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Abstract. We present a thermodynamic description of ultracold gases with dipolar interactions which prop-
erly accounts for the long-range nature and broken rotation invariance of the interactions. It involves an ad-
ditional thermodynamic field conjugate to the linear extension of the gas along the direction of the dipoles.
The associated uniaxial pressure shows up as a deviation from the Gibbs–Duhem relation in the density pro-
file of a trapped gas. It has to vanish in self-bound droplets, a condition which determines the observed
dependence of the aspect ratio on particle number. A tensorial generalization of the virial theorem and a
number of further exact thermodynamic relations are derived. Finally, extending a model due to Nozières, a
simple criterion for the freezing transition to a superfluid mass density wave is given.

Résumé. Nous donnons une description thermodynamique des gaz froids en interaction dipolaire qui tient
compte de la longue portée de ces interactions et de leur absence d’invariance par rotation. Elle fait intervenir
un champ thermodynamique supplémentaire conjugué à l’extension linéaire du gaz selon la direction des
dipôles. La pression uniaxiale associée se manifeste par un écart à la relation de Gibbs–Duhem dans le profil
de densité du gaz piégé. Elle doit s’annuler dans les gouttelettes (des états liés du système), une condition
qui détermine la dépendance observée du rapport d’aspect avec le nombre de particules. Une généralisation
tensorielle du théorème du viriel et un certain nombre d’autres relations thermodynamiques exactes sont
obtenues. Enfin, en étendant un modèle dû à Nozières, on aboutit à un critère simple pour la transition de
solidification vers une onde de densité de masse superfluide.
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1. Introduction

The realization of a Bose Einstein condensate with Chromium [1] has opened a new field of
research in ultracold gases. It allows to explore a wide range of phenomena which are uniquely
tied to the long-range and partially attractive nature of dipolar interactions. Following the
extension to condensates with Erbium or Dysprosium where the strength of these interactions
may exceed the short-range repulsion, the field has grown immensely in recent years. This is
based, in particular, on the discovery of self-bound droplets [2] and of supersolid phases [3–5],
where superfluidity coexists with broken translation invariance: see [6] for a recent review of
magnetic dipolar gases and the Lectures [7, 8] for an introduction to the underlying concepts.
On the theory side, a successful qualitative description of the observations is provided by an
extended Gross–Pitaevskii equation, where a non-analytic contribution proportional to |ψ|5 is
added to the energy functional. As will be discussed below, a proper microscopic derivation of
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this procedure in the relevant regime of strong dipolar interactions, where the chemical potential
may assume negative values, is lacking. It is therefore of interest to develop a description which
only relies on general thermodynamic relations, properly accounting for the long-range and
anisotropic nature of the interactions. A step in this direction will be taken in the present
contribution for quantum fluids in thermal equilibrium, extending concepts from classical polar
fluids [9] and liquid crystals [10]. In particular, it is shown that the anisotropy and long-range
nature of the interactions require the introduction of an additional contribution h1dLz in the
differential of the free energy, with Lz the system length along the direction of the dipoles.
It gives rise to the shape-dependence of thermodynamic properties and an anisotropy in the
momentum current tensorΠ(x) and thus effectively to pressure. The appearance of an additional
extensive variable Lz in the free energy F (T,V ,Lz , N ) beyond particle number and volume leads to
a violation of the Gibbs–Duhem relation which is reflected in the density profile of harmonically
trapped gases. Moreover, for the case of self-bound droplets where the internal forces have
to balance locally, the vanishing of the uniaxial contribution implies a scale-dependent aspect
ratio κ(N ) ∼ N−1/4, approaching zero in the thermodynamic limit where the droplets evolve
into a needle-like shape. Finally, we address the nature of the transition from a homogeneous
superfluid to a supersolid and discuss a simple model due to Nozières [11] which provides a
criterion for the associated critical value of the roton gap beyond mean-field.

In general, the aim of the present contribution is to clarify a number of conceptual points in
the theory of dipolar gases, thus providing a better understanding of some fundamental issues
and open problems.

2. Thermodynamics of uniaxial quantum fluids

In close analogy to the standard description of classical polar fluids [9], the two-body interaction

V (x12) =Vsr(r12)− µ2
m

4π

2P2(ẑ · x̂12)

r 3
12

·χ(r12) (1)

in Bose quantum fluids whose permanent dipoles µm are all oriented along the z-direction
may be separated into a rotation invariant short-range plus the long-range, anisotropic dipolar
contribution (we use magnetic dipoles in the following and units where µ0 ≡ 1 but our results
also hold for electric ones with minor changes). Here, P2(x) = (3x2−1)/2 is the standard Legendre
polynomial and ẑ, x̂12 are unit vectors along, respectively, the dipole orientation or the separation
vector x12 = x1 − x2. In the ultracold limit, the two-body scattering amplitude associated with
Vsr(r12) only involves s-wave scattering and thus is fully characterized by the scattering length a,
which is assumed to be positive. The short-range interaction can therefore be replaced by a
zero-range pseudopotential with strength parameter g = 4πħ2a/m. A similar simplification
is possible for the dipolar interaction, whose strength defines an additional effective length
add > 0 by gdd = µ2

m/3 = 4πħ2add/m. Indeed, dipolar scattering at low energies arises from large
separations, where Vdd(x12) ∼µ2

m/r 3
12 is weak. Asymptotically, the two-body scattering amplitude

fdd(k̂i → k̂ f , |k|) −−−−−−→
|k|add≪1

f (B)
dd (k̂i → k̂ f ) =−add ·2P2(ẑ · q̂) for |q | = 2|k|sin(θ/2) ̸= 0 (2)

is therefore given by the Born approximation, proportional to the Fourier transform Vdd(q) =
gdd 2P2(ẑ · q̂) of the bare dipolar interaction at the momentum transfer wave vector q = k f −ki .
Note that Vdd(q) is independent of |q | only for |q |r0 ≪ 1, where the short distance cutoff function
χ(r ) in Equation (1) may be replaced by unity and also that the forward scattering limit θ = 0 is ill-
defined. Moreover, since Vdd(x12) is not rotationally symmetric, the scattering amplitude cannot
be decomposed into separate angular momenta and also depends on the initial direction k̂i

1.

1A discussion of how this affects rethermalization in dipolar gases has been given by Bohn and Jin [12].
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The validity of the result (2) has been tested by Bohn et al. [13] based on a numerical solution of
the full dipolar two-body scattering problem. Using a pure power law dependence of Vdd(x12)
with a sharp cutoff at a distance r0 ≪ add, the cross section σ̄(|k|) averaged over all incident
directions k̂i is found to essentially coincide with the Born approximation value obtained for
|k|add → 0 up to energies of order ħ2/(ma2

dd). For typical values add ≈ a ≃ 100 a0, dipolar
scattering in ultracold gases is therefore fully described in terms of a single parameter add and
deviations of the actual dipolar interaction from a pure power law at short distances r12 < r0

are not relevant. This standard assumption, where point-like dipoles are combinded with a
zero-range pseudopotential has to be used with caution, however. Indeed, the cutoff scale
r0 explicitely enters the corrections beyond the Born approximation. Specifically, while both
the real and the imaginary part Im fdd(0) = |k|σdd(k̂i )/(4π) ∼ |k|a2

dd of the forward scattering
amplitude vanish at low energies and are independent of r0, the real part Re f (2B)

dd (0) ∼ a2
dd/r0

is finite in second order Born approximation and linearly sensitive to the short distance cutoff. A
more serious problem arises at the many-body level where the expectation value of the dipolar
interaction

〈Ĥdd〉 =
∫

x1

∫
x2

[
−µ

2
m

8π

2P2(ẑ · x̂12)

r 3
12

]
ρ(2)(x1, x2) with ρ(2)(x1, x2) = ρ(1)(x1)ρ(1)(x2)·g (2)(x1, x2) (3)

depends on the exact two-particle density ρ(2)(x1, x2). It thus requires knowledge not only
of the one-particle density ρ(1)(x) of the atomic cloud but also of the associated two-particle
distribution function g (2)(x1, x2) (we consider a general inhomogeneous situation, following the
notation for classical fluids in [9]). Expressed in terms of center-of-mass and relative coordinates
X and x12, the integral in (3) is well defined despite the short-distance singularity 1/r 3

12 provided
ρ(2)(X , x12) is regular in the limit x12 → 0 (for a mathematically precise statement see e.g. [14]).
The disappearance of the singularity due to the vanishing angular average of P2(ẑ · x̂12) is spoiled,
however, if the effective range of Vsr(r12) is set to zero. Indeed, provided the actual interaction
becomes isotropic at short distances, the two-particle density is asymptotically determined by
the one obtained from a pseudopotential approach where

ρ(2)(X , x12) −−−−→
x12→0

C2(X )

(4π)2

(
1

r 2
12

− 2

ar12
+·· ·

)
(4)

is singular at short distances [15, 16]. Here, C2(X ) → [4πρ(1)(X )a]2 is the Tan contact density in
the weak interaction limit, which replaces the ill-defined local pair distribution function g (2)(0)
for zero-range interactions (see [7] for an introduction to the Tan relations and the associated
singular behavior of short distance correlations for Bosons). In practice, this problem—which
does not show up at the mean-field level where g (2)(x1, x2) → 1 is replaced by one—is avoided if
the expectation value of the dipolar interaction energy is evaluated with a two-particle density
ρ(2)(X , x12) which is averaged over separations large compared to the actual interaction range.
In particular, for r12 ≫ a, the most singular term in Equation (4) is negligible and the next-to-
leading term only gives rise to a small correction δρ(2)(X , x12) = −[ρ(1)(X )]2 2a/r12 to the mean-
field result. As will be shown below, a cutoff at short distances is also required to properly account
for the angular dependence of the pair distribution function.

Beyond the issue of the singularity of the dipolar interaction at short distances for Bosons,
which generically have a finite probability to be at the same point in space, a major problem
that needs to be addressed in dipolar fluids concerns the long-range and anisotropic, partially
attractive nature of the interaction. Indeed, the standard proofs by Ruelle [17] and Fisher [18] on
the existence of a proper thermodynamic limit require interactions which decay faster than 1/r 3

for large distances, leaving dipolar fluids as a marginal case. This problem has been discussed
first by Griffiths [19] for dipoles on a lattice and then, more generally, also for continuum fluids
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in [20, 21]. What has been shown by these authors is that—in the presence of a stabilizing short
distance regularization e.g. via a lattice or a hard-sphere potential—the long-range and partially
attractive dipolar interaction gives rise to an extensive free energy F (T,V , N ) = N · f̃ (T, v = V /N )
with a free energy per particle f̃ which is finite and independent of the boundary conditions
provided the expectation value µm

∑
j 〈d̂ j 〉 ≡ 0 of the total dipole moment vanishes. The proof

thus covers standard polar fluids like water whose electric dipoles point in an arbitrary direction
or magnetic systems in the absence of an ordering external field. The situation is fundamentally
different, however, for dipolar gases where the dipole directions d̂ j are all identical and their sum∑

j d̂ j = N ẑ is extensive. As a consequence, even if the issue of the existence of a well defined
limit N →∞ is ignored for typical particle numbers N ≃ 104 [6], standard results like the Gibbs–
Duhem relation µ = f̃ +pv are not expected to hold and, moreover, thermodynamic quantities
will become shape-dependent. These points will be addressed in some detail in the following.

2.1. Magneto-chemical potential and demagnetization tensor

A well known feature in the thermodynamics of particles with charge q is that the full chemical
potential µ(x) + qφ(x) whose gradient determines the current in an inhomogenous situation
contains the interaction energy with the local electrostatic potential φ(x) in addition to the
contribution µ(x) associated with other interactions. In a completely analogous manner, for
particles with permanent magnetic dipole moments pointing along ẑ, the relevant magneto-
chemical potential contains a contribution µmBz (x), where Bz (x) is the exact magnetic field at
the position of the particle. In a formal manner, this can be derived by noting that the local
chemical potential

µ(x) = δF [ρ(1)]

δρ(1)(x)
=µsr(x)−µmBz (x) with −µmBz (x) =

∫
x′

Vdd(x −x ′)ρ(1)(x ′)g (2)(x, x ′) (5)

is obtained by a functional derivative of the free energy (or simply 〈Ĥ〉 at T = 0) with respect to the
one-particle density [9]. Here, the explicit expression for the exact local magnetic field due to all
other dipoles follows from differentiation of the associated interaction energy (3) while the con-
tribution µsr(x) arises from the short-range interactions, including the change in kinetic energy
due to Ĥdd. As a consequence of the long-range nature of the dipolar interaction, µ(x) is not—as
usual—fully determined by temperature and the local one-particle density ρ(1)(x) but depends
on the overall shape of the sample. This is evident already at the mean-field level g (2)

mf ≡ 1 where
the calculation of Bz (x) reduces to a problem in classical magnetostatics with given magnetiza-
tion M(x) = µmρ

(1)(x)ẑ. The appearance of shape-dependent thermodynamics is well known in
this context and it is a standard textbook problem to show e.g. that the internal magnetic field
in a sphere with constant magnetization is Bin = (2/3)M [22]. An exact solution is available also
for more general geometries provided the magnetization current density jM (x) = rot M(x) may
be approximated by a pure surface current. This applies naturally in solid ferromagnets with a
sharp boundary and it carries over to the inner region of trapped or self-bound dipolar gases
where the spatial dependence of M(x) is negligible. The relevant demagnetization field H =−N M
in B = H+M is then determined by a shape-dependent demagnetization tensor N which obeys
Tr N = 1 [23]. Specifically, for a spheroid with aspect ratio κ= Rx /Rz and M pointing along the z-
axis, the tensor N is diagonal. Symmetry fixes the relevant eigenvalue n(z) to be equal to 1/3 in the
case of a sphere while n(z) approaches zero for a long cylindrical spheroid with κ→ 0, where the
demagnetization effect is negligible. Now, there is a subtle point which needs to be taken into ac-
count in an application of these results to the interaction induced field Bz (x) that enters the local
chemical potential (5). This has to do with the fact that the contribution (2/3)M to the inner field
of a spherical configuration comes entirely from the singular self-interaction term due to an ef-
fective delta function in the magnetic field of a point dipole [22]. In contrast to the corresponding
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zero-range contribution to the interaction between an electron and a nuclear magnetic moment
which is the origin of hyperfine shifts in s-states [24], it is physically reasonable to assume that
there is no direct overlap between the partially filled electronic shells in rare-earth atoms. The
effective delta function contribution must therefore be subtracted, which leads to Bdd = H+M/3
for the inner field due to the dipolar interaction. Using µ2

m = 3gdd, the resulting contribution to
the chemical potential at the mean-field level

µmB (mf)
z (x) = gdd(1−3n(z))ρ(1)(x) = gdd f (κ)ρ(1)(x) (6)

displays a simple shape-dependence via the demagnetization tensor element n(z). The explicit
result for n(z) is derived e.g. in [23] in the context of the equivalent problem of depolarization
fields of perfect conductors. For an oblate spheroid with excentricity e =

p
κ2 −1 it is given by

n(z)(e) = (1+e2)
e −arctan(e)

e3 → (1− ẽ2)
artanh(ẽ)− ẽ

ẽ3 = n(z)(ẽ) ∈ (0,1/3] (7)

which also determines the demagnetization factor n(z)(ẽ) in a prolate situation with excentricity
ẽ =

p
1−κ2 by straightforward analytic continuation e → i ẽ. The expression (6) reproduces a

result that has been derived early on in the field, based on a Gaussian Ansatz for the density
profile of a dipolar gas in a harmonic trap [25, 26]. It has been shown to hold also in the
exact solution of the Gross–Pitaevskii equation in the Thomas–Fermi limit [27] but—somewhat
surprisingly—the simple connection f (κ) = 1−3n(z) of the shape function f (κ) with the standard
demagnetization tensor of magnetostatics does not seem to have been realized in the literature
so far. Note that due to n(z)(ẽ) < 1/3 in a prolate configuration κ < 1, the internal magnetic field
Bz (x) in the bulk of the atomic cloud is pointing along the positive z-direction. This leads to a
lowering of the chemical potential with respect to the value µsr(x) determined by the short-range
interactions, reflecting the dominance of attractively interacting dipoles in such a configuration.

An obvious question is to which extent corrections beyond mean-field which are contained in
the deviation of the pair distribution function g (2)(x, x ′) in Equation (5) from the trivial limit one,
do affect the result (6). It turns out that there is indeed an important qualitative change which
arises from the anisotropy of the dipolar interaction. For a rotation invariant Vsr(r12), the two-
particle density ρ(2)(X , x12) only depends on the magnitude r12 = |x12| of the separation vector.
This is no longer true for anisotropic interactions, where also the orientation of x12 with respect
to the dipole direction enters. The associated physics has been described in quantitative terms
in a landmark paper by Wertheim on a classical fluid of hard spheres with point dipoles whose
directions d̂ j fluctuate statistically [28]. Following his notation2, the pair correlation function of
a homogeneous dipolar fluid with rotation invariance around the z-axis can be decomposed in
the form

h(2)(x12) = g (2)(x12)−1 = hS (r12)+hD (r12) ·2P2(ẑ · x̂12)+·· · . (8)

Here, the dots indicate terms involving Legendre polynomials of higher order which are neglected
since their contribution toµmBx (x) contains angular integrals

∫
ΩP2 Pl which tend to cancel (only

even l appear as long as z → −z is a symmetry). The two scalar functions hS (r12) and hD (r12)
describe quite different physics and turn out to have opposite sign. Specifically, hS (r12) < 0
accounts for an effective short-range repulsion, reducing the probability to find two particles
at separation r12 below that of an uncorrelated state. In turn, at fixed r12, a positive hD (r12) > 0
favors attractive head-to-tail configurations with (ẑ · x̂12)2 > 1/3. In explicit form, the different
behavior of separation and angular orientation correlations with respect to the z-axis may be
derived for a uniform Bose gas in the limit of weak dipolar interactions εdd = add/a ≪ 1 by

2In [28], an additional contribution h∆(r12)d̂1 · d̂2 appears which couples to the relative orientation of the dipoles. In
the present case with d̂1 · d̂2 ≡ 1, this contribution can be incorporated into the rotation invariant function hS (r12).
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expanding the static structure factor within the Bogoliubov approximation in the regime of small
momenta

S(q) = 1+nh(2)(q) −−−→
Bog.

[1+2nV (q)/εq ]−1/2 −−−−−−−→
|q |ξ,εdd≪1

|q |ξp
2

[1−εddP2(ẑ · q̂)+·· · ]. (9)

Here, V (q) = g +Vdd(q) is the Fourier transform of the interaction, ξ = 1/
p

8πna the healing
length associated with its short-range part and εq = ħ2q2/(2m) the free particle dispersion. The
expansion (9) of the static structure factor at low momenta precisely matches the corresponding
one in real space of Equation (8). Moreover, the non-analytic behavior in q implies that the
associated pair correlation functions nhS (r ) → −ξ/(

p
2π2r 4) and nhD (r ) → +εdd · p2ξ/(π2r 4)

follow a power law decay at T = 0 and have opposite sign. A further point which distinguishes the
correlations of the magnitude of separation vectors from those which describe their orientation
with respect to the dipole direction shows up at finite temperature: while hS (r ) decays to zero
exponentially beyond the thermal wavelength λT , the angle dependent contribution

hD (r )|T ̸=0 → h∞/r 3 with nh∞ = 3

4π

(ε(0)−1)2

ε(0)

kBT

gddn
(10)

retains a power law decay, following that of the dipolar interaction. The asymptotic behavior (10)
is an exact result first derived by Wertheim [28] for classical fluids with randomly oriented electric
dipoles and ε(0) the associated static dielectric constant. It is consistent with a correlation
inequality at finite temperature which implies that correlations cannot decay faster than the
interactions. Using the connection S(q) → kBT /mc2(q̂) between the static structure factor at low
momenta and the angle dependent sound velocity c(q̂) of dipolar gases [29], it is straightforward
to show that—to linear order in ε(0)−1 → εdd ≪ 1, where the homogeneous system with average
density n is stable—the result (10) continues to hold for quantum fluids of magnetic dipoles
which are fully polarized.

An important consequence of the results above for the thermodynamics of dipolar gases
shows up by considering nearly spherical configurations, where mean-field predicts that the
dipolar interactions average to zero. Obviously, this result remains valid more generally for an
arbitrary pair correlation function which is rotation invariant. Including the angular dependent
contribution hD (r ) ̸= 0, however, there is a non-vanishing magnetic field

µmBz (x)
∣∣
κ=1 = (12/5)gddρ

(1)(x) ·K with K =
∫ ∞

0
dr

hD (r )

r
> 0 (11)

near the center which points along the positive z-direction. The dimensionless parameter K ,
which plays a central role in a microscopic theory of the dielectric constant in classical polar
fluids3, apparently requires a cutoff at short distances. As mentioned above, a description of
dipolar gases beyond mean-field must therefore take into account the finite range of interactions
which, in practice, is of the order of the short-range scattering length a. An experimental estimate
of the parameter K may be obtained by observing the finite critical strength ε(c)

dd(κ= 1) = 5/(12K )
of the dipolar interaction where even a spherical cloud becomes unstable because the chemical
potential µ(x) ≈ gρ(1)(x)−µmBz (x) turns negative at leading order.

2.2. Pressure and uniaxial tension from dilatations

In the discussion so far, the consequences of the anisotropy and long-range nature of the
dipolar interctions have been addressed by assuming a given shape, characterized e.g. by the

3Combining point dipoles with hard spheres, the dielectric constant is a function only of the volume fraction
η = (π/6)nσ3 and the ratio y = gddn/(3kBT ). Remarkably, this extremely oversimplified model reproduces quite well
the observed value ε(0) = 78.4 for water under normal conditions, where η≃ 0.42 and y ≃ 3.35, see Figure 11.5 in [9].
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aspect ratio κ. In reality, the specific shape of the atomic cloud is not an independent variable
but is determined by the interaction strength and the external confinement, if present. In
thermal equilibrium, it follows from the balance of forces which—in quite general form—may
be expressed in terms of the associated momentum current tensorΠ(x) by

∇Π(x) −−−→
equ.

∂xΠ
xx

∂yΠ
y y

∂zΠ
zz

=
{

0 self-bound
−ρ(1)

φ
(x) gradφ(x) trapped.

(12)

Here, φ(x) is the external trap potential and ρ(1)
φ

(x) the resulting equilibrium value of the inho-
mogeneous one-particle density. Moreover, we have used the fact that in thermal equilibrium
the tensorΠ(x) has no off-diagonal elements as would appear e.g. in the presence of a finite Hall
viscosity. Now, for rotation invariant interactions, all diagonal elements of Π(x) are equal and
they define a local pressure p(x). The left hand side of Equation (12) is then just the gradient of
pressure in a standard hydrostatic equilibrium. For a harmonic confinement, where the external
contribution to the total Hamiltonian

Ĥω = Ĥ + 1

2
Tr(ω2 θ̂) with (θ̂)i j =

∫
x

xi x j ρ̂(x) (13)

can be expressed in terms of a tensor ω2 of the trap frequencies and the inertia tensor θ̂ defined
via the mass density operator ρ̂(x), the resulting cloud shape follows from the exact relation

〈θ̂〉eq = (ω2)−1
∫

x
p(x) = Erel (ω2)−1 for rotation invariant V (x12) =V (r12) (14)

obtained by taking the scalar product of Equation (12) with x and integrating over all space. Note
that the relation (14) provides only an implicit result for the cloud shape as characterized by its
inertia tensor since the release energy Erel =

∫
x p(x) is itself shape-dependent. An exact conse-

quence of Equation (14), however, is that the aspect ratio which—irrespective of the detailed den-
sity profile—is defined by κ= [θxx /θzz ]1/2 coincides with the ratio λ=ωz /ωx of the trap frequen-
cies (we assume ωx =ωy ̸=ωz in general, i.e. there is rotation invariance around the z-axis).

The anisotropy of the dipolar interaction invalidates the simple relation (14) and leads to
shapes with κ < λ which are elongated along the z-direction since the energy is lowered if the
dipoles tend to arrange in a head-to-tail configuration. Dipolar gases are thus uniaxial quantum
fluids which—in quite general terms—may be defined by Πxx = Πy y ̸= Πzz in equilibrium.
To characterize their size and shape one needs two instead of just a single scalar function.
Specifically, we will use TrΠ and the anisotropy h =Πxx −Πzz , which acts like a uniaxial tension
tending to stretch the system along z. As will be discussed below, the system length Lz will
then appear as an additional thermodynamic variable which is conjugate to the field h. On a
microscopic level, an explicit expression for both TrΠ(x) and h(x) may be derived by extending
the results of Martin and Schwinger [30] for the momentum current tensor in a non-relativistic
quantum many-body problem with rotation invariant interactions. Quite generally, pressure—
as the field conjugate to a local expansion—is defined by the change in energy density under a
uniform isotropic dilatation x → bx with scale factor b → 1. This only fixes Tr Π(x), however.
In order to specify the two independent components Πxx and Πzz it is necessary to consider, in
addition, the volume preserving dilatation x → θ[x] where the components z → θz and (x, y) →
(x, y)/

p
θ are scaled differently. The full momentum current tensor of uniaxial quantum fluids is

thus obtained from the microscopic Hamiltonian density Ĥ (x) in Ĥ = ∫
x Ĥ (x) by evaluating the

response to the two independent dilatations (note the different signs)

TrΠ(x) = 2Πxx (x)+Πzz (x) = −∂〈Ĥ (bx)〉eq

∂b

∣∣∣∣∣
b=1

and h(x) = ∂〈Ĥ (θ[x])〉eq

∂θ

∣∣∣∣∣
θ=1

. (15)
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In explicit form, the anomalous field h(x) receives contributions only from the kinetic energy and
the dipolar interaction. They can be expressed in terms of the field operators ψ̂ as

h(x) = ħ2

m

[
1

2
〈∇⊥ψ̂† ·∇⊥ψ̂〉eq(x)−〈∂zψ̂

†∂zψ̂〉eq(x)

]
+ ∂θD(θ[x])|θ=1 . (16)

Here, ∇⊥ denotes the gradient with respect to the radial coordinates (x, y) and D(x) is a dipolar
analog of the contact density C2(x) for zero-range interactions. It is defined by the expectation
value of the dipolar interaction energy density

D(x) = 〈Ĥdd(x)〉eq =− 1
2 〈M̂z (x)B̂z (x)〉eq (17)

which involves the product of the operators for the magnetization M̂z (x) and the field B̂z (x) from
all other dipoles at position x. Due to the long-range nature of the interaction, D(x) is in fact non-
local and shape-dependent, a point which will be discussed further below. This is very different
from the energy density εsr(x) and the associated contribution [7, 31]

psr(x) = 2

3
εsr(x)+ ħ2

24πma
C2(x) −−→

mf

g

2
[ρ(1)(x)]2 +·· · (18)

to the pressure arising from short-range interactions which—at the mean-field level—is qua-
dratic in the local one-particle density ρ(1)(x) and independent of the shape. Using the micro-
scopic definition (15), the full momentum current tensor of dipolar gases in turn contains the
shape-dependent contributions D(x) and ∂θD(θ[x])|θ=1 according to

Πxx (x) = psr(x)+D(x)+ 1
3 h(x). (19)

The formal relations above turn out to lead to observable and intuitively plausible con-
sequences for the density profile of harmonically trapped dipolar gases. In a situation with
ωx = ωy , where one has rotation invariance around the z-axis, a radial integration of the (x, y)-
components of the equilibrium condition (12) shows that the integrated column density

ñφ(z) =
∫

dx dy ρ(1)
φ

(x, y, z) = 2π

mω2
x
Πxx (0,0, z) (20)

at a given z is a direct measure of the xx-component of the momentum current tensor along the
center of the atomic cloud. This relation is equivalent to one derived by Ho and Zhou for rotation
invariant interactions in the context of imbalanced Fermi gases [32]. A different result appears,
however, for the z-derivative of the density profile which follows from the third component of the
momentum balance (12). The fact thatΠxx andΠzz no longer coincide in the uniaxial case leads
to a violation of the Gibbs–Duhem relation which shows up as a non-vanishing contribution on
the right-hand side of the equation

dñφ(z)

dz
+2π

ω2
z

ω2
x

zρ(1)
φ

(0,0, z) = 2π

mω2
x
∂z h(0,0, z) > 0. (21)

Since the anomalous field h(x) is negative and decays along the z-direction away from the center,
the profile ñφ(z) falls off more slowly than what is expected for rotation invariant interactions.
The uniaxial nature of dipolar gases and the associated field h(x) can thus be inferred directly
from in-situ density profiles.

2.3. Thermodynamic relations and the tensor virial theorem

The appearance of a finite uniaxial tension in dipolar gases leads to a fundamental change in
thermodynamic relations. This turns out to provide an understanding of the shape-dependence
mentioned above and also the peculiar form of self-bound droplets that will be discussed in the
following subsection. In order to derive the extension to uniaxial fluids of the standard relation
dF =−p dV for the change in free energy associated with a shape deformation at a fixed value of
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temperature and particle number it is convenient to introduce a local deformation tensor u(x) as
in solids. Quite generally, u(x) is the conjugate field to the momentum current (or stress) tensor
Π(x) [10] which, by the definition of an uniaxial fluid in thermal equilibrium, is diagonal with just
two independent components. As a consequence, the associated differential of the free energy

dF [Tru,uzz ]
∣∣
T,N =−

∫
x

Tr[Π(x)du(x)] −−−→
fluid

∫
x

[−Πxx (x)dTru(x)+h(x)duzz (x)] (22)

depends on the two dimensionless variables Tru and uzz . In physical terms, they describe a local
change dTru(x) = dv(x)/v in volume per particle at a fixed extension along the z-direction or a
change of length duzz = dLz /Lz at fixed volume4. The relation (22) shows that for a uniaxial fluid
Πxx → p can be identified with the pressure as the variable conjugate to volume at fixed length.
In addition, the anomalous field h(x) gives rise to a line tension contribution in the Gibbs relation

dF (T,V ,Lz , N ) =−S dT −p dV +h1 dLz +µdN with h1Lz =
∫

x
h(x), (23)

favoring an increase of length Lz at given volume to lower the free energy (h1 < 0). As will be
shown below, the fact that Lz appears as an additional extensive thermodynamic variable leads
to a violation of the Gibbs–Duhem relation. Typically, such violations become negligible in the
thermodynamic limit, which holds e.g. for a finite surface tension σ in a self-bound liquid state
described by dF = σdA at fixed T, N ,V . For short-range interactions, this contribution scales
with the surface area A ∼ N 2/3 and thus eventually becomes subdominant compared with the
extensive terms. The situation is different here, however, due to the long-range nature of the
dipolar interaction. Indeed, since the interaction contribution ∂θD(θ[x]) |θ=1 in Equation (16)
to the underlying variable h(x) is intensive, dF = h1 dLz ∼ N remains extensive for an arbitrary
large system. In physical terms, this can be understood from the fact that the dipolar contact
density D(x) in Equation (17) arises from the magnetic field which, as discussed in Section 2.1,
is effectively generated by surface currents. The demagnetization field H(x) = −gradφM (x) is
thus non-local, arising from magnetic surface “charges” with density σM = n ·M (n is the unit
normal vector) [22]. As emphasized in [21], the 1/r 2 decay of the field is precisely cancelled by
the increase ∼r 2 of the surface area. Both the magnetic field and the associated energy density
D(x) = 〈Ĥdd(x)〉eq are therefore independent of the system size.

The extended Gibbs relation (23) implies that—at fixed temperature T —the pressure and
chemical potential involve the strain tensor element uzz as a further thermodynamic variable
beyond the volume per particle v . The associated dependence is determined by the Maxwell
relations

v
∂p

∂v
= ∂µ

∂v
at fixed uzz ,

∂µ

∂uzz
= ∂h

∂(1/v)
and

∂p

∂uzz
= v

∂h

∂v
. (24)

In an inhomogeneous situation, where the density ρ(1)(x) and the field h(x) are spatially varying,
the standard Gibbs–Duhem relation dµ|T = v dp|T is therefore violated. This leads to an anoma-
lous contribution to the axial derivative of the density profile of a harmonically trapped dipolar
gas derived in Equation (21). A further consequence of the dependence of pressure p(v,uzz ,T )
on the uniaxial strain uzz is the angular dependence of the sound velocity in a uniform dipolar
gas. In quite general terms, the difference ∆ f = f − feq in the free energy density with respect its
value feq in a homogeneous situation with vanishing deformations (Tru)eq = (uzz )eq ≡ 0 can be
written in the form of an elastic free energy of a uniaxial solid [10]

∆ f [Tru,uzz ] = 1

2
(uxx +uy y ,uzz )

(
K11 K13

K13 K33

)(
uxx +uy y

uzz

)
= K11

2
[Tru + γ̃uzz ]2 + B̃

2
u2

zz (25)

4While a cloud of atoms has no sharp boundary beyond the Thomas–Fermi limit where the kinetic energy is negligible,
the associated Thomas–Fermi radius Rz still provides an appropriate measure for the length Lz → 2Rz .
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which is rotation invariant in the x, y-plane. The condition that Equation (25) describes a
fluid rather than a solid requires that the associated tensor of elastic constants has vanishing
determinant B̃K11 = K33K11 −K 2

13 = 0. The last term is then absent and there is only a single
sound mode5. Its velocity depends on the direction with respect to the orientation of the dipoles
according to ρ̄c2(q̂) = K11 + (K33 −K11) · (ẑ · q̂)2 [10, 33]. This angular dependence is a result of the
coupling between density and strain described by the dimensionless parameter γ̃ in

h = ∂ f

∂uzz

∣∣∣∣
Tru

→ γ̃K11(Tru + γ̃uzz ) with γ̃= K13

K11
−1 −−→

mf

(
1+2εdd

1−εdd

)1/2

−1. (26)

A physical understanding of this coupling is provided by the observation that—according to
Equation (25)—the energy cost for a compression Tru < 0 of a uniform dipolar gas can be exactly
compensated by an expansion along z with uzz =−Tru/γ̃> 0. The mean-field result for γ̃ in terms
of the dimensionless strength εdd of the dipolar interaction follows from the angular dependence
V (q) = g [1+εdd ·2P2(ẑ · q̂)] of the two-body interaction. It indicates that the uniform gas with a
homogeneous mass density ρ̄ is stable only as long as εdd < 1, a point which will be discussed in
detail in the following subsection.

An exact relation that holds for many-body problems in both classical and quantum physics
is the virial theorem. It is a scalar identity which follows by considering the change in energy
under a uniform dilatation of the coordinates (x1 . . . xN ) → (bx1 . . .bxN ) [37]. Now, as discussed
in Equation (15) above, uniform dilatations are not sufficient to characterize the thermodynami-
cally relevant set of shape deformations in the case of interactions which are not invariant under
rotation. To deal with this more general situation, it is necessary to extend the virial theorem to
a tensorial form, as was first derived by Parker [38] for a classical system of point particles in an
astrophysical context. The extension to the quantum many-body problem is straightforward in
principle. Indeed, the virial theorem in its most general form simply states that the expectation
value of the commutator

〈i [Ĥ + Ĥex,D̂]〉 ≡ 0 −−−−→
harm.

〈i [Ĥ ,D̂]〉 = 〈ω2θ̂〉 with (D̂)i j =
∫

x
xi ĝ j (x)/ħ (27)

of the total Hamiltonian with the dilatation tensor operator D̂ vanishes in eigenstates of Ĥ + Ĥex.
The dimensionless dilatation tensor involves the components ĝ j (x) of the momentum density
operator and generates dilatations along the j -direction proportional to separate components
xi of the coordinates [39]. In the particular case of a harmonic confinement, the contribution of
Ĥex is reduced to the expectation value of the tensor contraction ω2θ̂. Its trace yields twice the
trap energy Etr according to Equation (13). For rotation invariant interactions, the equilibrium
expectation value 〈i [Ĥ ,D̂]〉eq = 1 ·∫x p(x) is proportional to the unit tensor. The tensorial form of
the virial theorem then reduces to the standard one obtained from a uniform dilatation x → bx. In
particular, the moment of inertia tensor is given by Equation (14). This is violated in the uniaxial
situation, where the aspect ratio κ= [θxx /θzz ]1/2 no longer coincides with the ratio λ=ωz /ωx of
external trap frequencies. The difference is determined by the exact relation

−
∫

x
h(x) =ω2

zθ
zz −ω2

xθ
xx = 2Etr · λ

2 −κ2

λ2 +2κ2 > 0 (28)

which follows from the tensor virial theorem (27) in an equilibrium state by considering the
volume preserving dilatation x → θ[x] introduced in Equation (15). A detailed discussion of

5For finite values of the parameter B̃ , the free energy (25) describes a smectic-A phase with broken translation
invariance along the z-direction [10]. It exhibits two independent sound modes, both in the case of a classical fluid [33]
and also—in the quite different form of a wave-like propagation of defects in supersolids predicted by Andreev and
Lifshitz [34]—in the superfluid [35]. These two modes have very recently been observed in a 2D smectic phase of a Bose
Einstein condensate in the presence of a periodic in time modulation of the scattering length [36], allowing to determine
both the superfluid fraction fs and the effective layer compression modulus B̃ in quantitative terms.
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the connection between κ and λ as a function of the dipolar interaction strength εdd has been
given by Eberlein et al. [27] within the Thomas–Fermi approximation, where the density profile
ρ(1)
φ

(x) has a sharp boundary. In particular, they have shown that, in the presence of a strong
external confinement λ≫ 1 along the z-direction, a dipolar gas remains stable even in the limit
εdd ≫ 1 of negligible short-range repulsion. This has been verified experimentally by Koch
et al. [40] for particle numbers N ≃ 104. Effects beyond mean-field, which are contained in
Equation (28), therefore do not give rise to qualitative changes in a tightly confined situation.
As will be shown below, the situation is quite different in self-bound droplets whose form is
completely determined by such corrections. A second independent relation which follows from
the tensorial virial theorem is connected with the uniform dilatation x → bx generated by the
scalar operator D̂ = Tr D̂ . It can be written in terms of the local contact densities C2(x) and D(x)
associated with the short-range and dipolar interactions in the form

〈i [Ĥ ,D̂]〉 = 〈Ĥ〉+Etr + ħ2

16πma

∫
x
C2(x)+ 1

2

∫
x
D(x) = 2Etr. (29)

A similar relation was derived in [41] for dipolar gases in 2D, however there are two impor-
tant differences: since the dipolar interaction in 2D also leads to s-wave scattering, the two-
body contact density C2(x) is defined by the adiabatic derivative of the energy with respect
to the full scattering length of the combined interaction Vsr + Vdd. As a consequence, the
exact expression for the dipolar contact density D(x) requires a subtraction in the pair distri-
bution function at short distances associated with the contribution of Vsr(r12) [41]. A second
point is that the angular independent dipolar interactions ∼µ2

m/r 3
12 in 2D are effectively of a

short-range nature. In contrast to the situation here, the associated contact density D(x) is then
shape-independent.

2.4. Self-bound droplets and the LHY correction

One of the major new developments associated with ultracold dipolar gases was the surprising
observation of self-bound droplets by Ferrier-Barbut et al. [2]. These droplets are very different
from what is expected for droplets of a standard liquid, whose equilibrium configuration is
spherical due to the presence of a finite surface tension σ. Indeed, as will be shown below, the
combination of anisotropy and the dominantly attractive nature of dipolar interactions in a non-
confined situation leads to droplets whose aspect ratio κ(N ) ∼ N−1/4 approaches zero for large
particle numbers6.

Based on the quite general hydrostatic equilibirium condition (12), the existence of stable
self-bound droplets requires that the divergence ∇Π(x) ≡ 0 of the momentum current tensor
vanishes. In a uniaxial fluid with long-range and angle-dependent attractive interactions, this
condition is obeyed only if both Tr Π(x) and h(x) are zero. In contrast to the situation in
stars, where a single scalar equation for the balance of the radial component of the internal
and gravitational pressure is sufficient to determine the equilibrium shape (see e.g. [43] for an
instructive discussion), two separate conditions need to be fulfilled here. In order to formulate
these in a physically intuitive manner, it is convenient to rewrite the virial theorem (29) in a form
where the external trap is eliminated

〈i [Ĥ ,D̂]〉 =
∫

x

[
2εsr(x)+ ħ2

8πma
C2(x)+3D(x)

]
= 3

∫
x

[psr(x)+D(x)] =
∫

x
TrΠ(x). (30)

6This scaling law has been seen originally in numerical simulations by Baillie et al. [42] and has recently been derived
in analytical form by Dalibard [8], based on a different but physically equivalent line of arguments.
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Here, following the Tan pressure relation in Equation (18), we have introduced the local pressure
psr(x) which arises from the short-range interactions7. Beyond the associated energy density
εsr(x), it involves the two-body contact density C2(x) which is defined by the adiabatic derivative
of 〈Ĥ (x)〉eq with respect to the inverse scattering length 1/a [16,31]. Equation (30) shows that the
condition of a vanishing TrΠ(x) ≡ 0 is equivalent to a local pressure balance psr(x)+D(x) = 0, with
D(x) playing the role of the pressure associated with the dipolar interactions. Prior to a detailed
discussion of this exact and quite intuitive relation a number of comments should be added:

• The fact that the pressure arising from dipolar interactions is equal to the associated
energy density D(x) is a consequence of the assumption that the interaction Vdd(x12) ∼
µ2

m/r 3
12 follows an inverse cube power law at all distances.

• Despite the formal notation, D(x) is not a local variable but depends on the overall shape
of the droplet, as becomes evident in the mean-field result (31) below.

• The separation of pressure into a short-range and a dipolar contribution follows from
the additivity V = Vsr +Vdd of the interactions in the underlying Hamiltonian. It does
not imply that pressure is simply additive, however, which is true only in mean-field. In
general, the contributions psr(x) and D(x) will depend on both g and gdd.

• The identification of Tr Π(x) with 3[psr(x) +D(x)] on a local level neglects a possible
divergence which integrates to zero in the virial equation. Indeed, quite generally, the
momentum current tensor is not unique and the equilibirium condition (12) remains
unchanged under (Π)i j → (Π)i j + (∂i∂ j −δi j∇2)Φ with an arbitrary scalar function Φ(x)
which vanishes at infinity [39]. This freedom is removed by the concrete choice (31) below
for D(x) in the central region of the self-bound droplet.

Explicit results for both the dipolar contact density D(x) and the local anomalous field h(x)
are available at the mean-field level. Specifically, we use Equation (16) which connects the
interaction contribution to h(x) to the derivative of the dipolar contact density (17) with respect
to the parameter θ. Within mean-field, this yields

D(mf)(x) =− 1
2 〈M̂z (x)〉B (mf)

z (x) =− 1
2 gdd [ρ(1)(x)]2 f (κ) → h(mf)(x) =− 3

4 gdd [ρ(1)(x)]2b(κ) (31)

where we have used the result (6) for the magnetic field and the fact that the aspect ratio changes
according to dκ=−(3/2)κdθ under x → θ[x]. The positive function

b(κ) =−κd f (κ)

dκ
→

{
6κ2 ln(2/κ) for κ≪ 1

3π/(2κ) for κ≫ 1
(32)

is determined by Equation (7) for the demagnetization tensor element n(z). It decays to zero for
both strongly prolate or oblate configurations κ ≪ 1 or κ ≫ 1 and exhibits a broad maximum
b(κ = 1.563. . .) = 0.852. . . slightly above the value b(κ = 1) = 4/5 in the spherical limit. Now, the
combination of Equation (31) with the leading order result (18) for the pressure due to short-
range interactions shows that the two separate equilibrium conditions psr(x) +D(x) = 0 and
h(x) = 0 for a self-bound droplet cannot be obeyed within mean-field where both psr(x)+D(x)
and h(x) are negative for εdd f (κ) > 1 or arbitrary values of κ, respectively. A resolution of
the first problem, already proposed in the original publication on self-bound droplets [2], is
provided by adding a contribution to the short-range pressure which scales with a higher power
in density than the quadratic behavior stated as the low-density limit of the exact expression in
Equation (18). On a purely empirical level, a self-bound liquid can then be stabilized against

7In the application of the Tan relations to Bosons, we consistently neglect three-body correlations which are con-
nected with the Efimov effect and the underlying dependence of 〈Ĥ (x)〉eq on the short-range parameter κ∗ [7, 16, 31].
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collapse by extending the mean-field effective potential by a local term proportional to |ψ(x)|2k

with k > 2 in the form

Veff[ψ] =−µ|ψ(x)|2 + g

2
|ψ(x)|4 + 1

2
|ψ(x)|2

∫
x′

Vdd(x −x ′)|ψ(x ′)|2 + λk

k
|ψ(x)|2k (?) (33)

where λk > 0 is assumed to be positive. From a microscopic point of view, the true effective
potential must, of course, be derived from the underlying Hamiltonian. In fact, due to the
anisotropy of the dipolar interaction, the simple form (33) where the stabilizing contribution is
rotation invariant, is not expected to be valid. In principle, a microscopic derivation of Veff[ψ]
is possible by expressing the exact partition function in terms of a coherent state functional in-
tegral [44]. The first three terms in Equation (33) then arise from minimizing the bare associ-
ated action. At this mean-field (or tree-) level, only two-body interactions enter. It provides a
proper description of the zero density limit near the vacuum state ψ(x) ≡ 0, where two-body
scattering amplitudes are sufficient to deal with the many-body problem at finite density. For
self-bound droplets, which arise from the vacuum via a first-order transition at a critical value
µc < 0 of the chemical potential where the density jumps from zero to a finite value n̄ ̸= 0, this
is no longer valid. A formal procedure to extract the form of Veff[ψ] near the vacuum-to-liquid
transition requires to determine the generating functional Γ[ψc] for the vertex functions from the
exact partition function Z [J ] in the presence of an external field J [45, 46]. In practice, this has
been achieved in [47] for rotation invariant short-range interactions which become attractive be-
yond a zero crossing of the scattering length, where g < 0. The exact effective potential obtained
from Γ[ψc] then indeed contains a cubic term k = 3 as in (33) whose strength λ3 = ħ2D/(2m) is
proportional the three-body scattering hypervolume D introduced by Tan [48]. It has dimension
(length)4 and may be determined for a given two-body interaction Vsr(r12) from a solution of the
three-body scattering problem. Specifically, it is defined by the asymptotic behavior

ψE=0(x1, x2, x3)|a=0 = 1−
p

3D

2π3(r 2
12 + r 2

13 + r 2
23)2

+·· · if V (x12) =V (r12) (34)

of the three-body wave function at zero energy and vanishing scattering length. The parameter
λ3 ∼ D characterizes the strength of effective three-body interactions which arise beyond mean-
field even for a microscopic Hamiltonian which only contains two-body interactions. Explicit
results for D are available for simple model interactions like hard spheres [48], an attractive
square well [49] or a Lennard-Jones potential [50]. In the two latter cases, the existence of two-
body bound states gives rise to a finite imaginary part of the hypervolume. It determines the
three-body loss coeffcient L3 =−(ħ/m) ImD = (ħ/m)L4

rec or the equivalent recombination length
Lrec [51]. Now, for a possible stabilization of a liquid state due to three-body interactions in the
regime where geff(κ) = g − gdd f (κ) < 0 is negative, it is the real part of the hypervolume D which
is relevant. In the realistic situation of finite three-body losses, the parameter which determines
the liquid density n̄ = 3|geff|/(4λ̄3) from the condition psr(x)+D(x) = 0 in the presence of the
additional pressure ∆p3-body(x) = (2/3)λ̄3 [ρ(1)(x)]3 due to three-body interactions is therefore
λ̄3 = ħ2 ReD/(2m). Evidently, ReD must be positive for a stable liquid, a condition which can
be verified only by a concrete solution of the three-body problem. In particular, ReD assumes
both positive and negative values, depending on the position of three-body bound states which
is determined by the poles of the hypervolume [49–51]. In [2] and the literature beyond, a
stabilization of self-bound droplets by repulsive three-body interactions in the regime geff < 0
has been excluded by the argument that the experimental value of the loss coefficient L3 gives
rise to an estimate for the magnitude of the complex parameter λ3 which is far too small to
be consistent with the observed central droplet densities n̄ ≃ 10−14 cm−3. Since the real part
λ̄3 ∼ ReD may be much larger than the estimate of λ3 based on |ImD|, this argument is not
compelling, however. For the moment, we will postpone a further discussion of the origin of the
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beyond mean-field contribution ∆p ∼ [ρ(1)(x)]k to the short-range pressure in Equation (18) and
proceed by assuming that such a term is present on purely empirical grounds.

The shape-dependence of the effective coupling constant geff(κ) that determines the position
of the mean-field instability gives rise to a corresponding shape-dependence of the liquid den-
sity, e.g. via n̄(κ) = 3|geff(κ)|/(4λ̄3) in the case of repulsive three-body interactions. For a homoge-
neous fluid, this is a rather strange conclusion and indeed it is immediately changed if one takes
into account that equilibrium in a uniaxial dipolar fluid requires in addition to psr(x)+D(x) = 0
also that the anomalous field h(x) = 0 must vanish. Using the mean-field result (31), this can be
obeyed only if b(κ) = 0 which implies that κ is fixed to be either zero or infinity. The second pos-
sibility of an extremely oblate configuration is excluded since the dipolar interactions are then
repulsive and the zero pressure condition cannot be fulfilled. By contrast, the limit κ→ 0 of a
strongly prolate droplet turns out to desribe the actual physical situation, consistent with the
tendency of oriented dipoles to arrange in a head-to-tail configuration. More precisely, the con-
dition h(x) = 0 gives rise to a finite value for the aspect ratio of a self-bound droplet rather than
the singular result κ(mf) ≡ 0 within mean-field if one includes the contribution to h(x) in Equa-
tion (16) which arises from the kinetic energy Ĥ0. This is a local term which—in contrast to the
ill-defined kinetic contribution to TrΠ(x)—is finite even if the range of Vsr(r12) is taken to zero.
Indeed, if the interactions become rotation invariant at very short distances, the contribution of
large momenta in h(0) ∼ ∫

k (k2
x + k2

y − 2k2
z )n(k) cancels since the asymptotic momentum distri-

bution n(k) → C2/|k|4 is then independent of the direction k̂. A concrete result for h(0) can be
obtained by assuming an anisotropic Gaussian profile with central density ρ(1)(x = 0) = n̄ 8. In
the relevant limit κ≪ 1, only the radial contribution in Equation (16) remains and the condition
h(x) = 0 in the center of the droplet is reduced to

n̄
ħ2

2m
π

(
n̄

Nκ

)2/3

= 3

4
gddn̄2 ·6κ2 ln(2/κ) → κ8/3 ln(2/κ) = [36 n̄1/3add ·N 2/3]−1 = ϵ. (35)

With typical particle numbers N ≃ 104 and central densities n̄1/3add = O (1), the smallness of the
parameter ϵ≃ 6 ·10−5 allows an asymptotically exact solution of the transcendental equation for
κ(ϵ) in the form

κ(ϵ) =
[

ϵ

ln(2/ϵ3/8)

]3/8

→ κ(N ) = 0.26

[n̄1/3add · ln[2/ϵ3/8(N )]]3/8
·N−1/4. (36)

Apart from the logarithmic correction in the denominator which changes the result only by a
numerical factor of order one, the aspect ratio thus approaches zero according to κ(N ) ∼ N−1/4

for large particle numbers. In practice, with N < 105, typical aspect ratios are in the range
1/κ ≃ 5–30 [42, 52]. An important point to note is that the result (36) holds irrespective of the
specific mechanism which stabilizes the central density n̄ at a finite value provided only that
n̄1/3add does not itself depend on N . The dependence on the deviation εdd −1 from the critical
strength εc

dd = 1 of the dipolar interactions, which is now shape-independent due to κ ≈ 0, is
sensitive to that, however. In particular, for a beyond mean-field contribution ∼|ψ(x)|2k , the
liquid density approaches zero like n̄(εdd) ∼ (εdd − 1)1/(k−2). On physical grounds, the fact that
the equilibrium configuration of self-bound dipolar fluids corresponds to an increasingly prolate
object for large particle numbers is a consequence of the anisotropy of the interactions. In
contrast to the situation of attractive short-range interactions stabilized by a repulsive three-
body force discussed in [47, 53], there is no homogeneous liquid state at all. This quite unusual
behavior is elucidated by a few further comments:

8This assumption has been made in this context by Dalibard [8]. More precisely, an exact result due to Triay [14]
shows that—within an extended Gross–Pitaevskii description and for a negative chemical potential—the density profile
of a non-confined dipolar gas is smooth and falls off exponentially.
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• The existence of a finite aspect ratio rather than the mean-field value zero relies on the
kinetic energy contribution to the anomalous field. This must be carefully distinguished
from a standard quantum pressure term, which may stabilize only self-bound droplets
whose size vanishes as N ≫ 1. Examples are the bright soliton in the Lieb-Liniger model
with positive two-body scattering length a1 > 0 or the droplets formed by attractive three-
body interactions studied by Sekino and Nishida [54]. In both cases, the droplet extension
approaches zero for large N according to RN → a1/N or RN ∼ exp[−(4/

p
3π)N 2] instead

of increasing like Lz (N ) ∼p
N in the case of 3D dipolar gases.

• There is a bound N0 on the particle number below which the droplets evaporate. This
has been investigated by Baillie et al. [52], where N0(εdd) has been determined from an
extended Gross–Pitaevskii description by the condition of a finite binding energy despite
the competing quantum pressure term. The analogous problem for a Bose droplet with
short-range interactions has been studied in [47] and—with concrete predictions for
the lifetime of metastable droplets in a finite window N1 < N < N0—by Son et al. [55].
As discussed in [47], the critical number N0 ∼ p

D/a2 in this context determines the
scattering lengths at which N -body bound states detach from the continuum.

• Non-spherical self-bound objects have been studied a long time ago for stars with strong,
frozen-in magnetic fields B by Chandrasekhar and Fermi [56]. The balance between the
decrease of the attractive gravitational energy with a finite excentricity and the gain in
magnetic energy due an expansion in the direction perpendicular to the field results in
an oblate deformation with aspect ratio κ− 1 ≃ (B/B∗)2, where B∗ is the field beyond
which the star is no longer bound since magnetic pressure overwhelms gravitation.

Following the suggestion in the original publication on self-bound droplets [2], the mecha-
nism for stabilizing a non-confined dipolar gas beyond the critical interaction strength εdd = 1
where the homogeneous fluid is unstable is commonly believed [6] to be a generalized form of
the Lee, Huang and Yang (LHY) correction, originally calculated for a dilute, homogeneous hard-
sphere Bose gas [57]. Including the effect of anisotropy in the presence of an additional dipolar
interaction [58], it gives rise to a beyond mean-field contribution to the effective potential of the
form introduced in Equation (33) with k = 5/2 and a positive (as long as εdd ≤ 1) coefficient

λ5/2(g ,εdd) = 4g

3π2 (4πa)3/2 ·Q5(εdd) where Q5(εdd) =
∫ 1

0
dx[1+εdd ·2P2(x)]5/2. (37)

For the standard case of repulsive short-range interactions, the LHY term provides the leading
correction beyond mean-field in the equation of state, giving rise to an additional contribution
of order g n2

p
na3 to the pressure. It is important here to carefully separate the dependence on

density from that on the chemical potential as the thermodynamically conjugate variable. In
particular, for a homogeneous fluid, there is an exact relation −Veff[n(µ)] = p(µ) which allows
to infer the effective potential evaluated at the equilibrium value n(µ) = ∂p(µ)/∂µ of the density
from the pressure at given µ [47]. The increase of pressure with density which results from the
positive LHY contribution in Veff[ψ] thus arises from a corresponding negative correction to p(µ).
In explicit form, this emerges within a field-theoretic formulation where the beyond mean-field
contribution determined by LHY is just the one-loop correction [45, 46]

p(1)(µ) =−1

2
Tr lndet[δ(2)S] −−−→

hom.
−1

2

∫
q

∫
ω

ln[E 2
q + (ħω)2] −−→

reg.
− 8

15π2 µ
(mµ

ħ2

)3/2
(38)

to the tree-level result p(0)(µ) = µ2/(2g ) for the pressure of a dilute Bose gas9. In physical
terms, it describes the contribution to pressure due to zero-point fluctuations of the Bogoliubov

9Note that p(1)(µ) does not explicitely depend on the scattering length. The contact density C2(µ) → (mµ/ħ2)2 is
therefore still given by its mean-field value and the LHY correction of relative order (na3)1/2, which contributes to a
corresponding one in the pressure (18), only shows up as a function of density.
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excitations. Similar to the analogous Casimir effect, it is negative and it comes entirely from the
low-energy part of the spectrum [46, 59]. In particular, after regularization of the divergent inte-
gration over momenta q , the remaining expression involves an integral

∫
q E 2

q ∼ ∫
0 q2 dq c2(q̂)q2.

Here—in an extension to anisotropic interactions—we include a possible dependence of the
sound velocity c(q̂) on direction. Now, it is a crucial point that the correction (38) to the pressure
is fully determined by the excitations near q = 0. As a consequence, an anisotropic sound veloc-
ity c2(q̂) = c2[1+ ε̃ f (q̂)] with strength ε̃ and an arbitrary function f (Ω) of direction changes the
LHY contribution (38) just by a numerical factor Q(ε̃) = ∫

(dΩ)/(4π) [1+ ε̃ f (Ω)]5/2. For the special
case of dipolar interactions, this immediately explains the origin of the function Q(ε̃) → Q5(εdd)
derived by Lima and Pelster [58]. It is obvious, however, that the LHY correction is well defined
only as long as c2(q̂) > 0 remains positive. This requirement is violated in dipolar gases if εdd > 1,
where the homogeneous fluid is unstable. Formally, this shows up as a finite imaginary part of
the function Q5(εdd) which is, however, neglected in the extended Gross–Pitaevskii description
of the inhomogeneous configurations that are considered in practice.

For a proper understanding of the mechanism which underlies the stabilization of self-bound
droplets and which allows to fulfill the zero pressure condition psr(x)+D(x) = 0, it is of course
necessary to provide a physical argument that justifies the addition of a contribution ∆pLHY(x) =
(3/5)λ5/2 [ρ(1)(x)]5/2 of the LHY-form to the short-range pressure in a regime where the chemical
potential is negative and the microscopic derivation along the lines in Equation (38) evidently
fails. On a rather qualitative level, the inclusion of an LHY term even in the regime εdd > 1 may
be justified by noting that the characteristic radial extension R⊥ ∼ N 1/4 of self-bound droplets
is only of the order of the healing length ξ [8]. As a result, there is no sound propagating in the
(x, y)-plane in such a configuration and the fact that c2(q̂) < 0 for the associated wave vectors is
irrelevant. The argument is not conclusive, however, because it does not address the problem
that an exponent 5/2 in the relation between pressure and density requires a corresponding
power law in p(µ), which is excluded for negative values of µ. To obtain some further insight,
it is useful to investigate the microscopic origin of the LHY correction from a different point of
view. The associated characteristic exponent k = 5/2 indicates that it can be attributed neither
to two-body nor to three-body interactions which—as discussed above—lead to k = 3. Now, as
noted already by Lee, Huang and Yang [57] and expanded in detail later by Lüscher [60] and by
Tan [48], the LHY term can be understood to arise from a finite size correction in the two-body
problem. More precisely, the repulsive contribution ∼g n (na3)1/2 in the interaction energy per
particle beyond mean-field emerges from a correction of order a/L beyond the leading term
E (0)

N=2(L) = g /L3 in the two-particle problem in a box with periodic boundary conditions. At finite
density, the relevant size L ≃ ξ for this correction is set by the healing length beyond which the
pair distribution is no longer determined by two-body physics. In the presence of the long-range
and anisotropic dipolar interactions, both E (0)

N=2(L) and its finite size correction will depend on
the aspect ratio κ and the dimensionless strength parameter εdd. A microscopic derivation of
the LHY correction for dipolar gases in a configuration which mimics the elongated droplets
thus requires the solution of the two-body problem in an anisotropic box of size L × L × L/κ
with periodic boundary conditions. Specifically, the parameter λ5/2(κ,εdd) is determined by the
coefficient of the a/L—contribution to the energy in a finite size expansion analogous to that
derived by Lüscher for rotation invariant short-range interactions [60]. While straightforward
in principle, proving that λ5/2 is finite and positive along these lines is nontrivial. A fully
microscopic derivation of either the LHY correction or a possible repulsive three-body force that
might contribute to the stabilization of self-bound droplets thus remains an open problem. It
should be emphasized, however, that this is essentially a conceptual challenge, not a practical
one. Indeed, as demonstrated recently by Bombín et al. [61], numerical approaches to dipolar
gases in the regime εdd > 1 based on quantum Monte Carlo provide results which agree quite
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well with experiment, e.g. for the critical number N0 where droplets unbind or for the supersolid
transition.

3. Effective theories for the transition to a supersolid

The prediction that dipolar gases in a pancake geometry with λ≫ 1 will exhibit a roton-maxon
character in their excitation spectrum has been made even before the experimental realization
of dipolar condensates [62, 63]. In contrast to the situation in 4He, where the roton gap ∆r is
essentially independent of pressure up to the superfluid-to-solid transition at pc ≃ 25 atm, the
depth of the roton minimum is now tunable. In fact, within mean-field, the roton gap in dipolar
gases is found to vanish beyond a critical value of the interaction strength where the spectrum
of Bogoliubov excitations reaches zero [62, 63]. A simple model capturing the essential physics is
based on assuming a uniform quasi-2D situation with a Gaussian density profile in the transverse
direction with characteristic length ℓz . The resulting effective dipole–dipole interaction [63, 64]

Vdd(q) = ħ2

m
g̃dd

[
2−3

√
π

2
(qℓz )exp(q2ℓ2

z /2)erfc(qℓz /
p

2)

]
(39)

in momentum space q = (qx , qy ) approaches a positive constant Vdd(q) → 2ħ2 g̃dd/m in the limit
|q|ℓz ≪ 1, where g̃dd =p

8πadd/ℓz is a dimensionless coupling constant. The fact that Vdd(q = 0)
is positive guarantees that—in contrast to the situation in 3D—the homogeneous fluid is now
stable for an arbitrary strength of the dipolar interaction. This does not exclude an instability at
finite wave vector, however. Indeed, the effective interaction Vdd(q) turns negative beyond |q |ℓz

of order one and asymptotically approaches the constant value −ħ2 g̃dd/m. In physical terms,
this describes attractive head-to-tail collisions between aligned dipoles at distances less than ℓz

with an effective scattering length −add. For strong dipolar interaction strengths, the negative
contributions to the total interaction V (q) = ħ2 g̃2/m +Vdd(q) give rise to a roton minimum in
the spectrum E 2

q = 2nV (q)εq + ε2
q of Bogoliubov excitations which eventually touches zero at a

characteristic wave vector q0. A crucial point in this context is that the scale for q0 is set by the
inverse of the confinement length ℓz , which is unrelated to and much larger than the average
interparticle spacing in the transverse direction.

The predicted appearance and subsequent softening of a roton has been observed in dipolar
condensates of Dysprosium in a cigar-shaped trap by Petter et al. [65] using Bragg spectroscopy.
By tuning εdd = add/a via a Feshbach resonance that allows to change the short-range scattering
length at fixed add, the measured dynamic structure factor shows a sharp increase near a critical
value εc

dd of order one, consistent with theoretical results based on a solution of the Bogoliubov
equations [66]. This signals a macroscopic occupation of the roton mode associated with a
spontaneous density modulation along the weakly confined direction in the trap, as seen directly
from in-situ density profiles [67]. The formation of a static density wave at a coupling strength
where the roton dip is still not very pronounced and the interpretation of this state in terms of a
supersolid has been confirmed in a number of experiments [6] which will not be discussed here
in detail. Instead, we will present an elementary approach which allows to understand the nature
of the associated phase transition and the underlying physics independent of specific details. In
particular, based on a simple model due to Nozières [11], we will show that the mean-field roton
instability is preempted into a first-order transition by an amount which depends on the strength
of the short-range repulsion. As a first step, it is necessary to properly define the notion of a
supersolid which, in a rather broad sense, may be characterized by:

In a supersolid, superfluidity (defined by a finite superfluid fraction) appears together with a
non-vanishing modulation of the density due to spontaneously broken translation invariance.
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Now, according to this definition, any spatially modulated superfluid like the vortex lattice
is also a supersolid. To exclude such well known cases, the notion of a genuine supersolid
should therefore be restricted to phases where spontaneously broken translation invariance and
superfluidity are present simultaneously as two independent order parameters. The modulation
in density is then still present even after superfluidity is lost. An important result due to
Leggett [68] states that in any superfluid with a non-uniform density, there is an upper bound
on the superfluid fraction fs strictly smaller than one. Specifically, the Leggett bound is of the
form

fs (T = 0) ≤
[

n̄

d

∫ d

0

dx

n1(x)

]−1

, in mean-field f (mf)
s (T = 0) = m/mB (40)

where the inverse of the density n1(x) is integrated over a unit cell of the lattice whose length is
denoted by d . Here, n1(x) is the average of the microscopic density 〈ρ̂(1)(x)〉 over the transverse
directions of the unit cell and n̄ its average value (without loss of generality, the x-direction has
been singled out). Apparently, the bound is always finite unless the density vanishes identically
in some region. Within mean-field, the ground state wave function factorizes into a product
of single-particle ones. The Leggett bound then turns into an equality and relates the superfluid
fraction to the ratio m/mB of the bare and the band mass mB in the given periodic potential. For a
conventional solid, where the particle density is concentrated near a discrete set {R} of lattice sites
with an exponentially suppressed value at interstitial positions, the upper bound on fs is much
smaller than one. In the limit of a fluid with uniform density, in turn, Equation (40) reduces to
the trivial identity fs ≤ 1. Obviously, supersolids with an appreciable superfluid fraction can only
be found in situations where the density modulation is weak. A few important points should be
noted in this context: First, the bound (40) does not provide a sufficient criterion for superfluidity
in a state with broken translation invariance: a finite value of the bound is still compatible with
no superfluidity at all. A case in point is the solid phase of 4He, where the microscopic density
profile is known from path integral Monte Carlo and the Leggett bound gives fs ≤ 0.16 [69] while
the true value vanishes10. A second point is that the bound (40) makes no assumption about
the physical origin of the density modulation. It may arise from a spontaneous breaking of
translation invariance but it also holds if the density modulation is externally imposed. In fact,
the latter method has been used in a recent experimental test of the Leggett bound [72]. Finally, a
quite subtle point is that the bound holds independent of whether the number of particles within
a unit cell happens to be an integer or not. Now, as emphasized in the classic paper by Andreev
and Lifshitz [34], the generic realization of supersolids requires an incommensurate situation
with a finite concentration of defects in the ground state. A detailed argument which shows that
delocalized vacancies or interstitial atoms are indeed a necessary condition for a supersolid has
been given by Prokof’ev and Svistunov [73]. This suggests that supersolids are in general just
superfluid mass-density waves, with the homogeneous part of the density playing the role of
delocalized “defects”. The ground state of generic solids like 4He, in turn, has an integer number
of particles per unit cell and vanishing defect concentration [70]. The finite energy necessary for
the creation of either vacancies or interstitials identifies such a state as a Mott-insulator, which
cannot have a finite superfluid fraction.

3.1. Mean-field theory of freezing in classical and quantum systems

It is a classic argument due to Landau [74] that the transition from a uniform fluid to a state with
a periodic modulation of the density is of first order. The argument relies on an expansion of the

10For a discussion of why a supersolid phase of bulk 4He can be ruled out, see [69, 70] and the review [71].
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free energy in terms of the Fourier components nG ̸= 0 of the density

ρ(1)(x) = 〈ρ(1)(x)〉+ ∑
G ̸=0

nGeiG·x = nsol +
∑

G ̸=0
nGeiG·x (41)

in the symmetry broken phase with average density nsol, where {G} denotes the set of associated
reciprocal lattice vectors [10]. In the weak crystallization limit, the density jump∆n = nsol−nliq is
small and the instability is dominated by a single wave vector q0 where the static structure factor
of the homogeneous fluid exhibits a pronounced maximum S(q0). The magnitude |G| = q0 of
the reciprocal lattice vectors is then fixed and the problem reduces to finding the lattice with the
lowest free energy. Within Landau theory, this is of the generic form [10]

∆ fL(T ) = fsol − fliq = r (T )

2
n2

G −wn3
G +un4

G with r (T ) = T −T ∗ and u > 0. (42)

Here, n2
G ∼ ∑′

G |nG|2 is a sum of the magnitudes of the non-vanishing Fourier components with
fixed |G| = q0, rescaled in such a way that makes it independent of their number in the specific
lattice and dimensionless11. Now, the simplified form (42) hides the dependence on the specific
lattice structure which is contained in the detailed values of w and u. For a finite w ̸= 0, reciprocal
lattices in which triads of different G′s add up to zero are favored. At fixed |G| = q0, therefore,
the planar hexagonal, the fcc and icosahedral lattices are the only possibilities [10], giving rise
to a triangular lattice in real space as the unique option in 2D. Quite generally, the transition
temperature Tc is determined by the condition ∆ fL(Tc) = 0 at a finite value nG (Tc) = w/(2u) ̸= 0,
where the fluid with nG ≡ 0 is degenerate with a state where the density develops a non-vanishing
spatial modulation. Due to the presence of the third-order term, the critical temperature Tc =
T ∗ + w2/(2u) lies above the temperature T ∗ introduced in the phenomenological Ansatz for
r (T ). Physically, T ∗ is the lowest temperature down to which the fluid exists as a metastable
configuration. Despite its purely phenomenological nature, the Landau theory of crystallization
captures many aspects of real first-order fluid-to-solid transitions, like the preference for (real
space) bcc lattices near the melting line [75] or the fact that a fluid can be undercooled by a far
larger amount than solids can be overheated. Indeed, the temperature below which the solid
exists at least as a metastable configuration is given by T1 = T ∗ + 9w2/(16u) and the Ansatz in
Equation (42) thus leads to Tc −T ∗ = 8(T1 −Tc). A further consequence of Landau theory, not
mentioned usually, is that the static structure factor in the uniform fluid right at the transition
has a quasi-universal value S(q0)|Tc = Tc/r (Tc) = Tc/(Tc −T ∗) of order one. A similar result was
in fact found to hold for strong crystallization transitions e.g. of a Lennard-Jones fluid by Hansen
and Verlet [76]. It has led to the empirical Hansen–Verlet criterion SHV(q0)|Tc = 2.85 as a system-
independent estimate for the position of the fluid-to-solid transition in classical systems with
short-range interactions from properties within the fluid phase itself.

The Landau theory for the fluid-to-solid transition in a classical system can be extended into
a quantum theory which describes the appearance of a mass-density wave in a superfluid. Based
on an approach indicated already in the ground-breaking work of Gross on inhomogeneous Bose
fluids [77], this has been developed by Pomeau et al. [78, 79]. Focussing again on density fluctu-
ations with wave vectors of a fixed length |G| = q0, the leading order expansion

∑
q |δnq |2/2χ(q)

in the change of energy through density fluctuations δnq ̸= 0 in any fluid gives rise to a contribu-
tion r̃ n2

G /2, where r̃ = 1/χ(q0) is the inverse of the static density response function. Now, within
the Bogoliubov approximation, this response is determined by the ratio χ(q) = 2εq /E 2

q of the free
particle energy εq and the dispersion Eq of the collective excitations of the superfluid [80]. In
particular, for interactions that lead to a roton minimum with energy ∆r = E|q|=q0 , the parameter
r̃ near the corresponding wave vector is given by r̃ = ∆2

r /(2εr ) with εr = ε|q |=q0 . It is important

11Note that the sign of w , assumed to positive here, is irrelevant since it can be changed trivially by nG →−nG .
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to note that—within the Bogoliubov approximation—a roton minimum requires two-body inter-
actions V (q) which are negative in a certain range of wave vectors but not necessarily an attrac-
tive interaction in real space as in dipolar gases. As an example, a purely repulsive box potential
V (r12) of strength V0 and size σ gives rise to a negative V (q) in a range 4.5 < qσ< 7.7. The energy
of the resulting roton minimum and the associated parameter r̃ can then be tuned by changing
the dimensionless coupling strength nσ3 ·V0 mσ2/ħ2. This leads to a roton instability at the point
where r̃ vanishes and the uniform superfluid becomes unstable. The nontrivial question now is
whether this instability can be cured by a nonlinear contribution to the energy analogous to the
one which is introduced by hand in Landau’s Ansatz (42). As shown by Pomeau and Rica [78] this
is indeed the case and the resulting energy functional

∆ fGP = f [n(x)]− f [n̄] = r̃

2
n2

G − w̃n3
G + ũn4

G with r̃ =∆2
r /(2εr ) (43)

is in fact of the same form. Moreover, in contrast to the case of classical fluid-to-solid transi-
tions where the parameters r (T ), w,u are introduced in a purely phenomenological manner, the
coefficients in Equation (43) can now be derived from a microscopic energy functional. In par-
ticular, the nonlinear terms involving w̃ and ũ follow from the expansion of the denominator in
the quantum pressure contribution ħ2 [gradn(x)]2/[8m n(x)] around the fluid state with uniform
density n̄. For a given characteristic wave vector q0 of the emerging density wave, they are on the
order of the associated recoil energy w̃ , ũ ≃ εr , with detailed values again depending on the spe-
cific lattice. As in the standard Landau theory, the presence of a finite third-order term w̃ ̸= 0 im-
plies that the uniform superfluid freezes with a jump in density determined by nG |c = w̃/(2ũ) at a
critical value r̃c = w̃2/2ũ. The mean-field roton instability at r̃ = 0, which characterizes the inter-
action strength up to which the homogeneous superfluid exists at least as a metastable configura-
tion, is thus preempted by first-order transition at a finite critical value∆r /εr |c =O (1) of the roton
gap. For the specific case of a triangular lattice in 2D, this value turns out to be∆r /εr |c = 0.23 [78].

3.2. Effects beyond mean-field and a two-mode model

The extension above of Landau’s classical theory to the freezing of a uniform superfluid into a
state with broken translation invariance describes a mean-field supersolid in the sense that its
condensate fraction stays at the non-interacting value f (mf)

0 = 1. By contrast—consistent with the
Leggett bound (40)—the superfluid fraction is reduced below one depending on the magnitude
of the density modulation. The model thus provides a qualitative description of the supersolid
transition in dipolar gases where the emerging density wave is a phase-coherent superfluid. This
is rather different from the situation in 4He, where the solid phase beyond the critical pressure pc

is a commensurate Mott-insulator [70]. The result that the roton gap has a finite value ∆c
r at the

supersolid transition implies a quantum generalization of the Hansen–Verlet criterion. Indeed,
the expression χ(q) = 2εq /E 2

q for the density response also holds for finite temperatures below
the superfluid transition as long as the condensate fraction remains close to one [80]. As a result,
the static structure factor of the homogeneous superfluid at finite temperature is related to its
ground state value S(q) = εq /Eq by a thermal enhancement factor coth(Eq /2T ). Right at the
supersolid transition, it has thus a quasi-universal value

Sc(q0) =
(
εr

∆c
r

)
coth

(
∆c

r

2T

)
−−−−→
T≫∆c

r

T

r̃c
≫ 1 (44)

determined only by the ratios between the roton gap ∆c
r and the recoil energy or temperature.

As indicated, the value is large compared to one in the experimentally relevant limit T ≫ ∆c
r .

In particular, this applies to the measurements of the static structure factor in [67], where a
pronounced peak in S(q0) near the ordering wave vector is found at the supersolid transition.
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There are two major shortcomings of the approach sketched above: First of all, the description
fails in cases where the emerging lattice does not give rise to a third-order invariant in the
free energy. This applies e.g. to the situation realized in many experiments where the density
modulation appears along a single direction preferred by the geometry in cigar-shaped traps. The
functional (43) then leads to a continuous transition at the point where the roton gap vanishes
which is not consistent with observation12, see e.g. [67]. A second point is that, even at finite
values of w̃ , the shift of the roton instability away from its mean-field value zero to a finite
r̃c = w̃2/2ũ predicted by Equation (43) gives rise to a critical roton gap of order εr , independent
of the strength of interactions. In the following, we will outline an approach in which both of
these problems are absent. The crucial point to recognize is that beyond mean-field there is a
fundamental difference between density fluctuations and the quasi-particles of the superfluid.
It is only in the limit of weak interactions where they coincide and one may infer the density
response χ(q) → 2εq /E 2

q from the quasi-particle dispersion Eq . A simple model for dealing with
the interplay of density modes and superfluid quasi-particles was suggested by Nozières [11],
whose aim was to shed light on the complex question about the role of the roton minimum
in superfluid 4He for the transition to a solid. Based on a diagrammatic argument, Nozières
showed that beyond the standard leading order term Σq (ω) → n0 V (q) of the self-energy, there
is a contribution proportional to V 2(q) ·χ(q,ω) which involves the dynamic density response
function χ(q,ω). Within a simple Ansatz χ(q,ω) ≃ 2εq /(Ω2

q −ω2) for this response in the absence
of the coupling to superfluid quasi-particles, a two-mode model emerges whose excitation
energies E 2

±(q) follow from a bi-quadratic equation [11]

E 2
±(q) = E 2

q − f0
Λq

Ω2
q −E 2

±(q)
→ r̃ eff(q) = E 2−(q)

2εq
≃

E 2
q

2εq
− f0

Λq

2εq ·E 2
q
= r̃ mf(q)− f0Λq /(2εq )2

r̃ mf(q)
.

(45)
The effective coupling contains the condensate fraction f0 and the parameterΛq which is at least
quadratic in the interactions. With increasing coupling, the two modes E 2

±(q) shift in an opposite
direction and it is the lower one E−(q) whose softening signals the onset of a density wave at
given q . In particular, the associated effective stiffness r̃ eff(q) is renormalized down compared
with the mean-field value by an amount which scales inversely with r̃ mf(q) itself13. The fact
that a mean-field approximation overestimates the stiffness for density fluctuations is consistent
with the exact inequality m2

p (q) ≤ mp+1(q)mp−1(q) for the pth moment of the dynamic structure
factor [80]. In fact, in the special case p = 0, this reduces to

S2(q) ≤ εq ·χ(q)/2 → 1/χ(q) ≤ εq

2S2(q)
−−→
mf

∆2
r

2εr
(46)

in general, respectively evaluated at the roton minimum within mean-field. It is only in the
limit where the dynamic structure factor has a single sharp peak that Equation (46) becomes
an equality. A quantitative result for the renormalization of r̃ mf(q) requires to determine the
parameter Λq . This may be estimated by assuming that the relevant wave vector is large enough
thatΛq can be inferred from the exact short-distance expansion

1

χ(q)
→ εq

2

[
1− πC2

8nq
+·· ·

]
→ Λq

ε4
q
= πC2

8nq
(47)

for Bose gases with repulsive short-range interactions derived in [83]. The requirement that this
is consistent with Equation (45) then fixes Λq ∼ ε4

q C2/q to be proportional to the two-body

12This problem may be eliminated by incorporating a further wave vector q ′
0 for the density wave, which breaks the

symmetry nG →−nG . The option comes, however, at the expense of introducing at least two additional free parameters.
13This is reminiscent of the Brazovskii equation in the beyond mean-field description of classical fluid-to-solid

transitions [81, 82] but note that the sign here is opposite and the effect scales with the condensate fraction f0.
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contact density C2. Now, the characteristic wave vectors of the actually observed supersolids
are considerably smaller than those where the expansion for high momenta in (47) is expected
to apply and—moreover—effects of the long-range dipolar interactions have been ignored. The
result is thus only of a rather qualitative nature. Nevertheless, it indicates how the problems of
the mean-field approximation mentioned above can be resolved. Specifically, from the fact that
the inverse static density response r̃ eff(q0) of the homogeneous fluid at the freezing transition is
expected to be finite but very small, the critical value(

∆r

εr

)4

c
≃ f0

πC2

8nq0
(48)

for the ratio between the roton gap ∆r and the recoil energy εr at the transition into a supersolid
state can be estimated. Independent of the existence of a third-order invariant, it is always finite.
Moreover, it depends explicitely on the interaction strength via the two-body contact density C2.
In particular, the simple mean-field roton instability with a vanishing∆c

r |(mf) ≡ 0 is obtained in the
limit of vanishing short-range repulsion, where C2 ∼ a2 → 0. It is obvious that the rather crude
arguments above need to be replaced by a proper microscopic theory for effects beyond mean-
field in the transition to a supersolid. This is an open but clearly quite challenging problem.

4. Conclusion and open problems

The thermodynamic approach developed in this work provides a description of dipolar quantum
fluids which fully accounts for the anisotropy and the long-range nature of the interactions. It
allows to derive a number of exact results, e.g. for the effective magnetic field in the center
of a spherical cloud (11) and the resulting instability beyond a critical value of the interaction
strength, the violation of the Gibbs–Duhem relation in the density profile of trapped gases (21)
or the number-dependence (36) of the aspect ratio in a self-bound droplet. An interesting
perspective to obtain further exact results is provided by a possible extension into an effective
field theory, similar to the one that has been developed by Son and Wingate for the unitary Fermi
gas [84]. Concerning the transition into a supersolid phase, the discussion in this work has been
of a rather qualitative nature and a better understanding of the effects beyond mean-field is an
open problem.

It is obvious, that a number of basic problems in the theory of dipolar gases have only been
raised but have not been answered. This is true, in particular, for a microscopic derivation of
the exact effective potential which replaces the simple ad hoc Ansatz assumed in Equation (33).
Specifically, both the detailed form of an LHY-like contribution ∼|ψ|5 with a proper positive
strength λ5/2(g ,εdd,κ) > 0 and a quantitative theory for a possible contribution of three-body
forces are missing. In addition, the transition from the supersolid phase to a collection of
separate, incoherent droplets [6] is still not well understood.

Finally, the approach to uniaxial quantum fluids presented here applies to a situation where
the breaking of rotation invariance is imposed externally by the fixed orientation of the dipoles. It
is a challenge to see whether it can be extended to cover a situation where the symmetry breaking
is spontaneous, e.g. in a quantum version of a nematic liquid crystal14.
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