗
]

. (230)

This can be proven by expanding the symmetry transformation to linear order in α, where G is
the infinitesimal generator of the transformation. Since NG modes have zero norm, their am-
plitude does not behave as an annihilation operator but instead as a coordinate operator, with
a conjugate momentum that describes the fluctuations of the conserved charge Q associated to
the broken continuous symmetry [146, 164]. A major example is the Goldstone mode zθ corre-
sponding to the U (1)-symmetry breaking, see Equation (200), resulting from the fact that e−iθΨ0

is also a stationary GP solution for arbitrary θ. When several symmetries are spontaneously bro-
ken, the quantization procedure is elegantly described by a geometric formalism involving the
so-called Berry-Gibbs connection, which is the Berry connection associated to the GP wavefunc-
tion, the continuous parameters of the manifold being the conserved charges associated to the
broken symmetries [163].
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For Floquet states, both spontaneous and conventional, spontaneous symmetry breaking
is translated into the emergence of Floquet–Nambu–Goldstone (FNG) modes with zero quasi-
energy. In a condensate, this means [M0(t )− i∂t ]zα(t ) = 0, where zα(t ) is now periodic. In the
specific case of a spontaneous Floquet state, a genuine temporal FNG mode arises from the
spontaneous symmetry breaking of time-translational invariance [163]. This is the characteristic
hallmark of a bona-fide spontaneous Floquet state, reflecting also its time-crystalline nature,
which distinguishes it from trivial periodic behavior such as traveling soliton waves in a ring,
which do not possess a proper temporal FNG mode. The CES state indeed has a genuine temporal
FNG mode, stemming from the fact thatΨ0(x, t+t0)e−iµ̃t is also a solution of the time-dependent
GP equation (224) for arbitrary t0.

Interestingly, the quantum amplitude of the temporal FNG mode provides a unique real-
ization of a time operator in quantum mechanics, which commutes with the linear fluctua-
tions of the grand-canonical energy, no longer vanishing since Ψ0 is not here an extreme of
the grand-canonical energy as it is time-dependent [163]. In general, quantum mechanics for-
bids the existence of a time operator T̂ since the Hamiltonian should be its canonical conjugate,
[T̂ , Ĥ ] =−i. This implies that

e−iT̂ E0 ĤeiT̂ E0 = Ĥ −E0. (231)

for arbitrary value of E0. Hence, if E is an eigenenergy, then E −E0 is also an eigenergy, which
contradicts the fact that Hamiltonians are bounded from below by the ground-state energy.

Nevertheless, this problem is similar to that of the phase operator [165]. If a phase operator θ̂
exists, then it satisfies [N̂ , θ̂] = i, which implies

e−iθ̂N0 N̂ eiθ̂N0 = N̂ −N0 (232)

for arbitrary value of N0. Hence, if N is an eigenvalue of N̂ , then N −N0 is also, violating two fun-
damental properties of the spectrum of N̂ : its positive definiteness and its discreteness. How-
ever, it is well known that one can define phase fluctuations in condensates involving large
particle numbers, where one can neglect the discreteness of N and states with low occupation
number. In analogy, by identifying energy with particle number and time with phase, one can
define time fluctuations for large energies well above the ground state. This correspondence
indicates that spontaneous Floquet states must be highly excited states, shifted by a macro-
scopic energy from the ground state. This is indeed the case of the CES state, whose energy is
shifted ∆E ≃ N q2/2 above that of a condensate at rest.

6. Discussion

Resonant configurations represent a rich paradigm in analogue gravity. In addition to the uni-
versal thermal behavior at low frequencies, they display a highly non-thermal peaked structure
in the Andreev and Hawking spectra, since they act as a Fabry–Perot resonator for the negative-
energy partners of the Andreev–Hawking effect. This contrasts with standard analogue config-
urations, whose spectra have a marked thermal character which is easy to misidentify with any
other background thermal component, as in the real astrophysical scenario. Another interest-
ing feature of resonant configurations is that they highly enhance the Andreev signal, which can
even overcome the Hawking one, while in standard analogue configurations the former is typi-
cally highly suppressed.

A feasible experimental scheme to implement a resonant configuration using atomic conden-
sates relies on outcoupling a large boson reservoir through an optical lattice, eventually achiev-
ing a quasi-stationary black-hole configuration. Remarkably, the optical lattice acts as a low-
pass filter of Andreev–Hawking radiation [52], something that could have potential applications
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in quantum transport and atomtronics [108], further motivating the interest for its experimen-
tal implementation. An alternative approach to achieve a non-thermal spectrum is provided by
dipolar condensates, where the departure from thermality is induced by the presence of a roton
minimum in the dispersion relation [166].

By applying concepts and techniques originally derived in quantum optics, we can understand
the Andreev and Hawking effects as a joint phenomenon, resulting from the non-degenerate
parametric amplification of the outgoing modes, where the hybrid Andreev–Hawking channel
is the signal, and the anomalous channel is the idler. Regarding quantum correlations, we have
analyzed the occurrence of violations of Cauchy–Schwarz inequalities and entanglement, which
are equivalent conditions for a broad and relevant class of quantum states. We have observed that
resonant configurations highly enhance entanglement near the resonant peaks of the spectrum
for both the Andreev and Hawking effects, allowing for its detection even at high temperatures
comparable to the chemical potential. Thus, they improve the performance of standard analogue
configurations, where entanglement is highly attenuated with temperature, fading away at low
temperatures in the Andreev case.

The characterization of quantum correlations in the Andreev–Hawking effect, including tri-
partite entanglement [167] and Bell non-locality [168], is still an active topic of research, which
could lead to potential applications in quantum technologies, since an analogue horizon behaves
as a spontaneous source of entangled phonons.

An interesting spin-off of the study of quantum correlations in analogue gravity is the research
on quantum information in high-energy colliders [56], which is rapidly becoming a whole topic
of research by itself. It has already led to the first observation of entanglement in quarks, in
turn the highest-energy entanglement detection ever, by the ATLAS and CMS collaborations [57,
58]. This observation paves the way to use high-energy colliders for the study of foundational
quantum problems, something of great interest due to their genuine relativistic nature and
fundamental character, operating at the current frontier of knowledge in Physics. In fact, a
number of experimental analyses searching for genuine quantum signatures at the LHC are
currently ongoing.

A most important phenomenon arising in resonant configurations is the black-hole laser
effect. For its discussion, we have separated the three main stages of its time evolution. At
short times, the dynamics is governed by the spectrum of dynamical instabilities in the linear
BdG equations. By analyzing several BHL models, we have observed the generality of the
original predictions by Michel and Parentani [71], namely: (i) the lasing modes emerge as
degenerate at critical lengths equispaced by the BCL wavelength, becoming non-degenerate at
halfway between the critical lengths; and (ii) there is a perfect correspondence between the
emergence and later degeneracy breaking of the lasing modes, and the emergence of stationary
GP solutions in the non-linear spectrum. Our results also confirm the conjecture of Michel
and Parentani [72]: in flowing scattering configurations, energetic and dynamical instability are
equivalent conditions, and the only stable solution is the ground state, which evaporates all the
acoustic horizons to become fully subsonic.

At intermediate times, we have theoretically studied the BHL–BCL crossover, originally char-
acterized in Ref. [84]. By invoking the analogy with an unstable pendulum [60, 64, 66, 84],
three regimes can be identified: quantum BHL, classical BHL, and BCL. Their most charac-
teristic trait is their efficiency as quantum amplifiers: a quantum BHL is a non-linear quan-
tum amplifier, increasing quantum fluctuations up to the same saturation amplitude regard-
less of their initial strength, while classical BHL and BCL are linear quantum amplifiers, where
the output is proportional to the input. In particular, quantum amplification in a classical
BHL is exponentially large in the lasing time, and much larger than in the BCL regime, where
there is no microscopic amplification mechanism, and the amplification just stems from the
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strong background modulation induced by the BCL wave. The characterization of each regime
as a quantum amplifier can be complemented with a qualitative analysis of the monotonic-
ity of their growth rate and their quantum gain, providing practical experimental criteria for
the unambiguous detection of the BHL effect, a major remaining challenge in the analogue
field. Furthermore, our analysis identifies the classical BHL regime as the most reachable tar-
get, where the BCL wave fuels the BHL effect by providing it with a classical seed, instead of
undermining it.

Remarkably, the study of the BHL–BCL crossover in Ref. [84] has also allowed to identify novel
analogue phenomena such as Hawking-stimulated white-hole (HSWH) radiation at the start of
the BHL process (when the partner modes of the Andreev–Hawking effect stimulate the continu-
ous spectrum of white-hole radiation [90]), or quantum BCL-stimulated Hawking radiation (the
spontaneous resonant Hawking radiation above the non-linear saturated BCL wave). The analy-
sis of the BHL–BCL crossover can be of interest for other analogue setups in which low-frequency
undulations similar to the BCL wave hinder the BHL effect [76, 169, 170]. In general, a quan-
tum/classical BHL provides an ideal testing ground for the study of quantum/classical backre-
action [40, 171–173]. Apart from its intrinsic interest for the analogue field, a BHL behaves as a
quantum amplifier, which could have potential applications in atomtronics.

At long times, a black-hole laser exhibits a dynamical phase diagram with two states: the
ground state, with continuous time-translation symmetry, and the CES state, with discrete time-
translation symmetry, resulting from its periodic nature. Indeed, the CES state is a universal
feature of a flowing condensate, representing a particular example of the much more general
concept of spontaneous Floquet state [86]: a Floquet state arising from a time-independent
Hamiltonian, whose periodicity is spontaneously set by many-body interactions.

Spontaneous Floquet states are by themselves a novel non-equilibrium paradigm. For in-
stance, they conserve energy, in contrast to conventional Floquet states, which in turn conserve
the so-called Floquet enthalpy as they arise from periodically driven Hamiltonians, operating at
fixed frequency. These conserved magnitudes allow for a thermodynamic description of Floquet
states completely analogous to that of stationary states, which has been labeled Floquet thermo-
dynamics [163].

In addition, spontaneous Floquet states spontaneously break continuous time-translation
symmetry, representing a specific realization of a continuous time crystal. This results in the
emergence of a genuine temporal Floquet–Nambu–Goldstone mode with zero quasi-frequency,
whose amplitude provides a unique realization of a time operator in a tangible condensed-matter
setup [163]. We note that the construction of a time operator is a fundamental subject in quantum
mechanics [174–177]. Therefore, the identification of a time operator in an analogue gravity setup
provides a rich scenario that could lead to fundamental research on the quantum foundations of
spacetime.

Although our discussion is restricted to atomic condensates, the results of this work can be
easily translated to optical and polaritonic analogues due to the similarity of the equations of
motion. For instance, Andreev reflection has been studied in polaritonic condensates [178, 179].
The excitation of a quasi-normal mode from vacuum fluctuations has been recently numerically
observed in a resonant polaritonic configuration [180]. Quantum correlations in optical and
polaritonic analogues have been also studied [181–184]. Similar periodic states to the CES state
are predicted for polaritons [185].

As a global remark, it must be noted that the low-pass filter of Andreev–Hawking radia-
tion provided by an optical lattice, the stationary source of entangled phonons provided by the
Hawking effect [33], the behavior of a black-hole laser as a quantum amplifier, and the sponta-
neous Floquet state represented by the CES state, demonstrate the potential of interdisciplinary
applications of analogue gravity concepts. This is further supported by the establishment of a line
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of research on quantum information in high-energy colliders, conceptually based on the study of
quantum correlations in Andreev–Hawking radiation.

We would like to conclude by emphasizing the profound influence provided by the intellectual
leadership of Renaud Parentani in the shaping of the field of analogue gravity. His ideas and
inspiration permeate any coherent narration of the evolution of this research field, and in
particular are ubiquitous in all the results discussed in the present article.
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flowing against an obstacle”, Phys. Rev. Lett. 97 (2006), article no. 260403.
[76] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot, P. R. Anderson, “Hawking radiation of massive modes and

undulations”, Phys. Rev. D 86 (2012), article no. 064022.
[77] J. Steinhauer, “Confirmation of stimulated Hawking radiation, but not of black hole lasing”, Phys. Rev. D 106 (2022),

article no. 102007.
[78] M. Tettamanti, S. L. Cacciatori, A. Parola, I. Carusotto, “Numerical study of a recent black-hole lasing experiment”,

Europhys. Lett. 114 (2016), no. 6, article no. 60011.
[79] J. Steinhauer, J. R. M. de Nova, “Self-amplifying Hawking radiation and its background: a numerical study”, Phys.

Rev. A 95 (2017), article no. 033604.



60 Juan Ramón Muñoz de Nova et al.

[80] Y.-H. Wang, T. Jacobson, M. Edwards, C. W. Clark, “Mechanism of stimulated Hawking radiation in a laboratory
Bose–Einstein condensate”, Phys. Rev. A 96 (2017), article no. 023616.

[81] Y.-H. Wang, T. Jacobson, M. Edwards, C. W. Clark, “Induced density correlations in a sonic black hole condensate”,
SciPost Phys. 3 (2017), article no. 022.

[82] J. M. G. Llorente, J. Plata, “Black-hole lasing in Bose–Einstein condensates: analysis of the role of the dynamical
instabilities in a nonstationary setup”, J. Phys. B: At. Mol. Opt. Phys. 52 (2019), no. 7, article no. 075004.

[83] M. Tettamanti, I. Carusotto, A. Parola, “On the role of interactions in trans-sonically flowing atomic condensates”,
Europhys. Lett. 133 (2021), no. 2, article no. 20002.

[84] J. R. M. de Nova, F. Sols, “Black-hole laser to Bogoliubov–Cherenkov–Landau crossover: from nonlinear to linear
quantum amplification”, Phys. Rev. Res. 5 (2023), article no. 043282.

[85] J. R. M. de Nova, P. F. Palacios, I. Carusotto, F. Sols, “Long time universality of black-hole lasers”, New J. Phys. 23
(2021), no. 2, article no. 023040.

[86] J. R. M. de Nova, F. Sols, “Continuous-time crystal from a spontaneous many-body Floquet state”, Phys. Rev. A 105
(2022), article no. 043302.

[87] A. L. Fetter, J. D. Walecka, Quantum Theory of Many-particle Systems, Dover Books on Physics, Dover Publications,
New York, 2003.

[88] L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, Clarendon Press, Oxford, 2016.
[89] M. Visser, “Acoustic black holes: horizons, ergospheres and Hawking radiation”, Class. Quantum Gravity 15 (1998),

no. 6, p. 1767-1791.
[90] C. Mayoral, A. Recati, A. Fabbri, R. Parentani, R. Balbinot, I. Carusotto, “Acoustic white holes in flowing atomic

Bose–Einstein condensates”, New J. Phys. 13 (2011), no. 2, article no. 025007.
[91] B. Wu, Q. Niu, “Superfluidity of Bose–Einstein condensate in an optical lattice: Landau-Zener tunnelling and

dynamical instability”, New J. Phys. 5 (2003), article no. 104.
[92] P. Samuelsson, E. V. Sukhorukov, M. Büttiker, “Orbital entanglement and violation of bell inequalities in mesoscopic

conductors”, Phys. Rev. Lett. 91 (2003), article no. 157002.
[93] E. Prada, F. Sols, “Entangled electron current through finite size normal-superconductor tunneling structures”, Eur.

Phys. J. B 40 (2004), p. 379-396.
[94] S. K. Manikandan, A. N. Jordan, “Andreev reflections and the quantum physics of black holes”, Phys. Rev. D 96

(2017), article no. 124011.
[95] S. K. Manikandan, A. N. Jordan, “Black holes as Andreev reflecting mirrors”, Phys. Rev. D 102 (2020), article

no. 064028.
[96] G. I. Martone, A. Recati, N. Pavloff, “Supersolidity of cnoidal waves in an ultracold Bose gas”, Phys. Rev. Res. 3 (2021),

article no. 013143.
[97] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, M. A. Kasevich, “Squeezed states in a Bose–Einstein conden-

sate”, Science 291 (2001), no. 5512, p. 2386-2389.
[98] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch, “Quantum phase transition from a superfluid to a Mott

insulator in a gas of ultracold atoms”, Nature 415 (2002), no. 6867, p. 39-44.
[99] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, M. Greiner, “A quantum gas microscope for detecting single atoms in a

Hubbard-regime optical lattice”, Nature 462 (2009), no. 7269, p. 74-77.
[100] C. M. Fabre, P. Cheiney, G. L. Gattobigio, F. Vermersch, S. Faure, R. Mathevet, T. Lahaye, D. Guéry-Odelin, “Realiza-

tion of a distributed Bragg reflector for propagating guided matter waves”, Phys. Rev. Lett. 107 (2011), no. 23, article
no. 230401.

[101] L. Santos, L. Roso, “Multilayer “dielectric” mirror for atoms”, Phys. Rev. A 58 (1998), p. 2407-2412.
[102] L. Santos, L. Roso, “Bloch-like quantum multiple reflections of atoms”, Phys. Rev. A 60 (1999), p. 2312-2318.
[103] I. Carusotto, G. C. La Rocca, “Modulated optical lattice as an atomic Fabry-Perot interferometer”, Phys. Rev. Lett. 84

(2000), p. 399-403.
[104] S. Giovanazzi, C. Farrell, T. Kiss, U. Leonhardt, “Conditions for one-dimensional supersonic flow of quantum gases”,

Phys. Rev. A 70 (2004), no. 6, article no. 63602.
[105] M. J. S. Lowe, “Matrix techniques for modeling ultrasonic waves in multilayered media”, IEEE Trans. Ultrason.

Ferroelectr. Freq. Control. 42 (1995), no. 4, p. 525-542.
[106] R. Pernas-Salomón, R. Pérez-Alvarez, “Sturm-liouville matrix equation for the study of electromagnetic-waves

propagation in layered anisotropic media”, Prog. Electromagn. Res. 40 (2014), p. 79-90.
[107] K. Slevin, Y. Asada, L. I. Deych, “Fluctuations of the Lyapunov exponent in two-dimensional disordered systems”,

Phys. Rev. B 70 (2004), article no. 054201.
[108] L. Amico, M. Boshier, G. Birkl et al., “Roadmap on atomtronics: state of the art and perspective”, AVS Quantum Sci.

3 (2021), no. 3, article no. 039201.
[109] W. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Berlin, 2001.
[110] J. F. Clauser, “Experimental distinction between the quantum and classical field-theoretic predictions for the

photoelectric effect”, Phys. Rev. D 9 (1974), p. 853-860.



Juan Ramón Muñoz de Nova et al. 61

[111] K. V. Kheruntsyan, J.-C. Jaskula, P. Deuar et al., “Violation of the Cauchy–Schwarz inequality with matter waves”,
Phys. Rev. Lett. 108 (2012), article no. 260401.

[112] J. Adamek, X. Busch, R. Parentani, “Dissipative fields in de Sitter and black hole spacetimes: quantum entanglement
due to pair production and dissipation”, Phys. Rev. D 87 (2013), article no. 124039.

[113] A. Aspect, P. Grangier, G. Roger, “Experimental realization of Einstein–Podolsky–Rosen–Bohm gedanken experi-
ment: a new violation of Bell’s inequalities”, Phys. Rev. Lett. 49 (1982), p. 91-94.

[114] J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, T. E. Weiss, “Violation of the Leggett–Garg inequality in neutrino
oscillations”, Phys. Rev. Lett. 117 (2016), article no. 050402.

[115] Belle Collaboration, “Measurement of Einstein–Podolsky–Rosen-type flavour entanglement in Υ(4S) → B0B̄0

decays”, Phys. Rev. Lett. 99 (2007), article no. 131802.
[116] E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, S. Haroche, “Generation of Einstein–

Podolsky–Rosen pairs of atoms”, Phys. Rev. Lett. 79 (1997), p. 1-5.
[117] Y. Bao, S. S. Yu, L. Anderegg, E. Chae, W. Ketterle, K.-K. Ni, J. M. Doyle, “Dipolar spin-exchange and entanglement

between molecules in an optical tweezer array”, Science 382 (2023), no. 6675, p. 1138-1143.
[118] C. M. Holland, Y. Lu, L. W. Cheuk, “On-demand entanglement of molecules in a reconfigurable optical tweezer

array”, Science 382 (2023), no. 6675, p. 1143-1147.
[119] M. Steffen, M. Ansmann, R. C. Bialczak et al., “Measurement of the entanglement of two superconducting qubits

via state tomography”, Science 313 (2006), no. 5792, p. 1423-1425.
[120] W. Pfaff, T. H. Taminiau, L. Robledo, H. Bernien, M. Markham, D. J. Twitchen, R. Hanson, “Demonstration of

entanglement-by-measurement of solid-state qubits”, Nat. Phys. 9 (2013), no. 1, p. 29-33.
[121] K. Lee, M. Sprague, B. Sussman et al., “Entangling macroscopic diamonds at room temperature”, Science 334 (2011),

p. 1253-1256.
[122] R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”,

Phys. Rev. A 40 (1989), p. 4277-4281.
[123] A. Peres, “Separability criterion for density matrices”, Phys. Rev. Lett. 77 (1996), p. 1413-1415.
[124] P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition”, Phys. Lett. A

232 (1997), no. 5, p. 333-339.
[125] E. Shchukin, W. Vogel, “Inseparability criteria for continuous bipartite quantum states”, Phys. Rev. Lett. 95 (2005),

article no. 230502.
[126] S. Wölk, M. Huber, O. Gühne, “Unified approach to entanglement criteria using the Cauchy–Schwarz and Hölder

inequalities”, Phys. Rev. A 90 (2014), article no. 022315.
[127] D. Boiron, A. Fabbri, P.-É. Larré, N. Pavloff, C. I. Westbrook, P. Ziń, “Quantum signature of analog Hawking radiation
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