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Abstract. The many-body problem is central to many fields, such as condensed-matter physics and chem-
istry, but also to combinatorial optimization, which is nothing but a classical many-body problem. This
manuscript, written as part of an Habilitation à Diriger des Recherches, presents the various algorithmic
approaches, both classical and quantum, to solving this problem. We begin by reviewing the main existing
classical and quantum methods, focusing on their successes as well as their current limitations. In particular,
we present the state-of-the-art in quantum methods, distinguishing between perfect and noisy processors.
We then present recent work on combining classical and quantum algorithms to overcome the limitations
inherent to both paradigms. In particular, we begin by showing how tensor networks, often used as reference
tools to gauge the interest of quantum methods, can also be used to initialize a quantum computation, in
addition to simulating it realistically. We then turn to the special case of fermionic problems. After describ-
ing a method based on natural orbitals for shortening, and thus making more reliable, quantum circuits to
prepare fermionic states, we present a method based on slave spins for using a platform of Rydberg atoms to
simulate lattice models of fermions. Finally, we show how these same Rydberg platforms can be used to solve
combinatorial problems, and how decoherence influences the quality of the results obtained. This leads to
the definition of a new utility metric for quantum processors, the Q-score.

Résumé. Le problème à N corps est un problème central pour nombre de domaines comme la physique
de la matière condensée ou la chimie, mais aussi celui de l’optimisation combinatoire, qui n’est autre
qu’un problème à N corps classique. Ce manuscrit, rédigé dans le cadre d’une Habilitation à Diriger des
Recherches, présente les différentes approches algorithmiques, qu’elles soient classiques ou quantiques,
pour résoudre ce problème. Nous commenàçons par y passer en revue les principales méthodes classiques
et quantiques existantes, avec un accent mis sur leurs succès ainsi que leurs limitations actuelles. En
particulier, nousc présentons un état de l’art des méthodes quantiques, en distinguant processeurs parfaits
et processeurs bruités. Ensuite, nous présentons des travaux récents permettant de combiner algorithmes
classiques et quantiques pour surmonter les limitations inhérentes aux deux paradigmes. En particulier, nous
commenàçons par montrer comment les réseaux de tenseurs, souvent utilisés comme outils de référence
pour jauger de l’intérêt des méthodes quantiques, peuvent aussi être utilisés pour initialiser un calcul
quantique, en plus de le simuler de faàçon réaliste. Nous passons ensuite au cas particulier des problèmes
fermioniques. Après avoir décrit une méthode à base d’orbitales naturelles permettant de raccourcir, et donc
de fiabiliser, des circuits quantiques pour préparer des états fermioniques, nous exposons une méthode à
base de spins esclaves permettant d’utiliser une plateforme d’atomes de Rydberg pour simuler des modèles
de fermions sur réseau. Nous montrons enfin comment ces mêmes plateformes de Rydberg peuvent être
utilisées pour résoudre des problèmes combinatoires, et comment la décoherence influence la qualité
des résultats obtenus. Ceci nous amène à la définition d’une nouvelle métrique d’utilité des processeurs
quantiques, le Q-score.
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1. Introduction

Quantum many-body problems—for instance, systems of interacting electrons in solids—are
among the most difficult problems to solve on classical computers. This is directly due to the
strongly interacting nature of the involved particles. These interactions in turn cause a failure of
mean-field approaches, which essentially try to capture many-body physics within an effective
single-body description—in fact, a classical description as it does not involve a key quantum
property, entanglement. Such mean-field approaches must be replaced, or rather augmented,
with “strongly-correlated” methods that capture the many-body nature of the phenomena at
play, this time with entanglement at the center of the stage. This comes at a cost: whether exact
diagonalization methods (within a carefully identified low-energy or active subspace), Monte-
Carlo methods, or tensor-network methods—all these methods come with an exponential cost
as a function of some parameter. This has not prevented huge algorithmic progress in the recent
decades, with an increasing understanding of more and more exotic phases of matter. And yet
some regimes still elude our understanding. Doped, low-temperature regimes of models like the
Hubbard model, which are believed to capture the physics of high-temperature superconductors,
are but one example. Another one is the dynamics of fermionic or spin models, whose study is
nowadays limited to short times and/or small systems.

These limitations spurred physicists to envision, in the early 1980s, a new type of processors,
called quantum processors. They experienced a boom in the 2010s thanks to the advent of
experimental processors with tens to hundreds of controlled particles or even quantum bits.
Since early on, quantum processors have been assigned to two different tasks. One is solving
abstract math problems like factoring numbers, with exponential speedup guarantees in theory.
The second one, which will be the main focus of this work, consists in using quantum processors
as artificial quantum many-body systems that mimic Nature’s quantum many-body systems. In
this field, too, exponential speedup guarantees were established for simulating the dynamics of
quantum systems compared to classical computers.

In practice, however, quantum computers are fragile systems. A phenomenon called decoher-
ence introduces steep limitations to the quality of the outputs of quantum computations. These
limitations accumulate exponentially with the complexity (size, duration) of the task at hand. A
careful balance thus has to be stricken between the hoped-for acceleration compared to classi-
cal algorithms, and the penalty coming from decoherence—all this while taking into account the
rules of quantum computing, which differ from those of classical computing.

In this work, we explore various ways to strike this balance, with the following overarching
question as our horizon: how to best combine classical and quantum algorithms to compute the
properties of many-body systems?

To answer this question, we will first identify the strengths and weaknesses of the main
classical algorithms for the many-body problem (Section 2). Our main focus will be the Hubbard
model, a prototypical model for strongly-correlated electron systems, although we will also
extend the discussion to quantum chemistry problems as well as combinatorial optimization
problems, which can be regarded as classical many-body problems. We will carry out a similar
program for quantum algorithms for the many-body problem, with a focus on algorithms geared
at current processors, namely variational quantum algorithms (Section 3).
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After these introductory sections, we will explain how classical and quantum algorithms can
be combined to optimize our usage of quantum processors (Section 4). We will first show
that tensor network techniques are not only powerful diagnosis tools for quantum advantage
and promising predictive tools to simulate noisy quantum computers, but that they can also
be used in combination with quantum algorithms to reach accurate results in possibly hard
parameter regimes. We will then present two hybrid methods for handling fermionic models
with more robustness to decoherence, as well as quantitative criteria for the success of two
important fermionic quantum algorithms. Finally, we will tackle a subclass of classical many-
body problems encountered in the field of combinatorial optimization, and how they can be
tackled with quantum algorithms. In particular, we investigate the effect of decoherence on the
quality of the computed output.

2. Many-body problems: a few classical approaches, their strengths and their
limitations

Many-body or strongly-correlated problems are encountered in many fields of physics including
materials science, quantum chemistry and nuclear physics. Their commonality is the failure
of conventional mean-field theories to describe some of their phases. This failure requires the
development of advanced classical algorithms, all of which, as we shall see, have to deal with an
exponential difficulty in some guise.

We will first focus on algorithms that directly tackle the problem at hand (Section 2.1). The goal
is to shed light on the successes of these algorithms despite this exponential wall, and identify
potential bottlenecks. We will mainly focus on condensed-matter many-body problems, but will
also introduce a few notions of quantum chemistry, which is an important candidate application
for quantum processors.

We will then introduce classical problem reduction techniques that have been developed to
reduce the number of relevant degrees of freedom, leading to a smaller, yet still many-body
subproblem (Section 2.2). Such a reduced model will in general be better suited to a quantum
processing task.

2.1. The Hubbard model and exponential walls

Many-body problems come in many flavors. In materials science and quantum chemistry, the
physics of the electronic degrees of freedom is well described (after neglecting the ionic motion,
an approximation called the Born–Oppenheimer approximation) by the so-called electronic-
structure Hamiltonian,

H =
No∑

α,β=1

∑
σ=↑,↓

hαβc†
α,σcβ,σ+

1

2

∑
σ,σ′

∑
αβγδ

vαβγδc†
α,σcβ,σc†

γ,σ′cδ,σ′ , (1)

which describes the kinetic and potential energy (first term) and Coulomb interaction (second
term) of the electronic system. The kinetic and interaction tensors h and v are determined by the
geometry of the problem and by the choice of single-particle basis set {φα(r )}α=1...No (sometimes
called atomic orbitals), created/annihilated by the creation and annihilation operators c†

α,σ and
cα,σ (σ =↑,↓ denotes the spin of electrons). Provided the basis set size No is large enough, the
ground state energy of H will be the exact ground state energy of the solid. In practice, one must
truncate the basis set to a small No . (The size No that allows keeping a reasonable “accuracy”,
namely a small enough error with respect to the exact ground state energy in the No →∞ limit,
depends on the choice of basis).
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In condensed-matter physics, and in particular strongly-correlated materials that typically
encompass partially filled d and f shells, which correspond to localized atomic orbitals, one
usually picks a localized basis set. Localized means that φα(r ) is centered around an atomic
position R i , e.g. α ≡ (R i , a) with a an atomic orbital like 1s, 2s, 2p . . . Thus, hαβ can typically
be interpreted as a tunneling matrix element between atomic sites. It is thus usually limited to
neighboring sites in the material. As for vαβγδ, it also has a “local” structure that endows H with
a special structure: it is not any large (2No × 2No ) Hermitian matrix. In condensed-matter sys-
tems, this locality is made even more obvious by high-energy electrons, which tend to screen
the interaction between low-energy electrons. This screening phenomenon often suggests a
simplification of Equation (1): one can keep only local interaction matrix elements, which yields
the so-called Hubbard model [1]. In its single-band version, it reads

H =
n∑

i , j=1

∑
σ

ti j c†
i ,σc j ,σ+U

n∑
i=1

ni↑ni↓ = Hkin +Hint, (2)

where the creation operators c†
i ,σ create electrons in orbitals {φi (r )}i=1...n localized around site

R i of the lattice. The Hubbard interaction U is the value of the on-site interaction after screen-
ing. The Hubbard model (and other related “low-energy” models) can be derived, more or less
approximately, from the electronic structure Hamiltonian. In particular, U can be computed in
an ab-initio fashion under some assumptions using advanved techniques like the constrained
random phase approximation (cRPA, [2]). This “downfolding” procedure can also be carried out
using tensor network techniques (which we will discuss in further detail below). For instance,
[3] derives a single-band Hubbard model for the cuprate materials (that are known to exhibit
high-temperature superconductivity since the 1980s [4]) starting from a three-band model.

Although simple-looking, this minimal model is difficult to solve in regimes where both the
kinetic energy (described by the tensor ti j ) and the interaction U are of comparable magnitude.
In such regimes, the influence of the kinetic term, which favors delocalized states through tun-
nelling, competes with that of the interaction term, which favors localized states that minimize
Coulomb repulsion, and form an exotic phase of matter called a “Mott insulator” [5].

2.1.1. The failure of mean-field methods

Standard mean-field theories like Hartree–Fock (HF) theory or more advanced ones (like den-
sity functional theory (DFT, [6]), which is not strictly speaking mean-field but reduces the prob-
lem to a single-particle Kohn–Sham problem [7]) take interactions into account only in an aver-
aged fashion. This simplication allows for “efficient” classical algorithms. Here, and throughout
this report, “efficient” will refer to algorithms whose run time and memory complexity is poly-
nomial in the problem size n. For the case of HF or DFT, the complexity is O(n3), dominated by
the diagonalization of a n ×n (or No ×No if dealing with the electronic structure problem Equa-
tion (1)) linear system of equations. Yet, these methods fail to describe the Mott insulating phase:
they can predict the opening of antiferromagnetic gaps but not of paramagnetic Mott gaps.

One can (at least partially) account for this failure by looking at a simple two-site Hubbard
problem (aka the Hubbard molecule) with two electrons. In this case, in the limit of large on-site
interactions U (or zero hopping), the ground state is of the form

|Ψ0〉 = 1p
2

(| ↑,↓〉+ |↓,↑〉) , (3)

(with | ↑,↓〉 = c†
L↑c†

R↓|0〉, meaning one electron on the left site with spin up, one electron on the
right site with spin down), because the on-site Coulomb interaction penalizes states with double
occupancies, like |0,↑ ↓〉 or | ↑↓,0〉.
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As we are about to see, mean-field theory will lead to a qualitatively different answer. Indeed,
(unrestricted) Hartree–Fock theory amounts to replacing H by

Hm.f =
n∑

i , j=1

∑
σ

t̃σi j c†
i ,σc j ,σ, (4)

with a modified hopping matrix

t̃σi j = ti j +U 〈ni σ̄〉δi j , (5)

that depends on the densities 〈niσ〉. A quadratic Hamiltonian, Hm.f will necessarily lead to
a ground state in the form of a single Slater determinant, namely a state that can be written
as

∏
ασ(c̃†

ασ)nασ |0〉, where the creation operators c̃†
ασ are defined as linear combinations of the

original operators c̃†
ασ = ∑

i Vαi c†
iσ (V is unitary to preserve the anticommutation relations of

fermionic operators).
It turns out that the two (up and down) electrons will populate the “bonding” orbital c̃†

Bσ =
(c†

Lσ+ c†
Rσ)/

p
2, leading to a state of the form

|ΨHF〉 = c̃†
B ,↑c̃†

B ,↓|0〉 = 1
2 (| ↑,↓〉+ | ↓,↑ 〉+ |0,↑ ↓〉+ | ↑↓,0〉) . (6)

This state has contributions from configurations with double occupancies (last two terms)
that are not present in the true ground state Equation (3). This is due to the fact that HF (and
DFT) underestimates the influence of local interactions by handling them in an approximate,
mean-field way. From a technical point of view, it is also worth noting that the ground state (3)
cannot be written as a Slater determinant: it is said to be (in a quantum chemistry context) multi-
reference, as opposed to HF states, which are “single-reference” states (see [8] for an interesting
discussion of multi-reference vs single-reference character). In yet another context, one could
see that the state represented by Equation (3) is an entangled state, as opposed to (6), which can
be factorized.

Describing multi-reference states (aka strongly-correlated, or states with “static” correlations)
requires more advanced methods.

2.1.2. Direct diagonalization

A direct diagonalization (also called exact diagonalization, or full configuration interaction) of
the 4n × 4n matrix representation of H in the Fock basis (the basis made up of all states of the
form |n1↑,n1↓, . . . ,nn↑,nn↓〉 = ∏n

i=1

∏
σ=↑,↓(c†

iσ)niσ |0〉) is limited to very small lattice sizes n due to
the exponential (∝(4n)3) cost of diagonalizing this matrix.

More advanced diagonalization approaches are routinely used, like the Lanczos method [9].
It essentially amounts to a smart way of orthonormalizing the so-called Krylov basis
{H |Φ0〉, H 2|Φ0〉, . . . , H k |Φ0〉} (with |Φ0〉 a suitable starting state, e.g. the HF state), which spans a
(Krylov) subspace that is a good approximation of the low-energy eigenspace of the full H (the
Krylov basis is inspired from the power method, where powers of H , H k |Φ0〉, are used to amplify
a given eigenvector, here the lowest). If H is a sparse matrix (which is the case in Equation (2), as
there are typically O(n) nonzero terms per line in the 4n ×4n H matrix), the cost of constructing
the k×k matrix of H in this basis is O(4n) instead of O(16n): one can thus push the limit a bit fur-
ther (and have some control on the accuracy by increasing the size k of the Krylov subspace). The
use of symmetries also allows to extend exact diagonalization methods. For instance, [10] reach
systems of 50 spins. Despite these improvements, one always faces an exponential bottleneck in
the number n of sites.
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2.1.3. Quantum Monte-Carlo algorithms

Another way to tackle the properties of the Hubbard model is to resort to so-called quantum
Monte-Carlo methods. These methods come in several flavors, but boil down to rewriting e.g.
expectation values of observables in the generic form

〈O〉 = Tr(ρÔ) =
∑

x∈C w(x) f (x)∑
x∈C w(x)

(7)

with C a very large (exponential or worse) configuration space, w(x) the weight of a configuration
x and f (x) the value of the configuration. (For instance, the right-hand side of (7) can obtained
for a thermal state ρ = e−H/(kBT )/Z by Taylor-expanding the exponential in powers of Hint).
From (7), one can define a probability distribution p(x) = |w(x)|/∑

x |w(x)| and approximate the
corresponding expression by sampling:

〈O〉 =
∑

x∈C p(x)sign(w(x)) f (x)∑
x∈C p(x)sign(w(x))

≈ 〈sign · f 〉MC

〈sign〉MC
. (8)

Here, 〈g 〉MC = (1/N )
∑N

i=1 g (xi ), where the N configurations xi are sampled according to the
p(x) distribution (either through direct sampling or Markov chain sampling, see [11]). The finite
number of samples N used in Monte-Carlo leads to a statistical error

∆g ≈
√

Var(g )

N
(9)

(for uncorrelated samples), which can be made systematically small by increasing the number
N of samples. However, when the denominator 〈sign〉MC in (8) vanishes, the number of samples
must increase dramatically to ensure a constant error ∆O: this is the sign problem phenomenon
that generically plagues fermionic computations. For instance, for a thermal state, one obtains
∆O/〈O〉 = O(eNel/(kBT )/

p
N ), with Nel the number of electrons [12]: keeping a constant error re-

quires a number of samples that is exponential in the number of electrons and inverse tempera-
ture T .

In practice, there are ways to avoid or overcome, at least in some regimes, this exponential sign
problem. Let us give three illustrative examples.

Diagrammatic Monte-Carlo. One example is diagrammatic Monte-Carlo (DiagMC, [13]), which
consists in computing expectation values Tr(ρÔ) of observables Ô (with e.g. thermal states
ρ = e−H/(kBT )/Z ) by expanding the exponential of H (e.g. (2)) in powers of the interaction term
Hint of H . The corresponding series 〈O〉 = Tr(ρÔ) = ∑∞

m=0 Om contains contributions Om at
the mth order in the interaction U . These contributions can in turn be written in the form
Om = ∫

X
∑

T∈Sm D(T, X ), with T a Feynman diagram of order m (Sm is the group of all topologies
at order m) and X internal variables (e.g. space and imaginary time). DiagMC uses configurations
x ≡ (X ,T ) and weights w(x) = D(T, X ), while the more recent “connected determinant DiagMC”
(CDet, [14]) uses configurations x = X with weights w(x) =∑

T∈Sm D(T, X ).
Let us focus specifically on the more advanced CDet (the conclusions are similar, although

slightly less powerful, for DiagMC). The computation of the contributions at mth order turn out
to have a O(3m) complexity. While this method thus appears to have exponential complexity in
the expansion order (the run time, t = eαm , with α= log(3), is exponential for a given order), the
error decreases exponentially with the expansion order m: once one is beyond the convergence
radius of the series, m ∼ log(1/ϵ) is enough to achieve a truncation error ϵ = |〈O〉− 〈O〉m |, with
〈O〉m the truncated series. Therefore, the overall run time for a fixed error scales polynomially:
we have t = 1/ϵα, a polynomially scaling run time as a function of 1/ϵ [15]. (Of course, to compute
beyond the convergence radius U > Ucr of the series, one recovers an exponential complexity:
this approach is perturbative in nature).
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Auxiliary-field quantum Monte-Carlo. An alternative to DiagMC or CDet—both unbiased
methods—is auxiliary field quantum Monte-Carlo (AFQMC, [16]). In this method (like in diffu-
sion Monte-Carlo (DMC) or projector techniques [17]), an imaginary-time evolution e−τH start-
ing from a initial wavefunction |Φ0〉 is performed: the time-evolved state

|Ψ(τ)〉 = e−τH |Φ0〉/∥e−τH |Φ0〉∥

converges to the ground state in the large imaginary time limit. This formal algorithm requires
the costly (thus impossible in practice) exponentiation of the exponentially large matrix H . In
practice, this evolution is performed by splitting e−τH in Nt “Trotter” slices

e−Hτ =
Nt∏

k=1

(
e−Hkin∆τ

n∏
i=1

e−U∆τni↑ni↓

)
+O

(
τ2

Nt

)
, (10)

and by expanding each Trotter slice using a Hubbard–Stratonovich decoupling of the interaction
term,

e−U∆τni↑ni↓ = ∑
si=±1

e− f (U ,∆τ,si )Hf , (11)

with Hf a quadratic Hamiltonian and ∆τ = τ/Nt . The energy of the resulting wavefunction can
thus be written in the requisite form (7):

E(τ) = 〈Φ0|He−2τH |Φ0〉
〈Φ0|e−2τH |Φ0〉

=
∑

x〈Φ0|H |Φ(x)〉∑
x〈Φ0|Φ(x)〉 ,

with x = s1, . . . , sn , si = (s1
i , . . . , sNt

i ), and the wavefunction

|Φ(x)〉 =
Nt∏

k=1

(
e−Hkin∆t

n∏
i=1

e− f (U ,∆τ,sk
i )Hf

)
|Φ0〉.

The exponential sums appearing in the numerator and denominator are sampled using a Markov
chain Monte-Carlo algorithm. For a given configuration x, |Φ(x)〉 is a Slater determinant provided
the starting point |Φ0〉 is also one, since applying a quadratic evolution (via Hamiltonians Hkin

and Hf) to a Slater determinant leads to a Slater determinant. Being a Slater determinant, it can
be stored and computed efficiently (on a classical computer). Sampling this multidimensional
sum a priori allows to perform the evolution to the ground state and thus compute ground state
expectation values.

In practice, however, the sign of 〈Φ0|Φ(x)〉 changes, which leads to a sign problem. To avoid
it, importance sampling strategies are usually implemented in the form of a “trial wavefunc-
tion” that is used to avoid sign changes (this variant is dubbed constrained-path Monte-Carlo,
CPMC, [18]). This removes the sign problem but introduces a bias in the method (contrary e.g. to
the diagrammatic Monte-Carlo methods introduced above, which are unbiased). This bias is all
the larger as the trial wavefunction is far away from the true ground state. Constructing a good
enough trial wavefunction is thus essential . . . but brings additional classical cost that needs to be
taken into account in the computational burden of the method.

Note that there also exists DMC-like methods that do not require a trial wavefunction and
therefore do not suffer from a potential bias: this is the case, for instance, of the FCIQMC
method [19]. There, the limiting factor is the number of MC “walkers” (which are also used in
CPMC to represent the wavefunction in a stochastic manner), which is supposed to saturate
when the full configuration interaction (FCI) limit is reached: the number of walkers at saturation
can be very large.



32 Thomas Ayral

Variational Monte-Carlo. A third and last widely used example is variational Monte-Carlo (VMC).
It is based on a parametric representation

|Ψ(θ)〉 =
2n−1∑
x=0

ψθ(x)|x〉 (12)

of the wavefunction, where θ is a list of parameters that completely characterize the state, and
{|x〉} is the Fock basis. The Rayleigh–Ritz variational principle guarantees that

E(θ) = 〈Ψ(θ)|H |Ψ(θ)〉
〈Ψ(θ)|Ψ(θ)〉 ≥ E0

(with E0 the exact ground state energy of H). The goal of VMC is to find the set of parameters
θ⋆ that minimizes E(θ). For this, one needs to compute E(θ). This is achieved by inserting
I =∑

x |x〉〈x| in E(θ), which yields:

E(θ) =∑
x

|〈Ψ(θ)|x〉|2
〈Ψ(θ)|Ψ(θ)〉

〈x|H |Ψ(θ)〉
〈x|Ψ(θ)〉 =∑

x
pθ(x)Eloc(x)

with the probability distribution pθ(x) = |ψθ(x)|2/〈Ψ(θ)|Ψ(θ)〉 and the local energy Eloc(x) =
〈x|H |ψθ〉/ψθ(x). This exponential sum is sampled as∑

x
pθ(x)Eloc(x) ≈ 1

N

N∑
i=1

Eloc(xi )

with samples xi drawn from pθ(x). VMC relies on an efficient computation of Eloc(x) for a given x,
and the possibility to sample from pθ(x). The method has gained particular traction in the recent
years with the emergence of deep neural networks (dubbed quantum neural networks, [20]) to
representψθ(x). Some allow direct sampling, some require the use of Markov chain Monte-Carlo.

As always in MC methods, the finite number N of samples induces statistical noise (see
Equation (9)). One nice feature of VMC, though, is the behavior of the variance when ψθ(x) is
close to the sought-after ground eigenstate: then, Eloc(x) = 〈x|H |ψθ〉/ψθ(x) ≈ E0, namely the
energy is independent of x, therefore the variance vanishes. This means that as one gets closer to
the solution, one needs fewer and fewer samples to reach the same statistical accuracy.

The main limitation of VMC is the representational power of ψθ(x) and the optimization of
its parameters to minimize its energy. We refer to reader to [21] and [22] for more in-depth
discussions of Monte-Carlo algorithms (and their relation with quantum algorithms).

The pros and cons of the three MC methods we just presented may be summarized as follows:

• DiagMC and CDet are perturbative in nature: they will perform well in weak correlation
regimes, but fail in stronger correlation regimes;

• AFQMC is part of the family of projector MC methods: it will perform well if a good trial
state is provided. Otherwise, it will be plagued by a large bias (due to a wrong trial state)
or a large variance (due to the sign problem);

• VMC is unbiased (to the extent that the variational ansatz is expressive enough) and not
perturbative, but it relies on the optimization of a nonconvex function, a problem that
is generically hard to solve (in fact, it is “NP hard”, a terminology we will discuss later, in
Section 4.3.1).

2.1.4. Tensor network methods

A major alternative to Monte-Carlo methods is provided by so-called tensor network methods.
They consist in representing the state of the system as a graph whose vertices are tensors, and
whose edges are chosen to reflect e.g. the lattice topology (but not necessarily). The combined
memory footprint of these tensors (of the order of nχd , with d the number of neighbors of each
vertex, and χ the dimension of the tensor legs) is meant to be much smaller than the exponential
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Figure 1. Two examples of tensor networks. (a) Matrix product state (MPS): linear graph.
(b) Projected entangled pair state (PEPS): graph with a

p
n ×p

n square lattice topology.

footprint of storing the wavefunction |Ψ〉 (4n) or thermal state ρ (4n × 4n) of the Hubbard
model. This exponential in the Hilbert space size is generically traded for an exponential in the
entanglement of the state to be represented, as we shall see below.

The simplest example of such tensor networks are matrix product states (MPS, [23], Fig-
ure 1(a)), whose graph is simply a line graph, namely each tensor has two “neighbors” on its
left and on its right (except for the first and last tensors). The main parameter of a MPS (and, for
that matter, of other tensor networks) is the so-called bond dimension χ. χ = 1 corresponds to
a product (factorized) state, i.e. without entanglement. If the so-called von Neumann entangle-
ment entropy of the state, which measures the level of entanglement of the state, is called S, then
one must choose

χ≥ 2S (13)

to represent this state with a MPS. Thus, a MPS with a small bond dimension, and thus a small
storage cost (∝nχ2), can potentially represent states with low entanglement. Algorithms to
manipulate these states then generally scale as O(poly(χ)) (usually O(χ3), which corresponds
to the cost of compressing the state through a singular value decomposition (SVD), or more
advanced algorithms). This property is very useful for instance for studying ground states of
Hamiltonians with local terms, which typically display a small entanglement entropy (S is even
independent of system size for gapped systems in 1D, [24]).

Most importantly, tensor networks illustrate the fact that entanglement is a key quantity to
consider when investigating the “hardness” of a computational problem for a classical algorithm.
Currently, MPSs are widely used for studying 1D systems at equilibrium. Difficulties arise for
higher dimensions or for out-of-equilibrium problems.
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For higher dimensions, indeed, even when an “area law” is fulfilled, the entropy nevertheless
still increases with dimension of the system: in 2D, the bond dimension is exponential in the
linear dimension L of the L×L lattice. Tensor networks based on higher dimensional graphs than
line (1D) graphs have been developed to try and overcome this challenge. For instance, projected
entangled pair states (PEPS, [25], Figure 1(b)) are based on a 2D lattice graph. However, contrary
to MPS, observable expectation values cannot be computed efficiently (polynomially in χ) for
PEPS. In fact, “contracting” (i.e. summing over all internal indices of) a generic tensor network
can be shown to scale (both in CPU and memory) as eT (G), where T (G) is the so-called treewidth
of the TN’s graph G , namely the minimum width over the tree decompositions of G ([26]; graphs
that are trees have treewidth 1, a M × N square lattice has treewidth min(M , N )). The recently
introduced isometric tensor networks (IsoTNS, [27]) solve this issue, but with a quite prohibitive
cost of O(χ7). Recently, approximate contraction methods of PEPS have been introduced that use
a belief propagation algorithm [28]. This type of approximate contraction gives accurate results
for PEPS (or more generally tensor networks) defined on sparse graphs [29], namely graphs with
a low connectivity (and is exact for one-dimensional graphs, i.e. MPS).

As for out-of-equilibrium physics, the challenge for MPS also comes from large entropies: the
entropy tends to increase with time (linearly after a sudden change or quench in the Hamiltonian
parameters, [30]), causing the requisite bond dimension to increase accordingly, following Equa-
tion (13). This difficulty is compounded by going to two or more dimensions for the reasons we
just explained.

2.1.5. Towards a quantitative handshake of classical methods for the two-dimensional Hubbard
model?

The Hubbard model in two dimensions has been tackled through a variety of methods includ-
ing those we described above. Despite the difficulties associated with the strongly-correlated
character of the model, agreement between various methods has been reached in some parame-
ter regimes [31].

One important frontier is that of the doped, low-temperature phase of the model with strong
interactions (U /t ≈ 8). Recent comparative DMRG (MPS) and AFQMC studies of the two-
dimensional Hubbard model with nearest-neighbor t and next-nearest-neighbor t ′ hopping
on a square lattice have led to consistent pictures of the phenomenology of high-Tc cuprates
in the zero-temperature regime [32]. In particular, the coexistence of partially filled stripe
order with superconductivity in the ground states found by both methods on the hole-doped
side has been observed in the high bond dimension regime (for MPS) and large-size limit (for
AFQMC), suggesting that the Hubbard model with t ′ contains the main ingredients of high-Tc
superconductivity. However, these studies were limited to zero temperatures (ground states),
so that no direct computation of the superconducting temperature was possible. No dynamical
properties were studied either.

2.1.6. A word on quantum chemistry methods

We have so far reviewed a few major methods used to tackle the Hubbard model, a model
that captures the physics of certain solids. For chemical compounds, the simplification from
the electronic structure Hamiltonian (Equation (1)) to the Hubbard model is not possible. In
particular, the structure of the Coulomb interaction is in general more complicated. This makes
Monte-Carlo methods based on a expansion in powers of the interaction term (like DiagMC
above) much more costly, if not irrelevant.

We review below a few widespread algorithms designed for quantum chemistry problems,
with the goal of identifying computational bottlenecks that could be overcome with quantum
computers.
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Configuration interaction (CI, [33]). CI is a variational method like VMC, where the variational
state is a linear combination of a few states:

|Ψ(θ)〉 = θ0|ΦHF〉+
∑
a,i
θa

i c†
aci |ΦHF〉+

∑
ab,i j

θab
i j c†

ac†
bci c j |ΦHF〉+ · · · (14)

where |ΦHF〉 is the Hartree–Fock state, i , j , . . . refer to occupied molecular orbitals and a,b . . .
refer to unoccupied ones (we henceforth include the spin σ index in the orbital index). One
usually truncates the expression to a finite set of excitations, for instance single (S) excitations
c†

aci |ΦHF〉 and double (D) excitations c†
ac†

bci c j |ΦHF〉. The method is efficiently tractable on
classical computers: the computation of the variational energy requires the evaluation of terms
like 〈ΦHF|c†

j ′c
†
i ′cb′ca′ Hc†

ac†
bci c j |ΦHF〉, which is a polynomial computation thanks to |ΦHF〉 being

a single Slater determinant (allowing the use of Wick’s theorem). However, to make it accurate
in strongly-correlated cases, one needs a very large number of excitations (which in practice is
too large compared to the required accuracy), unless one uses several Slater determinants in the
CI expansion (instead of only the HF state). Even in this “multi-reference” case, (truncated) CI
will suffer from a lack of size extensivity, namely the energy of two uncoupled fragments will
not be the sum of the energies of each fragment. (The untruncated, and thus exponentially
costly, version of CI, called full configuration interaction (FCI), takes into account all Slater
determinants: it is of course exact and as such extensive, but untractable beyond small sizes
because exponential in No .)

Coupled cluster (CC, [34]). CC is a method that allows to use the same number of parameters
as CI, but includes an infinite number of fluctuations around the HF state. This is achieved by
putting the parameters into an exponential

|Ψ(θ)〉 = e
∑

a,i θ
a
i c†

a ci+
∑

ab,i j θ
ab
i j c†

a c†
b ci c j +···|ΦHF〉 ≡ eT (θ)|ΦHF〉. (15)

Usually the cluster operator T (θ) is truncated to single (S) and double (D) excitations, in which
case we still have O(N 4

o ) parameters, but by expanding the exponential we see that an infinite
number of fluctuations (made up of “clusters” of excitations of finite order) is taken into account.
A major advantage of the CC method is that is it size extensive.

Questions arise when implementing the method in practice. In principle, one would like to
keep the variational nature of CI (this is formally advantageous as one knows that the obtained
energy is an upper bound to the true energy). This entails minimizing

E(θ) = 〈ΦHF|eT †
HeT |ΦHF〉

〈ΦHF|eT † eT |ΦHF〉
. (16)

However, computing E(θ) is not efficient: the number of terms that arise from expanding the
exponentials is factorial in the number of orbitals No (when truncating T so a finite excitation
order, [35, 36]), and truncating to a smaller arbitrary number of terms would suppress size exten-
sivity [37]. This is why, in most implementations, one does not use this variational formulation
of coupled cluster (dubbed VCC).

Instead, one uses the fact that at convergence, one should have HeT |ΦHF〉 = E0eT |ΦHF〉.
Multiplying by e−T , this yields e−T HeT |ΦHF〉 = E0|ΦHF〉. Defining states |µ〉 = τ|ΦHF〉 for τ ∈
{c†

aci ,c†
ac†

bci c j , . . . }, and noticing that these states are orthogonal to |ΦHF〉, we can project:

〈µ|e−T HeT |ΦHF〉 = 0 (17)

for all µ. We are thus facing a root finding problem.
It turns out that the Baker–Campbell–Hausdorff expansion of operator e−T HeT (which is not

Hermitian)

e−T HeT = H + [H ,T ]+ 1
2! [[H ,T ],T ]+ 1

3! [[[H ,T ],T ],T ]+·· · (18)
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terminates at a finite, polynomial order in T (when T itself is truncated to a finite excitation
order) because the creation (annihilation) operators act only on unoccupied (occupied) orbitals.
Therefore, CC, solved in this fashion (sometimes called projective CC, PCC, or truncated CC,
TCC), remains a polynomial method (the cost is e.g. O(N 6

o ) for single and double excitations,
CCSD).

In its “SD with perturbative triples” form (CCSD(T)), CC is considered to be the golden
standard for weakly correlated molecules.

Two main limitations are the fact that it is a single-reference method (it builds upon a single
Slater determinant, |ΦHF〉), and it is not, in its projective form, variational (essentially because
e−T HeT is not hermitian). The first limitation entails inaccurate results e.g. in the dissociation
limit of molecules. Whether the second limitation—non variationality—is an actual problem is a
debated topic (see e.g. [38]), namely it is not sure that guaranteeing that E(θ) is an upper bound to
E0 is very important in practice. Yet, VCC does have the nice property to ensure that a generalized
Hellmann–Feynman theorem holds [39] (the Hellmann–Feynman theorem states that if r is an
external parameter (e.g. the bond distance), then ∂r E(θ) = 〈Ψ(θ)|∂r H |Ψ(θ)〉, making it easy to
compute forces in molecules without redoing the variational computation for several r ’s). Note
that PCC also satisfies the Hellmann–Feynman theorem [40].

Unitary coupled cluster (UCC, [37]). UCC proposes an ansatz of the form:

|Ψ(θ)〉 = eT (θ)−T †(θ)|ΦHF〉. (19)

This expression, as VCC, has only a polynomial number of parameters, and preserves size
extensivity, and can be implemented in a variational way. In practice, as in VCC, computing
the corresponding energy is combinatorially difficult in the absence of truncation of the BCH
expansion. The relative qualities of VCC and UCC are still a subject of discussion [36]. However,
one interesting feature of UCC is the unitary nature of eT (θ)−T †(θ): as we shall see later, it will make
UCC easier to implement on a quantum processor.

All three methods, when applied to the HF state, are limited to weak correlations (around
the reference). They typically fail in strongly-correlated regimes. Other methods, referred to as
multireference methods, are necessary to handle the strongly-correlated regime properly (we can
mention the complete active space self-consistent field method (CASSCF, [41, 42]), configuration
interaction using a perturbative selection done iteratively (CIPSI, [43]), multi-reference CC). We
refer the reader to [44] for a more comprehensive analysis of quantum chemical methods.

2.2. Problem reduction: embedding approaches

2.2.1. Dynamical mean-field theory . . .

In the previous section, we summarized the main methods used for the numerical treatment
of strongly-correlated problems, with a focus on the Hubbard model. All these methods have
limitations in some regimes. One key aspect of the Hubbard model (and of electronic structure
problems in general, see [44] for a discussion) that we overlooked so far is the locality of the
physics of interacting electrons (which is also the reason for taking the Hubbard model as a
starting point).

Advanced classical methods were developed starting in the early 1990s to take advantage of
this locality. In particular, the local nature of the Mott phenomenon at play in the Hubbard model
(Equation 2) is central: at large interaction strengths, local interaction phenomena cause the
charge degree of freedom to freeze and electrons to localize (this is the essence of Kondo physics).
Based on this physical insight, and on more formal considerations about the infinite-dimensional
limit of the Hubbard model, a theory called dynamical mean field theory (DMFT, [45]) was
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Figure 2. Embedding methods (a) and active space selection (b). Adapted from [46]. With
kind permission of The European Physical Journal (EPJ).

developed to self-consistently map the Hubbard model onto a local effective model describing a
single or a few interacting sites (usually called “impurities”) embedded in a noninteracting bath
mimicking the dynamical mean field surrounding them (Figure 2).

In analogy to plain-vanilla Weiss mean-field theories [47]—where a single spin S feels the
influence of a mean field h created by its neighbors, which itself depends on the mean
magnetization 〈S〉 of the spin—DMFT describes a single (for simplicity) impurity embedded in a
(dynamical) mean field ∆(t ), called the hybridization function. This mean field itself depends on
the impurity’s Green’s function, defined as

GR(t ) =−iθ(t )〈{c(t ),c†(0)}〉. (20)

The dynamical character of the mean field ∆(t ) is crucial in recovering Mott physics: it describes
how surrounding electrons can hop on and off the impurity site, where the Hubbard interaction
U can cause them to localize. This contrasts with the Hartree–Fock mean-field theory described
in a previous section, where the effect of other electrons on the effective model is described by
a static density 〈c†

i σ̄ci σ̄〉 (Equation (5)). Essentially, DMFT replaces this static mean field with a

dynamical quantity like 〈ciσ(t )c†
iσ(0)〉.

Through this mapping, the Hubbard model gets mapped onto a so-called Anderson impurity
model (AIM), defined by the Hamiltonian

H =Un↑n↓−µ(n↑+n↓)+∑
pσ

Vpσ(c†
σapσ+h.c)+∑

pσ
ϵpσa†

pσapσ, (21)

where the impurity site (c†
σ, cσ) is coupled to noninteracting bath sites a†

pσ, apσ (represented as
the green dots in Figure 2). The (a priori infinitely many) coupling parameters Vpσ and bath levels
ϵpσ are chosen so that the Fourier transform of ∆(t ) verifies:

∆σ(ω) =
∞∑

p=1

Vpσ

ω−ϵpσ+ iη
. (22)

In practice, this Anderson impurity model is simpler to solve than the Hubbard model,
because only the impurity site (or the impurity sites in “cluster” DMFT) is interacting. A whole
spectrum of “impurity solvers” has been developed to compute the impurity Green’s function
required by the self-consistent DMFT equations. Most of these solvers rely on techniques
similar to those used for tackling the Hubbard model (see Section 2.1). However, because the
interacting problem is of much lower dimension (even zero dimensional in the single-impurity
case) compared to the Hubbard model, the exponential hurdles cause much less harm, and allow
for a very accurate computation of G(ω) in many physical regimes. In particular, they allow to
solve DMFT with a few impurities and observe a Mott transition, a major achievement compared
to usual mean-field theories.

There are, however, three main limiting factors: imaginary time, the number of impurities, and
out-of-equilibrium regimes. First, most advanced quantum Monte-Carlo impurity solvers [48]
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work on the imaginary-time axis, which requires mathematically ill-defined analytical continua-
tion techniques to obtain real-time quantities. Second, increasing the number of impurities (or
orbitals, when working with more realistic models than the Hubbard model) is crucial in regimes
where long-range fluctuations play an important role (as is suspected in some high-temperature
superconductors), and serves as a control parameter of the method. But larger sizes revive the
aforementioned exponential issues. Third, going out of equilibrium comes with the same prob-
lems as for the Hubbard model, albeit at a smaller scale to thanks to the reduced dimension of
the impurity model [49].

2.2.2. . . . and its simplifications

To circumvent these limitations or to tackle larger (usually multiorbital) problems, simplified
methods have been developed at the price of less accuracy or less information. Similarly
to DMFT, these alternative “embedding methods” also consist in self-consistently mapping
strongly-correlated, extended models like the Hubbard model onto smaller effective models.
One such method is rotationally-invariant slave bosons (RISB, [50]), equivalent to the Gutzwiller
method [51], which can be regarded as a low-energy simplification of DMFT that gives access to
low-energy properties of the spectrum like the quasiparticle renormalization weight Z and the
static self-energy shift.

In RISB, the impurity model Equation (21) contains as many bath sites as correlated sites (or
impurities) [52], as opposed to the infinite (or very large) number required in DMFT to mimic
the dynamical features of the hybridization function ∆(ω). The parameters are obtained via self-
consistent equations that are similar to those of DMFT (see e.g. [53] for a unified view of DMFT,
RISB and the DMET method below). Contrary to DMFT, RISB does not require the computation
of the full time-dependent impurity Green’s function, but only of static correlators of impurity
sites i , j . . . [Dimp]σi j = 〈c†

iσc jσ〉, bath sites [Dbath]σpq = 〈a†
pσaqσ〉, as well as mixed correlators

[Dmixed]σi p = 〈c†
iσapσ〉. Together, these correlators make up the impurity model’s one-particle

reduced density matrix

D =
[

Dimp Dmixed

D†
mixed Dbath

]
. (23)

These static correlators are easier to compute than the full Green’s function (Equation (20)),
in exchange for containing less information. RISB has been used, for instance, to explore non-
local correlation properties (like momentum-dependent quasiparticle weights) in the Hubbard
model [54], or multi-orbital models inaccessible to DMFT relevant to realistic materials like
praseodymium and plutonium [52], at a fraction of the cost of DMFT.

Another widespread embedding method, density-matrix embedding theory (DMET, [55]), pro-
poses a similar embedding as RISB, without giving access to information such as the quasipar-
ticle weight [53]. It also relies on the mapping of an extended model onto a simplified effective
model that is solved with more accurate methods than mean-field methods.

The embedding methods presented above all consist in iteratively defining a suitable effective
model. The definition of the model itself is done thanks to an efficient (i.e. polynomial) computa-
tion, while the effective model, which is supposed to contain the relevant strongly-correlated de-
grees of freedom, is solved either exactly with an expensive (exponential) method—with the cor-
responding size or time limitations—or a simplified polynomial method—with the correspond-
ing loss of accuracy.

The spirit of these embedding methods is quite similar to “active space” methods encountered
in a quantum chemistry context: there, the important degrees of freedom, called the “active
space” of the molecule, are selected among all the orbital degrees of freedom of the molecule.
Indeed, tackling all the degrees of freedom would either be impossible for exact methods (like
the full configuration interaction method) due to the exponential wall, or inaccurate when



Thomas Ayral 39

Figure 3. Example of graph. The maxcut bipartition is illustrated with the black and white
vertices.

implemented with approximate polynomial methods like the configuration interaction (CI) or
coupled cluster (CC) method with a finite number of excitations (like singles and doubles) for
strongly-correlated (also called “multireference”) compounds (see Section 2.1.6 above).

In conclusion: with embedding methods and active-space methods, an efficient classical
computation is done to (usually self-consistently) identify the relevant, hard degrees of freedom
of the original extended model. This construction is very successful in reducing the problem
size and therefore making it more accessible to exact, exponentially costly methods. Yet, they
carry their own limitation as the size of the effective model is by construction limited by the
exponential wall. For some regimes, the effective-model sizes that are required to converge
the computation exceed the capacities of classical processors. In an upcoming section, we will
explain how quantum processors could be used as a replacement or complement to some of the
classical algorithms used for tackling these strongly-correlated problems.

Before this, we also introduce many-body problems that are not coming from physical sys-
tems.

2.3. Beyond quantum: classical many-body problems

Quantum many-body problems such as the ones that naturally arise in condensed-matter
physics and quantum chemistry are but a subclass of many-body physics. Beyond the field of
nuclear physics (which we did not elaborate on but shares many problems and methods with
solid-state physics and chemistry, see our recent review, [56]), many-body problems are also en-
countered in classical computational problems known as combinatorial optimization problems.

One well-known combinatorial optimization problem is the maximum cut (MaxCut) problem.
It is defined on a graph G = (V ,E) with a set V of vertices and a set E of edges. It consists in finding
the “maximum cut” of the graph, namely the bipartition of vertices such that the most edges in E
have one vertex in either partition. An example of graph and its maxcut bipartition are given in
Figure 3.

If one labels the vertices i = 1, . . . ,n, then a bipartition of the vertices can be encoded as a
bitstring b = (b1,b2, . . . ,bn) with bi ∈ {0,1}. If bi = 0, the i th vertex belong to the first partition,
otherwise it belongs to the second partition. Among the 2n possible bipartitions (bitstrings), we
want to find the one that maximizes

C (b) =− ∑
i , j∈E

(1−2bi )(1−2b j ). (24)

Indeed, if bi = b j , we obtain a negative contribution −1 for each edge, otherwise (when the
vertices belong to different partitions) we obtain a positive +1 contribution. Maximizing C (b)
should thus yield the solution.

Solving MaxCut on a classical computer is known to be exponentially hard (it is a NP complete
problem, see Section 4.3.1 below for a more in-depth discussion). The connection to usual
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Figure 4. Sketch of the potential landscape and different annealing methods.

many-body problems can be made by redefining Si = 1−2bi . The Si variables can take the values
+1 or −1, they are like classical spins. The cost function, with an additional minus sign, is called
the energy and reads:

E(S) = ∑
i j∈E

Si S j =
∑
i j

Ji j Si S j . (25)

This form of energy defines the (antiferromagnetic) Ising model. Here, the “coupling” is Ji j = 1
if i , j is an edge of G and 0 otherwise. The Ising model belongs to the class of spin glass models.
A well-known classical method to find the lowest energy configuration S∗ of this model is to
use a Markov chain Monte-Carlo algorithm with a Boltzmann distribution p(S) ∝ e−E(S)/T for
the configurations, where the temperature T is slowly decreased (or “annealed”) to 0. At this
point, the system should be in its lowest configuration. The intuition behind the algorithm is that
the nonzero temperature at the beginning is going to help the algorithm out of the local energy
minima it can start in. This algorithm, called simulated annealing (SA) or thermal annealing, is
illustrated in Figure 4. Of course, if the potential landscape is very rugged (with high barriers),
the probability for attaining the global minimum will be very small.

One way to enhance this probability would be to create the possibility of jump through barri-
ers, as sketched in Figure 4. For this, one needs to supplement our dynamics with possibilities to
“hop” from one configuration to another. To achieve this, we turn our classical cost function into
a quantum one: if we define the operator

H =∑
i j

Ji j Zi ⊗Z j , (26)

with Zi the Pauli-z matrix on the i th spin, we can check that the lowest energy of this operator
corresponds to the bitstring S that minimizes E . We can now add a temporary perturbation to H
that couples different eigenstates of H with each other, say, by defining

H(t ) =∑
i j

Ji j Zi ⊗Z j +h(t )
∑

i
Xi , (27)

(with Xi the Pauli-x matrix). The second term (a transverse field term) accomplishes the wished-
for hopping between configurations. As we shall argue in Section 3.1.2, a slow tuning of the
coefficient of h from a large value to zero will lead to an enhanced probability of ending up in
the ground state of H . This is the idea behind quantum annealing (QA). One can expect this
algorithm to provide speedups when the potential barriers are tall and narrow.

While this quantum algorithm can be, and is, executed on the quantum processors we will in-
troduce in the next section, it can also be “emulated” on classical computers. The corresponding
“quantum-inspired” method is called “simulated quantum annealing” (SQA): the quantum time
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evolution can be mapped to a classical Ising model with one more dimension, which is solved us-
ing a Markov chain Monte-Carlo algorithm similar to the one used for simulated annealing. Such
an algorithm turns out not to have a sign problem [57], contrary to fermionic problems, but its
convergence to the exact ground state can be very slow. In general, however, it is faster than the
SA algorithm [58]. Whether SQA is faster than a purely quantum algorithm (QA) is still a matter
of debate (see [58] for a study in favor of SQA, [59] for a study in favor of QA).

In the next section, we introduce in more detail the main principles of quantum algorithms
for many-body problems.

3. Quantum computers: promises for the many-body problem . . . and reality

In this section, we summarize the reasons why quantum processors have been suggested as po-
tential solutions to the limitations of the classical algorithms for solving the strongly-correlated
problems we introduced in the previous section. We also discuss the limitations of these quan-
tum processors, whether coming from the quantum nature of the processors or from hardware
imperfections.

3.1. The promises of the perfect quantum computer

Given the challenges of solving many-body problems with classical processors, Richard Feynman
famously advocated the use of quantum machines to simulate quantum problems [60]. In other
words, he suggested the use of physical devices governed by the laws of quantum mechanics to
mimic natural physical systems governed by the same laws.

3.1.1. Two classes of quantum processors

Two main strains of quantum processors emerged in the following decades. Inspired by Feyn-
man’s suggestion, physicists built “quantum simulators”, namely artificial systems—ultracold
atoms in optical lattices [61], ions trapped in electromagnetic traps, Rydberg atoms trapped by
optical tweezers [62], etc.—whose Hamiltonian was similar to that of physical systems of inter-
est. For instance, Fermi–Hubbard physics were studied via the physics of tens of ultracold atoms
in optical lattices (see e.g. [63]), and hundreds of Rydberg atoms have been used to gain insights
into the dynamics of spin models (see e.g. [64]). This “quantum simulation” approach is currently
limited, among others, by the effective temperatures that can be reached, which are still too high
to study phenomena like pseudogap physics, let alone superconductivity (they typically reach
temperatures close to the antiferromagnetic exchange coupling [65]). In addition, these proces-
sors are limited to simulating a specific form of Hamiltonian, and are therefore meant to “solve”
very specific problems. They are sometimes called “analog quantum computers”, in reference to
the analog computers that were built in the past to solve dedicated problems, before the advent
of (classical) computers as we know them.

The second class of computers is inspired by the model of computation used in classical
computers: there, all operations can be boiled down to logic gates (NOT, NAND, etc) acting on bit
registers. This model was extended to quantum processors by introducing the notion of quantum
bit (qubit) to refer to a spin-1/2 system. A quantum “computer” can then be regarded as a
collection of interacting qubits. These qubits can be manipulated by quantum logic gates, which,
owing to Schrödinger’s equation, are unitary operations acting on (possibly several) qubits. The
so-obtained quantum states are then “measured” to extract useful information.

It was soon realized that this mathematical model of quantum computation (sometimes called
gate-based or “digital quantum computation”) could be used to create algorithms with provable
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speedups over classical algorithms. The two most famous examples are Shor’s factoring algo-
rithm [66] and Grover’s unstructured search algorithm [67], which respectively achieve an expo-
nential and a quadratic speedup over their known classical counterparts. Another interesting
feature of reusing a formalism similar to that of classical computers is that the error correction
methods developed for classical machines were generalized to quantum computers [68, 69]: by
using several (“physical”) qubits to encode the information of a single (“logical”) qubit, it was
proven that, provided the error rate of physical qubits was below a certain threshold, combining
more and more physical qubits together led to an exponential suppression of errors for the corre-
sponding logical qubits, thereby guaranteeing an arbitrary level of accuracy. To date, the required
error thresholds and numbers of qubits have not yet been attained by experimental quantum pro-
cessors, although first promising proofs of concepts in this direction—with near-threshold errors,
but still very small qubit counts—are emerging in all major technological platforms [70–73].

3.1.2. Preparing a ground state: adiabatic annealing

One major challenge of quantum many-body physics is to investigate the properties of the
ground state of a complicated Hamiltonian. For this, one needs to generate such a state. A
central method to generate such a state is the quantum adiabatic annealing method (see [74]
for a review). It consists, in order to prepare the ground state |Ψ0〉 of a Hamiltonian H , in starting
from an easier Hamiltonian H0, whose ground state |Φ0〉 is known and easy to prepare on the
quantum hardware at hand. Then, one performs a time evolution, starting from |Φ0〉, under a
Hamiltonian that interpolates between H0 and H between the initial time and the final time T .
For instance,

H(t ) = (1− t/T )H0 + t/T H . (28)

If the “annealing time” T is long enough (T ≫ V /∆2
min with V the time derivative of H(t ) in

its instantaneous eigenstate and ∆min the minimum gap in the spectrum of H(t )), the adiabatic
theorem will guarantee that |Ψ(T )〉will be very close to |Ψ0〉. The overall run time of the algorithm
is O(T ), so a major question for quantum annealing is the scaling of the minimum gap ∆min. It
depends on the problem at hand (H) as well as the mixer Hamiltonian (H0) and the schedule
itself. In particular, hard problems may feature a minimum gap that decreases exponentially
with the system’s size . . . leading to exponentially long run times.

The adiabatic annealing principle is underlying a number of quantum algorithms and meth-
ods. It is routinely used to prepare Rydberg atoms in the ground state of exotic Hamiltonians [75].
Quantum annealers built e.g. by the D-wave firm use this principle, in combination to the ther-
mal annealing method we described above, to attempt to find ground states of Hamiltonians that
correspond to complex optimization functions, as briefly discussed in Section 2.3.

Adiabatic annealing is also a guiding principle to design quantum programs on gate-based
architecture. Since annealing consists in performing time evolutions governed by Hamiltonians
like H(t ) (Equation (28)), tools have been introduced to implement these time evolutions with
gate-based quantum computers, as we will describe in the next subsection.

3.1.3. Performing a Hamiltonian evolution

The time evolution of quantum systems is the first inspiration behind Feynman’s idea [60].
While the first—analog—class of computers can be used to simulate the system they are built to
reproduce, the second—digital—class of computers can also in principle be used as a substitute
to classical computers for simulating any many-body problem. How to do it in practice was first
described by [76]. The main building block for doing so is the realization that a quantum time
evolution under the Schrödinger equation, which can be boiled down to a unitary evolution
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under the evolution operator U = e−iH t (in the time-independent Hamiltonian case; the time-
dependent case can also be dealt with, but we will focus on the time-independent case for ease
of notation), can be expressed as a quantum circuit, namely a sequence of quantum logic gates.

The goal is to break down the e−iH t unitary operator to the quantum logic gates of the quantum
processor at hand. Formally, this breakdown is guaranteed to be feasible by the Solovay–Kitaev
theorem. It states that any unitary operator can be approximated to precision ϵ by a sequence
of gates of size polylogarithmic in 1/ϵ, namely a short sequence. These gates can be drawn from
a universal gateset known as “Clifford+T”—namely one-qubit Clifford gates (essentially, single-
qubit π/2 rotations) and the controlled-NOT (CNOT) gate—supplemented with the so-called T
gate (a π/4 rotation along the Z axis).

In practice, the breakdown can be achieved by several methods. The simplest one [76] is to
use the Trotter–Suzuki formula: supposing the Hamiltonian of interest has been decomposed as
a weighted sum of Pauli operators,

H =
Np∑
i=1

λi Pi , (29)

(with Pi =σpi (1)
1 ⊗σpi (2)

2 ⊗·· ·⊗σpi (n)
n ,σp ∈ {I , X ,Y , Z }, λi ∈R) the first-order product formula reads

U = e−iH t =
Nt∏

k=1

(
Np∏
i=1

e−i
λi
Nt

Pi t

)
+O

(
t 2

Nt

)
, (30)

with Nt the number of time-slices (higher-order formulae and precise bounds involving the
commutators of the Pi ’s are discussed in [77]).

Usually, the Pauli operators Pi that appear in the decomposition of physical Hamiltonians
are local, namely they act only on a small subspace of the full Hilbert space. Thus, the operator
e−iλi /Nt Pi t that appears in (30) can typically be decomposed as a short sequence of one- and
two-qubit gates. Thus, the original unitary evolution operator U has been broken down, up to
a controllable error ϵ∝ t 2/Nt , as a sequence of one- and two-qubit gates that form a quantum
circuit.

The ideal computational complexity for performing the corresponding computation is
O(Nt Np Nc ) ∼ O(t 2/ϵ). The scaling in the error ϵ is of the form poly(1/ϵ), a scaling regarded as
“tractable”.

The final relevant term is Np , the number of Pauli terms, which we need to assess as a
function of the system size. Typically, for spin Hamiltonians on a lattice, like the Ising (see
Equation (25)), XY or Heisenberg models, Np is proportional to the system size n. For fermionic
models and in particular for the Hubbard model introduced previously (Equation (2)), we first
need to transform the fermionic Hamiltonian in the form of Equation (29). There are several such
fermion-qubit transformations or “encodings”. A straightforward transformation is the Jordan–
Wigner transformation, which maps the creation and annihilation operators onto Pauli spin
operators as follows:

c†
α =

α−1∏
β=1

Zβ

(
Xα− iYα

2

)
, cα =

α−1∏
β=1

Zβ

(
Xα+ iYα

2

)
. (31)

The operator Xα− iYα/2 =σ+
α flips theαth qubit (corresponding to theαth spin-orbital), while

the string of Z operators takes care of fermionic anticommutation relations. Thus e.g. a hopping
term c†

αcα′ maps to 4 Pauli strings of the form σαZα+1 · · ·Zα′−1σα′ (with σα/α′ ∈ {X ,Y }). Since the
Hubbard model has O(n) terms, the Jordan–Wigner transformation will lead to a number of Pauli
terms Np =O(n). For the general electronic structure Hamiltonian (Equation (1)) used to model
quantum chemical systems, Np is dominated by the Coulomb interaction term, Np =O(N 4

o ) (with
No the number of orbitals).
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Thus, generically, for physical systems written in a second-quantized form, Np ∼ poly(n)
where n is the size of the system. This gives a total scaling O(t 2/ϵpoly(n)). Interest-
ingly, replacing the first-order Trotter formula with a pth-order formula will lead to a scal-
ing O(t (1+p)/p /ϵ1/p poly(n)), which, in the limit of p → ∞, becomes O(t 1+o(1)/ϵo(1)poly(n)) (see
e.g. [78, chapter 5]), namely in the absence of Trotter errors we get a linear run time, as expected.

This scaling, which is behind Feynman’s original idea [60], is very favorable to quantum com-
puters when compared to the exponential scaling (in size and/or time and/or other parameters)
of the classical methods described above. This exponential advantage is the very reason for the
strong push of quantum computing in the last decades. Of course, much remains to be done to
improve the implementation of the unitary at hand. While the understanding of Trotter formulas
and their errors is making progress (see e.g. [77]), alternatives to Trotter formulas have appeared
in recent years (see e.g. [79–82]).

Let us stress that while we introduced Hamiltonian simulation as a means to implement the
slow time evolution required in adiabatic annealing, it of course applies to any time evolution,
like a sudden change (quench) of a parameter of a Hamiltonian, which leads to time evolutions
that are hard to describe on classical computers.

3.1.4. Computing ground state energies: quantum phase estimation

With the adiabatic annealing algorithm and a circuit to implement time evolution, we can in
principle prepare a quantum processor in the ground state of a given Hamiltonian. We are now
facing the problem of measuring the energy of this state, or other observables like the many-
particle correlators required e.g. in embedding techniques.

The energy estimation problem. Measurements in quantum processors are usually limited to
measurements of Pauli operators Zi on each qubit i . With these measurements, one can easily
estimate expectation values of the form 〈Zi1 · · ·Zim 〉 or, via single-qubit rotations, the expectation
value of any string of Pauli operators. However, this expectation value estimation—which, at face
value, is needed to compute the energy 〈Ψ0|H |Ψ0〉 of the state we prepared—is plagued with
the same statistical variance as the classical Monte-Carlo algorithms we introduced previously
(see Equation (9)). Indeed, it consists in approximating an expectation value with an empirical
average on a finite number of samples. (This will turn out to be a major limitation of the near-
term algorithms we will introduce later).

A key quantum algorithm, called quantum phase estimation (QPE, [83], that is also, inciden-
tally, at the heart of the aforementioned Shor algorithm), avoids this statistical error by resorting
to a circuit inspired by Mach–Zehnder interferometry [84].

QPE consists in extracting the phase ϕ of the eigenstate |ψ〉 of a unitary operator U such that
U |ψ〉 = eiϕ|ψ〉, given a circuit implementation of U . Applied to U = e−iH t and an eigenvector
|ψ〉 of H , QPE allows to extract the eigenenergy of this eigenstate. This is achieved with an
accuracy ϵ ∼ 1/2m , where m is the number of auxiliary (or ancilla) qubits used in addition to
those needed to encode |ψ〉. This comes at a computational cost of O(2m) (QPE requires the
successive application of controlled U 2k

operators with k = 0. . .m − 1, hence the O(2m) cost).
QPE thus achieves a time complexity of O(1/ϵ), a quadratic gain over the time complexities of
O(1/ϵ2) that Monte-Carlo algorithms must cope with (recall Equation (9): a set error ∆g = ϵ leads
to a number of samples, and hence a run time, N ∼ 1/ϵ2).

QPE also comes with the useful property of projecting any incoming vector |φ〉 to an eigen-
vector |ψ〉 of U with probability P ∝Ω=|〈φ|ψ〉|2. This can also be regarded as a downside: the
success probability of the algorithm is proportional toΩ, the overlap with the sought-after eigen-
state. Therefore, a number 1/Ω of repetitions of QPE is needed to find the phase with high prob-
ability.
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Hence, QPE can be used to prepare ground states and find ground state energies of Hamiltoni-
ans such as the Hubbard model: starting from a guess |φ〉 for the ground state of H with sufficient
overlap with the true ground state |ψ0〉, one can in principle extract the ground state energy E0

to great accuracy. The U 2k
operators can be implemented with the Trotter–Suzuki technique we

just described for time evolution.
The preparation of an input state sufficiently close to the ground state is a key challenge. The

simplest way is to find a classical method (such as the ones we reviewed in Section 2) to prepare
an input state and then load it onto the quantum computer (how to do so depends on the classical
representation of the state, and can be expensive). Another, more quantum way, is to use QPE in
an annealing-like iterative procedure, dubbed adiabatic state preparation (ASP, [85]): one applies
several QPEs with H interpolating, as in Equation (28), from an easy Hamiltonian H0 with known
ground state |Φ0〉 (e.g. Hm.f, Equation (4)) to the Hamiltonian of interest H . As per the adiabatic
theorem, the number of required steps for this ASP is of the order of O(poly(1/∆min)), where∆min

is the minimal gap between the ground state and the first excited state of the Hamiltonian that
interpolates between H0 and H [74]. The behavior of this gap with system size is difficult to
predict.

Taking the first approach (using a classical heuristic), the complexity of QPE can thus be
estimated by looking at the overlaps achieved by known methods in cases where the exact ground
state is known. Reference [86] shows that, as expected, for weakly-correlated molecules (aka
single-reference or dynamically correlated systems), the Hartree–Fock method does yield states
with good overlaps with the true ground state. For more correlated systems, like the Hubbard and
Anderson models with larger U /t ratios and small fillings, the overlaps become quite small ([86],
see also [87]).

Computing other observables. Computing other observables, like the correlators needed for
DMET or RISB (Equation (23)), or the Green’s function for DMFT (Equation (20)), boils down
(at zero temperature) to computing quantities of the form 〈ψ|Umeas|ψ〉, with |ψ〉 e.g. the ground
state wavefunction (typically prepared with the QPE-ASP procedure described above), and Umeas

a unitary operator.
For instance, after a Jordan–Wigner transformation, a local ci (t )c†

i (0) term appearing in the
Green’s function becomes

U †(t )
Xi + iYi

2
U (t )

Xi − iYi

2
= 1

4
{U †(t )XiU (t )Xi − iU †(t )XiU (t )Yi

+ iU †(t )YiU (t )Xi +U †(t )YiU (t )Yi },

where U (t ) = e−iH t denotes the time-evolution operator. Thus, computing 〈ψ|ci (t )c†
i (0)|ψ〉

amounts to computing four expectation values. For instance, the first term is
〈ψ|U †(t )XiU (t )Xi |ψ〉: it is of the form 〈ψ|Umeas|ψ〉 and can be computed with two circuits
(one for the real part, another for the imaginary part), shown in Figure 5. In addition to the
state-preparation circuit needed to prepare the initial state |ψ〉, one must also implement a
Trotterized version of the evolution operator U (t ), as well as controlled-Pauli operations.

Using these techniques, one can thus, at least in theory, hope to take advantage of quantum
computers to overcome the exponential hurdles that classical methods all face. This was pro-
posed in the DMFT context in [88–90].

However, in practice, the circuits involved in these tasks are potentially quite deep: the
controls on the time evolutions lead to numerous entangling gates, and a large number of Trotter
slices—needed to maintain a small Trotter error—leads to a high number of gates. For instance,
the current noise levels make QPE-based approaches impractical. To obtain the ground state
of the Hubbard model to accuracy ∆E/E0 ≤ 0.5% for models up to 512 sites (16 × 16 lattice),
the required number of T gates is of the order of 107–108 according to the estimates of [91].
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Figure 5. Circuits for computing a Green’s function. Top panel: circuit for computing
〈ψ|U |ψ〉. Bottom panel: circuit for computing 〈ψ|Pk (t )Pl (t ′)|ψ〉. Taken from [46]. With
kind permission of The European Physical Journal (EPJ).

Using a surface code (a quantum error correction code suitable to superconducting architectures,
see [92]), assuming a physical gate error rate of 0.1%, this requires about one million physical
qubits and about half an hour of computation.

3.2. Reality: noisy, intermediate-scale quantum computers

3.2.1. The exponential effect of decoherence

Current quantum processors are far from perfect. They suffer from various imperfections:
initialization errors, gate errors, readout errors, and idling errors (errors incurred by inactive
qubits), to cite the most prominent sources of errors. Gate errors may come from miscalibration
(operating a Rabi oscillation on a qubit requires exciting the qubit at its nominal frequency;
if this frequency is known only approximately and/or varies with time, a systematic under- or
overrotation will occur) or unwanted interaction with the environment.

Mathematically, noisy quantum states (dubbed mixed states) are described by density matri-
ces, usually denoted as ρ, as opposed to the pure states |Ψ〉 we have used so far. The time evo-
lution is no longer described by a unitary operator U , but by a quantum channel, namely a com-
pletely positive, trace-preserving linear map E (ρ). A unitary gate U is described by the channel
U (ρ) =UρU †, while generic noisy gates are described by

E (ρ) =∑
k

EkρE †
k ,

with the Kraus operators Ek satisfying
∑

k E †
k Ek = I to preserve the trace. A typical figure of merit

of quantum gate is the average fidelity of the corresponding quantum channel, defined as

F (E ,U ) =
∫

dψ〈ψ|U −1 ◦E (|ψ〉〈ψ|)|ψ〉, (32)

where dψ denotes the Haar measure on quantum states and U denotes the ideal unitary opera-
tion of the gate. Error rates are defined as ϵ= 1−F . (Similar metrics exist for qubit initialization
and readout).

Typically, in today’s superconducting processors [93, Supplementary Figure 4], readout errors
of the order of 1%, two-qubit gate errors of the order of 0.5%, and one-qubit gate errors of the
order of 0.1% are typically measured using various benchmarking protocols.
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The cumulated effect of errors on the final state or final measurements is generically exponen-
tial in the number of operations. To understand this, we can consider a simple quantum channel
called the (global) depolarizing channel,

Edepol(ρ) = (1−p)ρ+p
I

2n . (33)

Here the depolarizing probability p tells one how often the state ρ becomes “completely
mixed”. Upon applying this channel after each of the Ng gates Uk of a circuit, starting from a
state ρ, one obtains

E (ρ) = (1−p)Ng UρU † + (
1− (1−p)Ng

) I

2n ,

where U =∏Ng

k=1 Uk . Thus, for a given input state |ψ〉, 〈ψ|U −1 ◦E (|ψ〉〈ψ|)|ψ〉 = (1−p)Ng +(1−(1−
p)Ng )1/2n ≈ (1−p)Ng (using 1/2n ≪ 1). Thus the process fidelity, for small p, can be expressed as
a product of the fidelities f = 1−p of the individual operations:

F (E ,U ) ≈ (1−p)Ng . (34)

Such an exponential decay of fidelity with the number of operators, proven here exactly for the
depolarizing channel, is also observed in actual experiments, like the random circuit sampling
task of Google [94].

This exponential decay of fidelity places a severe limitation of what can be achieved on near-
term computers. We shall see, in Section 4.1, how this product law for fidelity can be used to
quantitatively delineate the boundary to a potential “advantage” of quantum processors. More
importantly, this stark decay has also spurred the development of algorithms requiring less
deep circuits than, for instance, the quantum phase estimation circuit described in the previous
section.

3.2.2. Variational algorithms for near-term quantum processors

The variational quantum eigensolver. The textbook quantum algorithms presented in a previ-
ous section (Section 3.1) require a number of gates Ng incompatible with the error levels (e.g. p in
the depolarizing channel presented in the previous section, Equation (33)) available on current
quantum processors. A simple way to reduce this number of gates was proposed in [95]. The idea
was to use quantum computers to prepare, and compute the energy of, variational states |ψ(θ)〉,
and offload the rest of the computation to a classical processor. Given an expressive enough vari-
ational family, the variational principle

E(θ) = 〈ψ(θ)|H |ψ(θ)〉 ≥ E0, (35)

(with E0 the ground-state energy of H) guarantees that a proper optimization, by a classical
computer, of the parameters θ, will lead to a good enough approximation of the ground-state
energy E0. This is illustrated in Figure 6.

This approach, dubbed the variational quantum eigensolver (VQE, see [96] for a review,
and [97] for an analog version), is robust to systematic errors like overrotations: if a rotation
is of angle θ̃ = θ + δθ instead of the wished-for θ, the classical optimization will converge to
θ̃∗ = θ∗ − δθ without necessitating a knowledge of the miscalibration error δθ. Yet, its main
advantage over previous approaches to ground state estimation is that the variational family
|ψ(θ)〉 can be chosen at one’s convenience. For instance, one may choose a quantum circuit
Uθ that is shallow enough to ensure that the fidelity of the final state ρ(θ) = Eθ(|0〉〈0|), with
Eθ the noisy counterpart of Uθ, is close to 1. A major challenge therefore lies in finding short,
but expressive enough variational state preparations. Methods in this direction are presented in
Sections 4.2, and, to a lesser extent, 4.1.
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Figure 6. Sketch of the VQE algorithm. The left part is realized on a classical processor,
while the right part is performed on a quantum processor.

Let us emphasize that switching to variational algorithms like VQE comes at a double price,
even in the absence of decoherence.

First, the variational formulation of the ground state energy problem poses the question of the
optimizability of the potential landscape E(θ) (Equation (35)). For uniformly random circuits
(which have the largest expressivity), the phenomenon of concentration of measure—energy
expectation values for a given variational circuit tend to gather around the circuit-average value
as the size of the Hilbert space increases—leads to the so-called barren plateau problem ([98],
see [99] for a review): gradients of E(θ) become exponentially small, even in the absence of noise
(which further compounds this phenomenon). Physically motivated ansätze (like the unitary
coupled cluster, UCC, ansatz, used in chemistry, see Section 2.1.6) could also suffer from this
problem if they are deep enough [100].

In fact, the barren plateau problem is directly linked to the expressiveness of the ansatz:
the variance 〈E(θ)2〉− 〈E(θ)〉2 (here 〈· · · 〉 denotes average over the parameter space) of the cost
landscape, whose vanishing signals a barren plateau, is inversely proportional to the dimension
of the so-called dynamical Lie algebra (DLA). If the parametric circuit is U (θ) = ∏

k e−iθkGk , the
DLA is the vector space generated by nested commutators of the generators Gk of the parametric
circuit. (In fact, this statement holds for simple Lie algebras and more importantly, for circuits
deep enough that they form a “2-design”, namely an effectively random circuit, see [101] for the
full result and its derivation). In other words, the larger the variational space being explored by
VQE, the more likely the occurrence of flat landscapes.

A second price of VQE is that the estimation of the variational energy 〈ψ(θ)|H |ψ(θ)〉
at each step is performed, in practice, by splitting H as a sum of Pauli terms, H = ∑Np

i=1λi Pi ,
collecting the average value 〈ψ(θ)|Pi |ψ(θ)〉 of each local operator, and then summing the terms
(see Figure 6). The second stage is essentially the construction of a classical estimator of
〈ψ(θ)|Pi |ψ(θ)〉: one generates |ψ(θ)〉, does a projective measurement of Pi , which yields a ±1
outcome π(i )

s , and repeats the procedure N times, yielding

〈ψ(θ)|Pi |ψ(θ)〉 ≈ 1

N

N∑
s=1

π(i )
s = P̂i (N ). (36)

The finite-sampling error ϵ between the left-hand side and the right-hand side scales as
1/
p

N , so that the computational time of VQE will generically scale as O(N ) = O(1/ϵ2), as
in classical Monte-Carlo techniques encountered in Section 2.1.3. This is a major drawback
compared to QPE, whose run time scales as 1/ϵ (albeit with many more gates and thus the need
for an error-corrected quantum computer, as explained in Section 3.1). VQE also suffers from
a major drawback compared to variational Monte-Carlo because, contrary to VMC, it does not
benefit from the variance reduction phenomenon: as one gets closer to the sought-after ground
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state, the variance of the individual Pauli terms does not vanish (the eigenstate of H is not an
eigenstate of the individual Pi ’s), as is the case in VMC for the local energy.

It must be pointed out that mathematical statements about barren plateaux are average
statements. They do not preclude the existence of portions of the parametric space where
gradients do not vanish. However, these “fertile valleys” are narrow ones [102]. One of the
future challenges of VQE is to start the optimization process close to or in these narrow gorges.
Using classical methods to find good starting points is most probably a promising avenue in
this direction. The recently introduced adaptive ansatz generation strategies, which construct
the ansatz by selecting the operators that maximize the gradients, are also promising in this
respect [103, 104].

Of course, even in the absence of barren plateaux and if shot noise is small enough, decoher-
ence also has to be reckoned with. A major challenge of VQE is thus to find the shallowest ansätze
to curb the deleterious influence of noise.

The design of variational quantum circuits. Designing variational quantum circuits U (θ) must
meet two contradictory goals: being expressive enough to be able to reach the sought-
after ground state during optimization, and being short enough to limit the impact of
decoherence.

To meet the expressivity requirement, a simple strategy, sometimes called the hardware-
efficient ansatz [105], is to define a circuit that is “entangling enough” by using the available
two-qubit gates on the hardware (hence the name), and random single-qubit rotations, so that
the state created by the ansatz approximates well a random quantum state. These states are
characterized by a high level of entanglement, and may therefore have a good chance of getting
close to the ground state of the Hamiltonian. A main drawback of these circuits, however, is that
they are very prone, by design, to the barren plateau problem.

The complementary strategy is to construct physically-motivated ansätze: they will cover the
Hilbert space less extensively but will be easier to optimize. A well-known ansatz in this family
is the unitary coupled cluster (UCC) ansatz we introduced in Equation (19). Since T − T † is
antihermitian, eT−T †

is unitary and can thus a priori be implemented on a quantum processor.
In practice, this is achieved by finding a Pauli decomposition T −T † = i

∑
k λk Pk and Trotterizing

the corresponding sum of terms as described above (Section 3.1.4). The length of the so-
obtained circuit is polynomial in the number of orbitals, contrary to (untruncated) classical
implementations of the UCC (or VCC) methods, raising hopes that VQE could bring an advantage
compared to classical methods.

Among physically-inspired ansätze, one can also mention the Hamiltonian variational ansatz
(HVA, [106]), which is inspired by the annealing method (see Section 3.1.4). Following the
adiabatic theorem, if one starts from the ground state of the Hamiltonian H at hand (say the
Hubbard model) where one has removed the hopping terms (such a Hamiltonian, H0, commutes
with c†

i ci and thus admits Fock states, namely factorized states, as eigenstates |Φ0〉), and deforms
it (see Equation (28)) into the Hamiltonian of interest H , one is guaranteed to end up in the
ground state of H . The HVA takes inspiration from the Trotterization of the interpolating
Hamiltonian by proposing the following ansatz:

|Ψ(θ)〉 =
M∏

k=1
e−iθ2k H0 e−iθ2k+1 H |Φ0〉, (37)

with 2M parameters θ. The hope underlying the method is that the total duration of the circuit
once the parameters have been optimized is shorter than the (long) duration dictated by the
adiabatic theorem (HVA relies on the hope to perform a “shortcut to adiabaticity”).
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3.2.3. Applications to fermionic many-body problems: from molecules to the Hubbard model to
the Anderson model

After its introduction by [95], VQE was tested on a number of toy systems that served as proofs
of concept, with no aim to compete with classical methods (see e.g. [107] for an application
for the H2 molecule). In parallel, theoretical papers estimated the amount of computational
resources required to reach a satisfactory level of accuracy for larger systems beyond toy models.
In particular, [106] gave resource estimates for computing the ground state energy of small
molecules to chemical accuracy, namely to within 1 mHa of the exact ground state energy (such
levels of accuracy are needed to compute chemical rates: those depend on activation energies Ea

through a factor ∝ e−Ea/kBT via the Arrhenius or Eyring laws; only predicting whether a reaction
is likely or not to happen requires that Ea, and therefore the ground-state energies involved in
computing Ea, be known at least up to a O(kBT ) error; at room temperature, this corresponds to
1 mHa). To obtain a resource estimate, [106] used the fact that the shot noise error can be upper
bounded as

∆H(N ) ≤ ∥H∥1p
N

, (38)

with the one-norm defined as ∥H∥1 = ∑
i |λi |. Such an estimate is based on a nonuniform

allocation of shots among the Pauli terms: each Pauli term λi Pi in the decomposition of H
receives a fraction of the total budget proportional to |λi | ([108]; more advanced strategies are
possible, see e.g. [109], but do not alter the upper bound). At least N ≈ ∥H∥2

1/∆H 2 are thus
needed to reach a given accuracy ∆H . For the H2O molecule, since ∥H∥1 = 36 Ha (in the
STO-6G basis), one obtains a number of N = 362/(10−3)2 ≈ 109 samples. Assuming a clock
cycle (processor rate) of 1 MHz (an optimistic estimate for superconducting processors, whose
measurement durations are in the µs range), this corresponds to 1000 s per energy evaluation,
without factoring in gradients (which basically require a multiplication of the above figure by the
number of parameters). Counting gradients and the number of optimization steps, one easily
reaches months [106].

Similar estimates for the Hubbard model lead to less dire estimates—of the order of days—due
to a smaller number of terms and translation invariance [106]. This appears more promising,
although this estimate completely leaves aside optimization issues (the barren plateau problem)
and decoherence.

As argued in the introductory section, using embedding techniques like DMFT, RISB or DMET
bring another level of simplification by shifting the focus to a simpler effective model, namely
the Anderson impurity model (AIM, Equation (21)). Motivated by the success of these techniques
and by the more modest effort of solving the AIM compared to the Hubbard model, a few works
proposed to use a quantum processor to solve the impurity model.

References [89] and [88] introduced the general methodology of using quantum processors
to solve DMFT equations. Reference [89] numerically simulated the effect of hardware errors
in a trapped-ion implementation of a nonequilibrium DMFT scheme to describe a quench of
the kinetic term of the Hubbard model, with 3 to 21 qubits (corresponding to 2 and 10 AIM
bath sites, respectively). The Green’s function was measured using a Trotter compilation of
the time evolution (as described above). Reference [88] focussed on equilibrium DMFT, with
a proposal to use quantum phase estimation to measure the Green’s function. The following
works, which were aimed at practical implementations, resorted to a simplified DMFT scheme
called two-site DMFT [110], which consists in limiting the bath to only one bath site. This in
turns means that only 4 qubits are needed. Reference [90] numerically simulated two-site DMFT
with a (noiseless) superconducting platform implementation of the Trotter evolution required
by the Green’s function computation, while the implementation of the ground state preparation
needed to initialize the Green’s function circuit was not discussed. Reference [111] implemented
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two-site DMFT with VQE as the algorithm used to compute the energy of the ground state as
well as of the N +1 and N −1 manifolds needed to compute the Green’s function in a Lehmann
representation. This VQE was implemented on superconducting as well as trapped-ion hardware.
Reference [112] performed noisy simulations of two-site DMFT, with a standard Trotter time
evolution to compute the Green’s function, and a black box for the ground state preparation.
The minimal levels of noise needed to get useful results for two-site DMFT were computed in
this same work. Reference [113] implemented a Gutzwiller (RISB) method to study the periodic
Anderson model (a variant of the Hubbard model), with a VQE-based, two-qubit implementation
on a superconducting processor. More recent work [114] carried out a DFT+DMFT computation
for a multiorbital Hubbard model with an AIM with up to 6 bath sites (and a single impurity),
corresponding to 14 qubits. However, the determination of the optimal VQE parameters was
done on a classical computer.

All the experimental runs comprising a full-blown state preparation were limited to at most
4 qubits, and should thus be considered as mere proof-of-principle experiments. The main
question this state of affairs raises is how to increase the size of the AIM (whether in terms of
number of impurities, or number of bath sites, or both) while remaining tractable. We will give
some insights into this in the next section.

4. Paths towards useful quantum-classical algorithms

In the previous two sections, we have outlined the main methods used on classical computers
(Section 2) and on the emerging quantum processors (Section 3) for solving fermionic quantum
many-body problems. We have identified specific advantages and drawbacks of both computing
paradigms, and in particular

(1) the difficulty of classical computers to handle equilibrium systems with long-distance
correlations and/or a high degree of entanglement, limiting the reach of the most ad-
vanced methods to solve strongly-correlated models like the Hubbard model, or even
simpler models, self-consistently “distilled” by embedding methods, like the Anderson
impurity model;

(2) the difficulty of classical computers to handle out-of-equilibrium dynamics due to the
fast growth of entanglement;

(3) the limitations of current noisy quantum hardware due to decoherence, which put a low
cap to the maximum size of viable quantum circuits;

(4) the fundamental limitations of even noiseless quantum circuits, like shot noise, or the
need for input states with high overlaps in quantum phase estimation.

The goal of this section is to outline recent research results to overcome some of these difficulties
with a common pattern: the combination of classical and quantum algorithms to solve the many-
body problems at hand.

Three main directions will be elaborated on: Section 4.1 explores how tensor network methods
can be used to delineate, and perhaps reach, quantum advantage. Section 4.2 elaborates on
hybrid methods for tackling fermionic many-body problems. Finally, Section 4.3 extends the
scope to hard optimization problems, which can be regarded as classical many-body problems,
and which are natural targets for quantum processors.

4.1. Tensor networks: classical yardsticks of quantum supremacy claims . . . and antidotes
to the plague of decoherence?

As discussed in Section 4.1 above, tensor networks are powerful classical tools to represent many-
body states. As it were, tensor networks are also deeply tied to quantum circuits: executing a
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Figure 7. Tensor network representations of quantum circuits and contraction strategies.
(a) General tensor network, with vertices ψ0, u1, u2, u3 and x1, x2, x3, and edges a1, a2, a3,
b1, b2, b3 and c1, c2. (b) “Schrödinger” strategy to contract the tensor network: the quantum
state is stored as a dense 2 × 2 × 2 array ψb1,b2,b3 . (c) Matrix-product-state strategy: the
quantum state is represented as a matrix product state, e.g. with three connected tensors.
After the application of a two-qubit gate, a SVD compression is performed.

quantum circuit on a gate-based quantum processor can be regarded as contracting a tensor
network. Before we explain this statement, let us emphasize that this deep connection both
opposes, and brings closer, tensor network methods and quantum computing: it opposes them
as two competing methods, whose computational merits and shortcomings can be compared;
it brings them closer as complementary methods, which could possibly be used in combination
with each other depending on the hardware constraints of the computation.

Thus, tensor network provide a natural comparison point for the run time and memory
cost of perfect quantum computations, namely the CPU and memory needed for contracting
the corresponding tensor network. As we shall see in the next section, this comparison point
has been used to support claims of quantum supremacy. However, we will also argue that
for the noisy quantum computers that are available today, the reference point should be a
lossy contraction of the tensor network (Section 4.1.1). We will also see that some tensor
networks could potentially be used to construct quantum circuits that are more robust to noise
(Section 4.1.2).

The connection between a quantum circuit execution and a tensor network contraction is
the following. The expectation values 〈ψ|Ô|ψ〉 or outcome probabilities |〈x|ψ〉|2 (where x =
(b1,b2, . . . ,bn) represents a bitstring, and |x〉 an eigenstate of the Ẑ ⊗ Ẑ · · · Ẑ operator), of a state

|ψ〉 = ∏Ng

k=1 Uk |0〉⊗n generated by a quantum circuit with Ng gates on n qubits can be regarded
as the outcome of contracting a tensor network. As a reminder, a tensor network is defined by a
graph G = (V ,E) with vertices V and edges E , and tensors {Tk }k∈V associated to each vertex. In
our situation, the tensors correspond to gates {Uk }k=1...Ng , operators Ô or states |ψ〉, |x〉 or |0〉⊗n ,
and one edge (i , j ) of the graph corresponds to a summation over the corresponding indices of
tensors Ti and T j . This is illustrated in Figure 7(a) for the computation of 〈x|ψ〉 = 〈x|U |0〉⊗n

for n = 3 qubits. To compute the actual values 〈ψ|Ô|ψ〉 or |〈x|ψ〉|2, one needs to perform the
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contraction of the tensor network, namely actually perform the summation over the internal
variables. Two steps are necessary for this: the determination of the contraction order (some
orders yield better computational complexities) and the contraction itself. The determination of
the optimal contraction order (that leads to the smallest complexity) is a NP-complete problem.
As already discussed in Section 2.1.4, finding this order generically scales as O(eT (G)), where
T (G) is the so-called treewidth of the graph. For graphs corresponding to, e.g. l × L lattices,
T (G) ∼ min(l ,L). Thus, if a circuit topology roughly corresponds to a n × D lattice (where n
is the number of qubits and D the depth of the circuit), the generic cost of finding the best
tensor contraction order for this circuit is O(emin(n,D)). The general space complexity of the
contraction is also of order eT (G). This means that tensor network contractions are in principle
exponentially costly, making a strong case for (perfect) quantum computers: they “contract”
this tensor network in polynomial time. However, real quantum computers come with their
own exponential burden, namely decoherence (Equation (34)). The outcome of the comparison
between tensor networks and quantum computers thus depends on the parameters of the circuit
to be executed or simulated and on the hardware properties.

4.1.1. Assessing quantum supremacy claims with grouped matrix product states

Google’s supremacy claim with random quantum circuits. The advent of large-scale quantum
processors, with tens of qubits, in the 2010s, led to efforts to design special experiments geared
at demonstrating the advantage of quantum computers over classical computers. The first such
claim was made in 2019 by Google’s team using transmon processors [94], essentially coupled
anharmonic oscillators described by a Bose–Hubbard model. The task that Google proposed as a
possible low-hanging fruit for demonstrating quantum advantage of these processors over clas-
sical algorithms was that of sampling bitstrings in random, two-dimensional quantum circuits
with 53 qubits. Such circuits are known to lead to a fast growth of entanglement entropy [115].
They are therefore the best way to beat the exponential decay of fidelity presented in Section 3.2.1
while being difficult targets for tensor contraction techniques (and their exponential scaling with
entanglement).

The main figure of merit of Google’s experiment was the so-called linear cross-entropy bench-
marking fidelity,

XEB = 2n

N

N∑
i=1

P (xi )−1, (39)

where P (x) = |〈x|Ψ〉|2 = |〈x|U |0〉|2 is the probability of measuring bitstring x after the execution
of the random quantum circuit described by unitary operator U , and {xi }i=1...N are N samples
measured in the experiment (note that P (x) is exponentially costly to compute, a fact that led
us to propose an alternative benchmark of quantum computers, see Section 4.3.3 below). Under
certain assumptions, this number can be proven to equal the state fidelity F = 〈Ψ|ρ|Ψ〉 of the
(noisy) final state ρ obtained in the experiment.

Google’s claim essentially was that the run time needed to reach a given XEB in the experiment
(0.2% in the 2019 experiment, down from 100% for a perfect quantum computer) was orders
of magnitude smaller (200 s compared to 10,000 years) than that of performing a classical
computation to sample from the final distribution with a similar quality. The figure of 0.2%
can be obtained directly (albeit only roughly) from the product formula Equation (34) with the
experiment’s error rates and number of operations. The figure of 10,000 years was obtained by
resorting to a particular way of contracting the tensor network corresponding to the random
quantum circuit at hand. We sketch here the rough strategy: instead of performing the full tensor
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network contraction, Google considered the computation of P (x) as the square modulus of the
summation over the internal indices of the tensor network:

P (x) =
∣∣∣∣∣ ∑

a1,a2,a3,b1,b2,b3,c1,c2

[
ψ0

]
a1b1c1

[u1]a1a2 [u2]a2b1a3b2 [u3]b2c1b3c2 [x1]a3 [x2]b3 [x3]c2

∣∣∣∣∣
2

(here spelled out in the simple case illustrated in Figure 7). They evaluated cost C of evaluating
one term (one fixed assignment of a1, a2, a3,b1,b2,b3,c1,c2) on a classical computer. To get the
total (naive) contraction cost, one then in principle needs to multiply C by the number A of
possible assignments or “paths” (in analogy to the Feynman path integral technique, [116]). In
practice, however, the finite XEB or fidelity needs to be taken into account; it can be shown that
summing only a fraction F of the paths leads to a state of fidelity F with respect to the perfect
state (that corresponds to all paths). Therefore, the back-of-the-envelope total computational
cost is F ·A ·C . The 10,000 years are obtained from a similar formula.

Many followup works challenged Google’s estimation of the best classical run time. Most
relied on a combination of the general tensor network contraction strategy outlined above and
the Feynman-path approach: the so-called tensor-slicing method selects only a subset of the
internal variables for a Feynman-like handling, and contracts, using usual tensor-contraction
strategies, the rest of the internal variables. These methods [117–120] led to greatly reduced
estimations, down to a few seconds. However, due to the aforementioned inherent exponential
scaling of tensor network contraction methods, these methods are hardly scalable, since they are
exponential in the number of qubits or depth of the circuit.

A tensor network compression strategy. A different strategy to tackle the problem of matching
experimental fidelities with a classical technique was proposed in [121]. It consists in performing
the tensor network contraction in a “Schrödinger”-style, as illustrated in Figure 7(b): the tensors
are contracted from the left to the right, i.e. following the time arrow, like the evolution of
a Schrödinger equation. However, to avoid the computational cost of storing the full wave
function and of performing the matrix-vector multiplications corresponding to the contractions,
the wavefunction is stored not as a dense vector of 2n complex amplitudes, but as a matrix
product state (see [122] for a first use of MPS to emulate quantum circuits). Each entangling
gate is followed by a compression step via a singular value decomposition (SVD), see Figure 7(c).
The singular values (also known as Schmidt coefficients in this context) si are truncated when
their index is larger than the bond-dimension χ of the MPS.

The fidelity of such a compression is given by the overlap between the original MPS state |ψ〉
(with Schmidt coefficients si ) and the compressed state |ψ̃〉 (the truncated singular values s̃i are
also renormalized to preserve the unity of the norm):

f = ∣∣〈ψ|ψ̃〉∣∣2 =
(∑

i
si s̃i

)2

= ∑
i≤χ

s2
i . (40)

For random quantum circuits, the product formula Equation (34) can be shown to hold ([121]),
so that the final fidelity can be estimated as

FMPS = |〈Ψ|ΨMPS〉|2 ≈
∏
k

fk , (41)

where fk is the fidelity of the kth compression step. Such an algorithm works, but the final fidelity
F obtained for 2D circuits of the type used by Google’s team is far below the aimed-for 0.2%. This
failure comes from the numerous contraction steps and from the fact that the singular values
of the random quantum states generated by the circuit have a very long tail, which means that
neglecting even high-index singular values causes a sizable error 1− f =∑

i>χ s2
i .
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Figure 8. “Grouped” MPS representation of a 8-qubit quantum state |Ψ〉: the eight qubits
are partitioned into three groups of 3, 2 and 3 qubits respectively, corresponding to three
tensors M (1), M (2) and M (3). A standard MPS would use n tensors for n qubits. Adapted
from [123]. Copyright (2023) by the American Physical Society.

Figure 9. Compression step in the DMRG algorithm. (a) General schematic of the com-
pression step: one adds K (Nl in the text) layers of the quantum circuit, then approximates
the resulting state with a MPS. (b) Tensor network representation of the scalar product to be
optimized. (c) Computation of the F (τ) tensor. From [123]. Copyright (2023) by the Ameri-
can Physical Society.

This is true even when using so-called “grouped MPS” [121], where some of the qubits are
grouped into one tensor (instead of one tensor per qubit for regular MPS), as illustrated in
Figure 8. Grouped MPS interpolate between a dense representation of |Ψ〉 (of storage cost 2n)
and a plain-vanilla MPS representation (of storage cost ≤ 2χ2n).

A subsequent work of ours [56] addresses this issue by switching from a SVD compression
strategy to a strategy inspired by the density-matrix renormalization group (DMRG) method.
Instead of compressing the (grouped) MPS after each entangling gate via a SVD, we optimize
the MPS only after a certain number of layers of entangling gates using the DMRG algorithm,
namely by finding the MPS of fixed bond dimension with largest overlap with the state obtained
by applying a number Nl of entangling layers on the previous MPS, as illustrated in Figure 9(a)
and (b). To perform this optimization technique, we need to perform the contraction of a network
containing the previous MPS and Nl new layers, with a cost of O(eNl ) provided Nl ≤ n (using the
treewidth estimation of the cost): indeed, the optimal tensor M (τ)∗ is given, up to a normalization
constant, by

M (τ)∗ ∝ F (τ),

with F (τ) graphically defined in Figure 9(c), namely it is essentially a Nl ×n grid of tensors to be
contracted.

This new optimization strategy leads to larger compression fidelities, as illustrated in Fig-
ure 11, which compares the technique used in [121] (dubbed time-evolving block decimation,
TEBD, in reference to a similar method for time-evolving matrix product states) with two vari-
ants of our technique, the “open” and the “closed” simulation. The open strategy contracts the
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Figure 10. Circuits used in the MPS simulations. Left: Google (modified) supremacy
sequence. Right: QAOA circuit for a MaxCut problem. From [123]. Copyright (2023) by
the American Physical Society.

circuit on the initial MPS from left to right, yielding an “open” MPS, namely with arbitrary exter-
nal indices. The closed strategy aims at computing 〈x|Ψ〉 for a fixed bitstring |x〉: one fixes the
external indices to a set bitstring x and contracts the circuit both from the left and from the right,
thus halving the effective depth of the circuit and thus improving the compression error. The
fact that our method (in its two variants) outperforms the TEBD variant can be ascribed to the
lesser frequency of compression steps and, more importantly, to the larger optimization freedom
entailed by DMRG compared to simple SVD compression, a well-known feature in MPS [23].

Concretely, for Google’s random circuits on 54 qubits (a sketch of which is shown in Fig-
ure 10(left)), we obtain fidelities above the experimental fidelities for bond dimensions of χ∼ 50,
corresponding to a few hours of computations. More importantly, the scaling of our simulation
is not exponential in the circuit depth D nor in the number of qubits n = nc ×nr (with nc the
number of columns and nr the number of rows of the 2D grid of qubits). A rough estimate of the
run time assuming a grouping of the qubits by columns is

O(χ32nc nr NsweepseNl D/Nl ). (42)

The exponential in nc (which, in the worst case, is
p

n) comes from the storage of dense vectors
for a given column, while the exponential in Nl comes from the contraction over Nl layers.
Nsweeps is the number of DMRG sweeps. The χ3 scaling comes from the QR decompositions
needed to make the MPS canonical, a crucial requirement of DMRG. This makes the computation
scalable to quite large numbers of qubits compared to techniques scaling in 2n (instead of
2nc ∼ 2

p
n). We note in passing that this 2

p
n scaling would in principle disappear when using

2D tensor networks instead of (grouped) MPS to represent the state—with, however, the issues
associated with 2D tensor networks such as PEPS, that do not come with a canonical form and
therefore a polynomial contraction strategy (an exception being the recently developed isometric
tensor network states (isoTNS, [27]), which however come with a steeper O(χ7) scaling).

Another interesting feature of the quality of the approximate state obtained through this
method is that is strongly depends on the circuit to be simulated: for random quantum circuits,
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Figure 11. Error per gate as a function of the bond dimension. Left: Google supremacy
random circuit. Right: QAOA circuit for a MaxCut problem with 54 qubits. From [123].
Copyright (2023) by the American Physical Society.

reaching low enough error rates requires quite large bond dimensions, while circuits used in the
QAOA algorithm [124], a variational quantum algorithm for solving combinatorial optimization
problems, illustrated in Figure 10(right), yield very low error rates even for small bond dimen-
sions, as illustrated in Figure 11(right).

The reason for this quality variability among circuits is linked to the entanglement generated
by the circuit at hand: the fundamental bottleneck of the method comes from the requisite bond
dimension χ. It is related to the (bipartite) von Neumann entanglement entropy S of the state to
be represented. S is defined as the Shannon entropy of the distribution of the squared singular
values (or Schmidt coefficients) of state |Ψ〉:

S =−
χ∑

i=1
s2

i log2 s2
i . (43)

Since the entropy is convex, it is maximized by constant singular values si = const = 1/
p
χ (the

value of the constant is chosen to ensure normalization of the state), leading so S ≤ log2χ. Thus,
a necessary condition for a MPS to be able to exactly represent a state with an entanglement
entropy S is

χ≥ 2S . (44)

Usually, this statement is colloquially turned into a scaling of χ ∼ O(2S ), which we will use
in our analysis. It means that the exponential wall of a MPS representation comes, as already
mentioned in Section 2.1.4, from the degree of entanglement of the state.

We can now come back to the difference between random quantum circuits and QAOA cir-
cuits: random quantum circuits are known to generate a fast (ballistic) increase of entanglement
and quickly reach a volume law entanglement, namely the maximum reachable entropy. Conse-
quently, any other circuit, like a QAOA circuit, will produce less entangled states and thus be more
easy to simulate with this method. More details about this MPS simulation of Google’s circuit can
be found in the original article [123].

Noisy simulations with tensor networks. In the previous subsection, we described a tensor-
network method that can mimic a quantum computation with a comparable level of fidelity.
However, the origin of the errors in the MPS algorithm we just outlined, namely compression
via the DMRG technique, is very different from the origin of errors in actual quantum computers,
that is, decoherence.

In fact, tensor networks can also be used to simulate the evolution of noisy quantum states.
In principle, this task looks much (exponentially) harder than simulating a perfect quantum
computer, since the cost of storing a density matrix ρ on n qubits is 4n , compared to 2n for a
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Figure 12. Two representations of density matrices. (a) Matrix product operator (MPO).
(b) Matrix product density operator (MPDO). (c) MPS representation of the purification
|Ψtot〉 of ρ.

pure state. But since the cost of tensor network computations is largely driven by the degree
of entanglement of the state to be represented, they should come with a natural advantage for
simulating noisy evolutions: intuitively, decoherence destroys entanglement, and therefore a
smaller bond dimension (as per Equation (44)) should be needed to represent a noisy state.

The most straightforward extension of matrix product states to represent operators such as the
density matrix is the matrix product operator (MPO) representation, illustrated in Figure 12(a). It
allows to define an entropy for mixed states called the operator-space or matrix-product-operator
entanglement entropy (OEE): it is the Shannon entropy of the (renormalized) singular values
s2

i /
∑

j s2
j of the MPO.

In the presence of depolarizing noise of probability p (see Equation (33)), one observes, in 1D
random quantum circuits, that the entanglement entropy increases to a maximum value of [125]:

Smax
OEE ∼ 1

p1/α
, (45)

with α ≈ 2, before decreasing once the optimal depth (which is itself shorter and shorter as p
increases) is reached. This is illustrated in the top row of Figure 13 by the “MPO” curve: the
entropy first increases and then decreases (the increase is almost absent for p = 10%, which is a
very strong noise level). This trend in the entropy is reflected in the bond dimension: here, we
adjusted the bond dimension to discard all singular values below a certain threshold ϵ. Thus,
the bond dimension automatically adjusts to the entropy of the state: we do observe first an
increasing bond dimension (entanglement creation through a unitary evolution dominates),
followed by a decrease (entanglement destruction by noise dominates). This behavior and the
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Figure 13. Simulations of random 1D quantum circuits with 8 qubits and depolarizing
noise with MPOs and two MPDO truncation strategies. Top row: evolution of the operator
entanglement entropy as a function of the number of layers. Bottom row: evolution of the
(bond-averaged) bond dimension for truncation thresholds of ϵ= 0.01, 0.015 and 0.001 for
MPO, MPDO (LC) and MPDO (IPD). Left column: depolarization level of p = 2%. Right
column: p = 10%. Adapted from [126].

scaling law Equation (45) point to the importance of hardware improvements to lower p: this will
in turn raise the bar for the bond dimensions needed to reproduce quantum results.

A formal issue with a MPO representation of the density matrix is that is does not guarantee
the positive definiteness of the matrix upon truncation of its singular values. This property can
be imposed by first decomposing ρ as ρ = A A† (with A a 2n × r matrix, with r the rank of ρ) and
then using a MPO representation of A. This yields the so-called matrix product density operator
(MPDO) representation, illustrated in Figure 12(b). The internal vertical bonds can be interpreted
as representing environment sites (as opposed to the external vertical bonds, which are physical
system sites). Indeed, a MPDO representation can also be thought of as the MPS representation
(see Figure 12(c)) of a given purification Ψtot of ρ, namely a state Ψtot defined in an enlarged
Hilbert space with environmental degrees of freedom and such that

ρ = Trenv [|Ψtot 〉〈Ψtot|] , (46)

with Trenv the partial trace on the environment.
Thus, in addition to the usual “horizontal” bond dimensions χi , which essentially capture the

degree of entanglement of the purificationΨtot, a MPDO is also parameterized by “vertical” bond
dimensions ri , which depend on the purity of the state (a pure state should have ri = 1, namely
A is 2n × 1 in this case). Evolving a MPDO in time is similar to evolving a MPS or a MPO (see
Figure 7(c)), except that compression steps involve both compressing both the horizontal and
the vertical bonds.

The issue with prior art in MPDO simulations of noisy random circuits [127] is that such a sim-
ple contraction strategy (where both horizontal and vertical singular values are discarded below
a certain threshold) leads to ever increasing bond horizontal bond dimensions, as illustrated in
Figure 13 (lower panels) on the MPDO “LC” curve. This is due to the fact that the horizontal bond
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dimension carries not only entanglement within the system (as in regular MPS), but also possi-
bly within the environment: in Figure 12(c), it is clear that two neighboring tensors share a bond
that links a system-environment site with another. A major flexibility of MPDO, however, is the
freedom in choosing a purification. In other words, one can attempt to reduce the “horizontal”
entanglement by using the gauge freedom: ρ = A A† = (AU )(U † A†) for any unitary U , which is
equivalent to transforming |Ψtot〉 to U |Ψtot〉. One can optimize U to reduce the entanglement
between environmental sites. This is in essence what we propose in [126]. Of course, one cannot
optimize over a general 2n ×2n unitary U . Rather, in the spirit of e.g. two-site DMRG, we optimize
over two-site unitaries acting on two neighboring tensors. This leads to the suppression of the
ever increasing horizontal bond dimension, as shown in Figure 13 (bottom row). The requisite
bond dimensions for MPDOs is now similar to that of MPOs.

Circuit cutting: a hybrid tensor contraction strategy. Let us conclude this section by mention-
ing that tensor network contraction is also at the heart of work we have conducted to achieve
the practical task of executing a quantum circuit with more qubits than the number of qubits
available on the available quantum processor. In these works [128, 129], we examine a hybrid
quantum classical scheme where the tensor network corresponding to the circuit is cut into
subnetworks. Each subnetwork is then “contracted” by translating it back to a (small) quantum
circuit that is executed on a quantum processor. The individual subnetwork results are combined
by contracting obtained tensors. The exponential classical complexity of the overall task is then
reduced to an exponential in the number of cuts needed to disect the whole tensor network into
subnetworks whose corresponding circuits can fit on the available processor. Noteworthy, this
technique, also called “circuit knitting”, seems to be of importance in roadmaps for large-scale
processors [130]. One main challenge is to balance the classical and quantum costs by optimiz-
ing the cut locations.

4.1.2. Matrix product states as an antidote to decoherence: compressing quantum circuits

In the previous section, we argued that matrix product states can be used to replicate finite-
fidelity experiments with random quantum circuits, and to emulate noisy quantum circuits in a
realistic fashion. In this section, we aim at showing that they can also be used to “give a leg up” to
noisy quantum computers.

The goal of the method, presented in a recent publication ([131]), is to study the dynamics of
a 1D transverse-field Ising model (TFIM)

H =
n∑

i=1
Zi Zi+1 +h

n∑
i=1

Xi (47)

after a sudden quench of the transverse field from 0 to a finite value h, starting from the
antiferromagnetic spin state. The entanglement entropy S of the state of such a system typically
increases linearly with time [30], making it a hard target for MPS methods, due to their χ∼O(2S )
scaling. While it seems to be an easy target for quantum computing via a Trotterization of e−iH t ,
the exponential suppression of the fidelity presented in the previous sections poses a serious
practical challenge. Indeed, to keep a fixed Trotter error, one needs to increase the number of
Trotter steps with time, meaning a circuit depth also increasing with time. Therefore, the final
fidelity (given by the product formula (34)) is going to decrease exponentially with time (in the
absence of error correction), thus starkly degrading the quality of a purely quantum computation.

In [131], we propose to use a MPS and MPO-based time evolution to produce better (shal-
lower) quantum circuits than those one would have obtained with a simple Trotter evolution.
Two main stages, illustrated in Figure 14, have to be distinguished. The first stage consists in
performing a standard TEBD time evolution up to the maximal time tmax < tf reachable by the
classical computer. This part of the algorithm is constrained by the growth of entropy with time,
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Figure 14. Sketch of the QMPS method. (a) Sketch of the evolution of the von Neumann
entanglement entropy as a function of time. (b) TEBD evolution. Right: corresponding
staircase layer quantum circuit. Adapted from [131]. Copyright (2024) by the American
Physical Society.

which means that a large enough χ should be chosen to avoid large compression errors until, at
some point, one reaches the random access memory limits of the classical processor. One then
converts the so-obtained MPS into a quantum circuit, using recent techniques to perform this
conversion [132]: we optimize a staircase circuit of Nl layers, with maximum bond dimension
2Nl to have the largest overlap with the MPS state obtained with TEBD. Said circuit is much shal-
lower than the circuit that would have been obtained by simple Trotterization. Intuitively, one
could interpret this by saying that the TEBD procedure selects the circuit that will be the most
efficient in terms of entropy creation (as opposed to a Trotter evolution, where smaller Trotter
errors means more layers, each of which generates less entanglement than with larger, yet more
discretization-error-prone, steps).

The second stage consists in first representing subsequent Trotter steps with a MPO, and then
turning this MPO into a staircase circuit that is appended to the circuit obtained in the first stage.

We first perform noisy simulations of the performance of three different time evolution
strategies: MPS-TEBD alone, quantum Trotter evolution alone, and our QMPSO hybrid method.
The respective state fidelities are compared in the left and middle panels of Figure 15: for short
times, MPS alone is the best method as it is essentially perfect (small times mean small enough
bond dimensions), while the quantum computer will suffer from decoherence. For longer times,
which method is best depends on the noise level: for large noise levels, as expected, MPS yields
better fidelities as the quantum state is degraded by quantum noise. For very small noise levels,
the quantum Trotter evolution is essentially perfect (up to Trotter errors, which can be made
small because longer circuits will not suffer from very weak decoherence), while the MPS-TEBD
evolution is plagued with large truncation errors (the maximum affordable bond dimension is
smaller than what the entropy increase with time would dictate). Thus, the quantum Trotter
evolution is the best method. In between, namely in a range between about 0.01% and 1%
depolarizing error (supposing the maximum bond dimension on the classical computer isχ= 32,
an artificially small budget), our hybrid QMPSO method wins. This error range contains most
NISQ hardware.

We test this prediction through experimental runs on a transmon processor of the IBM
company. We compare a MPS-only algorithm (with a large compression error due to a limited
bond dimension), a quantum-only algorithm (with a large error coming from decoherence and
Trotter discretization), and our hybrid method, for a TFIM simulation on 10 spins (qubits). We
observe, on the right panel of Figure 15, that the hybrid method indeed outperforms the other
two methods.

Of course, this work calls for future improvements: in practice, advanced MPS implementa-
tions can reach much larger bond dimensions, so that the window for advantage using our hybrid
method versus a purely quantum Trotter evolution is much smaller, namely it requires very low
quantum error rates. A more realistic setting for a quantum advantage of quantum-enhanced
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Figure 15. Results of the QMPS method. Left: theoretical diagram of the respective advan-
tage zones of MPS (purely classical), QMPSO (hybrid classical + quantum) and Trotteriza-
tion (purely quantum) as a function of depolarizing error rate ϵ and (dimensionless) evolu-
tion time J t for χ = 8 (left) and χ = 32. Right: Evolution in time of the local magnetization
for a n = 10 Ising chain. QC Trotter and QMPSO involve experimental runs on ibmq_kolkata
hardware. Adapted from [131]. Copyright (2023) by the American Physical Society.

time evolution (whether hybrid or purely quantum) is time evolutions on two-dimensional
lattices. There, MPS are quickly limited by their 1D structure, and PEPS face many difficul-
ties, among which the fact that their exact contraction is exponentially costly, as opposed to
MPS. Therefore, a hybrid method turning PEPS into quantum circuits [133, 134] appears very
promising.

4.1.3. Perspective: quantum advantage and tensor networks

In the sections above, we explained how tensor networks could be used to assess and challenge
the validity of quantum advantage claims made for a very specific task, that of sampling from the
output distribution of random quantum circuits. These classical simulation efforts pushed back
the boundary of quantum advantage, as evidenced in subsequent publications by e.g. Google’s
team like [93], who reassessed the classical simulation time to 6.18 s down from the original
10,000 years. However, hardware improvements were made both on the Sycamore processor and
on a Chinese superconducting processor called Zuchongzhi [135]. On the former, the new bar is
set to 47.2 years. Classical algorithms could yet again emerge to redefine this boundary, but the
actual challenge of quantum processors lies elsewhere. Indeed, if quantum processors are to be
deemed useful, they need to outperform classical processors for “useful” applications, be they as
specialized as quantum many-body physics.

First claims in this direction were made by [136]. There, the problem at hand was a quench of
a 127-spin transverse-field Ising model Equation (47) and the subsequent time evolution. Refer-
ence [136] claimed that their superconducting processor, after the appropriate error mitigation,
could obtain essentially exact time-evolved observables in regimes where tensor network meth-
ods like MPS or isometric tensor networks failed. However, a few weeks after this publication, a
series of publications appeared that succeeded in using classical simulation methods to repro-
duce the results of IBM’s teams: [137] used a PEPS representation of the state with an approximate
belief propagation algorithm, [138] used a sparse Pauli dynamics algorithm, [139] used a simple
numerical mitigation strategy to extrapolate the experimental results from a 30-qubit simula-
tion, while [140] performed a single-site dissipative mean-field computation and got reasonable
agreement with the experimental results. The ease with which these various classical methods
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reproduced the experimental results can be interpreted as follows: the low connectivity of the
IBM device (most qubits have 2 neighbors, a few 3 neighbors) make it an easy target for tensor
networks, which are designed to perform well in low dimensions (like one dimension, cf. MPS),
or graphs that are close to trees. This is the case for IBM’s processor, which is locally very close
to a tree. There, approximate PEPS contraction methods work very well. The level of noise in the
device likely also plays an important role: it leads to smaller correlation lengths, which (i) justify
why the large loops on IBM’s device “look” like trees (the correlation length is not long enough
that interferences within a loop can happen), (ii) explains why methods which rely on a small
causal cone (like [139]) work well. Also, noise (in particular depolarizing noise) kills “Pauli paths”
with high weight, making Pauli sparse dynamics techniques more efficient [138].

In the light of these observations, one can conclude that one of the main challenges for
quantum processors today is their ability to generate states with a large correlation length despite
decoherence.

In the next section, we turn to hybrid techniques that could help in the quest for this goal.

4.2. Hybrid algorithms for fermionic problems

In the previous subsection, we saw how tensor-network techniques could be used either to assess
the potential advantage of quantum computers compared to classical methods, or as a way to
build more noise-robust circuits to study many-spin problems such as the transverse-field Ising
model.

In this section, we review our recent works on the use of quantum processors to tackle many-
electron problems, whether on gate-based processors (Section 4.2.1) or on analog processors
(Section 4.2.2). Our guiding principle will be to generate correlated states with the shortest
possible circuits or time evolutions. This goal is all the more challenging with fermions as
they come with complications due to their antisymmetry properties, which typically, through
fermionic encodings, lead to more complex time evolutions.

4.2.1. Optimizing the single-orbital basis

As already discussed, one main limitation of current processors is the limited depth of the
circuits that can be executed. In this subsection, we explore a way to reduce the depth required
for performing many-fermion computations with quantum processors.

In near-term quantum algorithms like the variational quantum eigensolver (VQE, see discus-
sion in Section 3.2.2), one main challenge is the choice of ansätze that are both expressive enough
(so that they stand a chance of approximating the sought-after ground state) and short enough
(so as to reduce the quality degradation induced by decoherence). In two recent works [141, 142],
we present a method to keep the same expressivity while reducing the circuit depth. This gain is
obtained by changing the orbital basis in which the problem is represented.

The link between fermionic orbitals and qubits is routinely made by fermion-to-spin trans-
formations. There is a wide variety of them, which differ in the ratio of qubit count to orbital
count and locality properties of the qubit Hamiltonian obtained after the transformation. Here,
we will focus on the most straightforward transform, called the Jordan–Wigner transform, that
we already mentioned previously. It maps fermionic orbital occupations (0 or 1 due to the Pauli
principle) to qubit states (|0〉 or |1〉). The i th qubit is thus directly related to the i th orbital (for
instance a site orbital φi (r ) localized around the i th site in the Hubbard model, Equation (2)).
In such a representation, a Fock state

∏Nel
k=1 c†

ik
|0〉 (orbitals i1, . . . , ik are filled) is represented by

a computational state with ones at locations i1, . . . , ik and zeros elsewhere. Such states are very
easy to generate: a circuit with X gates on qubits i1, . . . , ik will create them (see Figure 16(b)). In
other words, in the right basis (the Fock basis), a Fock state is a trivial computational basis state.
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Figure 16. The importance of the orbital basis. (a,c) Original basis. (b,d) Optimized basis
(natural orbitals). (a,b) Noninteracting case. (c,d) Interacting case. Gk denote Givens
rotations (Gaussian gates).

This statement is not true in any other basis. For instance, our Fock state, |ψ〉 =∏Nel
k=1 c†

ik
|0〉, rel-

ative to orbitals {φi (r )}i=1...n , becomes much more complicated if expressed in another (rotated)
basis ϕα(r ) = ∑

i Vαiφi (r ). Using c†
i = ∑

αV †
iαc̃†

α, we see that |ψ〉 = ∑
α1...αn Aα1...αn

∏Nel
k=1 c̃†

αk
|0〉

(with A a function of the V coefficients). If the qubits are mapped, via the Jordan–Wigner trans-
formation, to the ϕα orbitals instead of φi orbitals, the circuit to build |ψ〉 is thus much more
complex than the simple circuit with only X gates that we outlined above. This remark leads to
the notion that the orbital basis can be optimized to reduce circuit depth (to construct one and
the same state).

This statement easily extends to “mean-field states” or Hartree–Fock states, namely single
Slater determinants: they can always be written in the form

∏Nel
k=1 c̃†

αk
|0〉, with c̃†

α creating an elec-
tron in the ϕα(r ) orbital. In this basis, the corresponding circuit will consist only of single-qubit
rotations (Figure 16(b)). In other bases, a circuit made up of so-called Givens rotations [143],
which are entangling gates, will have to be used (see Figure 16(a)). This class of gates essentially
implements the orbital rotation V in the many-body Fock space. In other words, to prepare a
Slater determinant, either one does not use the right orbital basis and uses a potentially long and
thus error-prone circuit with Givens rotations, or one changes the orbital basis of the qubits so
that the corresponding circuit becomes trivial.

For strongly-correlated states (or multireference states in a quantum chemistry context), no
orbital rotation can lead to a single Slater determinant and hence to a trivial circuit: one expects
that they will require more complex circuits, since they are linear combinations of (usually a
large number of) uncorrelated (product) states, and are thus highly entangled states. However,
one also expects the orbital basis to play a role in the complexity of the corresponding state
preparation circuit.

For these generic states (as opposed to single Slater determinants), no clear mathematical
statement as to the optimal single-particle basis has been made, to our best knowledge. However,
quantum chemists have long used a particular basis called the natural-orbital (NO) basis [33]. It is
defined relatively to a given state |ψ〉 as the basis that diagonalizes the 1-RDM (which we already
encountered, see Equation (23)):

Di j = 〈ψ|c†
i c j |ψ〉.

This basis is usually loosely claimed to be the basis that minimizes the number of Slater deter-
minants required to represent a given state |ψ〉. While this is strictly true for Slater determinants
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Figure 17. Sketch of the (adaptive) NOization procedure.

as discussed in the previous paragraph, it is unclear that it is true for generic states (in fact it is
proven for two-electron states but probably wrong for more-than-two-electron states).

Despite these caveats, we expect that this basis will provide the simplest possible circuit
implementation for the state preparation. In a way, rotating to the NO basis should strip the
“unnecessary” Givens rotations from the circuit, as illustrated in Figure 16(c,d).

In practice, to perform the computation in the NO basis, one needs to compute the 1-RDM D ,
which requires the knowledge of |ψ〉, and then diagonalize D = V nV †. The basis χα = ∑

i Vαiφi

is then the NO basis. Yet, in chemistry (and in VQE), the state of interest, |ψ〉, is unknown since
it is precisely the ground state that one is looking for. We thus propose the following iterative
procedure (inspired by e.g. [144, 145]) to find an approximate NO basis, as illustrated in Figure 17:

(1) Start from the original (e.g. site) basis φi .
(2) Perform a VQE step to obtain an approximate ground state |ψ(θ∗)〉 in this basis
(3) Compute the 1-RDM corresponding to this state. Diagonalize it to find the orbital-

rotation matrix V .
(4) Transform the qubits (i.e., in practice, the Hamiltonian H on which the VQE is applied)

to the basis V and go back to step 2 until convergence.

We applied this method to the Anderson impurity Hamiltonian (21) in [141] and the Hubbard
model in [142], and find that (i) the iterative procedure (dubbed NOization) usually converges
to the true NO basis, and (ii) one can afford to use shorter VQE ansatz circuits when using this
basis than when using the original basis (which is uneconomical in terms of the number of
Slater determinants to represent the ground state, and thus the complexity of the corresponding
circuit). This shortening of the circuits in turn leads to a better robustness to noise.

In [142], we refined the method by (i) studying its robustness to shot noise and (ii) combining
it to the recently proposed adaptive-VQE schemes [103, 104].

The importance of point (i) is linked to the fact that changing the orbital basis comes at
a cost: in general, it increases the number of Pauli terms in the Pauli representation of the
Hamiltonian at hand. For instance, while the Hubbard model (Equation (2)) has O(n) Pauli terms
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Figure 18. Interplay of shot noise and natural orbitalization. Left: relative VQE error
(including bias and variance) as a function of the noise ratio to typical NISQ levels of
noise for a standard VQE run with a LDCA ansatz (solid lines) compared to a natural-
orbitalization strategy with the fSim circuit (dashed lines), half-filled Hubbard dimer, U /t =
1. Right: distribution of the Pauli coefficients |λi | for successive NOization steps at r = 0.01.
Inset: one-norm as a function of the NOization step. Reproduced from [142].

after a Jordan–Wigner transformation, after a generic orbital transformation, it can have up to
O(n4) terms. This should play a role when computing the variational energy E(θ) using a finite
number of shots. In particular, we need to assess whether the statistical precision for a given shot
budget does not suffer too much from a rotation to the (approximate) natural orbital basis. We
observe (Figure 18(left)) that while NOization does reduce the sensitivity to decoherence noise
(one observes a linear bias with increasing noise ratio r for standard VQE, while with NOization,
which can afford a much shallower circuit, noise has virtually no impact), it also does not increase
sensitivity to shot noise, at least in this example. This can be ascribed to the quite sharply peaked
distribution of the Pauli coefficients despite their increased number (Figure 18(right)). This leads
to a one-norm (shown in the inset) that does not significantly increase upon orbital rotation, and
thus a similar shot noise (since the one-norm upper bounds shot noise, see Equation (38)).

Let us now focus on the use of adaptive techniques (ii). The goal here is to take advantage
of the fact that rotating the basis in principle allows for shorter circuits. However, with standard
VQE, this means changing the circuit “manually” after each rotation. Adaptive techniques should
solve this issue by automatically constructing a circuit that is well suited to the new orbital
basis. Adaptive methods iteratively construct the variational circuit by adding new gates based
on their potential to decrease the variational energy at the next step, which is measured by the
corresponding energy gradient. In particular, they come with a natural stopping criterion: the
ansatz construction stops when the gradients vanish, i.e. when a minimum (hopefully a global
one) of the energy landscape is reached. In [142], we observe that the size (number of gates) of
the iteratively constructed ansatz decreases when gradually rotating to the approximate natural-
orbital basis, and that the energy reached by the method gets closer to the ground state energy at
the same time (Figure 19).

This investigation of the gradual transformation of the orbital basis to the natural orbitals
shows the promising potential of the method. Much remains to be done: the true target
application is the Anderson impurity model, with the goal of successfully preparing a good
ground state and then computing the corresponding 1-RDM (for DMET or RISB) or Green’s
function (for DMFT). This orbital rotation could be combined with a recent proposal by [146]
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Figure 19. Results of the NOization procedure with an adaptive ansatz construction: con-
verged VQE energy as a function of the ADAPT-VQE step (one operator in the ADAPT-VQE
pool corresponds to a few additional gates in the ansatz). Reproduced from [142].

(similar to the QMPS method of Section 4.1.2) to use a tensor network method to compute an
approximate AIM ground state and then load it on the quantum processor to compute the Green’s
function.

4.2.2. Rydberg atoms for Mott physics through a slave-spin mapping

Most quantum algorithms for studying fermionic many-body problems use (i) fermion-to-
qubit encodings like the Jordan–Wigner transformation, and (ii) are for designed gate-based
quantum processors. In this section, we explore a method that avoids the overheads of the
encodings and that is particularly well-suited (but by no means restricted to) analog Rydberg
processors.

Rydberg processors. These processors are described by the following Hamiltonian [62]:

ĤRydberg =
∑
i ̸= j

C6

|ri − r j |6
n̂i n̂ j −ħδ(t )

∑
i

n̂i + ħΩ(t )

2

∑
i

Ŝx
i , (48)

where C6/|ri − r j |6 is the van der Waals interaction between atoms located at positions ri and
r j , δ(t ) and Ω(t ) are the detuning and Rabi drives, respectively. The atoms are described as an
assembly of two-level systems where level |0〉 is the atom at rest and |1〉 is a highly-excited Rydberg
state of the atom.

“Programming” such a processor consists in finding ways to manipulate the quantum state
of the machine using this Hamiltonian, with three main knobs: the positions {ri } of the atoms,
the Rabi drive Ω(t ) and the detuning drive δ(t ). The Hamiltonian (48) realized experimentally
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in Rydberg processors—essentially an antiferromagnetic transverse-field Ising model (TFIM)—
represents a difficult many-body problem to simulate for classical computers, especially in out-
of-equilibrium situations. This difficulty results from to the combination of a large number of
particles (196), long correlation lengths (7 lattice spacings) and true two-dimensional geometry
reported in recent experiments [64]. These properties make their classical simulation by the most
advanced tensor-network techniques (like MPS or PEPS) a very tall order (as opposed to the TFIM
of [136], which is defined on quasi-1D heavy-hex geometry).

As we will discuss below in Section 4.3.2, this Hamiltonian has “straightforward” candidate
use cases such as the unit-disk maximum independent set problem. However, for fermionic
many-body problems that are the focus of this section, one must reconcile two seemingly very
different problems: an interacting fermion problem and an interacting spin problem. Although
there exists straightforward transformations from fermionic variables to spin variables (as briefly
explained in Section 3.1.4), they all come with an overhead in terms of circuit depth either
because they give up on locality or because they require additional qubits: On the one hand,
the most widespread transformations like the Jordan–Wigner transformation, parity or Bravyi–
Kitaev transformations (see e.g. [147] for a unified view) lead to a more-or-less drastic loss of
locality of the Hamiltonian. For instance, as we already saw before, a c†

i c j term leads to terms
like Xi Zi+1 · · ·Z j−1X j terms in the corresponding spin Hamiltonian. This in turn leads to long
circuits to implement e.g. time evolutions with e−iXi Zi+1···Z j−1 X j t operators, which require a O(n)
depth (O(log(n)) for the Bravyi–Kitaev transformation). On the other hand, other techniques
like the Verstraete–Cirac transformation [148] require auxiliary qubits, and thus ultimately longer
circuits since deeper circuits are needed to entangle more qubits.

What is more, the analog Rydberg platform we are considering comes with a controllable
but fixed Hamiltonian that differs from the spin Hamiltonian resulting from the aforementioned
fermion-qubit transformations.

A slave-particle method to disentangle fermionic and spin degrees of freedom. In a recent
work [149], we propose a way to circumvent the fermion-to-spin conversion overhead by resort-
ing to an existing technique called the slave-spin method [150–152], a simplification of the slave-
boson method we briefly mentioned in Section 2. In itsZ2 flavor [151], it consists in rewriting the
original fermionic creation operators c†

iσ as

c†
iσ = Sz

i f †
iσ, (49)

where Sz
i is the Pauli-z spin matrix, and f †

iσ creates a (pseudo) fermion at site i . Since the
corresponding Hilbert space is larger than the original one, one imposes contraints to project
states back onto a so-called physical Hilbert space in one-to-one correspondence to the original.
The constraints read

Sx
i +1 = 2(n f

i −1)2 (50)

at each site (with n f
i = ∑

σ f †
iσ fiσ), so that only 4 states among the 8 possible local states

are allowed, as in the original model. These four states (left column below) as well as the
corresponding original states (right column) are:

|0〉|+〉x ↔ |0〉
| ↑ 〉|−〉x ↔ | ↑ 〉
|↓〉|−〉x ↔ |↓〉

| ↑ ↓〉|+〉x ↔ | ↑ ↓〉.
The method thus a priori consists in tackling this larger model and then projecting it back onto

the subspace satisfying (50). Approximate strategies to handle the model in this larger space will
be needed (as for the original Hubbard model), but the usual conjecture is that approximations
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Figure 20. Sketch of the slave-spin method with a quantum processor. Reproduced
from [149]. Copyright (2024) by the American Physical Society.

in the larger space will lead to better results than a similar level of approximation in the original
model.

Plugging Equation (49) into the original Hubbard model (Equation (2)) and using the con-
straint (50) leads to

H = ∑
i jσ

ti j Sz
i Sz

j f †
iσ f jσ+ U

4

∑
i

Sx
i . (51)

We now perform a mean-field approximation to decouple the fermion-spin coupling terms:

Sz
i Sz

j f †
iσ f jσ ≈ 〈Sz

i Sz
j 〉 f †

iσ f jσ+Sz
i Sz

j 〈 f †
iσ f jσ〉+const.

This yields

H ≈
{∑

i jσ
Qi j f †

iσ f jσ

}
+

{∑
i j

Ji j Sz
i Sz

j +
U

4

∑
i

Sx
i

}
, (52)

namely the Hamiltonian turns into the sum of a free-electron Hamiltonian with renormal-
ized hopping Qi j = ti j 〈Sz

i Sz
j 〉 and a transverse-field Ising model with Ising coupling Ji j =∑

σ ti j 〈 f †
iσ f jσ〉. The ground state of H reads |Ψ〉 = |ψf〉 ⊗ |ψs〉 where |ψf〉 and |ψs〉 are the re-

spective ground states of the fermionic and spin Hamiltonians. They need to be computed in
a self-consistent fashion because the hopping and Ising interaction matrices depend on the so-
lution through 〈Sz

i Sz
j 〉 and 〈 f †

iσ f jσ〉. Thus, the slave-spin decoupling translates (at the cost of
the mean-field decoupling of the fermion and spin variables) the Hubbard model into a free
fermionic model (which carries the fermionic nature of the original problem) self-consistently
coupled to an interacting spin model (which carries the interacting nature of the original prob-
lem), as illustrated in Figure 20.
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While former (purely classical) approaches [151, 153, 154] introduced a further single-site (or
small cluster, [155]) mean-field approximation to solve the spin model, we propose to tackle it
instead with a quantum processor: indeed, the spin model

Hs =
∑
i j

Ji j Sz
i Sz

j +
U

4

∑
i

Sx
i (53)

is very similar to the Hamiltonian realized by Rydberg atoms, Equation (48). The main deviation
lies (i) in the finite number of atoms of Equation (48), as opposed to the thermodynamic size
of Hubbard’s Hamiltonian and hence Hs, and (ii) in the specific form C6/|ri − r j |6 of the spin
interaction in the Rydberg platform.

We propose to handle the first issue by resorting to a cluster mean-field approach to Hs (like
in [155]), which gives rise to

HC
s = ∑

i , j∈C

Ji j Sz
i Sz

j +
U

4

∑
i∈C

Sx
i +

∑
i∈C

hi Sz
i , (54)

where hi = 2zi Jm, J = 1/Np
∑

〈i , j 〉∈C Ji , j and m = 1/N
∑

i∈C 〈Sz
i 〉. C denotes the cluster of sites,

whose size is fixed by the number of available atoms. HC
s thus has the same size as HRydberg.

The second issue is solved in an approximate fashion by optimizing the locations {r i }i∈C of the
atoms to have C6/|ri − r j |6 match Ji j . For the small sizes we tackled, the optimization converges
well, although there will probably always be some residual mismatch due to the 1/r 6 tail of the
van der Waals interaction (as opposed to the nearest-neighbor-only character of Ji j ).

Quasiparticle dependence on interaction at equilibrium. At equilibrium (and T = 0), the main
computational step consists in computing the correlation function 〈Sz

i Sz
j 〉 (needed in the self-

consistent loop) in the ground state of HC
s using HRydberg as a proxy. This can be done by resorting

to an annealing procedure on the Rydberg platform, namely we slowly ramp up the value of the
interaction (therefore of Ω) to its final value to prepare the (approximate) ground state of HC

s .
As for any annealing technique, longer annealing times will lead to a larger success probability,
namely a larger overlap of the state generated by this ramp with the sought-after ground state. In
practice, because the hardware suffers from decoherence, long anneal times will lead to more
errors. It is thus vital that one check that annealing can succeed in realistic times given the
hardware noise levels. To answer this question, we model noise in the Rydberg platform using
a Lindblad master equation

iħ d

dt
ρ = [

HRydberg(t ),ρ
]− i

2

∑
k

{
L†

k Lk ,ρ
}
−2LkρL†

k , (55)

where the Lk are called jump operators (k has a priori no physical meaning yet, it just labels
the operators). In the specific case of Rydberg platforms, dephasing noise is an important
source of noise. It can be modelled using Lk = p

γZk (where k now labels a Rydberg atom,
and γ is the dephasing strength, which can be fitted to experiments (see e.g. [156])). Here, we
take γ = 0.02 MHz. We also include false positive and negative readout errors (with a 3% rate
corresponding to today’s experimental situation).

Performing this time evolution to get the 〈Sz
i Sz

j 〉 correlation function and performing the
whole cycle self-consistently yields the left panel of Figure 21 for different mean-field cluster
sizes. We observe that noise does cause a deviation from exact diagonalization results, but that we
can predict a reasonable estimate for the Mott transition’s critical interaction (within the slave-
spin approximation) by computing the U -dependence of the quasiparticle weight Z . The latter,
in the slave-spin mapping, can be accessed via the squared magnetization Z ≈ m2 of the spin
model. For n = 12, the computations are not converged with respect to cluster sizes, larger
sizes are thus required. As for classical techniques, exact diagonalization can probably reach
up to 50 atoms, and MPS techniques can be pushed to 100 atoms [64]. On the quantum side,
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Figure 21. Hubbard physics with Rydberg platforms. Left: evolution of the quasiparticle
weight as a function of the interaction strength for various cluster sizes (6, 8 and 12) with
an exact diagonalization of the spin Hamiltonian (dashed lines) and a noisy annealing
algorithm with a Rydberg Hamiltonian (solid lines). Right: Dynamics of the quasiparticle
weight after an interaction quench with U f < Uc (top left) and U f > Uc (top right) on a
noiseless and a noisy platform. Fourier transform of Z (t ) for various interaction strengths
(bottom left) (noiseless case) and influence of the hopping (noiseless case). Reproduced
from [149]. Copyright (2024) by the American Physical Society.

sizes of up to 200 atoms are now feasible [64]. Whether these atoms can be manipulated in a
useful way depends on the interaction regime and the quality of the hardware: intuitively, the
target is regimes where the true spin–spin correlation length is large, so that classical methods
cannot capture it, and hardware platforms that are good enough that they can sustain these long
correlation lengths. To precisely delineate this target, a better understanding of the dependence
of the correlation length on hardware noise is needed. (As for finding regimes with a large
correlation length, this is an easier task as the Mott transition corresponds, through the slave-spin
mapping, to the ferromagnetic transition of the TFIM, where the correlation length is expected
to diverge, see e.g. [157] for a PEPS investigation of this transition).

Dynamics of the quasiparticle weight after an interaction quench. A similar procedure can be
applied in the out-of-equilibrium case [153]. Through the slave-spin mapping, an interaction
quench in the Hubbard model translates to a tranverse-field quench in the spin model. One can
thus quench the Rabi field to Ω =U /4 in HRydberg to study the quench-induced dynamics of the
quasiparticle weight Z (t ) in the Hubbard model.

The right panel of Figure 21 displays the resulting Z (t ) dynamics for a perfect Rydberg plat-
form and in the presence of imperfections, simulated by the aforementioned Lindblad equation.
One can see that the main phenomenology of such quenches can be resolved even in the pres-
ence of noise: U oscillations with hopping-enhanced damping in quenches to the Mott phase,
U /2 and other oscillation frequencies in quenches to the Fermi-liquid phase.

This first study is limited to the emulation of a 12-atom Rydberg platform. In the future, ex-
perimental runs with more atoms should lead to the observation of temporal and spatial dynam-
ics of the quasiparticle weight. Such dynamics are arguably hard to simulate with classical com-
puters given the number of atoms and correlation lengths attainable by current platforms [64],
so that the introduced mapping could lead to the investigation of dynamical properties of the
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Hubbard model previously unreachable by classical means. The method is not limited to analog
quantum computers. Yet, implementing it on an analog quantum computer like Rydberg atoms
allows to avoid the discretization errors inherent to gate-based computers, like Trotterization (see
Section 3.1.4).

Of course, several aspects of the work can be improved: away from the particle-hole symmetric
case studied here (by working at half-filling on a bipartite lattice), the fulfilment of the constraint
needs to be taken into account explicitly. Multi-orbital models (see [150]) will also require
some adaptations as the slave-spin model Hs is no longer directly that of the Rydberg atoms,
Equation (48).

4.2.3. Quantitative criteria for fermionic problems

In the previous subsections of this section on fermionic problems, we have introduced algo-
rithms and tested them on small-size problems. A natural question to ask is whether these meth-
ods scale up to large sizes. In [158], we try to answer this question for two major methods that we
already introduced, namely the variational quantum eigensolver (VQE) and the quantum phase
estimation (QPE) algorithms.

The scale of noise in VQE . . . As already argued in Section 3.2.2, VQE intrinsically suffers from
optimization issues and statistical shot noise. Here, we will neglect these issues and instead focus
on the influence of decoherence. We will thus suppose we have found parameters θ⋆ such that
|Ψ(θ⋆)〉 = |Ψ0〉, where |Ψ0〉 is the ground state of the Hamiltonian at hand. For a parametric
circuit with Ng gates, noise generically turns our perfect state |Ψ0〉 into a mixed state ρ with a
fidelity

F = 〈Ψ0|ρ|Ψ0〉≪ 1

with the ground state. We can write, generically,

ρ = F |Ψ0〉〈Ψ0|+ (1−F )ρnoise,

where ρnoise is the (unknown) state generated by the noise. Thus, the energy we can compute is
(in the absence of shot noise) E = F E0 + (1−F )Enoise with Enoise = Tr(ρnoiseH). In other words,
noise introduces a bias

∆E = E −E0 = (1−F )(Enoise −E0). (56)

We can relate the final fidelity to the individual gate error rates ϵ using the product formula we
already encountered (Equation (34)), which we rewrite, for our current purpose, as F = e−ϵNg . We
now need to assume that ϵNg ≪ 1(otherwise, our final state is essentially noise and we have no
chance of getting anywhere close to the solution), so that 1−F ≈ ϵNg .

The success of VQE is quantified by the targetted accuracy on the energy. If we target ∆E ≤ η,
it means that our hardware error rate should satisfy

ϵ≤ η

(Enoise −E0) Ng
. (57)

This gives us a quantitative estimate of the hardware quality ϵneeded to reach a given accuracy
η on the energy. The dependence on the size of the system (number of electrons or orbitals n)
comes from Enoise, E0 and Ng . The ground state energy E0 is an extensive quantity, E0 ∝ n. The
number of gates in the ansatz should probably increase with n. We now argue that the most
severe effect comes from the n-dependence of Enoise.

To this aim, we need to focus on a specific case. We assume the noise to be a global
depolarizing channel (Equation (33)). This choice may look arbitrary, but any long enough
circuit (that it forms a so-called 2-design) will produce global depolarizing noise , so that this
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Figure 22. Quantitative criteria for VQE and QPE. (a) (E∞ − EHF)/N as a function the
number of electrons N for various molecules and basis sets. (b) Sketch of E(τ) as a function
of imaginary time τ and definition of κ (area under the curve) and IΩ (triangle defined by
the slope at τ= 0). (c) Overlap index IΩ as a function of the energy error for various classical
computations for various models. Adapted from [158].

choice is quite representative of many current ansatz circuits. For this noise, ρnoise = I /2n , and
therefore

Enoise = Tr(H)/2n = Tr(ρ∞H),

where ρ∞ is the thermal state ρT = e−H/kBT /Z at infinite temperature. In other words, global
depolarizing noise populates very high energy states.

Let us now turn to the scaling of Enoise. In chemical systems, in the absence of screening of
the charge of electrons, the Coulomb energy scales as n2 (each electron interacts with all other
electrons). In the ground state, screening reduces this scaling to ∝ n. This means that noise
brings in excited states whose scaling with size is no longer ∝ n but ∝ n2, a dramatic change
of scaling. To make this statement more quantitative, we computed (E∞ −EHF)/n (with EHF a
replacement for exact energy but, given the energy scales, EHF −E0 is negligible) as a function of
n for the first few elements of the periodic table. The results, shown in Figure 22(a), do display
a behavior E∞ −EHF ∝ n2. In addition, the scale of E∞ −EHF itself is very large, namely tens
of Hartrees, to be compared to the chemical accuracy, η = 1 mHa. Assuming 100 gates (a very
conservative number) and Enoise −E0 = 10 Ha (also a conservative estimate), this gives

ϵ≤ 10−6–10−4%,

at least three orders of magnitude from current noise rates (superconducting processors achieve
ϵ≈ 0.1% for two-qubit gates [93]).

A criterion to estimate overlaps for QPE. We now turn to a central question pertaining to the
quantum phase estimation algorithm (QPE), which is often hailed as the go-to replacement
of VQE when fault-tolerant quantum computers will be available: how large is the overlap Ω

(Equation (58)) of the state that is input to QPE? Since QPE’s complexity scales as O(1/Ω), knowing
how Ω scales with system size is a crucial issue. While, for weakly correlated molecules, it seems
that large enough overlaps can be obtained using classical methods, for Hubbard-like models
in a regime of large interactions, the overlaps obtained by classical methods seem to be much
smaller [86], calling for a quantitative examination of this question [87].

Here, we provide a way of computing this overlap with the only knowledge of the energy and
variance of the input state, as well as some estimate of the exact ground state energy. The former
two are typical outputs of many classical methods (like variational Monte-Carlo methods, see
Section 2.1.3) and can also be estimated in VQE, if VQE is used to prepare inputs to QPE. The latter
can usually be estimated by extrapolating e.g. coupled cluster computations with increasing
excitation order (from CCS to CCSD to CCSDT .. .).
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Let |Φ0〉 denote a variational state obtained e.g. by VQE (or by a classical variational method),
and |Ψ0〉 denote the exact ground state wavefunction. We want to estimate the overlap Ω.
Reference [159] established the following identity:

Ω= e−
∫ ∞

0 dτ[E(τ)−E0], (58)

with E(τ) the energy of imaginary-time evolved state |Ψ(τ)〉∝ e−τH/2|Φ0〉, namely:

E(τ) = 〈Ψ(τ)|H |Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉 = 〈Φ0|He−τH |Φ0〉

〈Φ0|e−τH |Φ0〉
.

The area under the E(τ)−E0 curve is hard to compute, but one can approximate it with the
area of a triangle, as illustrated in Figure 22(b):∫ ∞

0
dτ [E(τ)−E0] ≈ 1

2
(EV −E0)

EV −E0

|∂τE(τ= 0)| .

Let us compute ∂τE(τ) = (−〈Φ0|H 2e−τH |Φ0〉〈Φ0|e−τH |Φ0〉 + 〈Φ0|He−τH |Φ0〉〈Φ0|He−τH |Φ0〉)/
〈Φ0|e−τH |Φ0〉2, and so

∂τE(τ= 0) = −〈Φ0|H 2|Φ0〉〈Φ0|Φ0〉+〈Φ0|H |Φ0〉2

〈Φ0|Φ0〉2 =−〈H 2〉+〈H〉2

Therefore,

Ω≈ exp

(
− (EV −E0)2

2σ2
V

)
, (59)

namely we can compute an approximation to the overlap using the energy EV and variance σ2
V

of the input state, as well as the exact energy E0 (or an estimate thereof), as claimed.
With this formula, we estimated the overlap of classical states obtained by a large sample

of state-of-the-art methods applied on a variety of models [160]. The results are shown in
Figure 22(c), where we plot the overlap index

IΩ = (EV −E0)2

2σ2
V

. (60)

We see that IΩ ∝ |E − E0|. Besides, we know that E , E0 and σ2
V are extensive, therefore

IΩ ∝ N , and therefore Ω = e−IΩ decreases exponentially with system size for large variety of
models and methods. This is not a surprising result: it is the infamous orthogonality catastrophe
of condensed-matter physics. This catastrophe a priori renders QPE exponentially costly in the
system size. Modifications of the algorithm, or other algorithmic advances, are thus probably
needed.

4.3. Beyond many-fermion problems: solving hard optimization problems with quantum
processors

We have focused so far on the solution of fermionic quantum many-body problems with quan-
tum processors. In this section, we shed light on a seemingly less straightforward application of
quantum processors, that is to solve classical optimization problems. More precisely, we will fo-
cus on combinatorial optimization problems. As we have seen in Section 2.3, they are nothing
but classical many-body problems since they can be mapped to classical interacting spin prob-
lems. (We refer the reader to [161] for a review on general optimization problems and quantum
computing).
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Figure 23. Complexity classes.

4.3.1. A reminder on complexity theory . . . and what accelerations quantum computers can (or
cannot) bring

Before turning to concrete examples, let us first elaborate—although in a quite informal
way—on the formal guarantees (or lack thereof) that quantum computers bring in terms of
computational acceleration.

It is customary to classify computational problems—in fact, decision problems, correspond-
ing to yes/no questions—using the notion of complexity classes. They—informally speaking—
indicate the scaling of the time to solution of a given problem as a function of the problem size.
On classical computers (classical deterministic Turing machines), the P class corresponds to the
problems that can be solved in polynomial time. NP (for “nondeterministic polynomial” time)
denotes problems that can be solved in polynomial time on nondeterministic Turing machines
(which in practice captures problems that cannot be solved polynomially on deterministic ma-
chines . . . at least this is a very likely fact, known as the P ̸= NP conjecture in computer science).
NP-hard problems are the problems that are at least as hard to solve as the problems in the NP
class. Finally, the NP-complete class is the intersection of NP and NP-hard problems. They are
very likely (that is, under the P ̸= NP conjecture) to have an exponential run time. These com-
plexity classes are illustrated in Figure 23.

The same classification can be sketched for quantum computers. The polynomial quantum
counterpart of P is called BQP (for bounded-error quantum polynomial time), while that of NP is
QMA (for quantum Merlin–Arthur).

Let us take a look at a few of the famous problems that have been considered as promising for
quantum computers:

• factoring is a NP problem (but not NP-hard), which is why it has a subexponential
time classical algorithm (being subexponential does not prevent it from being hard to
solve in practice, which guarantees the safety of encryption methods based on the RSA
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algorithm). Shor’s algorithm is polynomial, which means that factoring is in BQP. It
achieves an exponential speedup compared to the best known classical algorithm.

• combinatorial optimization problems like the traveling salesperson problem, the maxi-
mum independent set (MIS) problem (see Section 4.3.2) or the maximum cut problem
(see Section 4.3.3) are NP-complete problems. It is conjectured that the NP-complete
and the BQP class are disjoint, and therefore that there exist no polynomial quantum al-
gorithm for these problems.

• the problem of finding the ground state energy of a k-local Hamiltonian (namely
with Pauli terms, as in (29), acting on at most k qubits) is NP-hard [162] and QMA-
complete [163], that is, informally, exponentially hard both for classical and quantum
computers. One consequence of QMA-complete being conjectured to be disjoint from
BQP is that there will not be a polynomial quantum algorithm to solve it.

• time-dynamics simulation, the original idea of Feynman [60], is an example where
quantum computers are efficient (this problem is in BQP, see [76] and [164] for two
polynomial implementations for k-local and sparse Hamiltonians, respectively) while
classical computers are not.

Should one shy away from NP-complete or QMA-complete problems on the account that they
will necessarily lead to exponential algorithms? A reasonable answer is no.

A first reason is that even if both classical computers and quantum computers scale exponen-
tially for a given problem, (i) in concrete examples, the specific regime (symmetries, tempera-
ture, filling etc) of the problem at hand may make it easier to solve than the complexity theoretic
prediction, and it could well be that a quantum algorithm outperforms a classical one in such
regime (although it could also go in the other direction, namely the classical algorithm better ex-
ploits the specificity of the problem at hand), and (ii) even in a true exponential regime, the scal-
ing of the exponent could be different and therefore lead to a speedup (the definition of speedup
itself is worth discussing [44]: one could either define it as the ratio of the complexities, or ex-
press Cclassical = f (Cquantum) and call the speedup polynomial or exponential depending on the
scaling of the ratio or on the polynomial or exponential scaling of f . The first choice implies that
two exponentially scaling algorithms could still scale exponentially with respect to each other;
the second implies a polynomial scaling between two such algorithms).

A second more practical reason is that most application fields are not looking for the exact
solution of a problem but for approximate solutions. The gain in approximability of a problem
when switching from classical to quantum is all that matters in many cases. Indeed, in practice,
most hard problems are solved only in an approximate fashion: obtaining an approximate
solution in a reasonable time is considered to be a satisfactory goal for exponential problems.
Strikingly, not all NP-complete problems are equal when it comes to their “approximability”,
namely the possibility to find approximate solutions in “reasonable” time. A classification
in terms of approximability is therefore a more useful notion than the complexity classes we
sketched above. There, the main quantity of interest is the “approximation ratio”, defined as

α(S) = C (S)

C (S⋆)
, (61)

where C (S) is the cost of a solution (the quantity one wants to maximize, see Equation (24)
for MaxCut or Equation (62) below for the unit-disk MIS, UDMIS) and S⋆ the optimal solution
(which, for a NP-complete problem, can only be obtained in an exponential run time). The
closest α is to 1, the better the solution. The approximability classification works in terms of
how close to 1 the approximation ratio is:

(1) the easiest-to-approximate problems are those that, for any ϵ> 0, have an approximation
algorithm with α> 1− ϵ that runs in time poly(1/ϵ,n). Such algorithms are called FPTAS
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(for fully polynomial time approximation scheme). This is the case for the “backpack”
problem, a NP-complete problem that consists in putting as many valuable objects in
a backpack as possible but with a cap on the maximum weight. Belonging to FPTAS
essentially means that the problem is a very easy problem in practice.

(2) then, there exists algorithms such that for any ϵ > 0, the approximate solution with
α > 1− ϵ is obtained in time poly(n) (but this run time could scale as e1/ϵ!). UDMIS is
among those problems, called PTAS (for polynomial time approximation scheme).

(3) the class of problems called APX has algorithms that achieve α> f (n) in time 1/poly(n):
(a) MaxCut and bounded-degree MIS (MIS on graphs with a bounded degree) are such

that f (n) = const =C : there are algorithms that find an approximate solution with a
guarantee that its approximation ratio will be at most C .

(b) the general MIS problem has f (n) = 1/poly(n) (where poly(n) denotes a polynomial
in the size n) of the problem.

This classification suggests that the approximation ratio of a given algorithm (whether classical
or quantum) be placed at the center of the stage when considering a new method. In particular,
how α scales with system size is a key property to be monitored, with the hope that the scaling
offered by quantum computers could be better than that of classical computers. Finally, it also
helps identify those problems that a worth tackling with quantum computers: problems that
are easy to approximate using a classical algorithm, like knapsack, are probably not a promising
target. Conversely, problems that are hard to approximate by classical algorithms probably offer
more space for quantum advantage (although nothing guarantees that there will be one).

4.3.2. Rydberg processors: a spin-1/2 machine dedicated to unit-disk problems: the effect of
decoherence

The Hamiltonian (48) of Rydberg atoms turns out to be similar to the Hamiltonian translation
of a well-known combinatorial optimization problem called the unit-disk maximum indepen-
dent set (UDMIS) problem, as first pointed out by [165]. This problem consists in finding, given a
graph G = (V ,E) (with vertices V and edges E), the largest set of vertices that do not share an edge
(a set called the maximum independent set). This is illustrated in Figure 24(a). The “unit-disk”
qualifier restricts the class of graphs to “unit-disk graphs”, which correspond to planar graphs
such that edges are drawn only between vertices that are closer than a certain distance (one by
convention, hence the name “unit”).

A candidate solution to the problem is characterized by a bitstring S = (b1, . . . ,bn) (where n
is the number of vertices), with bi = 1 if the i th vertex belongs to the set and bi = 0 otherwise.
Maximizing the size of the set corresponds to maximizing

∑n
i=1 bi , while excluding vertices that

share an edge corresponds to imposing bi b j = 0 if i , j ∈ E . This constrained optimization
problem can be formulated in an unconstrained way by using a Lagrange multiplier U to uphold
the constraint, yielding the cost function

C (S) =
n∑

i=1
bi −U

∑
i j∈E

bi b j . (62)

This classical cost function can be “quantized” by turning the binary variables bi into opera-
tors n̂i . This yields the Hamiltonian

H =U
∑

i j∈E
n̂i n̂ j −

n∑
i=1

n̂i , (63)

where we also added an overall minus sign to turn the problem into a minimization rather than
a maximization problem. Hamiltonian (63) is very similar to (48), provided one approximates
C6/|ri − r j |6 > 0 for |ri − r j | < rR and = 0 for larger distances. Thus, finding the solution to
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Figure 24. Solving the UDMIS problem with a Rydberg platform. (a) Sketch of the UDMIS
problem: dots are vertices V while lines are edges E of the graph G = (V ,E) at hand. The red
dots stand for the sought-after solution, the MIS. The circles are unit disks that determine
the existence of edges. (b) Approximation ratio as a function of graph size for various
dephasing noise levels γ (green curve: results obtained with uniform random sampling
algorithm). (c) Absolute value of the spin–spin correlation as a function of distance (y-log
scale) for the three noise levels of panel (b), and exponential fit. (d) Break-even diagram:
black dots represent the approximation ratio and computational time achieved by a state-
of-the-art classical heuristic algorithm to solve UDMIS. Reproduced from [156]. Copyright
(2020, 2024) by the American Physical Society.

the UDMIS problem can be translated to finding the ground state of the Rydberg Hamiltonian
(with Ω = 0). This ground state is a priori not easy to find as the rest state of the processor
is the |00, . . . ,0〉 state (all atoms at rest). To reach the ground state with high probability, one
can resort to a quantum annealing procedure (see Section 3.1.2), where one slowly turns the
instantaneous Hamiltonian HRydberg from a Hamiltonian H0 whose ground state is |00, . . . ,0〉 to
a final Hamiltonian as close as possible to H (Equation (63)). The adiabatic theorem guarantees
that, provided this time evolution is long enough compared to the inverse instantaneous squared
gap, and neglecting the difference between the final Rydberg Hamiltonian and the target H , the
final state will be the ground state of H .

In [156], we analyzed the performance of a simple quantum annealing procedure in the
presence of decoherence. We quantitatively verified the intuitive tradeoffbetween long annealing
times, which increase the success probability of the annealing procedure, and short times, which
limit the influence of noise. This competition leads to an optimal, noise-dependent annealing
time. Choosing this time as our annealing time, we studied approximation ratio (Equation (61))
of our quantum algorithm, with S⋆ denoting the exact solution of the UD-MIS problem.
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We investigated the dependence of the approximation ratio on the size of the graph for
different noise strengths (with a Lindblad noise model similar to the one we presented in
Section 4.2.2). As expected, more noise leads to a smaller approximation ratio (see Figure 24(b)).
The approximation ratio slightly decreases with increasing size, with a plateau that comes at
smaller and smaller sizes as the noise level grows. We use the value of this plateau to extrapolate
the results to large graphs.

We compared these approximations ratios to those of a state-of-the-art classical approxima-
tion algorithm for UD-MIS. In this classical algorithm, the graph at hand is divided into sub-
graphs of small size d , whose MIS is determined exactly. These subsolutions are combined to
build an approximate solution. The size d is tuned to reach a given approximation ratio (the
larger d , the better quality) within a given time budget (the run time is exponential in d since
UD-MIS is a NP-complete, hence exponential, problem). This leads to Figure 24(d), where the
black dots are the approximation ratios and graph sizes that can be reached within a 2-second
time budget. It allows to draw a “break-even” diagram, where the region of quantum advantage
is drawn in orange. The quantum approximation ratios corresponding to two noise levels (γ= 3
corresponding to [75] and γ = 0.3 close to 2024 levels of noise) are represented by the red and
blue line, assuming the decoherence levels are kept constant with the number of atoms. We pre-
dict that a number of more than 8000 atoms will be needed to beat the classical algorithm (to
reach the right-hand “advantage area”), or much better noise levels (to reach the top “advantage
area”). Increasing the number of atoms is an undergoing effort in experimental labs and compa-
nies. One major element to factor in, though, is the repetition rate of the experiment. In Rydberg
platforms, the repetition rate about a Herz [62], with possible improvements up to a few tens of
Herz. This is many orders of magnitude away from superconducting processors (MHz), not to
mention classical processors (GHz).

Improving the quality is another key aspect. Beyond the final approximation ratio estimates
that we were able to extract from our simulations, our simulations also indicate one of the causes
of the degradation in solution quality. Indeed, a maximum independent set can be regarded as
the generalization to any graph of a (classical) antiferromagnetic (AF) state: in a 1D chain a MIS
is nothing but an antiferromagnetic spin chain 0101. . .10. Errors will cause disruptions in the
perfect AF order by flipping some of the spins, resulting in AF domains separated by boundaries
corresponding to defects. The size of the corresponding IS will be that of the maximum IS (the AF
state) minus the number of boundary sites. To count the number of defects, the relevant quantity
to look at is the (AF) correlation length ξ of the chain: it gives the typical size of the domains. For
a fixed ξ, the number of boundary sites be approximately n/ξ. Thus, the approximation ratio in
1D will be

α= |MIS|−n/ξ

|MIS| = κn −n/ξ

κn
= 1− 1

κξ
, (64)

where we used the fact that the size of the MIS is proportional to the graph size. The same
reasoning can be extended to two dimensions: there, the number of domains is ∼n/ξ2 and the
size of their boundary is ∼ξ, so that the size of the IS will be |MIS| −n/ξ2 ×ξ. Equation (64) is
consistent with the numerical data: one can extract the correlation length from the noisy data
(Figure 24(c)). One does see that noise shortens ξ, leading to a lower approximation ratio. The
relationship between α and ξ we briefly derived is confirmed by our data. In other words, this
classical optimization example emphasizes the importance for quantum processors to be able
to generate states with very long correlations lengths. Classical heuristics, in a way, also come
with a finite correlation length or short-sightedness in that they solve subproblems with a given
size d exactly (at an exponential price) and they then patch the results together. The challenge of
quantum computers is to “solve” subproblems that are larger, and/or to solve them faster, than
classical algorithms.
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There are other promising avenues besides our work. One is to find better algorithms than
quantum annealing to find the ground state of the problem at hand. Variational approaches,
in the same vein as the variational quantum eigensolver, have been explored. The quantum
approximate optimization algorithm (QAOA, [124]) is, like the Hamiltonian variational ansatz
we encountered previously, directly inspired by quantum annealing, and suffers from the same
issues as VQE.

One issue with the UDMIS problem is that it is, in the approximability hierarchy, a quite easy
problem. It thus looks promising to try and tackle the MIS problem on more general graphs than
unit-disk graphs. Ways to achieve this for general 2D graphs with Rydberg atoms have been laid
out in [166] (with the help of additional atoms adding up to O(n2) atoms to handle a graph of size
n) and in [167] (by using 3D arrangements of atoms).

4.3.3. Q-score: a benchmark for quantum computers

The above study of the UDMIS problem introduced the approximation ratioα as a quantitative
measure of the solution quality of a given (quantum as well as classical) algorithm. This measure
of success is also, as we explained in Section 4.3.1, a formal measure of the approximability of
hard computational problems.

Starting from the importance of this metric, we defined, in [168], a benchmark for quantum
computing architectures based on the assessment of the approximation ratio reachable by quan-
tum processors when solving another combinatorial optimization problem, namely the maxi-
mum cut (MaxCut) problem. As introduced in Section 2.3, this problem consists in finding the
bipartition of vertices in a graph that maximizes the number of edges between the vertices of
each partition, and finds applications in many fields.

The design of this benchmark obeyed three criteria: to be (i) application-oriented, as op-
posed to low-level benchmarks like randomized benchmarking [169, 170], (ii) scalable, namely
efficiently computable for large problem instances, as opposed to benchmarks like the quantum
volume or cross-entropy benchmarking, which require the exponential computation of circuit
outcome probabilities, and (iii) hardware-agnostic, namely not restricted to, let alone favoring
any technology, whether gate-based or analog.

While points (i) and (iii) are easily met by the choice of the MaxCut problem, (ii) poses
an important challenge: to compute the approximation ratio α, one in principle needs to
compute the exact solution S⋆ to compute the denominator of Equation (61), thus incurring
an exponential run time. This issue is circumvented in our proposal by computing the ratio of
the averages over graph classes. We chose the Erdos–Renyi class to do this average because of
the possibility to reach hard graph instances by tuning the edge probability p of the Erdos–Renyi
graphs. The advantage of performing averages is that asymptotic scalings of average optimal
costs 〈C (S⋆)〉G can be computed efficiently, as opposed to costs of individual solutions S⋆.

Generically, the so-obtained approximation ratio (in fact, a slight modification thereof that
we called β instead of α to subtract a trivial contribution) decreases with graph size due to the
increasing effect of decoherence. We call “Q-score” the graph size above which β falls below an
arbitrary threshold of 20%.

Figure 25 illustrates a Q-score computation by using a variational algorithm, QAOA, to solve
the MaxCut problem: while noiseless simulations show more or less constant approximation
ratios as the graph size (hence number of qubits) grows (with improved ratios as the number
p of layers, and hence ansatz expressivity, increase), noise leads to a gradual degradation of the
ratio with size, even more so when the connectivity is limited, which leads to deeper, and hence
more error-prone, circuits. Thus, the Q-score reflects both the quality of hardware and that of
the software (a better compilation or a better algorithm can lead to higher Q-scores for the same
hardware).
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Figure 25. Simulation of the Q-score: modified approximation ratio β as a function of the
number of qubits (graph size) for a QAOA algorithm with p = 1 and p = 2 layers, for a perfect
(noiseless, blue and cyan lines) and a noisy (red lines) quantum computer (with two qubit
topologies in the latter case: all-to-all (solid) and nearest-neighbor on a grid (dashed)). The
noise levels (2% and 0.4% average depolarizing error rates for two and one-qubit gates,
respectively) are representative of NISQ devices in 2021. Reproduced from [168]. Copyright
(2021) by IEEE.

Since the publication of the Q-score proposal, the Q-score was computed for three archi-
tectures: (i) a d-wave computer architecture, with reported an experimental Q-score of 140
(and even 12,500 for a hybrid quantum-classical approach, [171]), (ii) a Rydberg processor, with
numerical simulations predicting Q-scores above 18 [172], and (iii) a transmon quantum com-
puter by the IQM company, with a reported experimental Q-score of 11 (unpublished, https:
//www.meetiqm.com/newsroom/press-releases/iqm-achieves-20-qubit-benchmark-result),
with error mitigation techniques.

5. Conclusion

The field of quantum computing for many-body physics stands at a crossroads. By now, many
proof-of-concept computations have shown that one could indeed run many-body computa-
tions on the emerging hardware platforms, but also that these demonstrations are still largely
outperformed by classical algorithms. This state of affairs is both due to hardware imperfec-
tions and to more fundamental limitations of variational quantum algorithms, which have been
the main fuel of the NISQ era so far. Resource estimates and a better knowledge of the generic
cost landscape unambiguously indicate that sophisticated approaches will be needed to avoid
the measurement variance problem and the barren plateau problem. Whether these hurdles will
prove insurmountable or not is an open question. In any case, the design of resource-efficient
algorithms to generate complex many-body states will be a central ingredient.

Given these difficulties on the one hand, and the recent demonstrations of small-scale error
correction on the other hand, one may be tempted to directly aim for fault-tolerant quantum

https://www.meetiqm.com/newsroom/press-releases/iqm-achieves-20-qubit-benchmark-result
https://www.meetiqm.com/newsroom/press-releases/iqm-achieves-20-qubit-benchmark-result
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algorithms. It is at the same time an optimistic move, and a pessimistic one. It is optimistic
because there are strings attached to this program: first of all, the scale of the experimental effort
required to obtain fault-tolerant processors is such that this technology will probably not be
available before long years [130]. Second, even perfectly corrected quantum computers come
with open challenges, like the orthogonality catastrophe we discussed in Section 22.

It is also a pessimistic move, because the scale and quality of current processors, with hun-
dreds of particles with large spatial correlations (7 lattice spacings in 2021, [64]), makes it very
likely that hitherto unreachable physical regimes are already accessible with current or near-term
hardware. Indeed, although the most advanced classical methods can still rival with quantum
advantage contentions, as we showed in Section 4.1.1, they also come with hard limitations, es-
pecially when it comes to dynamics. Of course, the precise way to squeeze acceleration out of
these NISQ processors is still elusive. Our view is that it will probably result from a subtle inter-
play between classical and quantum algorithms. The hybrid algorithms we presented, that ex-
change classical and quantum information to optimize the qubit orbital basis (Section 4.2.1), to
compress state preparation circuits (Section 4.1.2), or to sidestep the issues related to fermionic
antisymmetry (Section 4.2.2), are first steps in this direction.

Very recently, much work has been devoted to going beyond the limitations of simple VQEs
without directly turning to fault-tolerant algorithms like quantum phase estimation. For in-
stance, [173] introduces a quantum version of the projective variant of coupled cluster equations
(see Section 2.1.6), with promising convergence properties compared to VQE. Reference [174] do
not carry any optimization of the variational energy, but instead (i) start from a classical CCSD
computation to build their quantum circuit and (ii) do not attempt to estimate energies but sam-
ple bitstrings from the obtained state, to then construct restrictions of the many-body Hamilton-
ian to the subspace of the most probable bistrings, before classically diagonalizing this Hamilton-
ian using exact diagonalization techniques (similar to those described in Section 2.1.2). Another
promising strand of methods [22] uses a quantum processing step within an otherwise classical
quantum Monte Carlo code like AFQMC [175] or FCI-QMC [176]. There again, a careful investi-
gation of what advantage the quantum processor brings will be crucial [21].
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