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Abstract. Wave turbulence and eddy turbulence are the two regimes that we may encounter in nature. The
attention of fluid mechanics being mainly focused on incompressible hydrodynamics, it is usually the second
regime that is treated in books, whereas waves are often present in geophysics and astrophysics. In this
review, I present the theory of wave turbulence which is free from the closure problem encountered in
eddy turbulence. Basically, the wave amplitude is introduced in a multiple time scale method as a small
parameter to derive the so-called kinetic equations from which exact results can be obtained (power-law
spectra, direction of the cascade, Kolmogorov’s constant) and compared with the data. Two hydrodynamic
applications are considered with capillary waves and inertial waves, the first leading to isotropic turbulence
and the second to anisotropic turbulence.

Résumé. La turbulence d’ondes et la turbulence de tourbillons sont les deux régimes que l’on peut rencon-
trer dans la nature. L’attention des mécaniciens des fluides étant principalement portée sur l’hydrodyna-
mique incompressible, c’est généralement le second régime qui est traité dans les livres, alors que les ondes
sont souvent présentes en géophysique et en astrophysique. Dans cette revue, je présente la théorie de la tur-
bulence d’ondes qui est exempte du problème de fermeture rencontré dans le cas classique. Fondamentale-
ment, l’amplitude de l’onde est introduite dans une méthode à échelles de temps multiples comme un petit
paramètre pour trouver les équations dites cinétiques à partir desquelles des résultats exacts peuvent être
obtenus (spectres en loi de puissance, direction de la cascade, constante de Kolmogorov) et comparés avec
les données. Deux applications hydrodynamiques sont considérées avec des ondes capillaires et des ondes
inertielles, la première conduisant à une turbulence isotrope et la seconde à une turbulence anisotrope.
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Wave turbulence1 offers the possibility of a deep understanding of physical systems composed
of an ensemble of random waves interacting nonlinearly. The reason for this is, first of all, the pos-
sibility of analytically deriving a set of integro-differential equations for spectral cumulants—the

1This article is a review on wave turbulence with an application to the Navier–Stokes equations, whose 200th
anniversary we celebrated in 2023. It was an opportunity for me to give a series of lectures on this subject at the École de
Physique des Houches.
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so-called kinetic equations—which are free from the closure problem classically encountered in
eddy turbulence. To achieve this natural asymptotic closure, the wave amplitude is used as a
small parameter. Second, exact solutions can be found from the kinetic equations. In addition to
the usual thermodynamic solutions, the kinetic equations have finite flux solutions that capture
the flow of conserved densities from sources to sinks. Third, these exact solutions correspond to
power-law spectra that can be compared to the data. The number of experiments, observations,
and diagnostics has increased dramatically over the past two decades, and now, with direct nu-
merical simulations, wave turbulence has become a leading field in turbulence from which new
fundamental questions have arisen [1].

The Navier–Stokes equations are fundamental in turbulence because it is from them and from
laboratory experiments based on water or air that the first theoretical advances (concepts, exact
laws) have been made. This is a reason why the literature on turbulence focuses mainly—if
not entirely—on incompressible hydrodynamics, thus excluding a whole series of applications
where waves make a major contribution to the dynamics. Yet turbulent systems containing
waves are very numerous, and incompressible hydrodynamics (pure eddy turbulence) seems to
be quite singular. In essence, wave turbulence concerns only systems in which waves can be
excited, which excludes a priori the classical Navier–Stokes equations, the archetypal system of
turbulence. However, wave turbulence can also be found in incompressible hydrodynamics if
one modifies this system to include, for example, surface (gravity and capillary) waves, or if one
adds the Coriolis force which introduces inertial waves.

A priori, we can distinguish two regimes in wave turbulence: the one where the waves are of
weak amplitude and the one where they are not. The regime that concerns us here is the first case
called weak wave turbulence. I will follow the usual practice and simply write ’wave turbulence’
to avoid thinking that weak (wave) turbulence also means small Reynolds number: indeed, as
for eddy turbulence, the Reynolds number is not limited or, in other words, it is only limited
by the effect of viscosity and the size of the experiment. The existence of a small parameter—
the amplitude of the wave—allows a systematic approach to the problem. The general idea is
that the weak amplitude of the waves makes it possible to distinguish the temporal evolution
of the amplitude from that of the phase, the first evolving more slowly than the second. This
separation of the time scales can be formally written using a multiple time scale method. This
is the condition applied to obtain a uniform asymptotic development which leads to a natural
closure of the hierarchy of equations and finally to the so-called kinetic equations.

In this review, I will introduce the multiple time scale method to an archetypal wave equation
that involves three-wave interactions. I will show in detail how the kinetic equation can emerge
from this development. This is a technical part that has rarely (if never) been described in detail
since the seminal paper [2]. A brief history will allow us to understand how the theory of wave
turbulence was built. For pedagogical reasons, the multiple time scale method will first be ap-
plied to a simple example: the Duffing model. We will see that the main problem is the existence
of secular terms proportional to time which can break the uniformity of the development. This
is precisely the condition applied to eliminate them that leads to the kinetic equations of wave
turbulence. I will examine two examples from the modified Navier–Stokes equations: capillary
wave turbulence and inertial wave turbulence involving three-wave interactions. The first im-
plies isotropy while the second leads to anisotropy, and thus to a new difficulty. Finally, using a
toy model, I will show how the Kolmogorov–Zakharov spectrum can be derived.

1. Introduction to wave turbulence: origin and applications

It is essentially in the field of oceanography and the study of surface waves that we find the begin-
nings of the theory of wave turbulence [3]. This work began in the late 1950s, at a time when the
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Figure 1. Gravity and capillary waves.

surface waves were treated essentially in a linear manner, the spectra as a superposition of linear
waves and non-linear effects restricted, for example, to periodic wave distortion phenomena de-
scribed for a long time by Stokes [4]. There are two kinds of surface waves: gravity waves—that is,
waves on the ocean (see Figure 1), and at smaller scale capillary waves. The Navier–Stokes equa-
tions, modified by the force of gravity, are the theoretical framework from which the first results
emerged. To simplify the problem, the movements are generally assumed to be irrotational: this
corresponds to an air–water interface disturbed by a unidirectional blowing wind—a typical con-
dition encountered in the open sea. The problem is then reduced to Bernoulli’s equation applied
to the free surface of the fluid to which is added a Lagrangian equation to describe the deforma-
tion of the fluid surface and another to take into account the additional hypothesis called deep
water.

1.1. Resonant wave interactions

Work in the late 1950s and early 1960s led to a major theoretical breakthrough with the discovery
of the existence of resonant interactions2 between non-linear waves of weak amplitude. The
waves in question are of course gravity waves. The idea has its origin in the work of [7–9] who
tried to understand how the non-linear interactions between gravity waves could redistribute
the energy initially present in these modes. The underlying idea is that in the initial phase of the
development of turbulence it is the resonant interactions that provide the dominant mechanism
for transferring energy from one wave to another. The ultimate phase of development had already
been studied previously by [10] who, using dimensional analysis, was able to make a spectral
prediction for strong (wave) turbulence which is still in use today (the so-called critical balance).

After long calculations based on a classical perturbative development, it was possible to
demonstrate that the energy redistribution was generally negligible for interactions involving
less than four waves, but that it became important for four waves if the following resonance
relationship was satisfied {

k1 +k2 = k3 +k,
ω1 +ω2 =ω3 +ω,

(1)

with the dispersion relation ω2 = g |k| (g being the acceleration of gravity). The experimental
demonstration of the existence of resonant interactions was then published by [11,12]. Although
the existence of resonant wave interactions appeared to be real, their interpretation was then

2Note that earlier studies on three- and four-wave resonance had already been carried out, for example, in the field of
thermal conduction in crystals [5]. See also [6] who wrote the first kinetic equation: it was for four-wave interactions in
the context of the electron theory of conductivity.
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subject to debate because the energy exchange between resonant waves also led to a linear
growth (in time)—the secular terms—of the amplitude of the waves ultimately breaking the
hypothesis underlying the existence of resonant interactions, i.e. the presence of waves of weak
amplitude; in this case, the perturbation is said to be non-uniform. It was therefore not clear
whether this energy transfer could be really effective.

An answer to this question was first proposed statistically by [9] who considered a random
set of gravity waves. The hypothesis of weak non-linearities was then used to justify another
hypothesis, that of a Gaussian statistics which greatly simplifies the calculations by eliminating
in particular moments of odd order (see also [13]).

1.2. Multiple time scale method

A second major theoretical breakthrough came with Benney’s work which showed that the
problem of wave turbulence is similar to that of weakly coupled oscillators in mechanics [14].
With a new mathematical technique for the analysis of dispersive wave packets involving two
time scales, [15] obtained a relatively simple form for the (discrete and non-statistical) equations
which govern the temporal evolution of resonant modes. In this approach, the secular terms
disappear: they are somehow absorbed by the slow variation of the wave amplitude. This work
shows, in a simple way, how the exchange of energy between four gravity waves is carried out: this
exchange takes place while conserving energy. Here we recover a property of strong turbulence,
that of detailed conservation.

This approach paved the way for the use of a new mathematical technique called multiple time
scale method [16–18], which made it possible to demonstrate that the (continuous) statistical
equations of wave turbulence have a natural closure due to the separation of scales in time.
As shown by [2] for quadratic non-linearities and [19] for cubic non-linearities, the equations
of wave turbulence are asymptotically valid over long periods of time and do not require the
statistical assumption of Gaussianity made by [9]. The method of multiple time scales offers
a systematic and consistent theoretical framework in which the procedure expansion allows in
principle to determine the slow rate of change of the amplitude of the waves at any order in
ϵ [20, 21]. The so-called kinetic equation of gravity wave turbulence then takes the following
(schematic) integro-differential form in three-dimension

∂N (k)

∂t
= ϵ4

∫
R9

S(k,k1,k2,k3)[N1N2(N +N3)−N3N (N1 +N2)]δ(ω1 +ω2 −ω3 −ω)

×δ(k1 +k2 −k3 −k)dk1 dk2 dk3, (2)

with N ≡ N (k) = E(k)/ω the wave action spectrum3 and E(k) the energy spectrum. The Dirac
functions translate the resonance condition (1) discussed above. The presence of the ϵ4 factor
means that the time scale (normalized to the wave period ∼1/ω) on which the spectra are
modified by the non-linear dynamics is of the order of O (1/ϵ4). Therefore, it is a relatively slow
process.

1.3. Kolmogorov–Zakharov spectrum

Parallel to the work carried out in the Western world, major theoretical advances were also made
in the East. From the beginning of the 1960s, the Soviet school became interested in wave
turbulence mainly through plasma physics [22, 23] from which certain notations and vocabulary
were borrowed (one speaks, for example, of kinetic equation or collision integral). In passing,

3By analogy with plasma physics, wave action is often associated with particles. This is a quantity that is sometimes
conserved in four-wave processes. This is the case for gravity wave turbulence.



Sébastien Galtier 437

it is curious to note that this work was carried out simultaneously by the two parts of the
world without much communication between them. In particular, by the assumption known as
random phase approximation, kinetic equations of wave turbulence were proposed in a primitive
form by [24] for a problem of plasma physics, then in a modern form by Zakharov and his
collaborators [25–28]. This work is generally based on a Hamiltonian approach to the problem,
whereas it is the Eulerian approach which was mainly used in the West.

The random phase approximation leads, in practice, to the same kinetic equations as by
the method of multiple time scales where the random phase occurs naturally dynamically (and
therefore is not assumed). From these integro-differential equations, a major breakthrough
was achieved with the discovery of a conformal transformation to extract from the non-linear
kinetic equations the exact power law solutions. This transformation—now called the Za-
kharov transformation—was first proposed for capillary wave turbulence involving triadic inter-
actions [26, 27], then for Langmuir wave turbulence where the interactions are quartic [28, 29].
There are two types of solution: the zero flux solution (which was the regime studied by [6]) and
the non-zero constant flux solution. The first case corresponds to the thermodynamic solution
(constant entropy) and the second to the Kolmogorov–Zakharov spectrum, which is the most in-
teresting solution because it is non-trivial and corresponds to a cascade.

1.4. Applications of wave turbulence

There are many examples of application of wave turbulence. Below is a non-exhaustive list of
applications with some references.

• Surface wave: These are the first applications of wave turbulence. They include capillary
waves and gravity waves. The former involve three-wave interactions, the theory of which was
published in English by [27] in the deep water limit. Note that the shallow water limit is also the
subject of studies (see for example [30]). Gravity wave turbulence is a problem that needs to be
addressed at the level of four waves [9,31]. This regime has been well reproduced in the laboratory
or by direct numerical simulations (see e.g. [32, 33]). Its detection at sea is more difficult but not
impossible (see e.g. [34, 35]). The two subjects being linked, several experiments deal with the
interaction between gravity and capillary waves. All in all, it is a subject that is still very much
under study (see the review by [36]).

• Internal gravity wave: These waves are a variant of the previous ones in the sense that we are
interested here in gravity waves in oceans. These waves contribute dynamically to the turbulent
transport of heat, which is important to understand to properly evaluate the impact of oceans on
the climate [37]. Internal gravity wave turbulence is an anisotropic three-wave problem for which
an Eulerian theory has been developed by [38] as well as several experiments (see e.g. [39]).

• Inertial wave: This is the closest example to the standard case of eddy turbulence in the sense
that the equations are those of Navier–Stokes which are modified simply by adding the Coriolis
force. Inertial wave turbulence is a three-wave anisotropic problem whose theory has been
published by [40]. Several experiments have been made to study this regime (see e.g. [41]). This
example will be discussed later.

• Rossby wave: These waves appear in a situation of differential rotation. They are used in the
modeling of planetary atmospheres, the interiors of gaseous planets and stars; these are often
referred to as planetary waves [42]. In wave turbulence, the dynamics is driven by three-wave
processes with a dominance of non-local interactions [43, 44].

• Plasma wave: As mentioned above, we find the beginnings of wave turbulence in the
field of plasma physics [22, 23]. In this very vast domain, waves are legion. Incompressible
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magnetohydrodynamics (MHD) is an important example of application because it is a model
often used in astrophysics. We talk about Alfvén wave turbulence which involves three-wave in-
teractions. The theory was published by [45]: it is a case where the anisotropy is so strong that
the cascade is completely inhibited in the direction of the strong applied magnetic field.

• Geodynamo wave: Geodynamo waves are defined as waves present in the Earth’s outer liquid
core. These waves take part in the dynamo effect, i.e. the physical mechanism that maintains the
Earth magnetic field [46]. These are magnetostrophic waves and inertial waves. The three-wave
theory models a homogeneous medium with a small Rossby number [47]: in this framework, an
anisotropic inverse cascade of hybrid helicity is predicted, which could be at the origin of the
regeneration of the magnetic field on a large scale [48].

• Acoustic wave: Acoustic wave turbulence is a priori driven by three-wave interactions but these
waves are semi-dispersive. This is a critical situation for the application of wave turbulence
because the uniformity of the development is not guaranteed. The first works on the subject
date back to the early 1970s [49]. The way in which the asymptotic is subtly modified is discussed
by [50], then by [51]. It can be shown for this regime that energy is at best redistributed according
to rays (in three-dimensional Fourier space). Note that a similar situation can be found in
compressible MHD [52].

• Elastic wave: It is a turbulence produced by a thin elastic plate or by the introduction of long
polymer molecules in a liquid [53]. In the former case, we are in a very different situation from
the traditional turbulence produced by a fluid. The vibrations of a plate can in theory produce
weak or strong wave turbulence, depending on the forcing. The theory of wave turbulence has
been published by [54]: it is a four wave problem characterized by a direct energy cascade.
Although the wave action is not conserved in this problem, direct numerical simulations show an
inverse cascade which seems to be established in an explosive way [55]. Laboratory experiments
using steel plates have been carried out in order to reproduce with varied success the theoretical
predictions [56–59].

• Optical wave: Wave turbulence is also found in the field of non-linear optics. The multi-
dimensional non-linear Schrödinger equation can be used to describe the evolution of quasi-
monochromatic plane wave envelopes [60]. The theory is explained by [61]: this wave turbulence
is governed by four-wave interactions and an intermittency mechanism characterized by a
collapse phenomenon in physical space can occur. In the case of a reduction of the problem
to one dimension, it can be shown that the dominant resonant interactions imply six waves,
involving a much slower non-linear dynamics [62]. All this work is part of the study of non-linear
effects on the propagation of incoherent optical beams [63, 64].

• Quantum turbulence: This subject is very close to the previous one in the sense that the
model used is a variant of the non-linear Schrödinger equation: by changing the sign of the
non-linear term, the interaction becomes repulsive and the physics of turbulence is modified.
The associated equation—also called the Gross-Pitaevskii equation—describes a Bose gas at
very low temperatures. Note that the emergence of quantum turbulence in an oscillating Bose–
Einstein condensate has been experimentally demonstrated [65]. The wave turbulence regime is
described by [61]: it is shown that four-wave interactions conserve energy and wave action. The
inverse cascade associated with the latter leads to the formation of a stable condensate, i.e. the
accumulation of wave action in the k = 0 mode. Direct numerical simulations in two [66, 67] and
three [68, 69] dimensions illustrate this regime.

• Kelvin wave: Kelvin waves are studied in the context of superfluids whose temperature is close
to the absolute zero. These waves can propagate along filaments of vorticity and modify the
dynamics of turbulence [70, 71]. Kelvin’s theory of wave turbulence has been proposed by [72]:
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it involves six-wave processes that conserve both energy and wave action. As these cascade
processes are extremely slow, it is particularly interesting to consider a local model of non-linear
diffusion [73].

• Gravitational wave: This example illustrates the wide range of possible applications of wave
turbulence. It is about cosmology and more precisely the birth of the Universe: primordial
gravitational waves could be at the origin of the inflation phase of the Universe, a question which
is still open to this day and which touches the limits of our knowledge [74]. The theory has been
published by [75,76]: the dynamics is governed by four-wave processes sufficiently symmetric to
conserve wave action. The latter is characterized by an explosive inverse cascade. It is interesting
to note that this regime is close to that of elastic waves in the strong tension limit as shown by the
theoretical, numerical and experimental work of [77].

2. Duffing’s equation: a pedagogical model

2.1. Classical perturbation method

The aim of this section is to discuss on a pedagogical/toy model the idea of the multiple time
scale method through the Duffing equation

d2 f

dt 2 + f =−ϵ f 3, (3)

where ϵ is a small parameter (0 < ϵ ≪ 1) which measures the intensity of the non-linearity
and f is a function of time only. The main solution to this equation is a harmonic oscillator.
This solution will, however, be slightly modified over time by the presence of the small non-
linear perturbation (right hand side term). Let us first use the classical perturbation theory and
introduce the following development

f =
+∞∑
n=0

ϵn fn . (4)

We then obtain an infinite system of equations which, for the first three orders, can be written

O (ϵ0) :
d2 f0

dt 2 + f0 = 0, (5a)

O (ϵ1) :
d2 f1

dt 2 + f1 =− f 3
0 , (5b)

O (ϵ2) :
d2 f2

dt 2 + f2 =−3 f 2
0 f1. (5c)

We can see that the solution to a given order will affect the solution to the higher order. The
first solution is trivially f0 = A cos(t +φ). By introducing this one in the second equation, we can
deduce the exact solution for f1. If we stop at this order, the solution reads

f (t ) = A cos(t +φ)+ϵA3 [− 3
8 t sin(t +φ)+ 1

32 cos(3t +3φ)
]+O (ϵ2). (6)

As a first approximation, this system behaves well as a harmonic oscillator. The condition to be
checked is that the non-linear perturbation remains of weak amplitude and the time considered
relatively short. On the other hand, over long periods of the order of O (1/ϵ), this solution is mod-
ified in a non-negligible way. The term which is at the origin of it, in ϵt , is said to be secular. For
even longer periods of time the development diverges; this divergence is all the more so as certain
secular terms of a higher order reinforce it. Then, the uniformity of the development is broken.

What information is useful for our problem? This very simple system illustrates schemat-
ically the problems that we can encounter in a classical perturbation development. Such a
development should allow us, in principle, to follow the evolution of the dynamics of wave
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turbulence at various orders in ϵ. The main problem is to ensure that the development remains
neat (or uniform). In other words, this means making sure that no secular term of the order n
comes to interfere in the dynamics at an order m, such as m < n, in order not to find oneself in
the same situation as [9], i.e. in the presence of a secular term. This type of term constitutes an
obstacle to the closure of the hierarchy of equations. The more sophisticated method of multiple
time scales [16] will allow us to solve this problem.

2.2. Multiple time scale method

Let us take the Duffing equation again and introduce the following independent time variables

Tn ≡ ϵn t with n = 0,1,2, . . . . (7)

The power series development of the variable f is then written (t ≡ T0)

f =
+∞∑
n=0

ϵn fn(t ,T1,T2, . . .), (8)

and the time derivative becomes a sum of partial derivatives

d

dt
=

+∞∑
n=0

ϵn ∂

∂Tn
. (9)

The introduction of relations (7)–(9) into the Duffing equation gives(
∂

∂t
+ϵ ∂

∂T1
+ϵ2 ∂

∂T2
+·· ·

)2

( f0 +ϵ f1 +ϵ2 f2 +·· · )+ ( f0 +ϵ f1 +ϵ2 f2 +·· · )
=−ϵ( f0 +ϵ f1 +ϵ2 f2 +·· · )3. (10)

We obtain an infinite system of equations which, for the first two orders, can be written

O (ϵ0) :
∂2 f0

∂t 2 + f0 = 0, (11a)

O (ϵ1) :
∂2 f1

∂t 2 + f1 +2
∂2 f0

∂t∂T1
=− f 3

0 . (11b)

We can see the presence of a new term in the time evolution equation of f1 whose importance
emerges over long times. We look for a solution of the form

f0 = A(T1,T2, . . .)cos(t +φ(T1,T2, . . .)), (12)

with an amplitude A and a phase φ which can vary slowly over time (hence the dependence in
T1, T2, etc). The introduction of previous expression in (11b) gives the relation

∂2 f1

∂t 2 + f1 = 2
∂A

∂T1
sin(t +φ)+

(
2A

∂φ

∂T1
− 3

4
A3

)
cos(t +φ)− A3

4
cos(3(t +φ)). (13)

To ensure that the f1 solution does not include a secular term, the following conditions must be
imposed

∂A

∂T1
= 0 and

∂φ

∂T1
= 3

8
A2, (14)

which gives φ= (3/8)A2ϵt +θ. The solution is then written

f (t ) = A cos

(
t + 3

8
A2ϵt +θ

)
+ ϵA3

32
cos

(
3t + 9

8
A2ϵt +3θ

)
+O (ϵ2), (15)

with A(T2,T3, . . .) and θ(T2,T3, . . .). In the order of the truncation, we can therefore consider
that A and θ are constant. Note that this development is compatible with the previous one (6)
for t ≤ O (ϵ). This example illustrates the fact that we can achieve a uniform development in a
systematic way using the multiple time scale method.
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Figure 2. Variation of f (t ) (solid line) obtained by a numerical simulation of the Duffing
equation with ϵ= 0.01. The solutions (6) and (15) are plotted in red dotted and black dashed
lines, respectively.

In Figure 2 we show the result of a numerical simulation of the Duffing equation with ϵ= 0.01.
The function f (t ) is plotted in solid line. At the top, we see the evolution for t ∈ [0,200] and at the
bottom, we display an enlargement of the end of the simulation. The mathematical solutions (6)
and (15) are plotted in dotted and dashed lines, respectively. The divergence with t of the solution
(6) whose origin is the secular term can be seen. As expected, this divergence occurs over a time
t of the order of O (1/ϵ) (the reference time is the wave period). On the other hand, the solution
(15) remains close to the real solution until the final time.

3. Sequential time closures for three-wave interactions

3.1. Fundamental equation

We present here a detailed derivation of the kinetic equation for three-wave interactions, a
situation of interest for the Navier–Stokes equations when capillary waves or inertial waves are
involved, two examples that will be used to illustrate the theory of wave turbulence.

Consider the following inviscid model

∂u(x, t )

∂t
= L(u)+ϵN (u,u), (16)
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where u is a random variable such that 〈u〉 = 0 (with 〈〉 an ensemble average), L is a linear
operator which guarantees that the waves are linear solutions to the problem, and N is a non-
linear quadratic operator (thus involving a priori triadic interactions). The coefficient ϵ is a small
parameter (0 < ϵ ≪ 1) which measures the amplitude of the non-linearities (it is originally a
measure of the wave amplitude). The Fourier transform in d-dimension is

û(k, t ) ≡ 1

(2π)d

∫
Rd

u(x, t )e−ik·x dx. (17)

Note that we consider a continuous medium which can lead to mathematical difficulties con-
nected with infinite dimensional phase spaces. For this reason, it is preferable to assume a vari-
able spatially periodic over a box of finite size L. However, in the derivation of the kinetic equa-
tion, the limit L →+∞ is finally taken (before the long time limit, or equivalently the limit ϵ→ 0).
As both approaches lead to the same kinetic equation, for simplicity, we anticipate this result and
follow the original approach of [2].

The Fourier transform of Equation (16) takes the following schematic form when the canonical
variables are introduced(

∂

∂t
+ iskωk

)
Ask (k, t ) = ϵ ∑

sp sq

∫
R2d

H−kpq Asp (p, t )Asq (q, t )δ(k−p−q)dpdq, (18)

with si = ± the directional polarity. On the left hand side, we find ωk which is fixed by the
dispersion relation (we assume 0 < ωk ∝ |k|x with x > 1) while on the right hand side Hkpq is
an operator which depends on the shape of the non-linearities and is symmetrical in p and q
(i.e. Hkqp = Hkpq). We recall that the presence of the Dirac function originates in the convolution
product, and that the quadratic nature of the non-linearities leads to triadic interactions.

Equation (18) is simplified by making the following change of variables (the writing is simpli-
fied in passing)

Ask (k, t ) = ask (k, t )e−iskωk t = ask
k e−iskωk t . (19)

In the interaction representation, we obtain the fundamental equation

∂ask
k

∂t
= ϵ ∑

sp sq

∫
R2d

H−kpqa
sp
p a

sq
q eiΩk,pq tδk,pq dpdq, (20)

with by definition δk,pq ≡ δ(k−p−q) and Ωk,pq ≡ skωk − spωp − sqωq . Additional properties
can be established if first we use the relation Ask (k) = (A−sk (−k))∗, with ∗ the complex conjugate:
then, we have necessarily Hkpq = H∗

−k−p−q. As mentioned above, we consider only zero mean
fluctuations in the physical space, which means with our notation ask (k = 0, t ) = 0 (below, we
will assume statistical spatial homogeneity) and therefore, H0pq = 0. Finally, if Hkpq is purely
imaginary, we have H∗

kpq =−Hkpq. This property may be used to simplify the kinetic equations.
Equation (20) highlights the temporal evolution of the wave amplitude: this evolution is a

priori relatively slow since it induces a non-linear term proportional to ϵ. We will find this
property with the multiple time scale method. The presence of the complex exponential is
fundamental for the asymptotic closure: since we are interested in the dynamics over a long time
with respect to the wave period, the contribution of this exponential is essentially zero. Only
some terms will survive: those for whichΩk,pq = 0. With the condition imposed by the Dirac, we
obtain the resonance condition {

k = p+q,
skωk = spωp + sqωq .

(21)

3.2. Dispersion relation and resonance

The triadic resonance condition (21) does not always have a solution. To realize this, we can
represent this condition geometrically in the two-dimensional and isotropic case: Figure 3 shows
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Figure 3. Resonance condition for a dispersion relation of the type ωk ∼ |k|x with x > 1
(left) and 0 < x < 1 (right).

a (axisymmetric) dispersion relation of the type ωk ∼ |k|x , with x > 1 (left) and 0 < x < 1 (right).
The solutions of the resonance condition (21) correspond to the intersection between the surface
ω(p) (which is identified with that of ω(k)) and the surface ω(q). We find that this intersection
exists only for a convex dispersion relation (x > 1). The concave case corresponding to 0 < x < 1
is the one encountered a priori with gravity waves for which x = 1/2. Note that for anisotropic
problems like inertial wave turbulence this simple picture does not work.

The special case x = 1 is that of non-dispersive (or semi-dispersive) waves. We can easily see
that the only possible solution is that where all three wave vectors are aligned. Although a solution
to the triadic resonance condition exists, an asymptotic closure of the hierarchy of equations is
not guaranteed. Physically, we can easily understand this problem: two semi-dispersive waves
propagate at the same speed, therefore, if they initially overlap their interactions will be strong,
otherwise they will never interact. Using the multiple time scale method presented in the next
section, it can be shown that, in one dimension, a contribution from non-linear terms is possible
on a time scale of the order of T1 while the closure is made on a longer time scale in T2 [2]. The
appearance of these secular contributions requires a new analysis to suppress them and justify
the application of the wave turbulence theory. This situation can be found in acoustic wave
turbulence or in fast magneto-acoustic wave turbulence in three dimensions [52].

Note that for four-wave interactions, the situation is less constraining because new possibili-
ties exist. For example, gravity waves can be analyzed at this order. In the case of non-dispersive
waves, it may be possible to develop a theory of wave turbulence because the associated four
wave vectors are not necessarily collinear. An example is given by gravitational waves for which
the dispersion relation is ωk = ck, with c the speed of light [75].

3.3. Multiple time scale method

Following our analysis of the Duffing equation, we wish to make a development of Equation (20)
following the method of multiple time scales [16]. We introduce a sequence of time scales,
T0,T1,T2, . . . , which will be treated as independent variables, with

T0 ≡ t , T1 ≡ ϵt , T2 ≡ ϵ2t , . . . . (22)
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The variation of the wave amplitude with T1 and T2 represents the slow variation that we wish
to extract. Note that it is because of the weak dependence in t of T1,T2, . . . , that all these
variables can be treated (it is an approximation) as independent. (The smaller ϵ is, the better
the approximation.) We obtain (T0 being replaced by t )(

∂

∂t
+ϵ ∂

∂T1
+ϵ2 ∂

∂T2
+·· ·

)
ask

k = ϵ ∑
sp sq

∫
R2d

H−kpqa
sp
p a

sq
q eiΩk,pq tδk,pq dpdq. (23)

The variable ask
k must also be expanded to the power of ϵ and make the various scales appear in

time

ask
k =

+∞∑
n=0

ϵn ask
k,n(t ,T1,T2, . . .) = ask

k,0 +ϵask
k,1 +ϵ2ask

k,2 +·· · . (24)

Expression (24) is then introduced into the fundamental equation (23). We obtain for the first
three terms

∂ask
k,0

∂t
= 0, (25a)

∂ask
k,1

∂t
=−

∂ask
k,0

∂T1
+ ∑

sp sq

∫
R2d

H−kpqa
sp

p,0a
sq

q,0eiΩk,pq tδk,pq dpdq, (25b)

∂ask
k,2

∂t
=−

∂ask
k,1

∂T1
−
∂ask

k,0

∂T2
+ ∑

sp sq

∫
R2d

H−kpq

[
a

sp

p,1a
sq

q,0 +a
sp

p,0a
sq

q,1

]
eiΩk,pq tδk,pq dpdq. (25c)

To lighten the writing, the time dependency of the variables has been omitted. After integration
on t , one finds

ask
k,0 = ask

k,0(T1,T2, . . .), (26a)

ask
k,1 =−t

∂ask
k,0

∂T1
+bsk

k,1, (26b)

ask
k,2 =

t 2

2

∂2ask
k,0

∂T 2
1

− t
∂ask

k,0

∂T2
−

∫ t

0

∂bsk
k,1

∂T1
dt + b̃sk

k,2, (26c)

with by definition

bsk
k,1 ≡

∑
sp sq

∫
R2d

H−kpqa
sp

p,0a
sq

q,0∆(Ωk,pq )δk,pq dpdq, (27)

∆(X ) ≡
∫ t

0
eiX t dt = eiX t −1

iX
, (28)

and

b̃sk
k,2 ≡

∑
sp sq

∫
R2d

H−kpq

∫ t

0

[
a

sp

p,1a
sq

q,0 +a
sp

p,0a
sq

q,1

]
eiΩk,pq t dtδk,pq dpdq. (29)

The previous equation is modified when expression (26b) is introduced; one finds

b̃sk
k,2 = − ∑

sp sq

∫
R2d

H−kpq

∂(a
sp

p,0a
sq

q,0)

∂T1

(∫ t

0
teiΩk,pq t dt

)
δk,pq dpdq

+ ∑
sp sq

∫
R2d

H−kpq

(∫ t

0
(b

sp

p,1a
sq

q,0 +b
sq

q,1a
sp

p,0)eiΩk,pq t dt

)
δk,pq dpdq. (30)

Expression (26c) becomes

ask
k,2 =

t 2

2

∂2ask
k,0

∂T 2
1

− t
∂ask

k,0

∂T2
+bsk

k,2, (31)
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with

bsk
k,2 = − ∑

sp sq

∫
R2d

H−kpq

∂(a
sp

p,0a
sq

q,0)

∂T1

(∫ t

0

[
∆(Ωk,pq )+ teiΩk,pq t ]dt

)
δk,pq dpdq

+2
∑

sp sq sp′ sq′

∫
R4d

H−kpqH−pp′q′a
sp′
p ′,0a

sq′
q ′,0a

sq

q,0

×
(∫ t

0
∆(Ωp,p ′q ′ )eiΩk,pq t dt

)
δk,pqδp,p ′q ′ dpdqdp′ dq′.

The time integrals give the relations∫ t

0

[
∆(Ωk,pq )+ teiΩk,pq t ]dt = t∆(Ωk,pq ), (32)∫ t

0
∆(Ωp,p ′q ′ )eiΩk,pq t dt = ∆(Ωk,p ′q ′q )−∆(Ωk,pq )

i(Ωk,p ′q ′q −Ωk,pq )
, (33)

that will be used below in the long time limit.

3.4. First asymptotic closure at time T1

With the previous definitions, the perturbative expansion of the second-order moment writes

〈ask
k a

sk′
k ′ 〉 = 〈(ask

k,0 +ϵask
k,1 +ϵ2ask

k,2 +·· · )(a
sk′
k ′,0 +ϵa

sk′
k ′,1 +ϵ2a

sk′
k ′,2 +·· · )〉

= 〈ask
k,0a

sk′
k ′,0〉+ϵ〈ask

k,0a
sk′
k ′,1 +ask

k,1a
sk′
k ′,0〉+ϵ2〈ask

k,0a
sk′
k ′,2 +ask

k,1a
sk′
k ′,1 +ask

k,2a
sk′
k ′,0〉+ · · · (34)

We shall assume that this turbulence is statistically homogeneous. In this case, the second-order
moment can be written in term of second-order cumulant q sk sk′ (k,k′) ≡ q

sk sk′
k such that

〈ask
k a

sk′
k ′ 〉 = q

sk sk′
k δ(k+k′), (35)

where the presence of δ(k+k′) is the consequence of the statistical homogeneity [1]. We also
assume—this is the basic idea of the method—that the second-order moment (in fact, the
coefficient q

sk sk′
k in front of the Dirac function) in the left hand side remains bounded at all

time [2]. As an example, we can think of the energy spectrum which, as we know, remains
physically bounded. Therefore, the contributions on the right hand side must also be bounded
(in the sense introduced above). We will see that secular terms can appear at different orders in ϵ;
this leads to certain conditions to cancel their contributions in order to keep the development
uniform in time. As we shall see, at order O (ϵ2) this condition leads to the so-called kinetic
equations.

At order O (ϵ0), we have the contribution of 〈ask
k,0a

sk′
k ′,0〉 which will therefore be assumed to be

bounded at all times.
At order O (ϵ1), we have the contribution

〈ask
k,0a

sk′
k ′,1 +ask

k,1a
sk′
k ′,0〉 =

〈
ask

k,0

(
−t

∂a
sk′
k ′,0

∂T1
+b

sk′
k ′,1

)
+

(
−t

∂ask
k,0

∂T1
+bsk

k,1

)
a

sk′
k ′,0

〉

= −t
∂

∂T1
〈ask

k,0a
sk′
k ′,0〉+〈ask

k,0b
sk′
k ′,1 +bsk

k,1a
sk′
k ′,0〉. (36)

The first term on the right hand side gives a secular contribution proportional to t . For the second
term, we have ∑

sp sq

∫
R2d

H−kpq〈ask
k,0a

sp

p,0a
sq

q,0〉∆(Ωk,pq )δk,pq dpdq. (37)
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The long time limit (t ≫ 1/ω) of this oscillating integral will be given by the Riemann–Lebesgue
lemma (the proof requires to use of generalized functions)

∆(X ) = eiX t −1

iX
t→+∞−−−−−→πδ(X )+ iP

(
1

X

)
, (38)

where P is the Cauchy principal value of the integral. Therefore, the long time limit of expression
(37) gives no secular contribution. The same conclusion is obtained for the third term of
expression (36). Also, the condition to cancel the unique secular term is

∂〈ask
k,0a

sk′
k ′,0〉

∂T1
= 0, (39)

which means that the second-order moment does not evolve over a time scale T1. As will be seen
later, a turbulent cascade is only expected on a time scale T2.

3.5. Second asymptotic closure at time T2

The analysis continues at order O (ϵ2). With expression (31), the next contribution reads〈
ask

k,1a
sk′
k ′,1 +ask

k,0a
sk′
k ′,2 +as

k,2a
sk′
k ′,0

〉
=

〈(
−t

∂ask
k,0

∂T1
+bsk

k,1

)(
−t

∂a
sk′
k ′,0

∂T1
+b

sk′
k ′,1

)〉

+
〈

ask
k,0

(
t 2

2

∂2a
sk′
k ′,0

∂T 2
1

− t
∂a

sk′
k ′,0

∂T2
+b

sk′
k ′,2

)
+a

sk′
k ′,0

(
t 2

2

∂2ask
k,0

∂T 2
1

− t
∂ask

k,0

∂T2
+bsk

k,2

)〉
, (40)

which gives after development and simplifications〈
ask

k,1a
sk′
k ′,1 +ask

k,0a
sk′
k ′,2 +ask

k,2a
sk′
k ′,0

〉
= t 2

2

∂2〈ask
k,0a

sk′
k ′,0〉

∂T 2
1

− t
∂〈ask

k,0a
sk′
k ′,0〉

∂T2
+

〈
bsk

k,1b
sk′
k ′,1

〉
− t

〈
∂ask

k,0

∂T1
b

sk′
k ′,1 +bsk

k,1

∂a
sk′
k ′,0

∂T1

〉
+

〈
ask

k,0b
sk′
k ′,2 +a

sk′
k ′,0bsk

k,2

〉
. (41)

The first term on the right hand side cancels over the long time as required by the first asymptotic
closure. The second term gives a secular contribution. The other three terms can potentially
give a secular contribution: it is obvious for the fourth term and non-trivial for the third and fifth
terms which require further development.

The third term on the right hand side writes〈
bsk

k,1b
sk′
k ′,1

〉
= ∑

sp sq sp′ sq′

∫
R4d

H−kpqH−k′p′q′〈a
sp

p,0a
sq

q,0a
sp′
p ′,0a

sq′
q ′,0〉∆(Ωk,pq )∆(Ωk ′,p ′q ′ )

×δk,pqδk ′,p ′q ′ dpdqdp′ dq′, (42)

Here again, the theory of generalized functions gives us the long time behavior of this oscillating
integral (with the Poincaré–Bertrand formula)

∆(X )∆(−X )
t→+∞−−−−−→ 2πtδ(X )+2P

(
1

X

)
∂

∂X
. (43)

Therefore, a secular contribution involving a Dirac function is possible. The fourth-order mo-
ment in expression (42) can be decomposed into products of second-order cumulant plus a
fourth-order cumulant such that (the statistical homogeneity is used as well as 〈ask

k,0〉 = 0)

〈a
sp

p,0a
sq

q,0a
sp′
p ′,0a

sq′
q ′,0〉 = q

sp sq sp′ sq′
pqp ′,0 δ(p+q+p′+q′)+q

sp sq

p,0 q
sp′ sq′
p ′,0 δ(p+q)δ(p′+q′)

+q
sp sp′
p,0 q

sq sq′
q,0 δ(p+p′)δ(q+q′)+q

sp sq′
p,0 q

sq sp′
q,0 δ(p+q′)δ(q+p′). (44)
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Note that according to expression (34) by homogeneity we also have the relation k = −k′. We
obtain〈

bsk
k,1b

sk′
k ′,1

〉
= ∑

sp sq sp′ sq′

∫
R4d

H−kpqH−k′p′q′
[

q
sp sq sp′ sq′
pqp ′,0 δ(p+q+p′+q′)

+q
sp sq

p,0 q
sp′ sq′
p ′,0 δ(p+q)δ(p′+q′)+q

sp sp′
p,0 q

sq sq′
q,0 δ(p+p′)δ(q+q′)

+q
sp sq′
p,0 q

sq sp′
q,0 δ(p+q′)δ(q+p′)

]
∆(Ωk,pq )∆(Ωk ′,p ′q ′ )δk,pqδk ′,p ′q ′ dpdqdp′ dq′. (45)

We are looking for secular contributions. In the second line, the first term does not contribute
since it imposes k = 0 which cancels Hkpq but the second term can contribute when the condi-
tions sp = −sp ′ and sq = −sq ′ are satisfied. Likewise, in the third line a contribution is possible
when sp =−sq ′ and sq =−sp ′ . There is no contribution from the first line, which means that the
situation is the same as if the distribution were Gaussian (however, we do not make this assump-
tion). Finally, in the long time limit, the secular contribution Ct 〈bsk

k,1b
sk′
k ′,1〉 is

Ct

〈
bsk

k,1b
sk′
k ′,1

〉
= 4πt

∑
sp sq

∫
R2d

H−kpqHk−p−qq
sp−sp

p,0 q
sq−sq

q,0 δ(Ωk,pq )δk,pqδkk ′ dpdq

= 4πt
∑

sp sq

∫
R2d

|H−kpq|2q
sp−sp

p,0 q
sq−sq

q,0 δ(Ωk,pq )δk,pqδkk ′ dpdq. (46)

The fourth term on the right hand side of Equation (41) does not contribute over the long
time because it depends on the T1 derivative. The proof is given by a new relation involving the
n-order moments which can be written

〈ask
k a

sk′
k ′ a

sk′′
k ′′ . . .〉 = 〈ask

k,0a
sk′
k ′,0a

sk′′
k ′′,0 . . .〉

+ϵ〈ask
k,1a

sk′
k ′,0a

sk′′
k ′′,0 · · ·+ask

k,0a
sk′
k ′,1a

sk′′
k ′′,0 · · ·+ask

k,0a
sk′
k ′,0a

sk′′
k ′′,1 · · ·+ · · · 〉

+ϵ2〈. . .〉+ · · · (47)

As for the second-order moment, we demand that the moments of order n are bounded. At order
O (ϵ), we obtain the relation

〈ask
k,1a

sk′
k ′,0a

sk′′
k ′′,0 · · ·+ask

k,0a
sk′
k ′,1a

sk′′
k ′′,0 · · ·+ask

k,0a
sk′
k ′,0a

sk′′
k ′′,1 · · ·+ · · · 〉

=
〈(

−t
∂ask

k,0

∂T1
+bsk

k,1

)
a

sk′
k ′,0a

sk′′
k ′′,0 · · ·+ask

k,0

(
−t

∂a
sk′
k ′,0

∂T1
+b

sk′
k ′,1

)
a

sk′′
k ′′,0 · · ·+ · · ·

〉

=−t
∂〈ask

k,0a
sk′
k ′,0a

sk′′
k ′′,0 . . .〉

∂T1
+〈bsk

k,1a
sk′
k ′,0a

sk′′
k ′′,0 . . .〉+〈ask

k,0b
sk′
k ′,1a

sk′′
k ′′,0 . . .〉+ · · · (48)

We see that only the first term of the last line gives a secular contribution over the long time,
which means that we have to satisfy the condition

∂〈ask
k,0a

sk′
k ′,0a

sk′′
k ′′,0 . . .〉

∂T1
= 0, (49)

at any order n. Therefore, the probability density function does not depend on T1 and we can
assume that the variable itself does not depend on T1. It is a mild hypothesis because it is difficult
to imagine a turbulent system where everything fluctuates, and in which it would be possible to
have a T1 dependence for the amplitude whereas the probability density function has no such
dependence. This shows that the fourth term on the right hand side of Equation (41) does not
contribute in the long time limit.
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The last term of Equation (41) writes

〈
ask

k,0b
sk′
k ′,2 +a

sk′
k ′,0bsk

k,2

〉
= ∑

sp sq sp′ sq′

∫
R4d

2H−k′pqH−pp′q′
〈

ask
k,0a

sp′
p ′,0a

sq′
q ′,0a

sq

q,0

〉
×

(
∆(Ωk ′,p ′q ′q )−∆(Ωk ′,pq )

i (Ωk ′,p ′q ′q −Ωk ′,pq )

)
δk ′,pqδp,p ′q ′ dpdqdp′ dq′

+ ∑
sp sq sp′ sq′

∫
R4d

2H−kpqH−pp′q′
〈

a
sk′
k ′,0a

sp′
p ′,0a

sq′
q ′,0a

sq

q,0

〉
×

(
∆(Ωk,p ′q ′q )−∆(Ωk,pq )

i (Ωk,p ′q ′q −Ωk,pq )

)
δk,pqδp,p ′q ′ dpdqdp′ dq′. (50)

The secular contributions of these oscillating integrals will be given by the theory of generalized
functions with the relation

∆(X )−∆(0)

i X
t→+∞−−−−−→πtδ(X )+ itP

(
1

X

)
. (51)

We also need to use the following development (and its symmetric in k′)

〈ask
k,0a

sp′
p ′,0a

sq′
q ′,0a

sq

q,0〉 = q
sk sp′ sq′ sq

kp ′q ′,0 δ(k+p′+q′+q)+q
sk sq

k,0 q
sp′ sq′
p ′,0 δ(k+q)δ(p′+q′)

+q
sk sq′
k,0 q

sp′ sq

p ′,0 δ(k+q′)δ(p′+q)+q
sk sp′
k,0 q

sq′ sq

q ′,0 δ(k+p′)δ(q′+q). (52)

In the right hand side of expression (52), the first two terms do not give a secular contribution,
however, the last two terms give a contribution when the following conditions are satisfied,
namely sk = −sq ′ , sp ′ = −sq and sk = −sp ′ , sq ′ = −sq , respectively. After substitution and
simplification, we obtain the secular contributions in the long time limit

Ct

〈
ask

k,0b
sk′
k ′,2 +a

sk′
k ′,0bsk

k,2

〉
=+4t

∑
sp sq

∫
R2d

H−k′pqH−p−qk′q
sk sk′
k,0 q

sq−sq

q,0

(
πδ(Ωk ′,pq )+ iP

(
1

Ωk ′,pq

))
δk ′,pqδkk ′ dpdq

+4t
∑

sp sq

∫
R2d

H−kpqH−p−qkq
sk sk′
k,0 q

sq−sq

q,0

(
πδ(Ωk,pq )+ iP

(
1

Ωk,pq

))
δk,pqδkk ′ dpdq

= 8πt
∑

sp sq

∫
R2d

H−kpqH−p−qkq
sk sk′
k,0 q

sq−sq

q,0 δ(Ωk,pq )δk,pqδkk ′ dpdq. (53)

The last writing is obtained by using the property H∗
−kpq = H−kpq and the symmetry in p → −p

and q →−q.
If we impose the nullity of the sum of the different secular contributions at time T2, we find

the condition

∂〈ask
k,0a

sk′
k ′,0〉

∂T2
=
∂q

sk sk′
k,0

∂T2
δkk ′

= 4π
∑

sp sq

∫
R2d

|H−kpq|2q
sp−sp

p,0 q
sq−sq

q,0 δ(Ωk,pq )δk,pqδkk ′ dpdq

+8π
∑

sp sq

∫
R2d

H−kpqH−p−qkq
sk sk′
k,0 q

sq−sq

q,0 δ(Ωk,pq )δk,pqδkk ′ dpdq. (54)
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After integrating over k′, using the property that q
sk sk′
k,0 is real and thus sk =−sk ′ and introducing

N sk
k ≡ q sk−sk

k,0 , we end up with (some simple manipulations are also used to symmetrize the
equation)

∂N sk
k

∂t
= 4πϵ2

∑
sp sq

∫
R2d

Hkpq

[
H−k−p−q

N sk
k

+ H−p−q−k

N
sp
p

+ H−q−p−k

N
sq
q

]
N sk

k N
sp
p N

sq
q δ(Ωkpq )δkpq dpdq,

(55)

which is the kinetic equation for three-wave interactions.

3.6. Conclusion

The derivation of the kinetic equation (55) does not involve any closure assumption such as
the quasi-Gaussianity and the random phase appears naturally dynamically in wave turbulence.
The kinetic equation is obtained by using a sequential asymptotic closures at times T1 and
T2. This method consists in imposing the nullity of secular terms (proportional to t ) which
emerge over long times in order to guarantee a bounded value for the associated moments.
These secular terms do not involve fourth-order cumulants but only products of second-order
cumulants. Note, however, that the derivation made, although systematic, says nothing about the
remaining terms (not used to obtain the kinetic equation) in the small ϵ perturbation expansion,
the implicit conjecture being that they are subdominant. Although proving this conjecture
in general remains a mathematical challenge, a first step has recently been taken with the
rigorous derivation of the kinetic equation in the special case of the non-linear cubic Schrodinger
equation [78, 79].

In summary, it can be said that wave turbulence for three-wave interactions is characterized
by a dynamics on two time scales. On short timescales, of the order of the wave period, there is
a phase mixing which leads, due to the dispersive nature of the waves, to the decoupling of the
correlations if initially present and to a statistics close to Gaussianity, as expected from the central
limit theorem. On a longer time scale, the non-linear coupling—weak at short times—becomes
non-negligible because of the resonance mechanism. This coupling leads to a regeneration of
the cumulants via the product of lower order cumulants. It is these terms that are at the origin of
the energy transfer mechanism.

In this derivation, the system studied is assumed to be of infinite size and can therefore
be treated as continuous. Note that numerical simulation with its grid of points escapes this
description. Effects (freezing of the cascade) linked to the discretization of the Fourier space can
appear because the resonance conditions are a priori more difficult to satisfy (see for example [80]
for capillary waves). In theory, the weaker the non-linearities, the stronger these effects are.
For example, in inertial wave turbulence [81] has shown that discretization effects become
preponderant when the Rossby number, Ro , is smaller than 10−3. Beyond this value, but still
for a small Ro ≪ 1, these effects are negligible because of the quasi-resonances which, together
with the resonances, contribute to the transfer of energy.

In nature we often encounter three-wave problems. As mentioned above, sometimes higher-
level problems (up to six waves) can occur. Despite the diversity of situations, the kinetic equation
takes a universal form in the sense that it is written (at leading order)

∂N sk
k

∂t
= ϵ2n−4T (k), (56)

for n-wave interactions, with T the transfer function (or collision integral). The higher the
degree of interaction, the longer the transfer time τtr. This time is characterized by the relation
ωτtr ∼O (1/ϵ2n−4). Since the characteristic time of the waves is τω ∼ 1/ω and the small parameter
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is none other than the ratio between this time and the non-linear time τNL, we arrive at the
following phenomenological expression for the transfer time

τtr ∼ τω

ϵ2n−4 ∼ τ2n−4
NL

τ2n−5
ω

. (57)

Therefore, for three-wave interactions, we can use the expression: τtr ∼ωτ2
NL.

4. Applications to Navier–Stokes equations

4.1. Capillary wave turbulence

Together with gravity waves, capillary waves are the main surface waves encountered in nature.
The latter have an advantage over the former in that they are easier to treat analytically in the
non-linear regime since they involves three-wave interactions. Following the multiple time scale
method, we obtain the following kinetic equation for capillary wave turbulence [27, 82]

∂N sk
k

∂t
= 4πϵ2

∑
sp sq

∫
R4

|Hkpq |2sp sq

[
sp sq

N sk
k

+ sk sq

N
sp
p

+ sk sp

N
sq
q

]
N sk

k N
sp
p N

sq
q δ(Ωkpq )δkpq dpdq, (58)

with

|Hkpq |2 =
p
σ

8

[
sk (p ·q+pq)

( pq

k

)1/4
+ sp (k ·q+kq)

(
qk

p

)1/4

+ sq (k ·p+kp)

(
pk

q

)1/4
]2

, (59)

where ωk = p
σk3/2 and σ = γ/ρwater, with γ the surface tension coefficient (for the air–water

interface γ≃ 0.07 N/m) and ρwater the mass density of the water.

4.2. Inertial wave turbulence

Inertial wave turbulence is the regime reached by an incompressible fluid subjected to a rapid
and uniform rotation within the limit of a large Reynolds number. At first sight, this situation
seems similar to eddy turbulence since it simply involves adding a well-known force to the
Navier–Stokes equations, namely the Coriolis force. However, there are two major differences:
waves exist and the spherical symmetry is broken by the presence of a privileged axis, that of
rotation. This anisotropy makes the study of inertial wave turbulence more complex than that of
capillary waves. Nevertheless, the multiple time scale method can be applied and the following
anisotropic kinetic equation can be obtained in the limit k⊥ ≫ k∥ [40]

∂N s
k

∂t
= πϵ2

4 sωk

∑
sp sq

∫ (
sinθk

k⊥

)2

(sp p⊥− sq q⊥)2(sk⊥+ sp p⊥+ sq q⊥)2

×
[

sωk N
sp
p N

sq
q + spωp N s

k N
sq
q + sqωq N s

k N
sp
p

]
δ(Ωkpq )δkpq dpdq, (60)

with ωk = 2Ω0k∥/k⊥, e∥ (|e∥| = 1) the axis of rotation, Ω0 the constant rotating rate and θk the
opposite angle to k⊥ in the triangle k⊥ = p⊥+q⊥.

5. Kolmogorov–Zakharov spectrum

5.1. A toy model

Exact stationary solutions with a non-zero flux can be found from the previous kinetic equations.
We usually called these solutions the Kolmogorov–Zakharov spectra. To expose the technique to
get such a solution, which implies the Zakharov transformation, I will introduce a simple kinetic
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Figure 4. The isotropic kinetic equation (61) involves triadic interactions limited to the
infinitely long gray band. The Zakharov transformations (TZ1 and TZ2 are in the right and
left panels, respectively) consists in the exchange of the four regions separated by dashes.

equation that must be seen as a toy model because it does not correspond to any physical system.
This kinetic equation is the following

∂Ek

∂t
= ∑

sk sp sq

∫
∆

skωk
[
sk Ep Eq + sp Ek Eq + sq Ek Ep

]
δ(skωk + spωp + sqωq )dp dq, (61)

with ωk = k2. The kinetic equation is isotropic and Ek is the one dimensional energy spectrum.
Also, the integration is limited to a two-dimensional region (∆) where the triadic relation is
satisfied (see Figure 4). Note that Equation (61) verifies the energy conservation.

The first obvious solution that appears is the thermodynamic spectrum, Ek = Ak−2. Indeed,
the substitution of this solution into (61) gives trivially

∂Ek

∂t
= ∑

sk sp sq

∫
∆

skωk
[
sk k2 + sp p2 + sq q2] A2

(kpq)3 δ(skωk + spωp + sqωq )dp dq = 0. (62)

The second solution is less trivial to obtain. We need to apply the Zakharov transformation. First,
we need to write the previous equation in terms of adimensional wavenumbers. Let us introduce
ξp ≡ p/k and ξq ≡ q/k; then, we obtain

∂Ek

∂t
= A2k2+2x

∑
sk sp sq

∫
∆

sk

[
skξ

x
pξ

x
q + spξ

x
q + sqξ

x
p

]
δ(sk + spξ

2
p + sqξ

2
q )dξp dξq , (63)

where we have also introduced Ek = Akx with A est positive quantity. The Zakharov transforma-
tions correspond to the following change of variables

ξp → 1

ξp
, ξq → ξq

ξp
, (TZ1) (64)

and

ξp → ξp

ξq
, ξq → 1

ξq
. (TZ2) (65)

The meaning of these transformations is illustrated in Figure 4. The method consists of splitting
the integral (63) into three equal contributions, applying the Zakharov transformation TZ1 to
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the second and TZ2 to the third, leaving the first integral intact. We then combine the different
contributions and, after a few manipulations, obtain the following expression

∂Ek

∂t
= A2

3
k2+2x

∑
sk sp sq

∫
∆
ξx

qξ
x
q

(
sk + spξ

−x
p + sqξ

−x
q

)(
sk + spξ

−2x−1
p + sqξ

−2x−1
q

)
×δ(sk + spξ

2
p + sqξ

2
q )dξp dξq . (66)

Two solutions appear, x = −2 and x = −3/2. The first corresponds to the thermodynamic spec-
trum (as mentioned above) for which the energy flux is zero and the second to the Kolmogorov–
Zakharov spectrum with a non-zero energy flux. These properties can be obtained by introducing
the isotropic energy fluxΠk as follows

∂Ek

∂t
=−∂Πk

∂k
= A2

3
k2+2x I (x). (67)

This leads to the expression

Πk (x) =− A2

3

k3+2x

3+2x
I (x). (68)

We can immediately see that x =−2 corresponds to a zero flux since I (−2) = 0. On the other hand,
the value x =−3/2 requires a little calculation since I and the denominator are both zero. Using
L’Hospital’s rule, we find

ε≡Πk (−3/2) =− A2

3
lim

x→−3/2

I (x)

3+2x
= A2

3
J , (69)

with

J ≡− lim
x→−3/2

∂I (x)

∂x
= ∑

sk sp sq

∫
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ξ−3/2

q ξ−3/2
q

(
sk + spξ

3/2
p + sqξ

3/2
q

)(
spξ

2
p ln(ξp )+ sqξ

2
q ln(ξq )

)
×δ(sk + spξ

2
p + sqξ

2
q )dξp dξq . (70)

The direction of the cascade can be obtained numerically from this analytical expression. A
positive value for J means a direct energy cascade. The value of J can finally lead to an estimate
of the Kolmogorov constant CK with

Ek =CK
p
εk−3/2 and CK =

√
3

J
. (71)

The last task is to check the validity of the Kolmogorov–Zakharov spectrum. We require this so-
lution (the inertial range) to be independent of the largest and smallest scales. This is a question
of convergence of the collisional integral (63). Solving this exercise gives a condition x1 < x < x2

which can prove that our solution x =−3/2 is physical if it is inside the domain of convergence.
In conclusion, we can say that wave turbulence is a solvable problem. Indeed, we have seen

from this toy model that in principle we can determine all the properties of wave turbulence
by giving the exact solutions, the direction of the cascade, evaluating the Kolmogorov constant
and showing the existence of an inertial range. All these properties cannot be found in eddy
turbulence, even using the exact Kolmogorov laws.

5.2. Applications to Navier–Stokes

For capillary wave turbulence the isotropic Kolmogorov–Zakharov spectrum is [27]

Ek = Ak−7/4. (72)

It is an isotropic spectrum well observed experimentally (see the review [36]).
For inertial wave turbulence the problem is more complex because turbulence is anisotropic

with an energy cascade mainly in the direction transverse to the rotation axis. In this case, we
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have to use a generalization of the Zakharov transformation. This leads to the axisymmetric
Kolmogorov–Zakharov spectrum [40]

E(k⊥,k∥) = Ak−5/2
⊥ k−1/2

∥ . (73)

Note that the convergence properties and the Kolmogorov constant have been studied only
recently [83]. This spectrum is observed experimentally and numerically [41, 84, 85].
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