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Abstract. We theoretically study stimulated and spontaneous Hawking emission from an analog horizon for
spin modes in a two-component Bose–Einstein condensate, both with and without a coherent coupling
between the two components. We highlight the conceptual and practical advantages that these systems
offer to the experimental observation of the phenomenon, namely the possibility of working with massive
elementary excitations and the experimental accessibility of the different quadratures of the spin excitations.
In particular, we go beyond the relativistic regimes previously addressed in the literature, and identify various
observables that show a signature of the Hawking process, as well as additional features associated with the
massive nature of the modes, such as undulations. Semi-analytical calculations of the scattering properties
of the horizon and of two-point correlation functions of the emitted radiation in an ideal stationary setup are
supported by time-dependent numerical simulations based on Gross–Pitaevskii and Bogoliubov theory.

Résumé. Nous étudions théoriquement l’émission de Hawking stimulée et spontanée à partir d’un horizon
analogue pour les modes de spin dans un condensat de Bose–Einstein à deux composants, avec et sans cou-
plage cohérent entre les deux composants. Nous mettons en évidence les avantages conceptuels et pratiques
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que ces systèmes offrent pour l’observation expérimentale du phénomène, à savoir la possibilité d’avoir des
excitations élémentaires massives et l’accessibilité expérimentale des différentes quadratures des excitations
de spin. Plus specifiquement, nous allons au-delà des régimes relativistes précédemment abordés dans la
littérature, et identifions des observables qui montrent une signature du processus de Hawking, ainsi que
des caractéristiques supplémentaires associées à la nature massive des modes, telles que des ondulations.
Les calculs semi-analytiques des propriétés de reflexion et transmission de l’horizon et des fonctions de
corrélation à deux points du rayonnement émis dans un cadre stationnaire idéal sont confirmés par des
simulations numériques dépendantes du temps basées sur les théories de Gross–Pitaevskii et de Bogoliubov.
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1. Introduction

First predicted by Hawking in 1974 [1, 2], the thermal emission from astrophysical black holes is
one of the most surprising and fascinating consequences of quantum effects in curved spacetime.
According to Hawking’s prediction, black holes of mass M are expected to radiate as black bodies
as a result of the interplay between quantum fluctuations and the curvature of spacetime in the
vicinity of a gravitational singularity. In the absence of a counteracting accretion mechanism,
the Hawking emission is anticipated to lead to the evaporation of the black hole [1]. However,
the Hawking emission has so far escaped direct observation in the astrophysical context, as the
Hawking temperature of a typical black hole mass is orders of magnitude smaller than the cosmic
microwave background temperature (∼2.7 K) [3], and its evaporation time longer than the age of
the Universe [4].

Nevertheless, the purely kinematic nature of the Hawking effect [5] offers the possibility
of constructing analogies between quantum field theory in curved spacetime and condensed
matter systems [6], allowing to observe this phenomenon in experimentally accessible platforms
such as classical fluids [7–9], polaritons [10, 11], optical systems [12, 13] and ultracold gases [14].
In the context of quantum fluids, e.g. Bose–Einstein condensates (BEC), analog black holes are
generated by engineering a steadily-flowing stationary state that features an accelerating velocity
profile. Where the flow velocity v exceeds the speed of sound c, a sonic horizon separating the
regions of supersonic and subsonic fluid flow acts as a point-of-no-return for long-wavelength
phononic excitations, similarly to the event horizon which marks the boundary between the
interior and exterior of a black hole.

Within the hydrodynamic regime, the analog Hawking temperature of a sonic horizon in a BEC
is related to the spatial derivative of the speed of sound and flow velocity at the location of the
horizon [5, 15] and is often lower than the physical temperature of ultracold atomic gases, pre-
venting a direct observation of the phenomenon in realistic experimental setups. To circumvent
this limitation, a classical analog of the Hawking effect can be observed in the scattering of wave
packets on the sonic horizon. Despite being a stimulated variant of the Hawking process, the
scattering properties of the horizon carry relevant information regarding its spontaneous coun-
terpart, such as the greybody factor of the analog black hole and its Hawking temperature. More-
over, a characteristic signature of the occurrence of spontaneous emission, sometimes referred to
as the Hawking moustache, is found in the two-point correlations between density fluctuations
propagating on opposite sides of the horizon [16–18]. This observable is robust against finite
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temperature effects [17] and has been exploited to claim the first experimental observation of
the Hawking effect in a single component condensate [19–21]. So far, the Hawking emission has
escaped observation in any other analog system.

This paper is devoted to the theoretical study of the Hawking process for spin modes in a
two-component Bose–Einstein condensate [22, 23]. In relation to previous studies [23–25], we
aim to explicitly show how the availability of two channels of elementary excitations results in
both conceptual and practical advantages to the experimental study of the Hawking effect with
respect to a single-component fluid [26]. Our purpose in this regard is two-fold. Firstly, our focus
on spin modes in a mixture allows us to conceptually extend the analysis to massive excitations
by introducing a resonant coherent coupling between the two components. Differently from
Refs. [24, 25], we do not restrict our analysis to small values of the coherent coupling. As all
our calculations are based on the Gross–Pitaevskii and zero-temperature Bogoliubov theories,
we are not restricted to the hydrodynamic regime and are instead able to consider parameters’
regimes beyond the gravitational analogy but closer to typical experimental conditions [27]. As
we will see, the notion of an analog horizon can be extended to parameters’ ranges that do
not allow for the definition of a sound velocity, yet the features characterizing the Hawking
emission are preserved in such non-relativistic regime. Secondly, the experimental accessibility
of additional degrees of freedom, such as the relative phase between the two components, opens
the possibility of identifying observables in which the intensity of the Hawking signal overcomes
by orders of magnitude that of the typical moustache observed in density correlations, thus
potentially facilitating its measurement.

The paper is structured as follows: after reviewing the main properties of binary BEC mixtures
in Section 2, we introduce the idealized one-dimensional spin-sonic black hole in Section 3 and
propose a realistic implementation of the same setup in Section 4. The following sections are
devoted to stimulated Hawking emission: the scattering properties of the horizon, anticipated
in Section 5, are probed with time-dependent GP simulations in Section 6 and used to estimate
the greybody factor and Hawking temperature of the analog black hole in Section 7. The last
part of the manuscript focuses on the analysis of the spontaneous Hawking emission through
correlation functions: semi-analytical results and time-dependent numerical simulations, both
based on Bogoliubov theory, are reported in Section 8 and Section 9, respectively. Moreover, a
conceptually interesting configuration which exploits the properties of the system in the vicinity
of a critical point is examined in Section 10. Lastly, in Section 11 we draw conclusions and briefly
discuss future perspectives.

In the appendices we briefly review and summarize the theoretical and numerical techniques
we used to derive the results presented in this manuscript and we discuss the effects of a smooth
horizon on the Hawking signal.

2. Coherently coupled mixtures and their collective excitations

We consider a spinor Bose gas composed of atoms of mass m, subject to an external potential
V (x, t ), and condensed in two different internal states |↑〉, |↓〉. Atoms interact with intra- and
inter-component interaction strengths g , g↑↓ and the two components are coherently coupled
by an external coupling field of Rabi frequency Ω > 0, which we assume to be resonant with the
atomic transition. The mean field dynamics of this system is governed by two Gross–Pitaevskii
(GP) equations [22, 28] for the order parameters ψ↑,↓(x, t ):

iħ∂ψ↑
∂t

=−ħ2∇2

2m
ψ↑+ (V + g n↑+ g↑↓n↓)ψ↑−

ħΩ
2
ψ↓

iħ∂ψ↓
∂t

=−ħ2∇2

2m
ψ↓+ (V + g n↓+ g↑↓n↑)ψ↓−

ħΩ
2
ψ↑ (1)
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where n↑,↓ = |ψ↑,↓|2 are the two atomic densities. For uniform mixtures of total density n = n↑+n↓,
as long as g↑↓ < g +ħΩ/n, the ground state is characterized by identical order parameters in the
two components ψ↑ =ψ↓, i.e. corresponds to a Z2-symmetric configuration.

According to the Bogoliubov theory briefly summarized in Appendix A, small perturbations of
the ground state then belong to either one of two independent branches of collective excitations,
associated to perturbations of the total density n and of the relative (spin) density n↑−n↓: hence,
the two channels are usually referred to as density, hereafter identified by the subscript 0, and
spin branches. The frequency ω and momentum k of the excitation modes are related through
the Bogoliubov dispersion relations [22]:

ω(0)
± (k) = ±

√
ħk2

2m

(ħk2

2m
+ 2µ0

ħ
)
, (2)

ω±(k) = ±
√(ħk2

2m
+Ω

)(ħk2

2m
+ κn

ħ +Ω
)
, (3)

with 2µ0 = (g + g↑↓)n the density interaction energy and κ = g − g↑↓ the interaction constant for
spin modes. The presence of a coherent coupling does not affect the density branch, which is
always phononic at low momenta k < 1/ξ0, with speed of sound c0 =

√
µ0/m and healing length

ξ0 =ħ/mc0. On the other hand, it renders spin modes effectively massive by opening a gap of size

∆=
√
Ω(Ω+κn/ħ) (4)

in the dispersion relation. If |κ|n/ħ≪∆∼Ω, spin modes behave as free particles with an almost
parabolic gapped dispersion.

The phononic nature of spin modes is only recovered in the opposite limit ħ∆≪ |κ|n, that is,
eitherΩ∼ 0 (with κ> 0) or ħΩ+κn ∼ 0 (with κ< 0). In both cases the sound speed for spin modes
is c ≃p|κ|n/2m and the dispersion is linear at low enough momenta k < 1/ξ, where ξ= ħ/mc is
the healing length for spin modes. In the absence of a coherent coupling,Ω= 0, the atom number
in each component is individually conserved, so a Goldstone mode appears in the spin channel
as a consequence of a U(1) symmetry for the relative phase between the two components:
exciting arbitrary relative phase perturbations is costless. The condition ħΩ+κn = 0, instead,
defines the critical point for a para-to-ferromagnetic quantum phase transition [29]: the closing
gap in this case is due to the spontaneous breaking of the Z2 symmetry for the exchange of the
two components and relative density excitations become extremely soft.

Rigorously speaking, the gravitational analogy [6] can be applied to two-component BECs only
if spin modes are phononic, namely either if the coupling is small:√

ħΩ
κn +ħΩ ≪ 1 (κ> 0), (5)

or in the proximity of the critical point for the para-to-ferromagnetic phase transition:√
ħΩ+κn

ħΩ ≪ 1 (κ< 0). (6)

For this reason, throughout this paper we will refer to these two parameter regimes as relativistic,
whereas the opposite limit |κ|n ≪ħΩ is identified as non-relativistic.

By analogy with two-level systems, the state of a two-component condensate can be repre-
sented on a Bloch sphere through a spin vector S [29] with components:

S1 = 2Re(ψ∗
↑ψ↓),

S2 = 2Im(ψ∗
↑ψ↓),

S3 = n↑−n↓.

(7)
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For a Z2-symmetric mixture in the ground state, the spin vector reads S = (n,0,0). Assuming
small perturbations of the densities of the two components δn↑, δn↓ and of the relative phase
δφ, the spin vector is modified as S = (n + δn↑ + δn↓,nδφ,δn↑ − δn↓). Hence, to linear order,
the second and third components of S are sensitive to spin modes, while the first component is
perturbed by total density excitations. In particular, S2 and S3 are proportional to the relative
phase and relative density perturbations and can be seen as the two quadratures of the spin
excitation modes.

3. The spin-sonic black hole

To study analog Hawking radiation in a Bose–Einstein condensate, one requires a fluid flow that
mimics a black hole geometry. For a single-component system, the simplest configuration with
this property involves a uniform one-dimensional system steadily flowing with velocity v [16–18].

In a simplest configuration, a step-like modulation of the interaction constant

g (x) = guΘ(−x)+ gdΘ(x), (8)

where Θ is the Heaviside step function, separates the upstream region (for x < 0, labelled u),
where the flow is subsonic, that is cu = √

gun/m > v , from the downstream region (for x > 0,
labelled d), which is instead supersonic, cd = √

gd n/m < v . The surface at x = 0 thus plays
the role of an analog sonic horizon. Even though the discontinuous interaction profile (8)
breaks the hydrodynamic approximation and suggests an infinite Hawking temperature, explicit
calculations shows that the emission temperature TH remains finite and of the order of µ/kB ,
where µ is the chemical potential of the system.

Configurations involving a smoother horizon or inhomogeneous density profiles, which re-
produce more closely the experimental conditions [19], have also been considered in the theo-
retical literature (see, for instance, [15, 18]): the general features of the Hawking signal are qual-
itatively identical to the simplest discontinuous case (8) and the Hawking temperature recovers
the prediction of the hydrodynamical approximation.

The aim of this work is to generalize this configuration to the spin channel of a binary mixture
with n↑ = n↓ = n/2, such that the Z2 symmetry of the system implies a complete decoupling
between the dynamics of excitations of the total and relative density. We thus consider a uniform
mixture of total density n and assume that a spin-sonic horizon is generated by a step modulation
of the spin interaction constant,

κ(x) = κuΘ(−x)+κdΘ(x). (9)

Conversely, the density interaction constant (g + g↑↓) and the corresponding energy µ0 are kept
uniform in space with a density speed of sound c0 > v such that no sonic horizon is seen by
density modes. A similar configuration was analyzed in [23]. In addition to the spatial modulation
of the spin interaction constant, we also assume that the two components are coupled by a
spatially inhomogeneous Rabi coupling:

Ω(x) =ΩuΘ(−x)+ΩdΘ(x). (10)

According to Equation (1), there exists a Z2-symmetric stationary state of the mixture of the form

ψ↑(x, t ) =ψ↓(x, t ) =
√

n

2
eiqx e−iµt/ħ, (11)

where q = mv/ħ is the momentum associated with the fluid flow and

µ= 1

2
mv2 +µ0 +V (x)− ħΩ(x)

2
. (12)
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Notice that if Ωu ̸= Ωd , the jump at x = 0 in the Rabi frequency has to be compensated by an
external potential, V (x) =ħΩ(x)/2, in order to guarantee the stationarity of the state (11).

As already pointed out, in the presence of a coherent coupling, the dispersion relation for spin
modes in a comoving reference frame (3) is gapped and a definition of the speed of sound is
only possible in a limited range of parameters’ values, that is, in the regimes of validity of the
gravitational analogy (5), (6). In any other case, the role of the speed of sound is played by the
Landau critical velocity, defined as

cd ,u ≡ min
k

ω+(k, x ≷ 0)

|k| . (13)

In order to generate an analog horizon for spin modes, it is thus necessary to fix κ(x) (9) andΩ(x)
(10) so that the Landau critical velocity is larger than the flow velocity in the upstream region and
smaller than the flow velocity in the downstream region, i.e., cd < v < cu .

The condition cd < v is crucial to the appearance of a sonic horizon: negative (positive) norm
modes in the downstream region, once Doppler-shifted to account for the flow velocity, acquire
positive (negative) frequency and thus carry negative energy in the lab frame. The existence of
these solutions is the key ingredient enabling the onset of Hawking physics, as pairs of particles
with opposite energy can be emitted on either side of the horizon while conserving the total
energy of the system. A schematic drawing of the resulting spin-sonic black hole configuration
is shown in Figure 1, together with examples of the dispersion relation on the two sides of the
horizon.

Analog Hawking radiation of massive particles in a spin-sonic black hole configuration with
homogeneous coherent coupling (Ωu =Ωd ̸= 0) has been characterized in Refs. [24, 25]: in this
case the condition for the presence of a horizon, cu > v > cd , constrains the Rabi frequency
to a limited range of extremely small values. In order to explore different regimes, we instead
consider a coherent coupling with different intensity on the two sides of the horizon, Ωu ̸=Ωd .
Since the presence of a gap in the upstream region reduces the intensity of Hawking radiation
emitted in the black hole exterior [24], we set Ωu = 0 throughout this work. The absence of a
gap in the upstream region requires the spin interaction energy κun/2 to be positive, and allows
us to define a speed of sound cu = p

κun/2m and a healing length ξu = ħ/mcu for spin modes
propagating in the black hole exterior. Their frequency is given by a Doppler-shifted gapless
Bogoliubov dispersion:

ω±
u (k) = kv ±|k|cu

√
1+ ξ2

uk2

4
. (14)

The condition cu > v guarantees that propagating modes with real wave-vector and positive
norm necessarily have positive frequency.

On the contrary, let us assume that the coherent coupling is not necessarily vanishing in the
downstream region. From the perspective of the gravitational analogy, varying the intensity of
the coherent coupling in the downstream region Ωd keeping Ωu = 0 amounts to changing the
nature of the analog black hole (in particular its greybody factor, as we will see later on), without
affecting the spacetime geometry of the black hole exterior.

For generic values of Ωd , the role of the speed of sound is replaced by the Landau critical
velocity. A direct calculation from (13) leads to:

mc2
d = κd n/2+ħΩd +ħ∆d . (15)

Notice that cd coincides with the speed of sound ≃√|κd |n/2m if the gap ∆d , defined as in (4), is
small or vanishing, that is, in the two relativistic regimes (5) and (6), while, in the opposite limit
ħΩd ≫ |κd |n of a strong Rabi coupling the gravitational analogy breaks and we find the density-
independent value cd ∼√

2ħΩd /m.
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Figure 1. (a) Schematic of the analog black hole toy-model configuration considered in this
work. The analog horizon, located at x = 0, separates the upstream (u) region where the
Landau critical speed for spin modes cu exceeds the flow velocity v , from the downstream
(d) region, where instead the opposite holds v > cd . This step configuration can be realized
while keeping the speed of density-sound c0 = √

µ0/m uniform and larger than v , so that
the density channel is everywhere subsonic. The red (blue) arrows in the upper panel
indicate the group velocity direction for in-going (out-going) modes. (b) Typical example
of spin dispersion relation on the two sides of the analog horizon with (black curves)
and without (grey curves) coherent coupling in the downstream region. The colored dots
indicate all the propagating modes which exist at a generic frequency ω<ω∗ (dotted line),
while the empty squares identify zero-frequency modes, which have a non-zero wavevector
ifΩd ̸= 0. The shaded area represents the frequency range [0,ω∗] in which negative energy
modes are available.
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The supersonic condition cd < v is fulfilled by choosing the parameters in the downstream
region such that:

1− κd n

2mv2 >
√

2ħΩd

mv2 . (16)

As already pointed out, this requirement guarantees the existence of a range of positive frequen-
cies (0 < ω < ω∗) for which both positive and negative norm modes exist in the downstream re-
gion, with dispersion given by:

ω±
d (k) = kv ±

√(ħk2

2m
+Ωd

)(ħk2

2m
+Ωd + κd n

ħ
)
. (17)

The threshold frequency is ω∗ = max(ω−
d ).

The simplifying assumptions of uniform density and infinitely steep horizon enable us to per-
form simple semi-analytical calculations. These are based on the evaluation of the scattering
properties of the horizon via direct calculation of the corresponding scattering matrix [16, 17].
Such results are supported and further extended by time-dependent GP and Bogoliubov simu-
lations, which allow us to consider more general and realistic configurations, to investigate the
effects of a smooth sonic horizon with finite width σx and to determine how the Hawking signa-
tures develop after the analog horizon is created.

4. Realistic implementation

While in the following of this work we focus mostly on the idealized step configuration consid-
ered in the previous Section or on its straightforward generalization to a smooth horizon, it is
instructive to briefly discuss a more realistic implementation of the spin-sonic black hole.

As a first point, the toy model of Figure 1 is one-dimensional (1D). While Bose–Einstein
condensation is, strictly speaking, not possible in one spatial dimension, finite size effects allow
to work with quasi-1D cigar-shaped condensates in which the transverse degrees of freedom
are frozen [14, 19, 30]. In the case of two-component BECs, the spin degree of freedom can
be effectively 1D without the need of reaching this one-dimensional regime. For most atomic
species, contact interaction constants are comparable in strength, g ∼ g↑↓, resulting in a speed
of spin-sound much lower than that of density-sound, c ≪ c0. Consequently, the healing lengths
satisfy ξ≫ ξ0. If the transverse size R of a cigar-shaped condensate is chosen such that ξ0 < R < ξ,
the density profile is well approximated by the Thomas–Fermi (TF) solution, but the dynamics of
spin modes remains frozen in the transverse direction and is thus effectively one-dimensional.
Such a configuration has been realized, for instance, in Ref. [27].

Another feature of the idealized configuration is the infinitely steep variation of the speed
of sound c across the horizon. As already pointed out, the non-hydrodynamic nature of the
step does not affect the relevant properties of Hawking emission, such as its thermal character.
However, the horizon width influences the value of the Hawking temperature and therefore
the intensity of the signal in two-point correlations: the steeper the step, the stronger the
moustache (see Appendix E for a detailed discussion). Experimentally, the steepness of the sonic
horizon is bound by the (density) healing length ξ0 and is often of the order of several ξ0 [19].
For two-component BECs, such width can still be much smaller than the healing length for
spin modes ξ, effectively rendering the horizon infinitely steep and maximizing the Hawking
temperature.

For spin modes, in the toy model we consider, the horizon is generated by a step in the spin
interaction constant κ while the total density is kept uniform; this modulation is not readily
implemented in experiments. Alternatively, a non-uniform interaction energy κn/2 can be
achieved by modulating the density via an external potential. This approach was employed in the
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Figure 2. Experimentally realizable spin-sonic horizon in a harmonically trapped conden-
sate. A scanning step potential V (x, t ) ∼ tanh[(x − v t )/σx ] + 1 induces a modulation of
the atomic density n(x, t ), dividing the condensate into regions of spin-subsonic (left) and
spin-supersonic flow (right, shaded). The sudden appearance of a sharp boundary gener-
ates a shock wave, seen propagating away from the horizon in the subsonic region. The
inset shows a closeup of the velocity profile around the horizon of width σx = 2ξ(x=0).

first realization of sonic black hole in a single-component BEC [14] and subsequent observations
of spontaneous analog Hawking radiation [19–21]. Figure 2 shows a spin-sonic horizon generated
with a similar setup: a stationary, harmonically trapped two-component fluid is scanned from
right to left by a modulated potential at velocity v . The step-like potential causes a buildup of
atoms in the upstream region, conversely decreasing the density in its wake downstream. As
shown in the inset, the speed and magnitude of the modulated potential can be tuned to generate
a sonic horizon for spin modes while keeping the density channel subsonic throughout the gas,
making the configuration robust against density perturbations.

The observation of an analog Hawking effect for spin excitations in this setup is still facing a
few several experimental issues. Firstly, as is the case for a scalar Bose gas [31], the introduction
of the scanning potential may generate an undesired shock wave in the density of the fluid,
propagating away from the horizon as shown in Figure 2. Its eventual reflection at the edge
of the condensate introduces a finite lifetime for the undisturbed horizon. Secondly, not all
parameter regimes discussed in Section 2 are straightforwardly accessible to state-of-the-art
experiments. Given the necessity of working with low densities in order to increase the visibility
of quantum effects [19], and due to the relatively small value of κ with respect to the average
interaction constant, accessing the relativistic massive regime defined by (5) and considered
in Refs. [24, 25] would require to control the Rabi frequency at least at the level of a few Hz.
Approaching the critical point for the para-to-ferromagnetic phase transition (6) presents an
even greater challenge, as it requires, in addition to a fine tuning of the Rabi frequency, a
change of sign in κ across the horizon, a configuration which is only achievable by exploiting
spatially modulated Feshbach resonances [32]. For this reason, we focus in the remainder of
this work solely on the standard gapless case considered in Ref. [23] and on the non-relativistic
regime |κd |n ∼ ħΩd . Finally, the low interaction energy κn/2 results in a correspondingly low
temperature of spontaneously emitted Hawking radiation which, already in the case of a scalar
Bose gas, is notoriously weak in comparison to undesired fluctuations due to the thermal cloud
of the condensate, three-body heating and shot noise encountered in measurements [15, 33].

The last issue is typically solved by looking at the correlation functions. In particular, in
contrast to a single-component Bose gas, a binary mixture provides experimental access to all
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the quadratures of the spin excitation modes by looking at the different components of the
spin vector (7). For instance, S2, which is closely related to the relative phase between the two
components, can be measured by applying a π/2-pulse before measuring the relative density of
the mixture, that is, S3. The availability of additional degrees of freedom thus makes it possible
to observe signatures of the Hawking effect in several observables and, as we are going to see in
the next sections, take advantage of the stronger Hawking signal in some of them.

5. The scattering matrix formalism

As a first step in the study of analog Hawking physics in BEC mixtures, we analyze the scattering
properties of Bogoliubov waves on the spin-sonic horizon. The scattering matrix formalism has
been first developed to characterize single component systems [16, 17], and then extended to
treat two-component mixtures in the absence of coherent coupling [23] or in the relativistic
regime ħΩ ≪ κn [24, 25]. However, since it does not rely on the gravitational analogy but
exclusively on the validity of Bogoliubov theory, it can be exploited in all ranges of parameters.

For the analytically tractable case of a piecewise uniform fluid of total density n, the field
perturbations are easily written as a sum of plane waves within each uniform region. Given the
stationarity of our configuration, it is convenient to work in frequency rather than momentum
space. For each frequencyω> 0 in the laboratory frame, there exist four solutions to the equation
ω±

u,d (k) = ω in both the subsonic and supersonic regions. In the upstream region, we find two
positive norm modes with real k (green dots in Figure 1, labelled u), in addition to two negative
norm modes with complex conjugate momenta Re(k) ± i Im(k) (not shown): of these, one is
exponentially growing for x →−∞, and thus represents an unphysical solution, while the other
is evanescent in the same limit and contributes to the perturbation only close to the horizon.
The same holds in the downstream region if ω>ω∗; if instead ω<ω∗ four propagating solutions
with real momentum exist, two with positive norm (red dots in Figure 1, labelled d1) and two
with negative norm (blue dots in Figure 1, labelled d2). Among all the real-k modes, some move
towards the sonic horizon (in-going, labelled in), while others propagate away from it (out-going,
labelled out), depending on the sign of their group velocity wk ≡ ∂ω/∂k.

Bogoliubov eigenstates of frequency ω > 0 are built as a linear combination of plane waves,
each one associated to one of the available propagating modes at that frequency. As it is briefly
summarized in Appendix B, the relative amplitudes of in-going and out-going modes, which
we indicate with α, β respectively, are related through a scattering matrix M (ω) of dimension
D ×D , where D is the number of in-going and out-going modes available at frequency ω. In the
frequency rangeω<ω∗, propagating modes are available in all three branches and the scattering
solution reads  βu

βd1

βd2

=M (ω)

αu

αd1

αd2

 , (18)

whereas for ω>ω∗ (or if neither region is supersonic), we find[
βu

βd1

]
=M (ω)

[
αu

αd1

]
. (19)

The coefficient Mr r ′ (ω) describes the scattering of the r ′th in-going mode onto the r th out-going
one. The square modulus |Mr r ′ (ω)|2 represents therefore the reflectivity/transmittivity of the
in-going mode r ′ into the out-going mode r . In order to guarantee energy conservation, M must
satisfy the normalization condition

M †ηM = η=MηM †, (20)
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where η is a diagonal square matrix of dimension D whose diagonal elements coincide with the
norm σr =±1 of the corresponding mode, that is ηr r ′ =σrδr r ′ .

If the d2 branch is not available, η = diag(1,1) coincides with the identity matrix and M is
unitary. The problem then reduces to a standard scattering problem in which only positive energy
modes are involved; each incoming packet is partially transmitted and partially reflected, and the
transmittivity and reflectivity sum up to 1:

|Mur |2 +|Md1r |2 = 1, r = u,d1. (21)

The unitarity of the scattering matrix also proves the equivalence of the basis of in-going and
out-going modes in the decomposition of the field perturbation.

If instead propagating d2 modes are available, that is, for ω < ω∗, energy conservation is
satisfied with η= diag(1,1,−1) and results in

|Mur |2 +|Md1r |2 −|Md2r |2 =σr , (22)

for all the modes r = u,d1,d2. As a consequence of the minus sign in (22), reflectivities and
transmittivities are not bound to be smaller than 1. Also, the scattering matrix is pseudo-unitary
rather than unitary, signalling the inequivalence between the representation of the perturbation
in terms of in-going and out-going modes. This mathematical fact is at the basis of spontaneous
particle creation in quantum field theories on curved spacetimes.

Upon quantization of the modes, the Bogoliubov theory allows to study spontaneous Hawking
emission by characterizing the radiation flowing from the interior (downstream region) to the
exterior (upstream region) of the black hole [16, 23]. The standard quantization procedure,
briefly summarized in Appendix C, consists in replacing the complex amplitudes αr , βr of in-
going and out-going scattering modes with creation/annihilation operators âr , b̂r satisfying the
commutation relations:

[âr , â†
r ′ ] = [b̂r , b̂†

r ′ ] =σrδr r ′ . (23)

Notice how, for the negative norm d2 modes, creation and annihilation operators are ex-
changed1. This fact is at the origin of Hawking emission: within our formalism, the annihila-
tion operators â, b̂ for in-going and out-going modes are related through the scattering matrix as
in (18):

b̂r (ω) =∑
r ′

Mr r ′ (ω)âr ′ (ω). (24)

This relation allows to compute expectation values for out-going modes starting from those of
the in-going ones: as long as the d2 mode is available, these two quantities do not coincide,
signalling that a process of spontaneous particle creation is taking place. In particular, assuming
the system is initially at zero temperature, a finite intensity of out-going particles in the upstream
region can be detected, proportionally to the |Mud2(ω)|2 coefficient that can be thought of as the
(zero-temperature) Hawking emission spectrum [16–18].

Within this picture, the transmittivity of d modes into the u mode (or, equivalently, the
reflectivity of the horizon with respect to the u mode),

Γ(ω) = |Md1u(ω)|2 −|Md2u(ω)|2 = 1−|Muu(ω)|2 (25)

can be interpreted as a greybody factor of the analog black-hole.

1The calculations shown in this section can be equivalently performed by explicitly exchanging creation and annihi-
lation operators for the d2 modes, in order to recover canonical commutation relations for all the modes. This is often
done in previous literature, see for instance Refs. [16, 18].
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Figure 3. Illustration of an in-going d2 wave-packet of frequency ω/ω∗ = 0.12 scattering
on a sharp spin-sonic horizon for κd /κu = 0.25 and Ωd = 0 and generating out-going
propagating wave-packets in all three branches u, d1, d2. The shaded area identifies the
downstream region.

6. Probing the spin-sonic horizon

With the spin-sonic horizon described in terms of a scattering matrix, its spectral properties can
be probed through the scattering of plane waves on the horizon in a classical field description as
briefly summarized in Appendix E.

Spin modes may be excited without disturbing the density degree of freedom by a periodic
modulation of the transverse harmonic confinement [27] or by applying a spin-selective optical
pulse [34–36]. In the latter approach, the application of a laser beam on a small region of the
condensate [36] results in the generation of a localized wave packet, which may propagate and
scatter on the sonic horizon. Upon collision with the horizon, an in-going wave scatters into all
out-going modes available at the excited frequency ω. For ω > ω∗, a single excitation is emitted
on either side of the horizon, along the u|out and d1|out branches of the dispersion, respectively.
Below the threshold ω < ω∗, however, an additional d2|out signal characteristic of the Hawking
effect is excited downstream, as shown in Figure 3. The spin dispersion on both sides of the sonic
horizon, as well as the frequency dependence of all the scattering matrix coefficients, can be
reconstructed by extracting the wavevector and the relative amplitudes of scattered wave packets
as a function of ω (not shown).

For the ideal scenario of a sharp horizon shown in Figure 1, the elements of the scattering
matrix can be computed through a semi-analytical calculation based on Bogoliubov theory
(see Appendix B). However, this is no longer possible for a spin-sonic horizon of finite width
σx such as the one encountered in the realistic setup sketched in Figure 2, where one has to
resort to a complete simulation of the GP or Bogoliubov equations. In the following, we will
explicitly compare semi-analytic predictions obtained for the infinitely steep profile with GP
results for a horizon of non-negligible width, in order to highlight the differences. The effect of the
horizon’s spatial profile on signatures of the Hawking process is discussed in more detail in
Appendix G, where we show that the agreement between the two approaches is excellent in the
limit σx → 0.

As a general fact, we observe that the sonic horizon does not act as a perfect black body:
indeed the reflectivity of the u mode |Muu(ω)|2, shown in Figure 4(a) is non-vanishing. In
other words, the Hawking emission spectrum |Mud2(ω)|2 does not coincide with a perfect black-
body thermal spectrum, but features a (possibly frequency-dependent) greybody factor (25). As
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Figure 4. Frequency dependence of the scattering coefficients |Muu |2 (a) and |Mud2|2 (b)
for κd /κu = 0.25, Ωd = 0 (blue lines) and κd /κu = 0.17, ħΩd = 0.12κd n (black lines);
parameters in the upstream region are cu/v = 4/3 andΩu = 0 in both cases. The dispersion
relations for these two sets of parameters are reported in Figure 1. Solid lines indicate
the Bogoliubov semi-analytic prediction for an infinitely steep profile, while dashed lines
represent the respective transmission coefficients inferred through wave packet scattering
on a horizon of finite width σx =p

2ξu .

expected for astrophysical non-rotating black holes, no superradiant amplification of the in-
going u mode is observed, as |Muu(ω)|2 < 1 for all frequencies. Superradiant amplification
is instead observed for downstream modes d1, d2 inside the analog black hole; for instance
|Md2d2(ω)|2 > 1 for all frequencies, by definition (see Equation (22)). This phenomenon has
no counterpart in the gravitational context, since the propagation of particles in the black hole
interior towards the event horizon is not allowed, as it would require a superluminal dispersion
relation.

Observable consequences of the Hawking effect are encoded in the scattering coefficients of
in-going d modes, impinging on the horizon from the black hole interior. Figure 4(b) shows, for
instance, the frequency dependence of the spontaneous Hawking spectrum |Mud2(ω)|2 in the
absence (blue) and presence (black) of a coherent coupling; dashed lines refer to the scattering
matrix coefficient inferred through time-dependent GP simulations of a smooth horizon, while
solid lines indicate the semi-analytical Bogoliubov prediction of the idealized scenario (9). The
approaches agree qualitatively, with most notably a consistently smaller magnitude of the GP
result due to the lower value of the Hawking temperature (76) of a horizon with a finite width
σx =p

2ξu (see Appendix G).
The 1/ω infrared divergence of the |Mud2(ω)|2 scattering coefficient for the uncoupled mix-

ture, clearly visible in Figure 4(b) (blue lines), is regularized in the presence of a finite gap in the
downstream region [24, 25]. More specifically, zero-frequency u (d) modes cannot be transmit-
ted in the downstream (upstream) region, thus all the transmittivities vanish in the limit ω→ 0,
while all the reflectivities tend to constant values [37]. In particular, |Muu(ω → 0)|2 → 1 and
|Mud2(ω → 0)|2 → ω: the Hawking spectrum is thus linear in frequency in the ω → 0 regime
(see Figure 4) and reaches a maximum at a finite frequency ω, above which the 1/ω behaviour
is recovered. The dependence of ω from the parameters is non-trivial, but our calculations
show that it grows with the coherent coupling until it approaches ω∗ in the critical relativistic
regime (6).
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Figure 5. Frequency dependence of the greybody factor (a) and the Hawking tempera-
ture (b) of the analog black hole; blue and black lines refer to Ωd = 0 and Ωd ̸= 0, respec-
tively. The parameters are the same of Figure 4 and were chosen so to have similar values
of ω∗ ∼ 0.1κun/2ħ. The greybody factor is computed as Γ(ω) = 1− |Muu(ω)|2; the Hawk-
ing temperature is then derived by inverting Equation (26). Full and dashed lines refer to
the Bogoliubov semi-analytical prediction for a sharp horizon and to the result of GP time-
dependent simulations for a smoother horizon with σx =p

2ξu , respectively.

7. Hawking temperature and greybody factor

In the previous sections we have seen that the coefficient |Mud2(ω)|2 encodes the spectrum of
the Hawking emission. In order to assess its thermal nature, let us write it in the form

|Mud2(ω)|2 = Γ(ω)

exp[ħω/kB TH(ω)]−1
, (26)

where Γ(ω) = 1−|Muu(ω)|2 is the greybody factor defined above and we introduce the Hawking
temperature parameter TH(ω): a thermal spectrum would require a frequency-independent
TH, whereas a frequency-dependent T(ω) would account for deviations from thermality. Note
that the Hawking temperature TH is unrelated to the physical temperature T of the BEC under
consideration: indeed all results presented in this paper are derived assuming T = 0. The analysis
of their robustness to finite temperature will be the subject of future works.

The numerically computed results for the greybody factor and the Hawking temperature
are shown in respectively the left and right panels of Figure 5 for Ωd = 0 (blue lines) and
Ωd ̸= 0 (black lines). In the gapless case Ωd = 0 [16, 23], given the 1/ω dependence of |Mud2|2,
Equation (26) holds with constant TH in the low-frequency limit, its value uniquely determined
by the ratios v/cu and v/cd [15, 23]. For instance, the parameters of Figure 4 give kB TH(ω →
0)/ħω∗ ≃ 0.68. On the contrary, if ω ∼ ω∗, TH necessarily acquires a frequency dependence:
in particular, it must be vanishing for ω ≥ ω∗, since Mud2 is identically zero if the d2 mode is
not available. Although it could in principle be detected in experiments [38], this frequency-
dependence is typically considered a weak deviation from thermality due to non-hydrodynamic
effects, since the maximum intensity of emitted particles is found in the ω→ 0 regime, where
TH is approximately constant. The greybody factor is found to be almost constant in the whole
frequency range [0,ω∗]. However, as anticipated, it does not equal unity due to a residual
reflectivity of the horizon with respect to the u mode. With the parameters in Figure 4, we find
Γ(ω→ 0) ≃ 0.98, in excellent agreement with the analytical results of [23].
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In the presence of a coupling in the downstream region, Ωd ̸= 0, the different behaviour
of the scattering coefficients affects the greybody factor, which acquires a quadratic frequency
dependence in the low-frequency regime. It is worth pointing out that such quadratic behaviour
is not rare in the gravitational context [39–41]; however, given the different dimensionality and
the dispersion relation of emitted modes, a direct comparison between the acoustic black-hole
configuration we are analysing and astrophysical black-hole geometries is not trivial [42] and will
be further investigated in future works. In particular, in contrast with the astrophysical context,
where the black-hole interior is believed to be causally disconnected from the exterior, our
results suggest that an analysis of the grey-body factor in the low-frequency regime could provide
information about the black-hole interior. This feature is specific to our analog configuration and
is imputed to deviations from hydrodynamics.

On the other hand, the presence of a coherent coupling in the downstream region has instead
little effect on the Hawking temperature TH(ω): the degree of thermality in the emission spectrum
is preserved, despite the inaccuracy of the gravitational analogy if ħΩd ∼ κd n.

While the greybody factor retrieved from GP simulations of a smooth horizon configuration
is in near-perfect agreement with the semi-analytical result for a sharp horizon (Figure 5a), the
smooth horizon results in a significantly lower Hawking temperature (Figure 5b) in accordance
with the vertical offset observed in Figure 4(b). A systematic analysis of the scaling of TH with the
horizon widthσx is included in Appendix G, together with an explicit discussion of the dynamical
stability of the black hole configuration.

Typical experimental parameters for Sodium atoms [27] give a Hawking temperature of the
order of a few nK . A physical temperature lower than TH would be necessary to directly observe
Hawking phonons emitted from the analog horizon. Such small temperatures are typically
not accessible in realistic experimental setups. However, it has been shown [16] that density
correlations exhibit characteristic non-local features attributed to the Hawking effect which are
robust against temperature effects. The analysis of such two-point correlations will therefore be
the subject of the next section.

8. Two-point equal-time correlation functions

A key observable which has been considered in previous works on single-component conden-
sates [16–18] is the equal-time density correlation function, which, in the presence of a sonic hori-
zon, displays characteristic non-local features associated to the spontaneous creation of pairs of
particles which travel on opposite sides of the sonic horizon. In the case of a two-component
condensate without coherent coupling, an analogous signal is expected in relative density corre-
lations [23], that is, in the equal-time correlations of the third component of the spin vector (7):

n2G33(x, x ′) = 〈: Ŝ3(x)Ŝ3(x ′) :〉. (27)

For simplicity, this quantity will be indicated in what follows as density correlations.
As already pointed out in Section 2, however, the spin field perturbation not only affects the

relative density S3(x) but also the second component of the spin vector S2(x), which is closely
related to the relative phase between the two components of the mixture. It is therefore natural
to define relative phase correlations, by analogy, as:

n2G22(x, x ′) = 〈: Ŝ2(x)Ŝ2(x ′) :〉. (28)

Both the (relative) density correlations (27) and these (relative) phase correlations are the sum
of a trivial contribution which is present even without a sonic horizon, and additional non-local
terms which instead only contribute if the negative norm d2 mode is available. The latter are
therefore directly associated to Hawking emission (see Appendix D).
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As a last observable, let us also define a (relative) density-(relative) phase correlation function:

n2G23(x, x ′) = 1
2 [〈Ŝ2(x)Ŝ3(x ′)〉+〈Ŝ3(x)Ŝ2(x ′)〉], (29)

which, thanks to the symmetrized definition, is non-zero only if the d2 mode exists (see
Appendix D).

For the simplest step configuration of Figure 1, correlation functions are computed semi-
analytically as integrals in frequency space, since the calculation only requires the knowledge
of the Bogoliubov dispersion relation, of the static structure factor and of the scattering matrix
elements. More details and several useful analytical results can can be found in Appendix D.
In the following, we report the results for the two cases under investigation here (see Figure 4),
namely in the standard uncoupled caseΩd = 0 and in the presence of a strong coherent coupling
Ωd in the downstream region only.

8.1. Uncoupled two-component BEC

Let us start from the straightforward generalization of a black hole configuration for an uncou-
pled symmetric mixture, already considered in Ref. [23]: as discussed in Section 2, in the absence
of coherent coupling, Ωd = 0, the dispersion relation for spin modes is gapless both in the sub-
sonic and supersonic region and the sonic horizon is generated by a step in the spin interac-
tion constant κ > 0, which also translates into a step-like behaviour of the speed of spin-sound
c =p

κn/2m.
Figure 6(a) reports the computed two-point density correlation function (27): in agreement

with previous works [16–18, 23], it shows non-local features peaked along the straight lines
(dashed black in the plot) defined by:

x ′ =
wout

r ′ (0)

wout
r (0)

x (30)

where wout
r (0) is the zero-frequency group velocity of the r = u, d1, d2 mode in the lab frame.

At zero temperature, such moustaches are not present in the absence of the horizon and are thus
directly imputed to Hawking emission: in particular, each line (30) is associated to a pair (r –r ′) of
modes, and can be interpreted as arising from the spontaneous emission of correlated particles
in modes r and r ′ from the analog horizon. The strongest contribution is due to a negative
correlation between the Hawking particle emitted outside the analog black hole and its partner
emitted in its interior (see the u–d2 signal in Figure 6).

Even though density correlations have been a powerful experimental tool to detect Hawking
emission [19–21], their weak amplitude requires important experimental efforts in their mea-
surement even when working with low atomic densities. Let us then fully exploit the additional
degrees of freedom that a two-component BEC displays by analysing the signal appearing in
other correlation functions. Figure 6(b) reports the density–phase correlation (29): the result is
a collection of patches in which G23 has different, almost constant values, separated by smooth
jumps whose location is determined, once again, by the solution of (30). In other words, jumps
in G23(x, x ′) correspond to peaks in G33(x, x ′): the higher the jump in density–phase correlations,
the more intense the signal in density–density correlations, i.e.,

G33(x, x ′) ∼ ∂xG23(x, x ′), (31)

as can be inferred from the analytical expressions reported in Appendix D. Once again, these
features would be absent without an horizon; moreover, the amplitude of the signal is an order of
magnitude larger than that observed in G33.
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Figure 6. Equal-time correlation functions for an uncoupled two-component BEC. Param-
eters are identical to those of Figure 4 (solid blue lines). The three panels report: (a) den-
sity correlations (27); (b) density–phase correlations (29); (c) the double derivative of (reg-
ularized) phase correlations, computed from (28) after replacing Ŝ2(x) → Ŝ2(x)− Ŝ2(0) (see
discussion in the main text). Dashed black lines identify the expected location of the signal
associated to each pair of modes, given by Equation (30).

In our one-dimensional configuration, due to the absence of a true condensate, the relative
phase correlation G22(x, x ′) (as well as the global phase correlation) displays an infrared diver-
gence, formally due to the large wavelength behavior of the Goldstone mode (see Appendix D for
more details). As we will see in the following subsection, G22 is regularized by the presence of
a coherent coupling, which fixes the relative phase between the two components in the ground
state, explicitly breaking one of the two U(1) symmetries of the problem.

In order to extract information from the phase degree of freedom, we can cure the infrared
divergence by calculating ∂2

xx′G22, which corresponds to the correlation of the spatial derivative
of S2. As shown in the Appendix D, we expect such correlation to have the same structure as
G33; this is confirmed by the result shown in Figure 6(c). Similarly, a single derivative of G22 with
respect to either x or x ′, followed by a symmetrization of the signal, would produce a correlation
pattern similar to Figure 6(b), with slightly larger amplitude (not shown).

8.2. Coupled two-component BEC

While considering the phase degree of freedom might not be of great practical advantage in
the experimental measurement of analog Hawking emission for an uncoupled two-component
condensate, in the presence of a coherent coupling we can directly access phase correlations.

An example is shown in Figure 7, which shows phase correlations G22(x · x ′) in the presence
of a (large) coherent coupling Ωd ̸= 0 in the downstream region only. In particular, a non-
local correlation signal between the interior and exterior of the analog black hole is observed
in the off-diagonal (u–d) sectors (x · x ′ < 0), with an amplitude that can be orders of magnitude
larger than the one observed in density correlations (see Figure 6(a)). The qualitative differences
with respect to the standard gapless case of Figure 6(a) that are visible in Figure 7 stem from
the massive nature of elementary excitations in the black hole interior: the presence of zero-
frequency modes with non-zero wavevector ±k0 (see Figure 1) produces oscillating features
known as undulations [37], with wavelength 2π/k0. These manifest, in the (d–d) quadrant
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Figure 7. Phase–phase correlation (28) for a sharp horizon in the presence of a coher-
ent coupling in the downstream region. Parameters are those of Figure 4 (black lines),
corresponding to the non-relativistic regime ħΩ ∼ κn. With these parameters, the zero-
frequency modes have momentum k0ξu ∼ 0.2, leading to oscillating patterns with charac-
teristic wavelength 2π/k0 ∼ 30ξu . Dashed black lines identify the expected location of the
signal associated to (u–d) correlations.

(x, x ′ > 0), as a checkerboard pattern. A similar result has been found for two-dimensional
black-hole configurations, where a finite transverse wave-vector plays the role of a mass term for
longitudinal modes [37]. Note that checkerboard patterns associated to Hawking emission also
appear in white-hole configurations [43]: in the massive case, however, the signal is not infrared
divergent and its intensity is maximum along the main diagonal x = x ′.

Remarkably, undulations are also observed in the (u–d) sectors (x · x ′ < 0) in the form of an
oscillating Hawking mustache, which was never found in previous works, and is the result of the
correlation between massless modes emitted outside the analog black-hole with massive ones
emitted in its interior. The expected location of these features is once again given by straight lines
defined by (30); however, since positive and negative norm modes in the downstream region have
the same group velocity in the low-frequency limit, correlation signals associated to the d1 and
d2 modes are superimposed. This explains why a single moustache appears in Figure 7.

Let us point out that, since we are considering a stationary configuration, our results can
be considered valid at infinitely long times after the creation of the analog horizon. In a re-
alistic experimental setup, it is only possible to observe Hawking emission at finite time t
after initializing the analog black hole, and this might lead to different features in the correla-
tions at short/intermediate times after the creation of the horizon. Although an approximate,
yet straightforward, estimation of Gνν′ (x, x ′) (ν,ν′ = 2,3) at a time t after the creation of the hori-
zon is obtained by explicitly setting an infrared frequency cutoff, an accurate analysis of the time-
dependence of correlations requires more sophisticated numerical techniques and is performed
in the next section.

9. Time-dependent Bogoliubov simulations

A complete solution for the dynamics of the elementary excitations in the system is presented
in this section, based on a numerical simulation of the full time-dependent Bogoliubov problem
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(see Appendix F for details). These findings confirm and further extend the results obtained in
the previous section for the stationary configuration, by providing the complete time evolution
of Gνν′ (x, x ′) (ν,ν′ = 2,3), focusing in particular on the structure of the correlations shortly after
the creation of the horizon. By pursuing this approach, we are also able to relax the idealised
assumption of sharp, step-like horizon that was utilised in Section 5 to obtain a semi-analytical
solution to the scattering matrix. This permits us to investigate more realistic and experimentally
relevant smooth black hole configurations, as well as to explore the effect of the horizon’s size on
the structure and intensity of the correlation signal (see Appendix G).

In our simulations we consider a one-dimensional, ring-shaped two-component BEC. Notice
that the periodic boundary conditions that characterise this configuration imply the presence
of both a black hole and a white hole in the system. This configuration limits the maximum
time achievable in our simulations, with the limit given by the travelling time for the white
hole emission to reach and interfere with the black hole. This limitation is readily overcome
by increasing the length of the system up to a value that permits the investigation of the time
domain of interest. We perform the numerical simulations by evolving in time the spin modes,
initially obtained by diagonalising the corresponding Bogoliubov operator on top of a mean-field
described by the order parameter introduced in Equation (11). The horizon for spin fluctuations
is dynamically created by modulating both in time and in space the spin collisional interaction
strength κ(x, t ) and the Rabi frequency Ω(x, t ). In order to maintain the mean-field component
stationary, we modify the external potential in such a way that the chemical potential of the
system remains uniform in space.

We propagate each spin mode by numerically solving the Bogoliubov equations in Equa-
tion (69) according to a standard fourth-order Runge–Kutta scheme. To this end, we evaluate,
at each time instant, the Bogoliubov operator on the numerical grid, according to the prescribed
profile of κ(x, t ),Ω(x, t ), as well as of the mean-field order parameterψ(x, t ) (however, notice that
the latter remains unchained since the chemical potential is kept constant). Given the solution
for the modes, it is straightforward to construct any Gνν′ (x, x ′) correlation function at the desired
time. More details regarding the numerical solution are reported in Appendix F.

Figures 8 and 9 display snapshots, at different times, of the correlation functions obtained with
this technique, for the cases of zero and finite coupling in the downstream region, respectively.
These results, obtained with a horizon of size σx ≈ 1.9ξs , are in excellent qualitative agreement
with the corresponding results in Figures 6 and 7, which are obtained by using the scattering
matrix approach in the assumption of infinitely steep horizon. The main quantitative difference
between the two approaches resides in the smaller amplitude of the signal in the presence of a
smooth horizon profile, which is, once again, imputed to the smaller Hawking temperature (see
Figure 5 and Appendix G).

10. The critical point

Up to now, we have mostly considered parameters’ regimes which are directly accessible to state-
of-the-art experiments. In this section, we focus instead on the conceptually interesting case
defined by (6): the system is close to the para-to-ferromagnetic phase transition point, thus
relative density fluctuations are amplified. This regime is reached by setting, in the downstream
region, κd < 0 and tuning the Rabi frequency Ωd ≳ |κd |n so to get a small but finite gap
∆d ≪ |κd |n/ħ. Even though this case is not straightforwardly implemented in present set-ups
it could be experimentally accessed in the next generation of experiments by exploiting spatially-
dependent Feshbach resonances [32]. In this peculiar configuration, zero-frequency modes have
finite but small momentum ±k0, reducing the effect of undulations; at the same time, the large
coupling in the downstream region regularizes the relative phase, making it possible to observe
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Figure 8. Time evolution of equal-time density–density correlation functions, in an uncou-
pled two component condensate. Three specific times are shown, that are: (a) time of for-
mation of the horizon, mc2

u t/ħ = 0; (b) intermediate time, mc2
u t/ħ = 180; (c) maximum

time achievable in the simulation with the setup described in the main text, mc2
u t/ħ= 360;

this is the travelling time for the white hole emission to reach the black hole due to the pe-
riodic boundary conditions implemented in the simulation (see Appendix F). These results
provide the time dependent scenario for the stationary configuration of Figure 6(a), but
with a smooth horizon of width σx = 1.9ξu .

Figure 9. Time evolution of equal-time phase–phase correlation functions, in the presence
of a coherent coupling in the downstream region. Panels refer to the same configuration
of Figure 7, but with a finite-width horizon, σx = 1.9ξu . Snapshots of the correlations have
been taken at the same time instants described in Figure 8.
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Figure 10. Density-density (a) and phase–phase (b) correlations with κd /κu = −0.25 and
Ωd = 1.004|κd |n/ħ. The downstream region is therefore in the proximity of the para-to-
ferromagnetic critical point. The signal for G33 in the (x > 0, x ′ > 0) sector has been reduced
of a factor 100, in order to show it on the same scale as the other contributions.

the standard Hawking mustache both in relative density and relative phase correlations. An
example is given in Figure 10: for this choice of parameters, the signal is roughly one order of
magnitude larger in G22 than in G33.

11. Conclusions and future perspectives

We have studied analog Hawking emission of spin waves from a sonic horizon in a two-
component Bose–Einstein condensate, both with and without a coherent coupling between the
two components.

We started from an analysis of the scattering properties of spin waves off the analog horizon,
which carry information about the Hawking emission spectrum: while the presence of a coherent
coupling in the downstream region leads to a modification of the greybody factor of the analog
black hole, which acquires a quadratic frequency dependence in the limitω→ 0, we have verified
that the thermal character of the emission of (massless) Hawking particles in the black hole exte-
rior is not affected by the strength of the coherent coupling: this is remarkable considering that
both the step configuration and the range of parameters we considered break the hydrodynamic
approximation, and thus prevent a straightforward application of the gravitational analogy.

We have then made use of the scattering matrix formalism to compute two-point correlation
functions; in addition to density–density correlations, previously considered in the literature, we
have computed phase–phase and density–phase correlation functions, with the aim of identi-
fying the observable in which Hawking radiation manifests itself with largest intensity and, as
such, is easiest to measure in a lab. We have first focused on the uncoupled two-component con-
densate, confirming the results of previous works [23] and further extending them to prove the
conceptual relevance of the phase degree of freedom in this configuration. Moreover, we con-
sidered the case of a coherently coupled two-component BEC and found that, in the limit of a
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large Rabi frequency in the downstream region (ħΩd ≫|κd |n), phase correlations show an oscil-
lating Hawking moustache, characterized by the typical undulation expected when massive par-
ticles are involved in the process; remarkably, the signal is orders of magnitude stronger than the
one observed in density correlations for parameters within reach of currently available experi-
ments [27]. All the semi-analytic predictions valid for the idealized case of a step configuration
in an infinite system have been supported and validated by time-dependent numerical simula-
tions based on the two-component Gross–Pitaevskii equation. This allowed us to investigate the
effect of a smooth horizon profile and to verify the dynamical stability of the spin-sonic horizon
configuration.

A natural extension of our work concerns the analysis of more realistic setups, such as the
one in Figure 2, involving a jump in the density profile and/or in the flow velocity, rather than
in the spin interaction constant. Moreover, the robustness of the Hawking moustache to a finite
temperature needs to be investigated, especially in the presence of the coherent coupling. Along
the same lines, a further development of our work could be the study of the effect of a small
imbalance between the number of atoms in each component, that would lead to a weak coupling
between density and spin modes [27].

Simple one-dimensional configurations similar to the one we considered throughout this
paper are also suited, in principle, to analyse black-hole-related phenomena other than Hawking
radiation. For instance, the addition of a finite coherent coupling in the upstream region might
allow to observe a phenomenon known as the boomerang effect [44]: modes with frequency
smaller than the gap in the upstream region are emitted by the analog horizon but, instead of
propagating to infinity, they bounce and are dragged back into the black hole interior.

Another phenomenon that is expected to occur in black hole spacetimes is rotational super-
radiance [45]: as already pointed out, the one-dimensional model considered in this work does
not allow to observe superradiant amplification of upstream modes, but superradiance-related
phenomena could be analyzed in a planar configuration as soon as the fluid is set into rotation or
rotation is mimicked through a synthetic vector potential [46, 47]. Analog geometries featuring
both an horizon and an ergosurface would allow then to study the interplay between Hawking
radiation, superradiant amplification, and the massive nature of modes [45].

Finally, it is worth noting that our results are not only relevant for atomic Bose–Einstein con-
densates, but also for polariton systems: in the latter case, two-component fluids are naturally
generated by exploiting the polarization degree of freedom and a gap in the dispersion relation
opens if the pump laser is detuned with respect to the polariton interaction energy [48].
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Appendix A. Bogoliubov theory

Let us consider a uniform Z2-symmetric mixture of total density n. Bogoliubov spin eigenmodes
of momentum k and frequency ω(k) are typically expanded as the sum of a positive- and a
negative-frequency contribution:

δψ(x, t ) =Uk eikx e−iωt +V ∗
k e−ikx eiωt (32)

where the coefficients (Uk ,Vk ) are eigenstates of the Bogoliubov matrix:

L :=


ħ2k2

2m
+ħΩ+ κn

2

κn

2

−κn

2
−

(ħ2k2

2m
+ħΩ+ κn

2

)
 (33)

namely 4UkVk =−κn/ħω(k) and (Uk +Vk )2 =S (k), where S (k) is the static structure factor:

S (k) =
√

ħ2k2/2m +ħΩ
ħ2k2/2m +ħΩ+κn

. (34)

One can also associate to each mode a conserved but not positive-definite norm, defined as:

〈δψ|σ3|δψ〉 = |Uk |2 −|Vk |2 =±1 (35)

where σ3 = diag(1,−1) is the third Pauli matrix. The energy of the mode is given by the product of
its norm and its frequency.

Let us also define, for later convenience:

Rk =
√

S (k) =Uk +Vk (36)

Qk = Uk −Vk =±R−1
k . (37)

Note that a mode with coefficients (V ∗
k ,U∗

k ), momentum −k and frequency −ω corresponds
to the same physical oscillation as (32) and carries the same energy content, due to the opposite
sign of the Bogoliubov norm. In other words, the redundancy of the expansion (32) allows us to
only consider modes with positive frequencies, provided we take into account modes with both
signs of the norm.

Appendix B. The scattering solution

Far from the sonic horizon (|x| →∞), the generic scattering solution at frequency ω is a eigen-
function of the spin Bogoliubov operator (33) of the form:[

U (x)
V (x)

]
=∑

r
αr

[
U in

r

V in
r

]
eik in

r x√
|w in

r |
Θr (x)+∑

r
βr

[
U out

r

V out
r

]
eikout

r x√
|wout

r |
Θr (x) (38)

where the sum runs over the three branches and includes all the propagating modes available at
frequencyω, separated into ingoing and outgoing ones. In particular, r ∈ {u,d1,d2} ifω<ω∗ and
r ∈ {u,d1} if ω>ω∗.
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In the vicinity of the horizon (x ∼ 0), one must include exponentially suppressed modes in the
expansion by adding to Equation (38) a term of the form:

+∑
r
γr

[
U ev

r

V ev
r

]
eikev

r xΘr (x) (39)

where r ∈ {u} if ω<ω∗ and r ∈ {u,d} if ω>ω∗.
The Heaviside Theta functions Θr (x) are necessary to ensure that the mode u (the modes d1,

d2) contributes to the solution only in the upstream (downstream) region x < 0 (x > 0):

Θu(−x) =Θd1(x) =Θd2(x) =
{

0 if x < 0

1 if x > 0
. (40)

The normalization involving the group velocity guarantees that the orthonormality condition is
fulfilled in frequency space. The particle and antiparticle components (Uk ,Vk ) are solutions of
the Bogoliubov problem in the comoving frame; as such

|U in
r |2 −|V in

r |2 = |U out
r |2 −|V out

r |2 =σr (41)

where σu =σd1 =−σd2 =+1 is the Bogoliubov norm.
Thanks to the relation between in-going and out-going modes coefficientsαr , βr expressed by

the scattering matrix, the generic scattering solutions (38) can be written as a linear combination
of scattering modes. We call scattering mode the solution of the Bogoliubov problem initiated by
a single in-going quasi-particle mode:[

Ur (x)
Vr (x)

]
=

[
U in

r

V in
r

]
eik in

r x

|w in
r |1/2

Θr (x)+∑
r ′

Mr ′r

[
U out

r ′

V out
r ′

]
eikout

r ′ x

|wout
r ′ |1/2

Θr ′ (x). (42)

The computation of the scattering matrix coefficients typically requires to fully solve the
Bogoliubov problem, taking into account the exact profile of the sonic horizon. In analogy to
the single-component case [16], a semi-analytical solution can be easily determined for the step-
like configuration in Figure 1. Indeed, physical profiles for the Bogoliubov amplitudes (38) are
found by matching the solutions in the subsonic and supersonic regions at the location of the
horizon. In practice, the amplitudes αr of the in-going modes are fixed as initial conditions for
the scattering problem, while those of the out-going modes βr are computed by matching the
x = 0 values of U , V and of their first derivatives. This amounts to solving a linear system of four
equations for each in-going mode an for each frequency ω. Since the matching is done at the
position of the horizon, one must include exponentially suppressed modes in the calculations;
from a mathematical point of view, this is necessary to get unambiguous results, since the
number of unknown coefficients to be determined (βr and γr ) needs to be equal to the number
of imposed constraints.

Appendix C. Quantization of the field

The standard quantization procedure [16] consists in replacing complex amplitudes with cre-
ation/annihilation operators. The field perturbation can thus be written in terms of scattering
modes (42) as:

ˆδΨ(x, t ) =
∫ ∞

0

dωp
2π

∑
r

[Ur (x)e−iωt âr +V ∗
r (x)eiωt â†

r ] (43)

where the sum runs over all the modes available at a given frequency, that is r ∈ {u,d1,d2} if
ω < ω∗ and r ∈ {u,d1} if ω > ω∗. Notice that Equation (43) is not exact in the vicinity of the
analog horizon (x ̸= 0), since evanescent modes have not been included. Also, we have associated
annihilation (creation) operators to the U (V ) component for all the modes; with this convention,
in order to guarantee the proper commutation relations for the field, we have to treat negative
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norm modes as anti-particles, for which the roles of creation and annihilation operators are
exchanged. This reflects on the commutation relations:

[âr (ω), â†
r ′ (ω

′)] =σrδr r ′δ(ω−ω′) (44)

as well as on the expectation values. If the symbol 〈·〉 indicates the average value over the vacuum
of in-going particles, at zero physical temperature T = 0 we have:

〈â†
r (ω)âr ′ (ω

′)〉 =
(

1−σr

2

)
δr r ′δ(ω−ω′) (45)

〈âr ′ (ω
′)â†

r (ω)〉 =
(

1+σr

2

)
δr r ′δ(ω−ω′). (46)

In principle, in order to expand δΨ over a complete basis set, one would need to explicitly
include two unconventional eigenstates of the Bogoliubov matrix L with eigenvalue ω = 0 [38].
In a single component BEC, these zero-frequency modes are due to the Gauge symmetry associ-
ated with the global phase of the system, or, equivalently, to the conservation of the total num-
ber of particles. In the case of the spin channel of a symmetric binary mixture, they exist only in
the absence of a coherent coupling, when the relative number of particles is conserved and the
same freedom applies to the relative phase. Within our framework, involving a uniform density
profile, the Bogoliubov coefficients of these two zero-frequency modes would also be position-
independent. As a consequence, without coherent coupling, they would contribute, at most, as a
uniform shift to the observables we will define in the following; ifΩ ̸= 0 in the downstream region,
the continuity of the wavefunction fixes the relative phase in the upstream region as well, effec-
tively eliminating the Goldstone mode. For these reasons, we avoid including the zero-frequency
modes in the field expansion (43) and in the following calculations. This affects, however, the
field commutator, which no longer coincides with a Dirac delta function:

[ ˆδΨ(x), ˆδΨ
†
(x ′)] =

∫ ∞

0

dω

2π

∑
r

eik in
r (x−x′)

|w in
r | Θr (x)Θr (x ′)+

∫ ∞

0

dω

2π

∑
r

eikout
r (x−x′)

|wout
r | Θr (x)Θr (x ′). (47)

Starting from the expansion of the field perturbation (43) in terms of scattering modes, we can
derive the second and third component of the spin vector (7):

Ŝ2(x, t ) = i
p

n( ˆδΨ− ˆδΨ
†
) =p

n
∫ ∞

0

dωp
2π

∑
r

[iQr (x)e−iωt âr +h.c.] (48)

Ŝ3(x, t ) = p
n( ˆδΨ+ ˆδΨ

†
) =p

n
∫ ∞

0

dωp
2π

∑
r

[Rr (x)e−iωt âr +h.c.] (49)

where, in order to simplify the notation, we have defined the sum and difference of the Bogoli-
ubov components describing the scattering modes as

Rr (x) = Ur (x)+Vr (x) = R in
r eik in

r x

|w in
r |1/2

Θr (x)+∑
r ′

Mr ′r
Rout

r ′ eikout
r ′ x

|wout
r ′ |1/2

Θr ′ (x)

Qr (x) = Ur (x)−Vr (x) = Q in
r eik in

r x

|w in
r |1/2

Θr (x)+∑
r ′

Mr ′r
Qout

r ′ eikout
r ′ x

|wout
r ′ |1/2

Θr ′ (x).

Appendix D. Two-point correlations

Equal-time two-point correlations (defined in the main text in Equations (27)–(29)) can be
computed at zero temperature by exploiting the expansion of the spin vector component in terms
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of scattering modes (48), (49), the expectation values (45), (46) and the properties of the scattering
matrix. A direct calculation gives:

G33(x, x ′) = 〈Ŝ3(x)Ŝ3(x ′)〉
n2 − 1

n
[ ˆδΨ(x), ˆδΨ

†
(x ′)]

= Re
∫ ∞

0

dω

2π

∑
r

[ |R in
r |2 −1

n|w I
r |

eik in
r (x−x′) + |Rout

r |2 −1

n|w I
r |

eikout
r (x−x′)

]
Θr (x)Θr (x ′) (50)

+Re
∫ ω∗

0

dω

2π

∑
r r ′

Rout
r Rout

r ′ ei(kout
r x−kout

r ′ x′)

n|wout
r wout

r ′ |1/2

(
Mr d2M

∗
r ′d2 +

σr −1

2
δr r ′

)Θr (x)Θr ′ (x ′)

+ (x ↔ x ′) (51)

G22(x, x ′) = 〈Ŝ2(x)Ŝ2(x ′)〉
n2 − 1

n
[ ˆδΨ(x), ˆδΨ

†
(x ′)]

= Re
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0

dω

2π

∑
r

[ |Q in
r |2 −1

n|w I
r |

eik in
r (x−x′) + |Qout

r |2 −1

n|w I
r |

eikout
r (x−x′)

]
Θr (x)Θr (x ′) (52)

+Re
∫ ω∗

0

dω

2π

∑
r r ′

Qout
r Qout

r ′ ei(kout
r x−kout

r ′ x′)

n|wout
r wout

r ′ |1/2

(
Mr d2M

∗
r ′d2 +

σr −1

2
δr r ′

)Θr (x)Θr ′ (x ′)

+ (x ↔ x ′) (53)

G23(x, x ′) = 1

2

[ 〈Ŝ2(x)Ŝ3(x ′)〉+〈Ŝ3(x)Ŝ2(x ′)〉
n2

]

= Im
∫ ω∗

0

dω

2π

∑
r ̸=r ′

Rout
r Qout

r ′ ei(kout
r x−kout

r ′ x′)

n|wout
r wout

r ′ |1/2
Mr d2M

∗
r ′d2

Θr (x)Θr ′ (x ′)

+ (x ↔ x ′). (54)

The semi-analytical calculation of the correlation signals shown in the main text in Figures 6
and 7 is performed with formulas (51), (53) and (54).

Consistently with [18], relative density correlations consist in a sum of various contributions:
the first trivial term (50) is present even in the absence of an analog horizon and represents
an antibunching (bunching) term resulting from repulsive (attractive) spin interactions. When
expanded in k-space rather than frequency space, it coincides with the Fourier transform of the
structure factor reduced by 1, computed at x−x ′: as a consequence it diverges at the critical point
for the para-to-ferromagnetic phase transition, where S (k → 0) ∝ 1/k, while it vanishes in the
absence of spin interactions, κ = 0, since S (k) = 1. A typical example is given in Figure 11(a):
for κ > 0, the signal consists a negative correlation peaked along the main diagonal x = x ′; the
difference in the signal found in the two sectors x, x ′ > 0 and x, x ′ < 0 is due to the different value
of spin interaction energy κ in the upstream and downstream regions.

The additional correlation term in Equation (51) contributes only if the d2 mode is available,
that is, only in the presence of a sonic horizon. For this reason, it can be directly associated to
the analog of the Hawking effect in a BEC system. We can distinguish between self-correlation
(r = r ′) and cross-correlation (r ̸= r ′) terms: while the former give, once again, a signal along the
main diagonal x = x ′, the latter can contribute away from it, producing a signal which is clearly
distinguishable from the usual bunching/antibunching term. In particular cross-correlations are
non-vanishing in the quadrants xx ′ < 0: physically such correlation signal is interpreted as due
to pairs of quasi-particles which are spontanously emitted on the two sides of the sonic horizon,
in close analogy with what is expected in gravitational context.
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Figure 11. Trivial contribution to the relative density (a) and relative phase (b) correlation
signal due to spin interactions, computed using Equations (50) and (52), respectively.
Parameters are identical to those in Figure 4 (Ωd ̸= 0). Notice that our calculation predicts
relative phase correlations to diverge in the upstream region (hatched area of the plot), due
to the gapless nature of excitations. However, if the coherent coupling is present in the
downstream region, it intrinsically fixes a reference value (0) for the relative phase. This has
the same regularization effect of measuring the phase with respect to the analog horizon.

Analogously to density correlations, also phase correlations can be written as the sum of
various contributions, including a trivial term (52) due to spin interactions: this consists in a
positive (negative) contribution for κ > 0 (κ < 0), localized around the main diagonal x = x ′.
When expanded in k-space, it coincides with the Fourier transform of the inverse of the structure
factor reduced by 1: therefore it diverges in the absence of a coherent coupling, while it vanishes
in the absence of spin interactions. A typical example is given in Figure 11(b).

The additional contributions (53), which are only found if an analog horizon is present,
can again be distinguished between self-correlations (r = r ′) and cross correlations (r ̸= r ′).
Once again, only the latter are expected to produce a signal that is clearly distinguishable from the
trivial contribution along the main diagonal. In particular, the (ud) contributions in the sectors
with xx ′ < 0 are associated to correlations between the Hawking particles emitted in the black-
hole exterior and their negative energy partners.

The result for mixed density–phase correlations (54) is qualitatively different: the real part
appearing in Equation (53), (51) is replaced by an imaginary part due to the imaginary unit in
the expansion of S2, see Equation (48). As a consequence, all self-correlation terms vanish and
G23(x, x ′) is exclusively given by the cross-correlations. In other words, this mixed correlation
signal is entirely due to the Hawking process and would be absent without an analog horizon.

D.1. Gapless case

All the main features appearing in the two-point correlation functions can be explained through
approximated analytical calculations of the above integrals in the low-frequency regime ω→ 0.
The momenta of the out-going modes can be considered linear with respect to ω:

kout
r (ω→ 0) ≃ω/wout

r (0). (55)
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As a consequence, the phase factor

Φr r ′ (x, x ′,ω) ≡ kout
r (ω)x −kout

r ′ (ω)x ′ ≃ω
(

x

wout
r (0)

− x ′

wout
r ′ (0)

)
≡ωΠr r ′ (x, x ′)

is also approximatively linear in ω, as well as the structure factor for spin modes S (kout
r );

therefore we have:

Rout
r (ω→ 0) ∝ p

ω (56)

Qout
r (ω→ 0) ∝ σr /

p
ω. (57)

Moreover, in the low-frequency regime, the solution of the scattering problem gives the following
results for the scattering matrix elements:

Re[Mr d2(ω→ 0)M∗
r ′d2(ω→ 0)] ∝ 1/ω (58)

Im[Mr d2(ω→ 0)M∗
r ′d2(ω→ 0)] ≃ const (59)

so that we can safely neglect their imaginary part in the following calculation.
Putting all together, we find that the main contribution to the density correlation signal

G33(x, x ′) is a sum of oscillating functions, one for each pair of modes:

G33(x, x ′) ∝
∫ ω∗

0
cos[ωΠr r ′ (x, x ′)]dω∝ sinc[ω∗Πr r ′ (x, x ′)]

where sinc(z) ≡ sin(z)/z. Each of these terms is peaked at the locus of points fulfillingΠr r ′ (x, x ′) =
0, that is, on the straight lines defined by Equation (30).

Following the same procedure, we can also compute mixed density–phase correlations
G23(x, x ′) and phase correlations G22(x, x ′). The main contribution to the former is given by terms
of the form:

G23(x, x ′) ∝
∫ ω∗

0

sin[ωΠr r ′ (x, x ′)]

ω
dω∝ Si[ω∗Πr r ′ (x, x ′)]

where Si(z) = ∫ z
0 sinc(z ′)dz ′ is the sine integral function: its asymptotic values at ±∞ are ±π/2,

respectively, and it crosses zero when z = 0. The full correlation, shown in Figure 6(b), is therefore
a collection of patches in which G23 has different, almost constant values, separated by smooth
jumps whose location is determined, once again, by the solution ofΠr r ′ (x, x ′) = 0.

Lastly, phase–phase correlations G22 show an infrared divergence: indeed the 1/ω behaviour
of the scattering matrix coefficients is not compensated and even worsened by the Qout

r coeffi-
cients, which provide a factor which is also inversely proportional to the frequency. Given some
infrared cut-off ϵ, the most relevant contribution is:

G22(x, x ′) ∝
∫ ω∗

ϵ

cos[ωΠr r ′ (x, x ′)]

ω2 dω (60)

and diverges as 1/ϵ. The trivial phase correlations in Equation (52) also diverge in the absence
of coherent coupling, but in a slower way, as log(1/ϵ). As already discussed in the main text,
the infrared divergence of phase correlations can be cured by measuring Ŝ2 with respect to some
reference point (the sonic horizon x = 0 is the most natural choice). This amounts to substituting,
in formulas (52), (53):

ei(kout
r x−kout

r ′ x′) −→ (eikout
r x −1)(eikout

r ′ x′ −1). (61)

In the low-frequency limit, the complex exponentials (61) can be expanded at first order inω and
the phase factor eiωΠ(x,x′) is replaced by kout

r kout
r ′ xx ′ ∝ ω2xx ′: the ω2 dependence cancels the

denominator in Equation (60), leaving a finite correlation signal G22(x, x ′) ∝ xx ′.
Notice that, in principle, Equation (48) is only valid away from the sonic horizon because

it does not include evanescent modes. However, these spatially decay over distances of a few
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healing lengths, and long range coherence in BEC system guarantees that the error we make by
estimating the phase at x = 0 with Equation (48) is negligible.

D.2. (Non-relativistic) gapped case

Let us now repeat the same low-frequency approximated calculation in the presence of a large co-
herent coupling in the downstream region only. Since the gap is only present in the downstream
region, we have to treat separately the u mode and the d = {d1,d2} modes. A Taylor expansion of
the out-going momenta (up to linear terms in ω) leads to:

kout
u (ω→ 0) ≃ ω/wout

u (0)

kout
d (ω→ 0) ≃ ±k0 +ω/w0

where k0, w0 are the momentum and group velocity of zero-frequency modes in the downstream
region. The structure factors are approximately given by:

S (kout
u ) ∝ ω

S (kout
d ) ≃ const.

This translates on the phase factors as follows:

Φuu(x, x ′,ω) ≃ ω
(x −x ′)
wout

u (0)

Φud (x, x ′,ω→ 0) = ωΠud (x, x ′)±k0x ′

Φdd ′ (x, x ′,ω→ 0) = ±k0(x ±x ′)+ω (x −x ′)
w0

.

In general, the phase factor contains a frequency-independent contribution, which will produce
an oscillating correlation signal with momentum k0, as well as a term proportional to ω, that
determines the locus of points in the (x, x ′) plane in which the signal is peaked: self-correlations
contribute only close to the main diagonal. The same holds for (d1–d2) cross-correlations, due to
the identical group velocity for the two modes. On the contrary, (u–d1) and (u–d2) correlations
are expected to be superimposed on a line defined by:

Πud (x, x ′) = x

wout
u (0)

− x ′

w0
= 0. (62)

The solution of the scattering problem gives the following results for the scattering matrix
coefficients: those involving d modes tend to a constant value, while Mud2 tends to zero in the
zero-frequency limit:

|Mud2(ω→ 0)|2 ∝ ω

Mud2(ω→ 0)M∗
dd2(ω→ 0) ∝p

ω

Mdd2(ω→ 0)M∗
d ′d2(ω→ 0) ≃ const.

(63)

These asymptotic results allow us to estimate the features appearing in two-point correlations.
Let us focus on phase correlations G22(x, x ′), and, more specifically, on the (ud) and (dd) sectors,
where the signal is espected to be significantly different with respect to the trivial contribution in
Figure 11. Cross correlations between u and d modes give, in the quadrants xx ′ < 0:

G22(x, x ′) ∝ cos(k0x)sinc[ω∗Πud (x, x ′)]
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while in the (dd) quadrant (x > 0, x ′ > 0) we find a checkerboard pattern peaked on the main
diagional, arising from the interference between (d1–d2) cross-correlations and self-correlations
of downstream modes:

G22(x, x ′) ∝ cos(k0x)cos(k0x ′)sinc

[
ω∗

(x −x ′)
w0

]
.

This checkerboard pattern has the same origin of the one found for acoustic white-hole config-
urations [43], namely the presence of zero-frequency out-going modes with non-zero momen-
tum. However, thanks to the regularization of the scattering amplitudes, it is not infrared diver-
gent. These simple results are in good agreement with the correlation signal shown in Figure 7.

Appendix E. Extracting the scattering properties of the spin-sonic horizon from time-
dependent GP simulations

As the spectrum (3) of Bogoliubov excitations underlying the Hawking effect equally arises for
small amplitude oscillations on a steady state solution of the GP Equations (1) [28], classical
scattering properties of the spin-sonic horizon reported in Figures 3, 4 and 5 are inferred by
numerically integrating the coupled GP Equations (1) through a split-operator method [49,
50]. To mimic the idealized configuration outlined in Section 3, the system is initialized in the
uniformly flowing state (11) in a periodic geometry, divided by a spin-sonic horizon resulting
from a modulation of the spin interaction strength2. As noted in the main text, the idealized
configuration of a sharp modulation of the interaction energy (9) is generalized to a smooth step
profile of width σx ,

κ(x) = κu +κd

2
+

(κd −κu

2

)
tanh

(
x

σx

)
. (64)

Besides allowing for a tuning of the Hawking temperature (76) as discussed below, a smooth
horizon profile was found to be required to ensure numerical stability of the time-dependent GP
equations in the case of a non-uniform coherent couplingΩ across the horizon. Such instability
is briefly discussed in Appendix G and will be the subject of a future work.

A scattering process is initiated through the localized excitation of a spin mode at time t0 and
position x0 by a pulse of the form

V (x, t ) =±A exp

(
− (t − t0)2

2∆2
t

− (x −x0)2

2∆2
x

)
cos(kx −ωt ), (65)

where the wavelength 1/k and frequencyω are tuned to be on resonance with an in-going branch
of the upstream (14) or downstream (17) spin dispersion relation in the lab frame, and the sign
± refers to the two components ψ↑,↓, respectively. The amplitude A is tuned to ensure all spin
excitations remain in the linear response regime, i.e.,

δψ= ψ↑−ψ↓
ψ↑+ψ↓

≤ 10−3. (66)

Wave packets of sufficient size to infer spectral properties of the Hawking process in the long-
wavelength limit are generated by pulses of spatiotemporal profile ∆t , ∆x ∼ 10(κun)−1, 103ξu ,
while the size of the system itself is restricted by computational complexity3 to the order 105ξu on
a discretized grid of resolution δx = ξu/4. Following a scattering process as depicted in Figure 3,
the spin response (66) evaluated in the comoving frame consists of several spatially separated
wave packets, each of which is a product of a Gaussian envelope of width |wout

r ′ (ω)/w in
r (ω)|∆x and

2By contrast, the non-uniform density profile of the realistic implementation shown in Figure 2 introduces additional
complexity by inducing a modulation of the density interaction energy (g + g↑↓)n.

3The limited spatial extent of the system manifests mostly in the scattering of u-ingoing modes, the momenta of
which approach k → 0 in the limit ω→ 0, resulting in non-negligible noise visible in Figure 5(b).
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a Bogoliubov excitation of the form (32). The amplitude βr ′ of the latter is inferred by integrating
over its momentum distribution

βr ′ (k) =Ukψr ′ (k)−V ∗
k ψr ′ (−k)∗, (67)

where ψr ′ (k) =F [ψr ′ (x)] is the Fourier transform of the respective out-going wave packet in the
atomic basis. The elements of the scattering matrix at the excited frequency ω are then obtained
as

|Mr ′r (ω)|2 =
∣∣∣∣βr ′

αr

∣∣∣∣2

, (68)

where αr is the similarly inferred amplitude of the in-going mode.

Appendix F. Time-dependent Bogoliubov simulations

The linear dynamics of the small spin fluctuation field on top of the condensed (mean-field)
component in the system is described by the corresponding time-dependent Bogolilubov the-
ory [51, 52]. This formalism generalizes the standard Bogoliubov theory introduced in Appen-
dix A to the case of a time-dependent background mean-field component. In the symmetric
configuration considered here, both components are described by the single order parameter
ψ0(x, t ) =p

2ψ↑(x, t ) =p
2ψ↓(x, t ), normalized to the total number of particles N . This evolves in

time according to the Gross–Pitaevskii equation:

iħ∂ψ0(x, t )

∂t
= Ĥdψ0(x, t ) (69)

where

Ĥd ≡−ħ2∂2
x

2m
+ (g + g↑↓)

2
|ψ0(x, t )|2 +V (x, t )− ħΩ(x, t )

2
(70)

is the Gross–Pitaevskii Hamiltonian. The evolution of the spin modes is governed instead by the
Bogoliubov–de Gennes equations that, in the general time-dependent configuration, read as:

iħ d

dt

(
U
V

)
=L

(
U
V

)
=

(
LUU LUV

LV U LV V

)(
U
V

)
. (71)

Here, we defined the (operator-valued) components of the Bogoliubov operator L as:

LUU = Ĥd + κ(x, t )

2
|ψ0(x, t )|2 +ħΩ(x, t )−µ,

LUV = κ(x, t )

2
ψ2

0(x, t ),

LV U = −L ∗
UV (72)

LV V = −LUU . (73)

Being quadratic in the field fluctuations, the Bogoliubov theory models the free evolution of
the elementary excitation on top of the condensate, and is therefore able to describe both
spontaneous and stimulated parametric emission processes, from which the Hawking radiation
originates.

The numerical setup used for the time-dependent simulations presented in Section 6 of
the main text consists of an uniform, one-dimensional atomic condensate of length L, in a
ring-shaped configuration (that is, we impose periodic boundary conditions). Specifically, we
performed the simulations by using a system of length L = 1895ξu , discretized by using a
numerical grid comprising Nx = 2600 points (δx = L/Nx ≈ 0.75ξu). The condensate initially flows
subsonically with a certain momentum q , as described by the order parameter introduced in
Equation (11) in the main text. The Bogoliubov operator L defined in Equations (71) and (73) is
diagonalised in such an initial configuration, so that the spin eigenmodes and the corresponding
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spectrum are obtained. As described in Section 3, the black hole for the spin fluctuations is then
dynamically created by modulating both in time and in space the spin interaction strength κ and
the strength of the Rabi couplingΩ between the two components. Notice that, due to the periodic
boundary conditions, also a white hole appears in the system, which we locate on the opposite
side of the ring (x =±L/2) respect to the black hole (x = 0) to avoid interference effects between
the two horizons.

In order to keep the mean-field component stationary, we modify the external potential in
such a way that the chemical potential of the system remains constant, that is we prescribe:
V (x, t )−ħΩ(x, t )/2 = const. The values of Ω(x, t ), κ(x, t ) and V (x, t ) are modulated in time and
space according to the following profiles:

κl (t ) = κl ,i +κl , f

2
+

(
κl , f −κl ,i

2

)
tanh

(
t − t0

σt

)
(l = u,d), (74)

κ(x, t ) = κu(t )+κd (t )

2
+

(
κu(t )−κd (t )

2

)[
tanh

(
x +L/2

σx

)
+ tanh

(
x −L/2

σx

)
− tanh

(
x

σx

)]
. (75)

Similar profiles have also been used for the Rabi frequency and the external potential. In
Equations (74) and (75), σt/x give information on the time/spatial scale on which the variation
happens, while t0 is the time instant at which the time modulation is centered. In physical
terms, σx represents the horizon’s width and t0 = 90mc2

u/ħ is the instant at which the horizon
is generated.

The mean-field component of the system and each Bogoliubov mode are propagated in
time by numerically solving Equations (1) and (71), respectively4. To this end, we adopt a
symmetric fourth order finite difference scheme [53] for evaluating spatial derivatives, and the
fourth order Runge–Kutta Method for propagating the solution in time. Correlations functions at
the time t are then calculated as described in Equations (27)–(29), by using the spin fluctuation
field decomposition in Equation (43), with the eigenmodes U (x, t ), V (x, t ) evaluated at the
time t .

Appendix G. The effects of a smooth horizon: Hawking temperature and dynamical
instabilities

As already pointed out, time-dependent simulations not only validate the semi-analytical results
obtained for the idealized step configuration, but also allow to investigate the effect of a horizon
of finite width on both spontaneous and stimulated Hawking radiation.

As seen in Figure 4(a), the smoothened horizon features a lower reflectivity |Muu(ω)|2 of in-
going u-modes than the infinitely sharp case, most notably in the limit ω→ω∗. More generally,
the limit ω→∞ corresponds to a regime in which the chemical potential is locally constant with
respect to the length scale set by momentum of the in-going wave packet, resulting in a vanishing
reflectivity. Regarding the Hawking process in particular, we find, in analogy with results from
previous literature on single-component BECs [15], that the main effect of a finite horizon width
σx is a weakened signature of the Hawking process with respect to the semi-analytical prediction.
This can be seen both in Figure 4 and by comparing Figure 7 with Figure 9(c).

Figure 12(a) illustrates for the gapless case (Ωd = 0) how the Hawking signal decays with in-
creasing smoothness σx of the spin-sonic horizon. Through the emission spectrum (26), this can
be summarized in terms of the Hawking temperature TH(ω) which, in the absence of a coherent

4Notice that, since the chemical potential is kept constant, the mean-field component remains stationary and equal
to its initial configuration through the whole evolution.
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Figure 12. Extended data for Figure 4. (a) Frequency dependence of |Mud2|2 in an uncou-
pled mixture (κd /κu = 0.25, Ωd = 0), inferred through GP scattering simulations for differ-
ent smoothness profiles (64) of the spin-sonic horizon. The black line indicates the semi-
analytical Bogoliubov prediction. (b) Analog Hawking temperature as defined in (26) as a
function of the horizon smoothness.

coupling, is frequency independent in the limit ω → 0. As shown in Figure 12(b), the analog
Hawking temperature decays as TH ∼σ−1

x . This result is consistent with the prediction [5, 15]

kB TH = ħ
2π

∂(c − v)

∂x

∣∣∣∣
x=0

(76)

of the hydrodynamic approximation using the horizon profile (64) for which ∂c/∂x = (c2
u −

c2
d )/4σx . For an increasingly steep horizon, the Hawking temperature saturates to a finite value

kB TH(ω→ 0)/ħω∗ ≃ 0.68, in agreement with the semi-analytical prediction for a sharp horizon
in Section 7. If σx ∼ 2ξu (the value we used in the main text), TH is predicted to be roughly half of
such maximum value, as illustrated in Figure 5(b). Consistently, the phase–phase correlation sig-
nal in Figure 9 is approximately a factor 2 smaller than the semi-analytical prediction in Figure 7.

The size of the horizon not only affects the strength of the Hawking signal, because of its
connection to the temperature of the emission, but it can also modify the spatial structure of
the correlations if it is much larger than the healing length. An example is shown in Figure 13
which reports a phase–phase correlation signal analogous to Figure 9(c), obtained with an even
larger σx ∼ 3.8ξu : in addition to a reduction of the intensity of the signal by a factor 10, we also
observe that the checkerboard pattern in the x, x ′ > 0 sector becomes a “ribcage” structure.

As can be seen in Figure 12, if the coherent coupling is vanishing, the regime σx ≲ ξu can
be reached without numerical issues and the semi-analytical result for the step configuration is
recovered in the limit σx ≪ ξu (a similar result was obtained for a non-vanishing and uniform
Rabi frequency Ωd = Ωu on both sides of the horizon [54]). Remarkably, this is not the case
if Ω has different asymptotic values on the two sides of the horizon, a configuration that we
considered in Figures 7 and 9: too a sharp variation of the Rabi frequency in space (σx ≲ 1.5ξu),
even if properly compensated by an external potential, results in the presence of dynamically
unstable spin modes in the GP numerical simulation, whose dynamics prevents the observation
of the Hawking signal. In particular, the checkerboard pattern in the downstream region of
Figure 7(c) grows indefinitely in time as a power-law, whose exponent is related in a non-trivial
way to the magnitude of the Rabi frequency Ω. On the other hand, the GP simulations confirm
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Figure 13. Time evolution of equal-time phase–phase correlation functions, in the pres-
ence of a coherent coupling in the downstream region. In the two cases, snapshots of the
correlations have been taken at the same time instants described in Figure 8. These results
provide the time dependent scenario for the stationary solution given in Figure 7, but with
a very smooth horizon of width σx = 3.8ξu .

the dynamical stability of spin-sonic horizon for sufficiently smooth horizon with σx ≳ 1.5ξu . A
further analysis of physical origin of these instabilities will be the subject of future works.
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[28] L. P. Pitaevskĭı and S. Stringari, Bose–Einstein Condensation and Superfluidity, 1st edition, International Series of
Monographs on Physics, Oxford University Press, Oxford, 2016.

[29] R. Cominotti, A. Berti, C. Dulin, et al., “Ferromagnetism in an extended coherently coupled atomic superfluid”,
Phys. Rev. X 13 (2023), no. 2, article no. 021037.

[30] A. Görlitz, J. M. Vogels, A. E. Leanhardt, et al., “Realization of Bose–Einstein condensates in lower dimensions”,
Phys. Rev. Lett. 87 (2001), no. 13, article no. 130402.

[31] A. M. Kamchatnov and N. Pavloff, “Generation of dispersive shock waves by the flow of a Bose–Einstein conden-
sate past a narrow obstacle”, Phys. Rev. A 85 (2012), no. 3, article no. 033603.

[32] C.-C. Chien, “Spatially varying interactions induced in ultra-cold atoms by optical Feshbach resonance”, Phys.
Lett. A 376 (2012), no. 5, pp. 729–732.

[33] S. Wüster, “Phonon background versus analog Hawking radiation in Bose–Einstein condensates”, Phys. Rev. A 78
(2008), no. 2, article no. 021601.

[34] I. Carusotto, “Bragg scattering and the spin structure factor of two-component atomic gases”, J. Phys. B: At. Mol.
Opt. Phys. 39 (2006), no. 10, S211–S219.

[35] A. Farolfi, D. Trypogeorgos, C. Mordini, G. Lamporesi and G. Ferrari, “Observation of magnetic solitons in two-
component Bose–Einstein condensates”, Phys. Rev. Lett. 125 (2020), no. 3, article no. 030401.

[36] J. H. Kim, D. Hong and Y. Shin, “Observation of two sound modes in a binary superfluid gas”, Phys. Rev. A 101
(2020), no. 6, article no. 061601.

[37] A. Coutant, A. Fabbri, R. Parentani, R. Balbinot and P. R. Anderson, “Hawking radiation of massive modes and
undulations”, Phys. Rev. D 86 (2012), no. 6, article no. 064022.

[38] M. Isoard and N. Pavloff, “Departing from thermality of analogue Hawking radiation in a Bose–Einstein conden-
sate”, Phys. Rev. Lett. 124 (2020), no. 6, article no. 060401.

[39] S. R. Das, G. Gibbons and S. D. Mathur, “Universality of low energy absorption cross sections for black holes”,
Phys. Rev. Lett. 78 (1997), no. 3, pp. 417–419.

[40] S. Chen and J. Jing, “Greybody factor for a scalar field coupling to Einstein’s tensor”, Phys. Lett. B 691 (2010), no. 5,
pp. 254–260.

[41] L. C. Crispino, A. Higuchi, E. S. Oliveira and J. V. Rocha, “Greybody factors for nonminimally coupled scalar fields
in Schwarzschild–de Sitter spacetime”, Phys. Rev. D 87 (2013), no. 10, article no. 104034.

[42] P. R. Anderson, R. Balbinot, A. Fabbri and R. Parentani, “Gray-body factor and infrared divergences in 1D BEC
acoustic black holes”, Phys. Rev. D 90 (2014), no. 10, article no. 104044.

[43] C. Mayoral, A. Recati, A. Fabbri, R. Parentani, R. Balbinot and I. Carusotto, “Acoustic white holes in flowing atomic
Bose–Einstein condensates”, New J. Phys. 13 (2011), no. 2, article no. 025007.

[44] G. Jannes, P. Maïssa, T. G. Philbin and G. Rousseaux, “Hawking radiation and the boomerang behavior of massive
modes near a horizon”, Phys. Rev. D 83 (2011), no. 10, article no. 104028.



36 Anna Berti et al.

[45] R. Brito, V. Cardoso and P. Pani, Superradiance, Springer Nature Switzerland AG, Cham, 2020.
[46] L. Giacomelli and I. Carusotto, “Understanding superradiant phenomena with synthetic vector potentials in

atomic Bose–Einstein condensates”, Phys. Rev. A 103 (2021), no. 4, article no. 043309.
[47] L. Giacomelli, Superradiant phenomena: Lessons from and for Bose–Einstein condensates, PhD thesis, University

of Trento, 2021.
[48] M. Jacquet, M. Joly, F. Claude, L. Giacomelli, Q. Glorieux, A. Bramati, I. Carusotto and E. Giacobino, “Analogue

quantum simulation of the Hawking effect in a polariton superfluid”, Eur. Phys. J. D 76 (2022), no. 8, article no. 152.
[49] H. Wang, “A time-splitting spectral method for computing dynamics of spinor F = 1 Bose–Einstein condensates”,

Int. J. Comp. Math. 84 (2007), no. 6, pp. 925–944.
[50] A. Sartori, Dynamical properties of Bose–Bose mixtures, PhD thesis, University of Trento, 2016.
[51] Y. Castin and R. Dum, “Low-temperature Bose–Einstein condensates in time-dependent traps: Beyond the U(1)

symmetry-breaking approach”, Phys. Rev. A 57 (1998), pp. 3008–3021.
[52] S. Butera and I. Carusotto, “Particle creation in the spin modes of a dynamically oscillating two-component Bose–

Einstein condensate”, Phys. Rev. D 104 (2021), article no. 083503.
[53] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids”, Math. Comput. 51 (1988),

no. 184, pp. 699–706.
[54] L. Fernandes, Fluctuations in multicomponent quantum fluids, PhD thesis, University of Antwerp, 2024.


	1. Introduction
	2. Coherently coupled mixtures and their collective excitations
	3. The spin-sonic black hole
	4. Realistic implementation
	5. The scattering matrix formalism
	6. Probing the spin-sonic horizon
	7. Hawking temperature and greybody factor
	8. Two-point equal-time correlation functions
	8.1. Uncoupled two-component BEC
	8.2. Coupled two-component BEC

	9. Time-dependent Bogoliubov simulations
	10. The critical point
	11. Conclusions and future perspectives
	Declaration of interests
	Acknowledgments
	Appendix A. Bogoliubov theory
	Appendix B. The scattering solution
	Appendix C. Quantization of the field
	Appendix D. Two-point correlations
	D.1. Gapless case
	D.2. (Non-relativistic) gapped case

	Appendix E. Extracting the scattering properties of the spin-sonic horizon from time-dependent GP simulations
	Appendix F. Time-dependent Bogoliubov simulations
	Appendix G. The effects of a smooth horizon: Hawking temperature and dynamical instabilities
	References

