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Abstract. When considering magnetic systems in the thermodynamic limit and at low enough temperature,
one finds typically magnetically ordered phases. In contrast, in the high-temperature regime, the interactions
between the spin degrees of freedom become less relevant and the system loses its order: this is a paramagnet.
This phenomenon of phase transition has been well understood using statistical mechanics and simple
modelling.

In this short lecture notes, we will review the possibility that a many-body magnetic system may remain
magnetically disordered down to zero-temperature, both for classical or quantum spins. These exotic phases
of matter are known, respectively, as classical and quantum spin liquids.

We will address in particular the question of classification of these classical or quantum disordered
phases. Indeed, while they have no local order parameter by definition, they can still possess different
qualitative features related e.g. to the nature of their correlations or elementary excitations, which could
be probed experimentally.

Résumé. Lorsque l’on considère des systèmes magnétiques dans la limite thermodynamique et à suffisam-
ment basse température, on trouve des phases généralement ordonnées sur le plan magnétique. Au contraire,
à haute température, les interactions entre les degrés de liberté de spin deviennent moins pertinentes et le
système perd son ordre : c’est une phase paramagnétique. Ce phénomène de transition de phase a été bien
compris grâce à la mécanique statistique et à des modèles simples.

Dans ces brèves note de cours, nous examinerons la possibilité qu’un système magnétique puisse rester
désordonné magnétiquement jusqu’à la température nulle, à la fois pour des spins classiques ou quantiques.
Ces phases exotiques de la matière sont connues respectivement sous le nom de liquides de spin classiques
et quantiques.

Nous aborderons en particulier la question de la classification de ces phases désordonnées classiques ou
quantiques. En effet, bien qu’elles n’aient pas de paramètre d’ordre local par définition, elles peuvent néan-
moins posséder différentes caractéristiques qualitatives liées par exemple à la nature de leurs corrélations ou
de leurs excitations élémentaires, qui peuvent être sondées expérimentalement.
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1. Introduction

Magnetism is a collective phenomenon that has been known and studied for extremely long time.
Usual magnets are a direct evidence that a collection of microscopic elementary spin degrees of
freedom tend to order along the same direction at low-enough temperature, while they are in
random directions at higher temperature: this is the famous ferromagnetic transition. This phe-
nomenon of phase transitions is well understood and can only occur in the thermodynamic limit,
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hence we will consider infinite systems. For simplicity, we will focus on localized spins and will
not consider itinerant magnetism, where charge degrees of freedom of the carriers also play a
role. Quite interestingly, simple models based on two-body interactions are enough to generate
various properties, as is well-known in many-body physics. As was emphasized by Anderson,
“more is different” [1], which means that, within our simple framework, many-body physics can
lead to various emergent properties: magnetic order, quasi-particles, gauge structure etc. which
cannot be understood at the single-particle level.

This review will focus on so-called “spin liquids”, dubbed by analogy with the liquid phase of
matter that does not have any magnetic order or does not break any symmetry. Still, we will see
that this is a much richer concept since some spin liquids can nevertheless possess some struc-
ture giving rise e.g. to algebraic spin correlations or fractionalization of elementary excitations.
In a modern formulation that we will explain, spin liquids can be viewed as fractionalized phases
described by matter (spinons) coupled to emergent gauge fields.

In a broader perspective, some features are linked to field theory, quantum many-body
physics, quantum information, as well as experimental studies on several materials. We will point
out some of these connections and refer to complementary reviews on these topics. For instance,
an experimental definition of spin liquid is usually made by measuring the ordering temperature
Tc and computing the frustration parameter [2] f = |θCW|/Tc where θCW is the Curie–Weiss
temperature (proportional to the spin exchange energy scale). Clearly a large ratio f (typically
>10) indicates that the ordering occurs at a much lower temperature than expected, pointing to a
physical mechanism that prevents magnetic ordering. This usually occurs in frustrated materials
with competing interactions, which is a very active area of research [3, 4].

In order to set up the stage, we will consider spin degrees of freedom, that can be discrete
(Ising) or continuous (Heisenberg), localized on various regular lattices (square, honeycomb,
triangular, kagome, pyrochlore etc.) in dimensions d = 1, 2 or 3, see e.g. Figure 1. We will
also tackle constrained dimer models which are useful effective descriptions of some frustrated
models at low-energy.

As a disclaimer, we will not consider disorder, although it plays a crucial role in many situa-
tions, and will not discuss localization or spin glass behaviors.

In Sections 2 and 3, we will treat respectively classical and quantum spin liquids. In both cases,
we will try to define spin liquids, discuss possible classifications and argue that they do exist in
some simple models. Although exact solutions are rare, they pave the way for investigating exotic
phases of matter in a more realistic microscopic model as well as in real materials, which gives a
support for the realization of classical and quantum spin liquids in nature.

2. Classical spin liquids

A major success of statistical physics in the last century was to characterize the existence of a
phase transition in the two-dimensional (2d) Ising model and related ones, showing that spins
can order at low-temperature into a ferromagnet or antiferromagnet.

Then in 1950, Wannier considered classical Ising spins on the frustrated triangular lattice [5]
and showed that there are an extensive number of groundstate configurations, contradicting the
Nernst’s principle of thermodynamics: this was the birth of classical spin liquids (CSL).

By definition, a CSL has an extensive degeneracy for its groundstates, which allows cooperative
fluctuations and the absence of order. Of course such a situation is fragile and often unstable
to fluctuations: this is the famous order-by-disorder mechanism [6]. Both thermal or quantum
fluctuations will generally select an ordered state. Nevertheless, we do consider CSL since there
can exist a large parameter regime where a cooperative paramagnet is the correct picture and the
system remains magnetically disordered [7].
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Figure 1. Structures of some lattices. From top left to bottom right: two-dimensional
(2d) triangular, kagome, checkerboard and three-dimensional (3d) pyrochlore. For the
checkerboard lattice, we have highlighted in green one plaquette phase groundstate in the
quantum S = 1/2 case.

We will now review some simple classical models where CSL can be stabilized. The classical
variables can be either discrete (Ising spins) or continuous O(3) variables (Heisenberg spins)
or even dimer configurations. For a more extensive review on this topic, we refer for instance
to [8].

2.1. Ising model

The Ising model is one of the most famous statistical mechanics problem [9]. The energy of a
configuration is simply given by

E({σ}) = J
∑
〈i j 〉

σiσ j (1)

where the sum runs over all nearest neighbor bonds of a lattice and σi = ±1 is the Ising spin
variable at each site.

This model has been very fruitful in the modern understanding of phase transitions: in one-
dimension (1d), there is no transition; in 2d, there is the famous exact Onsager’s solution; in 3d,
the transition has been shown to be continuous but it is not yet proven whether it is conformally
invariant.

We have chosen the antiferromagnetic (AF) case (J > 0) where frustration can lead to a large
number of groundstates. Frustration means that no configuration can satisfy all constraints
of having antiparallel spins on every bond. This has been analyzed by Wannier in 1950 on
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Figure 2. Triangular Ising antiferromagnet. Starting from a perfect Néel order on some
honeycomb lattice (spins in red and green), the additional spins can be in any σ=±1 state,
leading to an extensive degeneracy.

the triangular lattice [5], see Figure 2. Using a mapping to a dimer counting problem on the
honeycomb lattice, it is possible to show that the residual entropy at zero temperature is S0/N ≃
0.323kB , which implies that the number of groundstate configurations is extensive.

It is quite easy to get a rigorous bound by considering a perfect Néel AF on the non-frustrated
bipartite honeycomb lattice with N sites, see Figure 2. Then the additional sites of the triangular
lattice can be in any σ=±1 state, so that there are at least 2N /3 degenerate groundstates, i.e. the
residual entropy per spin is larger than kB log(2)/3 ≃ 0.231kB .

Such a T = 0 residual entropy violates the Nernst’s third principle of thermodynamics and
is common to many classical models. This Nernst’s principle is more robust and obeyed in
quantum mechanics although there are subextensive cases with fractons [10] and even extensive
degeneracy e.g. in the SYK model [11].

Coming back to the triangular lattice case, there is no order at any finite temperature and
correlations are algebraic [8], which appears quite peculiar a priori. This can be understood using
e.g. mapping to constrained model as explained in the next section.

Quite interestingly, there are still several open questions when considering additional further
neighbor interactions, e.g. on the kagome lattice. There is no more any exact solution and the
standard Monte-Carlo numerical simulations suffer from slowing down due to the large number
of low-energy states. However, since the partition function can be written as a tensor network
contraction, recent tensor algorithms have allowed to get a numerical solution [12].

2.2. Constrained models

2.2.1. Vertex models

One can also consider situations where the “spin” variables live on edges of the lattice, as done
in lattice gauge theory, while interactions are on the vertices. In this framework, constraints can
be introduced. For instance, on the square lattice, one can impose the so-called ice rule with a
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Figure 3. The six allowed configurations on the square lattice such that at each vertex, there
are exactly 2 incoming and 2 outgoing arrows (ice rule).

constraint of having 2-in/2-out arrows at each vertex, see Figure 3. This is the famous six-vertex
model solved by Baxter [13].

A simple estimate of the number of configurations for N sites can be found using Pauling’s
estimate [14]: since there are only 6 valid configurations around each vertex, instead of 24 = 16,
if one neglects correlations, there are approximately 22N (6/16)N states, which leads to a residual
entropy per site

S0/N = kB log(3/2) ≃ 0.405kB (2)

in good agreement with the exact solution by Lieb [15]: S0/N = 3/2log(4/3)kB ≃ 0.431kB . Note
that a similar counting can be done on a three-dimensional (3d) pyrochlore lattice which has the
same coordination number, see Figure 1.

Such systems are called “ice” because there is a similar constraint for H atoms in water–ice and
this residual entropy has indeed been measured experimentally long time ago [16].

Quite interestingly, this local constraint leads to an effective gauge theory, similarly to Gauss’
law in electromagnetism: charge conservation is expressed with divE = 0. As a result, using
this analogy with electromagnetism, it can be shown [8] that the system has critical (power-
law) dipolar correlations, leading to specific signatures, known as pinch points, in the structure
factors: this is called a Coulomb phase.

In magnetism, these properties can be found in so-called spin ice materials, which have been
quite popular recently as examples of cooperative paramagnets having a Coulomb phase [17] and
in which defects can be viewed as magnetic monopoles [18].

2.2.2. Dimer models

It is also possible to consider constrained models by putting hardcore dimers on all bonds of
a lattice so that each site belongs to one and only one dimer (fully packed dimer configurations).
This situation is very analogous to the previous vertex models, which can be seen as a constrained
model with exactly two dimers per site. The number of configurations was solved in general on
planar graphs [19, 20]. On bipartite lattices, it is generally possible to write down an effective field
theory in terms of an height field, from which one can deduce that dimer correlations are dipolar.
Such a phase is again a Coulomb phase [8].

2.3. Continuous spins: Heisenberg

In some cases, a more appropriate description is provided by considering spins as classi-
cal n-component vectors of fixed length S. The simplest antiferromagnetic Heisenberg model
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is given by:
H = J

∑
〈i j 〉

Si ·S j (3)

where J > 0 is the AF exchange energy and the sum runs over nearest neighbors of the lattice.
On a Bravais lattice, by going to Fourier space, one finds that groundstate configurations

correspond to the minimum of the Fourier transform J (q). For instance, on a triangular lattice,
one finds a unique groundstate (up to symmetries) with a 120-degree spiral order.

When considering other non-Bravais frustrated lattices, the situation becomes more involved
since in Fourier space J (q) is an m ×m matrix, where m is the number of spins per unit cell. In
principle, one should find the smallest eigenvalue, keeping in mind that each spin has a fixed
length: ∀i |Si |2 = S2 (strong constraint). Since this cannot be done easily, the Luttinger–Tisza
method [21] consists in assuming a weak constraint:

∑
i |Si |2 = N S which can provide a solution

but not always.
On some lattices such as 2d kagome or checkerboard, or 3d pyrochlore, see Figure 1, made

of corner-sharing triangles or tetrahedra respectively, the classical Heisenberg model takes a
simpler form:

H = J

2

∑
p

S 2
p , (4)

up to a constant, where Sp is the total spin on a plaquette p and the sum runs over all plaquettes.
From this expression, it is clear that if a configuration can satisfy Sp = 0 for all plaquettes,
then it is a groundstate. Hence, one can look for solutions using so-called Maxwellian counting
originally applied in mechanics of rigid bodies [22]. Following Chalker’s presentation [8], we have
F = N (n−1) degrees of freedom for n-component spins. Let Np be the number of corner sharing
units (plaquettes), each made of q spins, hence N = qNp /2. In order to have a zero-energy
configuration, one has to satisfy one constraint per cluster (total spin Sp = 0), i.e. K = nNp scalar
constraints. Assuming that they can be satisfied and are linearly independent (which is obviously
not true in general), one ends up with an effective number of degrees of freedom:

D = F −K =
( q

2
(n −1)−n

)
Np

For instance, when considering Heisenberg spins (n = 3) on 3d pyrochlore or 2d checkerboard
lattices (both having q = 4), one finds that D = Np is extensive, leading to a macroscopic
degeneracy and CSL behavior [23]. Quite remarkably for instance, on 3d pyrochlore, the system
remains disordered at all temperature [24].

Note that this argument does not provide any information for the kagome lattice, for which
the constraints are indeed not independent. A proper treatment leads to D = N /9 zero modes in
this case and the order-by-disorder mechanism selects coplanar spin configurations [25]. Finally,
let us mention that frustration can also occur from competing interaction, e.g. next-nearest-
neighbor coupling J2 on the square lattice: this is the famous J1–J2 Heisenberg model on the
square lattice, which also has a very large degeneracy when J2 = J1/2.

2.4. Classification

Inspired by the Luttinger–Tisza model, a classification can be made depending on the structure
of the flat bands in the spectrum. Indeed, for the particular case (4), the Hamiltonian can be
brought in this form:

H = J

2

∑
ℓ,m

∑
q

(Lℓq Lm
−q )Sℓq ·Sm

−q (5)

defining an n-component vector L(q), from which the number of dispersive modes can be
obtained [26, 27].



Sylvain Capponi 97

Quite interestingly, the analysis of L(q) allows to get higher-rank tensor, e.g. Gauss’ law with
tensors with fracton excitations, with quadratic or quartic dispersion relations etc. Analysing
the band structure, the gap closing points, the number of pinch points and their nature allow to
classify different CSL [26, 27].

Closing this section on CSL, it is very exciting to see the ongoing classification as well as novel
exotic CSL (algebraic, fracton etc.) which could potentially be relevant in real materials. It would
be interesting to go beyond the specific case (4) for a complete classification of CSL.

Last but not least, CSL are parent states when quantum fluctuations start playing a role and
natural starting point to realize exotic quantum states.

3. Quantum spin liquids

3.1. General features

There are different ways to add quantum fluctuations in a classical model, for instance adding a
transverse magnetic field or XY exchange to an Ising model, or simply promoting the spins into
quantum operators in the Heisenberg model. Based on the order-by-disorder mechanism, one
expects on general grounds that quantum fluctuations will select some ordered phase. In this
part, we will focus on groundstate properties at zero temperature in quantum models and review
the possibility to get unconventional phases of matter, in particular quantum spin liquids (QSL)
that we will define.

Note that the definition is often negative, in the sense that such a QSL phase does not
break any symmetry, but recent advances have shown the role of several observables: quantum
entanglement, topology as well as spectroscopic features [28], which could help to characterize
and distinguish various QSL.

The story of QSL goes back to Anderson’s idea of a resonating valence-bond (RVB) groundstate,
that is a coherent superposition of valence-bond configurations (made of 2-site singlets of spin
1/2) [29], see Figure 4. By definition, such a state does not break any spin or lattice symmetries, as
expected for a spin liquid. From a variational point of view, a nearest-neighbor RVB state (made
only of nearest-neighbor singlet) has a variational energy per site of (−3/8)J which is already
lower than the one of a classical Néel state (−(1/4)J ) on a spin-1/2 Heisenberg chain. Hence
it was proposed to be a good candidate for S = 1/2 Heisenberg model on the triangular lattice,
which turned out to be wrong since this model is now believed to be ordered magnetically. But it
has been a fruitful idea ever since and we will discuss some exotic properties of this wavefunction
as well as its relevance for some simple microscopic models.

On the one hand, there exist some simple groundstates that obviously do not break spin or
lattice symmetries, such as a trivial singlet product state on the Shastry–Sutherland lattice, see
Figure 5. Such a product-state is featureless and does not possess any exotic property [30].

On the other hand, we know that in condensed matter systems, some gapped phases can
be nontrivial in the sense of having topological order, e.g. the famous fractional quantum Hall
effect (FQHE). Topological phases of matter are gapped quantum phases containing nontrivial
features which are not due to spontaneous symmetry breaking. While such systems have
exponentially decaying correlation and look quite simple from a classical point of view, they
do exhibit nontrivial properties. For example, the groundstate degeneracy can depend on the
topology of the closed manifold (torus versus sphere), or there can exist protected gapless edge
excitations if the system has a boundary, or bulk excitations can possess nontrivial statistics etc.
Generally also, there are nontrivial features in the bipartite entanglement spectrum [31]. Clearly,
QSL are much richer than their classical analogue, and the role of quantum order was pointed
out by Wen [32].
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Figure 4. Example of a valence-bond configuration on the square lattice. Each dimer
corresponds to a singlet state made of two spins-1/2. An equal weight superposition of
all coverings is known as the RVB wavefunction.

Figure 5. Shastry–Sutherland lattice for which the product of singlets on the J bonds is an
exact eigenstate and the unique groundstate for small enough J ′/J .

Since QSL cannot be classified according to symmetry breaking, one possible classification
was proposed based on the nature of the elementary excitations (gapped or gapless spinons)
as well as the emergent gauge field (U(1), SU(2), Z2 . . . ) which mediate their interactions [33].
More recently, entanglement properties were also shown to be relevant for this classification:
quantum spin liquids are by definition quantum states that are not connected adiabatically to
trivial product states [28]. There are two classes: (i) long-range entangled (LRE) if it cannot be
adiabatically connected to a product state under any local unitary transformation (e.g. FQHE,
Z2 QSL, chiral spin liquid etc.); (ii) short-range entangled (SRE) if it cannot be adiabatically
connected to a product state while respecting some symmetries: symmetry protected topological
(SPT) state, e.g. Haldane S = 1 chain, topological insulator etc.

There are intimate relations between these definitions since topological order is probably
needed to realize fractionalization in dimension d ≥ 2 [34].

Building on RVB idea, Kalmeyer and Laughlin have proposed a chiral spin liquid phase to be
realized on the triangular lattice [35]. This phase is analogous to the FQHE on a lattice: existence
of chiral edge modes, quantized thermal transport, bulk excitations are anyons etc. We will see
later microscopic models where it is possibly realized.
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Figure 6. Three different possibilities for the many-body spectrum: (i) a unique ground-
state and a finite gap ∆; (ii) degenerate groundstates and a finite gap ∆; (iii) gapless.

3.2. Classification based on many-body spectrum

We will now consider the low-energy features of the many-body spectrum of a generic model
Hamiltonian H . Note that sometimes we only have a wavefunction (e.g. RVB), but it is possible
to consider a parent Hamiltonian for which this is the groundstate, see later. For the sake of
simplicity, we will assume H to be short-ranged and local, most of the time with some U(1) or
SU(2) spin symmetry. A typical example is the Heisenberg model

H = J
∑
〈i j 〉

Ŝi · Ŝ j +·· · (6)

where J > 0 is the AF coupling constant, Ŝ are quantum spin operators (S = 1/2,1, . . .) and
additional interactions could be needed to stabilize a QSL groundstate.

Focusing on low-energy, we can distinguish three qualitative different spectra, see Figure 6:
(i) a unique groundstate and a finite gap ∆; (ii) degenerate groundstates and a finite gap;
(iii) gapless. We will see in the following some examples, as well as some refinements regarding
case (ii) since the degeneracy can result either from symmetry breaking or from the topological
nature.

We will make use of exact and rigorous results, when available. Indeed, even if some models
are fine-tuned or artificial, they have the merit of showing the existence of exotic quantum
phases. For realistic and generic models, I will refer to several numerical studies, with the
caveat that finite-size effects cannot be fully controlled. Indeed, it has been shown that deciding
whether a 2d translation-invariant Hamiltonian has a gap or not in the thermodynamic limit is
undecidable [36] . . .

When discussing the low-energy spectrum, a seminal result was provided by Lieb, Schultz and
Mattis (LSM) [37] in 1d, which was later extended to arbitrary dimension d [38, 39]. Basically,
LSM forbids having case (i) spectrum for an odd number of half-integer spins per unit cell.

Note that a similar result can also be obtained in finite magnetic field [38], since LSM relies on
interplay of U(1) symmetry and translations, constraining whether some magnetization plateaux
phases can be featureless or not1. In any dimensions, a featureless magnetization plateau is
possible iff nS(1−m) = integer, where n is the number of spins per unit cell, S the spin value
and m the total magnetization normalized by its maximal value.

Let us mention some recent extensions that have been obtained when considering symmetries
beyond translations (nonsymmorphic or point-group) or by matching UV/IR anomalies in field
theory. Namely, the groundstate of a S = 1/2 Hamiltonian cannot be featureless (case (i)) [40]:

• on the diamond lattice [41];
• if there is an even-order rotation symmetry [42];
• on the pyrochlore lattice (4 spins per unit cell) [43].

1A quantum groundstate is said to be featureless when it can be adiabatically connected to a trivial product state.
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Note that when LSM-like argument does not apply, a featureless groundstate, depicted as
case (i), is possible but it is not always straightforward to construct one. There are explicit
constructions e.g. for 1/3-magnetization plateau on the kagome lattice [44] or a featureless spin-
1/2 wavefunction on the honeycomb lattice [45, 46].

3.3. Classification based on slave particle representations

In order to make some analytic progress, it can be convenient to use exact fermionic or bosonic
representations of spin operators, known as slave particles due to some constraints [47].

For instance, one can introduce Abrikosov fermions

Ŝz = 1
2 (c†

↑c↑− c†
↓c↓) S+ = c†

↑c↓ S− = c†
↓c↑ (7)

which is a faithful representation of a spin-1/2 at each site provided a single occupancy constraint
is added. In this language, the spin–spin interaction is quartic so that a natural mean-field
approximation can be performed, leading to

HMF = ∑
〈i j 〉

χi j (c†
i↑c j↑+ c†

i↓c j↓)+ηi j (ci↑c j↓− ci↓c j↑)+h.c. (8)

which is quadratic and can be solved. Of course, this mean-field solution may or may not be
stable when considering fluctuations, in particular the gauge field enforcing the one fermion per
site constraint. This is thus amenable to analytic studies or numerical ones when performing an
exact Gutzwiller projection [48] to enforce the constraint.

Similarly, a slave-boson description can be obtained from Schwinger bosons:

Ŝ = 1
2 b†

ασαβbβ (9)

imposing a constraint
∑
αb†

αbα = 2S at each site. This also allows to perform mean-field decou-
pling. Note that from a numerical point of view, one needs to work with permanent rather than
determinant for the projection, which is very costly.

In all theses approaches, known as parton constructions, there is some redundancy of the
mean-field descriptions, revealing the gauge nature of these theories. This has been used to
classify possible solutions (Ansatz) using a projective symmetry group (PSG) approach [32]. In
particular, different spin liquids that do not break any symmetry can have different PSG. Even
though this is obtained from a mean-field approach, it should be a property of the phase itself.

Such a PSG classification is still being worked on in the community, for bosonic or fermionic
spinons on all lattices. For instance, when time-reversal symmetry is broken (as in chiral spin
liquid), an additional classification is needed [49, 50].

Depending on the nature of the gauge fields and the spinon spectrum, several QSL could be
realized [47], e.g.:

• for a Z2 gauge field and gapped spinons, a gapped Z2 QSL phase emerges, which is stable
in 2d and 3d;

• for a U(1) gauge field and gapped spinons, a genuine QSL is unstable in 2d [51] towards a
valence-bond crystal (VBC) phase that break some lattice symmetries;

• for a U(1) gauge field and gapless Dirac spinons, the situation is not fully settled and an
algebraic Dirac spin liquid could be stabilized in (2+1)d [52].

What is even more dizzying is that there could exist several different QSL within the same
gauge symmetry class, dubbed symmetry-enriched topological (SET) order, which can be ana-
lyzed using topological quantum field theory [53]. As an example, there are about 221 different
gapped Z2 QSL on the 2d square lattice [54]!

This parton construction approach has been very fruitful to provide various QSL Ansatz and is
still ongoing effort to classify QSL in 3d on various lattices, see e.g. [40, 55].
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3.4. Unique groundstate and finite gap

3.4.1. Trivial phase

Of course, in some situations a featureless paramagnetic groundstate is possible, with a finite
gap to all excitations. It can be adiabatically connected to a trivial product state. For instance,
this is the case for Heisenberg spin ladder or bilayers, including some exact results for fine-tuned
frustrated models [3]. Quite interestingly, there is also the famous example of Shastry–Sutherland
lattice [30], see Figure 5, on which the groundstate is a product state of singlets for small enough
J ′/J .

In such trivial phase, correlations are short-range and there is no topological entanglement
entropy (a subdominant contribution to the area law). Note that it can still lead to rich physics
when adding e.g. a finite magnetic field with the appearance of nontrivial magnetization plateaux
as well as superfluid or supersolid phases [3].

3.4.2. One-dimensional SPT phase

A famous example of 1d SPT phase is provided by the Haldane phase of a S = 1 Heisenberg
chain [56], which can be understood from the exact groundstate of a slightly deformed Hamil-
tonian known as AKLT model [57]:

HAKLT = J
∑

i

(
Ŝi · Ŝi+1 + 1

3 (Ŝi · Ŝi+1)2
)

. (10)

While the groundstate is unique on a chain with periodic boundary conditions (PBC), it becomes
4-fold degenerate in the presence of open boundary conditions (OBC) due to the emergence
of S = 1/2 edge states. Thus, it has some topological properties, which are also revealed
in the bipartite entanglement spectrum. It has been understood that these phases are not
adiabatically connected to trivial ones, provided some symmetries are present [58], hence their
name: symmetry-protected topological (SPT) phases.

3.4.3. Two-dimensional SPT phase

It turns out that AKLT construction [57] can also be performed in higher dimension, e.g.
S = 3/2 on the honeycomb lattice or S = 2 on the square lattice. For these models, it can be
shown that the groundstate is unique and all correlations decay exponentially. While there is no
rigorous proof of a finite-spin gap, all numerical studies point to a finite value, see e.g. [59].

Such states are also known as valence-bond solids (VBS) since they can be understood from
valence-bond configurations and they do not break any spin or lattice symmetries.

Similarly to the 1d case, the properties depend on having periodic versus open boundary
conditions, which signals some topological properties: these states are called 2d SPT phases [60].

3.5. Gapped spectrum with groundstate degeneracy

3.5.1. Spontaneous symmetry breaking

The most well-known example of a gapped spectrum with groundstate degeneracy occurs
when there is a spontaneous symmetry breaking (SSB) of a discrete lattice symmetry. This is
known to occur e.g. in the 1d Majumdar–Ghosh S = 1/2 model [61]:

HMG = J
∑

i

(
Ŝi · Ŝi+1 + 1

2 Ŝi · Ŝi+2
)

, (11)

where a spontaneous dimerization occurs, or in various 2d spin models with columnar or pla-
quette orders, e.g. J1–J2–J3 S = 1/2 on the honeycomb lattice [62] or S = 1/2 on the checkerboard
lattice [63] (see Figure 1 where one plaquette phase is sketched with green symbols) and so on.
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Figure 7. Illustration of Kitaev’s toric code model on the square lattice.

Quite interestingly, a similar mechanism can also occur in the presence of magnetic field giving
rise to magnetization plateaux with SSB, e.g. exact magnon states close to saturation in frustrated
lattices [64] or similar mechanism at other magnetization values [65].

These situations are well understood and magnetic excitations are conventional, e.g. gapped
S = 1 magnons in 2d.

3.5.2. Topological phase

Quite generally, gapped topological phases can also be characterized by the fact that elemen-
tary excitations are gapped anyons, which statistics can be nontrivial, e.g. nonabelian, which
could be useful for topological quantum computation. The groundstate degeneracy depends on
the genus of the manifold, which is quite different from the usual spontaneous symmetry break-
ing. Remarkably, the fractionalization of excitations is strongly tied to the topological proper-
ties [34, 66] and could be detected in broad continuum-like excitations in the spin dynamical
structure factors S(q,ω).

At a more fundamental level, a gapped topological phase in (2+1)d can be probed using the
topological entanglement entropy [67, 68], which is a subleading constant term to the usual area
law.

3.5.3. Some specific models

In this endeavour to discover QSL in realistic models or materials, the quest for exact solution
or controlled approximation is crucial. Indeed, this allows to show that some of these phases are
possible, sometimes stable, and hence relevant to more generic situations.

3.5.3.1. Kitaev’s toric code. In 2003, Kitaev has introduced the toric code as an exact model for
which the groundstate is a gapped Z2 topological phase [69] in (2+1)d. As in a gauge theory, the
Ising spins live on the links of a square lattice and the Hamiltonian is given by

Htoric =−∑
s

As −
∑
P

BP (12)

where the first (respectively second) sum runs over all sites (respectively plaquettes) of a 2d
square lattice, As is the product of σx on all links around a site s while BP is the product of all
σz on all bonds of a plaquette P , see Figure 7.

Since all As and BP commute together, an exact solution can be provided. The groundstate is
featureless and there are four types of excitations (all with quantum dimensions di = 1): trivial,
e, m, f = e −m pair. e and m have π-shift mutual statistics, hence they are anyons (abelian) and
f -excitations behave as fermions.
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Figure 8. Illustration of Kitaev’s honeycomb model.

This solution was a breakthrough since it has shown the existence of a topological phase,
analogous to the famous ν = 1/3 FQHE, in a simple spin model. However, it is very fine-tuned
since the quasiparticles have no dispersion and the correlation length is zero.

3.5.3.2. Kitaev’s honeycomb model. Later, Kitaev has found an even more interesting exact
solution on the honeycomb lattice [70]. The model is defined in terms of spin-1/2 variables on
the sites of a 2d honeycomb lattice:

Hhoneycomb =−Jx
∑
x
σx

jσ
x
k − Jy

∑
y
σ

y
j σ

y
k − Jz

∑
z
σz

jσ
z
k (13)

where each term acts on the three different kind of bonds, see Figure 8.
Using a faithful Majorana representation of the spin operators, the exact solution provides

a gapped or gapless phase depending on the parameters. The gapped phase is similar to
the previous toric code case, while the gapless phase is more intriguing: in the presence of a
magnetic field, a gapped phase with nonabelian anyons can be stabilized, similar to a topological
superconductor.

Following this seminal work, a generalization by Levin and Wen has given access to a huge zoo
of topological phases in so-called string-net models [71].

3.5.3.3. Quantum dimer models. In the context of QSL, quantum dimer models (QDM) have
been very inspiring examples and we refer to the review by Moessner and Raman in Ref. [3] for
an extensive discussion. The Hilbert space consists in fully-packed dimer configurations (i.e. as
in classical dimer models) and quantum fluctuations arise from a simple model introduced by
Rokhsar and Kivelson (RK) [72], e.g. on the square lattice:

HQDM =∑[
− t

(∣∣ 〉〈 ∣∣+h.c.
)+ v

(∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣)], (14)

(in terms of hard core dimer objects ) where t and v are the amplitudes of kinetic and potential
terms, and the sum runs over all elementary square plaquettes. Graphically, these processes are
represented in Figure 9. As in the classical case, the local constraint provides a natural gauge
structure and conserved quantities: winding number and U(1) symmetry on bipartite lattices
(e.g. square), or topological sectors and Z2 symmetry on non-bipartite ones (e.g. triangular).

Precisely when v = t , so-called RK point, the groundstate can be obtained as an equal weight
superposition of all configurations. On most bipartite lattices, it is part of a Coulomb phase (with
algebraic correlations) but unstable towards crystalline phases that break lattice symmetries, see
Figure 10. On nonbipartite lattices, the RK point belongs generically to an extended gapped Z2

RVB topological phase [73].
The instability of U(1) QDM is linked to a famous result by Polyakov about gauge theories [51].

However, Z2 gauge theories can be deconfined in (2+1)d in (3+1)d as well as U(1) ones in (3+1)d.
As a conclusion, QDM models can exhibit various nonmagnetic phases including valence

bond crystals (VBC), Coulomb phase or gapped Z2 RVB topological phase.
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Figure 9. Left: A dimer configuration on the square lattice. Flippable plaquettes are
shaded. Right: Flippable plaquettes contribute a diagonal term v to the Hamiltonian and
can be flipped with amplitude −t (t > 0).

Figure 10. Schematic phase diagram of the QDM on the square lattice as a function of v/t :
the critical groundstate at the RK point is unstable to crystalline phases such as columnar,
plaquette or staggered.

3.5.3.4. Anisotropic spin models. Following the success of QDM to describe unconventional
phases, a natural roadmap was to engineer spin models with strong anisotropies (in spin space),
such that QDM emerge as en effective description.

For instance, let us mention a model introduced on the kagome lattice (see Figure 1) by
Balents, Fisher and Girvin [74]:

HBFG = Jz
∑
7

(Sz
7)2 − J⊥

∑
7

{
(Sx
7)2 + (S y

7)2} (15)

where Jz is the dominant energy scale that constrains the total Sz to vanish on each hexagonal
plaquette, i.e. there are exactly 3 up and 3 down spins per hexagon. As a result, the model maps
at low-energy onto an effective QDM-like model on the dual triangular lattice, where there are
exactly three dimers per site. Subsequent large-scale numerical studies have shown that this
model does exhibit fractionalization and realizes a gapped Z2 topological phase [75], which is
adiabatically connected to the RK point of this QDM-like model.

Quite interestingly other spin models are amenable to large-scale unbiased quantum Monte-
Carlo (QMC) simulations, e.g. an SO(N )-symmetric spin model on the kagome lattice which
groundstate is a gapped Z2 QSL [76].

3.5.3.5. SU(2)-symmetric spin models. In order to get closer to realistic spin models, similar
physical properties were investigated in SU(2)-symmetric spin models, e.g. using decorated
lattices to reproduce QDM physics [77]. As a result, it was possible to construct groundstate
having gapped Z2 or gapless U(1) properties in 2d and 3d spin models.

Later, Cano and Fendley have proposed SU(2) spin-1/2 models with local interactions that
can stabilize RVB groundstates, similar to the RK points of the corresponding QDM model [78].
As discussed previously, depending on the lattice, it can be a quantum critical point or a genuine
gapped spin liquid phase. Quite interestingly, by adapting this construction, it is also possible
to engineer a spin model having similar properties as the QDM one for any interaction v/t
parameter [79].
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3.5.3.6. Chiral QSL. We have already mentioned the original proposal by Kalmeyer and Laugh-
lin [35] to realize in a spin system a quantum phase analogous to the ν = 1/2 bosonic FQHE
phase. This is a gapped phase, with 2-fold degeneracy on a torus. With open boundaries, a rich
edge physics emerges with gapless chiral modes described by an SU(2)1 conformal field theory
(CFT).

Regarding microscopic models, several large-scale numerical studies have shown that a chi-
ral QSL groundstate can be stabilized on various spin-1/2 models with local interactions on
the kagome or triangular lattice with explicit time-reversal symmetry breaking [80–84] or with-
out [85]. It is also possible to construct parent Hamiltonians having an exact chiral QSL as
groundstate, but they are generally long-ranged [86, 87].

Quite interestingly, it is also possible to realize more exotic FQHE phases with higher spin
models, e.g. Moore–Read phase with nonabelian SU(2)2 anyons using spin-1 models [88, 89] or
Read–Rezayi state with nonabelian SU(2)3 using S = 3/2 model [90], or even with higher SU(N )
symmetry [91]. Let us also mention that gapped chiral QSL with nonabelian anyons are also
found for the Kitaev model (13) in magnetic field [92] or as exact groundstate of a Kitaev model
on a decorated triangle-honeycomb lattice [93].

3.6. Gapless spectrum

3.6.1. Magnetic long-range order

Although we are interested in disordered phase, for completeness we will review basic proper-
ties of magnetically ordered phases.

When there is a long-range magnetic order due to spontaneous symmetry breaking of the con-
tinuous spin SU(2) symmetry, there are necesseraly gapless spinwave excitations, corresponding
to the Nambu–Goldstone low-energy modes.

It is also possible to get more involved symmetry breaking, e.g. nematic (or quadrupolar) order.
A simple example can be provided in a spin-1 system where the groundstate prefers Sz =±1 and
not 0 state locally, i.e. no net magnetization but a preferred direction, hence the name nematic as
in liquid crystals, see e.g. a review in [3].

3.6.2. Dirac spin liquid

Using the parton construction described above, it is possible in some cases to assume a
static gauge pattern such that the fermionic tight-binding model spectrum exhibits a Dirac
spectrum. Then, by enforcing the single-particle occupation constraint, one can construct a spin
wavefunction with exotic properties since several physical correlations are algebraic at T = 0:
this state is known as the algebraic Dirac spin liquid (DSL). Its stability in (2+1)d is an active field
of research since DSL is unstable towards many competing phases [52] such as magnetic order,
chiral QSL or VBC.

Recent numerical studies have argued that DSL could be realized in several microscopic
models such as an extended S = 1/2 triangular Heisenberg model [94, 95]. Notably, there
are specific signatures of low-energy excitations [96] that could be probed numerically [97] or
experimentally.

In (3+1)d, DSL is a stable phase of matter that could describe quantum spin ice [4, 98] with
sharp spectroscopic signatures.

3.6.3. Gapless Z2 QSL

Going back to Kitaev’s model on the honeycomb lattice described in Section 3.5.3.2, it also
contains a gapless Z2 phase when all couplings are similar in magnitudes.
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In the field theory language, it can be seen as an instability of the DSL by adding a pairing field
in the spinon quadratic Hamiltonian so that the gauge field symmetry reduces from U(1) to Z2.
This could be stabilized on the frustrated S = 1/2 square lattice [99] or on the Shastry–Sutherland
lattice [100, 101].

Of course, the parton construction is very versatile and many other QSL are possible. For
instance, if there is no spinon Fermi surface but only a quadratic band touching, a quadratic
gapless Z2 QSL could be stabilized [102].

3.6.4. Spinon Fermi sea

A natural route to engineer a critical spin wavefunction is to perform a Gutzwiller projection
on a filled Fermi sea, using the parton construction.

In 1d, this critical wavefunction is the exact groundstate of the famous Haldane–Shastry spin-
1/2 chain with 1/r 2 interaction [56, 103] and has a very good variational energy for the usual
Heisenberg chain.

In 2d, this wavefunction was proposed as a spin Bose metal [104]. Such a spinon Fermi
surface would contain gapless excitations at all momenta in S(q,ω) and violate area law in the
entanglement entropy scaling (as in a Fermi liquid).

3.6.5. RVB

Even when considering only nearest-neighbor valence bonds in Figure 4, such an RVB wave-
function is nontrivial: clearly, spin correlations are short-range but dimer–dimer correlations de-
cay algebraically [105, 106] on a 2d bipartite square lattice, qualitatively similar to the QDM case
at its RK point. We have already discussed its parent Hamiltonian [78] and the fact that in 2d, this
can only exist as a critical point.

The situation is more interesting in 3d where a U(1) QSL phase can be stable on bipartite
lattices. For instance, starting from the RK point of a QDM on a bipartite diamond lattice, it is
possible to engineer an XXZ model on the dual pyrochlore lattice which could stabilize a U(1)
QSL phase [107] or SU(2) models on decorated lattices with similar properties [77].

4. Conclusion

We have described several classical and quantum spin liquids, which by definition do not break
any symmetry (neither in spin space or real space). Despite this negative definition, we have seen
that they can be classified in various categories.

In the classical case, this classification is rather recent and in progress [26, 27], including
the well-known U(1) Coulomb phase (e.g. in classical spin ice materials) but also higher-rank
Coulomb phases with fracton-like excitations [108]. At the moment, the classification mostly
relies on the specific form of some models as in Equation (4) and it would be valuable in the
future to go beyond and see if a full description of all possible CSL can be obtained. For instance,
there are weird CSL analogous to Z2 QSL [109] that deserve further studies.

In the quantum case, there is already a simple distinction depending on the many-body
spectrum, see Figure 6, which leads to various qualitative behaviors in some observables, that
can be probed experimentally. Moreover, since the seminal work by Wen [32], much progress has
been made to classify the different QSL according to the nature of the gauge group and the spinon
spectrum. In order to go beyond the PSG classification, braided tensor categories in (2+1)d have
allowed further progress [53] as well as group cohomology [40]. As a result, there is a really huge
number of distinct QSL and the focus should be now to understand on which microscopic models
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they can be realized. It would be crucial to understand if this classification is valid beyond mean-
field, and in particular connect the solutions that can be found using a bosonic versus fermionic
slave-particle description.

Thanks to some famous exact solutions that we have partly reviewed, various gapped or
gapless QSL are known to be stable in 2d or 3d, which pave the way for their realization using
realistic microscopic models or existing quantum materials. We have discussed in details some
famous examples of QSL such as gapped Z2, gapless U(1), chiral spin liquid, Dirac spin liquid,
spin Bose metal . . . Among these QSL, a lot has still to be understood particularly on the Dirac
spin liquid in (2+1)d which may or may not be stable as a phase.

Besides the achievements of analytical tools, there is a large activity in numerical simulations
with the developments of novel algorithms (e.g. tensor networks, neural networks etc.). While
we focused on zero-temperature, it is crucial to further improve these methods to tackle finite-
temperature (for thermodynamics) as well as finite-time evolution (for dynamics). These numer-
ical tools are called for since there are very few exact results and one would like to investigate
realistic models for classical or quantum spin liquids.

While we have focused on describing some exotic phases of matter, it is also very important
to understand whether there can exist unconventional phase transitions between them, which
description is beyond the standard Landau–Ginzburg paradigm. This can occur for instance
between a magnetically ordered phase and a valence-bond crystal one, so-called deconfined
quantum criticality [110] or weakly first-order behavior [111], or even more exotic Stiefel liquids
which have no Lagrangian descriptions [112] that could describe quantum critical spin liquids.
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