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Abstract. Physical or chemical phase changes in ablation, such as sublimation, melting or dissolution, are
studied in physics for their many engineering applications. At solid/fluid interfaces, the interaction between
a phase change and a flow can lead to pattern formation. In this case, the fluid mechanics associated with
such phase changes play a key role in the evolution of terrestrial and planetary landscapes, observed by
probes orbiting planets and moons. On Earth, sea ice, glaciers and karst plateaus extend over meters or
kilometers. The scale of these landscapes contrasts with the scale of the physical mechanisms that gov-
ern their evolutionary dynamics. Indeed, it is the typical size of atmospheric boundary layers or melt-
water/vapor/solute films that constrain the heat/concentration transfer at the phase change/dissolution
interface, and hence the rate of solid ablation. In many situations, these layers are controlled by fluid
flow, either natural or forced convection. In the former case, the flow may be buoyancy driven by the
melting/dissolution/sublimation itself, resulting in density stratification caused by, for example, tempera-
ture/concentration gradients. This stratification may be stable or unstable. In the second case, the flow
forced by winds or slopes can be considered as a flow of an infinite height or of a finite height, such as shallow
water flow. In all cases, the mass flux modifies topography, which in turn affects the boundary layer flows and
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thus the ablation rate in a retroactive way. In nature, the positive feedback between geometry and mass trans-
fer drives the spontaneous formation of characteristic patterns at different scales. These patterns are not just
geological curiosities, such as Zen stones or dirt cones but markers of the hydrodynamic processes at work.
Many landscapes are shaped by regular, repeated patterns, whether sharp-edged, scalloped, parallel-crested,
or stepped. By experimentally investigating different modes of flow transport on solid substrates undergoing
physical or chemical phase change, this review aims to highlight the role of the flow transport mode in the
diversity of patterns observed on analogous materials. Understanding the diversity of these patterns is key
to assessing the environmental conditions under which they form on planets such as Mars or Pluto, where
phase changes play a very important geomorphological role.

Résumé. Les processus en ablation, tels que les changements de phase, physiques (sublimation/fusion) ou
chimiques (dissolution), sont étudiés dans de nombreuses applications techniques en physique. Pour les
interfaces solide/fluide, l’interaction entre un changement de phase et un écoulement peut conduire à la
formation de motifs topographiques. Dans ce cas, la mécanique des fluides associée à de tels changements
de phase joue un rôle primordial dans l’évolution des paysages terrestres et planétaires, observés par les
sondes en orbite autour des planètes et des lunes. Sur Terre, la glace de mer, les glaciers et les plateaux
karstiques s’étendent sur des mètres ou des kilomètres. L’échelle de ces paysages contraste avec l’échelle des
mécanismes physiques qui régissent leur dynamique évolutive. C’est en effet la taille typique des couches
limites atmosphériques ou des films d’eau de fonte/soluté qui limite le transfert de chaleur/concentration à
l’interface de changement de phase/dissolution, et donc le taux d’ablation du solide. Dans de nombreuses
situations, ces couches sont contrôlées par l’écoulement du fluide, de type convection naturelle ou forcée.
Dans le premier cas, la flottabilité de la fonte/dissolution elle-même, entraîne une stratification en densité
causée par des gradients de température/concentration, qui peut être stable ou instable. Dans le second cas,
l’écoulement forcé par des vents ou des pentes peut être considéré comme un écoulement de hauteur infinie
ou finie, tels que les écoulements à surface libre. Dans tous les cas, le flux de masse modifie la topographie,
qui en retour impacte les écoulements de couches limites (fines ou épaisses) et donc le taux d’ablation de
manière rétroactive. Dans la nature, la rétroaction positive entre la géométrie et le transfert de masse entraîne
la formation spontanée de formes caractéristiques à différentes échelles. Ces formes ne sont pas seulement
des curiosités géologiques, comme le sont par exemple les « Zen stones », ces pierres sur un piédestal de
glace ou encore les cônes de poussière, mais des marqueurs des processus hydrodynamiques en jeu. De
nombreux paysages sont façonnés selon des motifs réguliers et répétés, qu’ils soient pointus, en forme de
cupules, à ligne de crêtes parallèles entre elles ou encore en marches d’escaliers. Dans ce papier de synthèse,
nous recensons les études expérimentales dédiées à l’étude des motifs générés par différents modes de
transport des flux sur des substrats solides soumis à des changements de phase physiques ou chimiques.
Nous souhaitons ainsi mettre en avant le rôle du mode de transport des flux dans la diversité des motifs
observés sur des matériaux analogues. Comprendre la diversité de ces motifs est essentiel pour évaluer les
conditions environnementales dans lesquelles ils se forment, notamment sur des planètes comme Mars ou
Pluton sur lesquelles les changements de phase jouent un rôle géomorphologique majeur.

Keywords. Sublimation, Melting, Dissolution, Natural solid bedforms, Experimental analogues, Pattern
formation, Classification.

Mots-clés. Sublimation, Fusion, Dissolution, Motifs solides naturels, Analogues expérimentaux, Formation
de motifs, Classification.
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1. Ablation by mass transfer on solid substrate submitted to phase change

In engineering applications, mass transfer techniques such as dissolution or sublimation have
been used to constrain fluid/structure interactions. Naphthalene sublimation is a process that
has been widely used in aerodynamics in a broad range of topics such as pollutant dispersion in
urban areas [1] or ablation processes in space capsules [2]. Ablation patterns may appear during
the descent phase of an atmospheric space capsules [3, 4], similar to meteorites’ regmaglypts [5],
due to the laminar–turbulent transition of the flow. Other solid substrates such as bitumen,
copper, brass, aluminum or magnetite, when subjected to liquid water flow, develop ablation
patterns [6], which are similar to those appearing on molten ice subjected to water flow or
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sublimated ice subjected to wind flow. Whether the phase change is a solid–gas phase transition
(sublimation), a solid–liquid phase transition (melting) or a dissolution phenomenon, substrate
ablation is strongly linked to a feedback between the fluid flow and the underlying topography,
which generally leads to the emergence of patterns. Hereafter, we will refer as solid bedforms
to these periodic patterns that are induced by mass transfer built up at the interface between
a moving fluid and a solid surface. Although previous experimental works have observed the
emergence of solid bedforms, their morphology and dynamics were not the main focus of these
engineering applications.

Interest in solid bedforms has been renewed by space missions exploration that have revealed
many surprising landscapes, such as the spiral troughs on the north polar cap of Mars,
interpreted as cyclic steps [7] and the bladed terrain of Pluto, interpreted as penitentes [8].
Sublimation of ice combined with surface flows like wind could be a major geomorphic agent
in explaining these planetary landscapes [9]. On Earth water ice on its solid phase represents
2.4% of the global volume of water, but covers 14% of the Earth’ surface [10]. Water ice on
Earth is subjected to melting and sublimation processes at its surface. However, for most
planetary bodies, excluding Earth and Titan, environmental conditions (pressure, temperature)
at the surface do not allow the existence of three phases of their exotic ice. N2, CH4, CO2,
NH3 ices [11], are subjected to surface sublimation that prevails in the solar system. Soluble
rocks on Earth also present solid bedforms such as scallops or rillenkarrens that could be
found on limestone, gypsum and salt [12, 13]. Solid bedforms therefore have a wide variety of
compositions, environments, shapes and physical phenomena involved.

The apparent regularity of these solid bedforms is surprising, given the complexity of the
mechanisms behind their formation [14]. Lab-scale experiments contribute significantly to
our understanding of their formation and dynamic processes. It requires constant control
of experimental parameters (pressure, temperature, partial pressure/humidity, acidity) to
reproduce natural cases. Often, analogues substrates are selected to accelerate process kinetics to
experimentally more feasible times. So, experimental approaches that simulate rock dissolution
with the aim of creating rillenkarren [15–17], scallops and flutes, rely on the use of plaster [18–20]
or even caramel [21], for example. In many situations, fluid dynamic instabilities [14] (e.g. the
Rayleigh Plateau, Kelvin Helmholtz, Rayleigh Taylor or Rayleigh Bénard instabilities) explain the
emergence of natural patterns with a characteristic scale. For example, the growth of transverse
patterns (perpendicular to the mean flow), like the dissolution waves on limestone walls in the
laminar–turbulent regime [22], or the ripples and cyclic steps on ice due to run-off flows [23,
24], have been explained as a positive feedback between the topography, the thickness of the
turbulent boundary layer and the ablation rate. Moreover, longitudinal patterns (parallel to the
mean flow), like the Rillenkarren formed by run-off flows on limestone, could be explained by a
linear stability study of the coupled system of equations involving mass transfer and fluid motion,
that affect the topography of the bed [17, 25, 26] under specific boundary conditions.

What environmental conditions are required for the formation of these very large natural solid
bedforms? What physical parameters control their size, shape and spatial distribution? How
can we explain the fact that the same patterns are found in rock and ice on Earth, but also on
other icy planetary surfaces, when the phase changes at work are not always the same? In order
to understand the mechanisms responsible for the formation of solid bedforms subjected to a
surface flow, and to deduce the links between their shape, dimensions and the characteristics of
the environment in which they develop, we describe some experimental results and if any, the
scaling laws that describe the development of these solid bedforms during the dissolution [17,
20, 22, 27–29], the melting [30, 31] and the sublimation [32] processes. Since the time scales
involved for the formation of natural bedforms are too large, experimental models are used
to test formation hypotheses over realistic experimental timescales, in order to reconstruct
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the formation history of these patterns and the environmental conditions under which they
emerged.

The morphological similarities between some solid bedforms resulting from different ablation
processes [6, 33] in the case of ice sublimation, ice melting and rock dissolution will be described
in Section 2 for: sharp patterns; polygonal depression; crested bedforms parallel or perpendicular
to the flow; stepped patterns; and debris-covered ice structures. In Section 3, we explore
the positive feedback that influence the evolution of the solid/fluid interface by identifying
the relevant equations of the problem (hydrodynamic–morphodynamic coupling) with a jump
condition at the interface. We will only explore cases where one mechanism is dominant over
the other (e.g. double diffusion is out of the scope of this paper). Analogous modeling presented
in Section 4 can then be used to constrain the role of fluid mechanics in the evolution of these
forms and test hypothesis. The diversity of these patterns is reinforced by the complexity of the
flows that carry a passive scalar such as temperature or concentration: a change in density in a
natural convection flow would give rise to buoyancy instabilities; a disturbance to the topography
in an advective flow can lead to space modulations of concentration. On a large scale, these
mechanisms are responsible for the formation of surprising landscapes when hydrodynamic
surface flows drain through karst environments, or when katabatic winds descend the slopes
of terrestrial and extraterrestrial glaciers. The discussion in Section 5 focuses on the genetic link
between the type of flow and the bedfoms that could be helpful in the classification process. We
propose to discuss the effect of non-linearity on the resulting bedforms and the perspective to
use some scaling laws in a planetological context.

2. Diversity of natural solid bedforms by phase change on solid substrate

There are a wide variety of natural bedforms carved out of ice or soluble rock. These forms are
fascinating in their uniqueness or repetitiveness. Examples include stones that look as if they
have been placed on a pedestal of ice, blade-like shapes made of ice or soluble rock, steps of ice
or soluble rock in streams of water, gullies that incise the soluble rock with spiky crests, or gentle
undulations on expanses of blue ice, which can take the form of scallops on cave walls. All these
forms are subject to phase changes, whether liquid/solid or solid/vapor for ice, or dissolution
for soluble rock. This section highlights the similarities in shape despite the differences in mass
transfer mechanisms, and lists the natural forms that have been observed. Experimental studies
have been carried out to explain some of these shapes, which we review in Section 4.

2.1. Sharp patterns

First described by Charles Darwin in Chile in 1835, penitentes are shapes formed by sublimation
in old, compact ice/snow, either as spikes or as blades pointing skywards (Figure 1(a)). On Earth,
penitentes are mainly located in high altitudes: they have been particularly well described in the
Santiago Highlands, where all snow and icy surfaces above 4000 m are covered with them; on the
summit and flanks of the Tutupaca volcano in Peru [34]; on the Quelccaya Ice Cap in Peru [35];
and on the Tapado Glacier in northern Chile [35]. But similar forms have also been observed
at very low altitudes such as Greenland [36]. Given the climatic conditions that favour their
formation, penitentes are generally found in regions where humidity and temperature are low,
on downslopes where the wind is very weak but sunshine is intense. As a result, similar patterns
on the icy surfaces of other Solar System bodies have been interpreted as penitentes, such as
the Bladed Terrain Deposit of Pluto’s Tartarus Dorsa region [8, 37]. It has been suggested that
penitentes as high as 15 m may exist on Europa’s surface [38], although the resolution of currently
available images of Europa’s surface is insufficient to verify this, but this hypothesis is debated
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Figure 1. Penitentes and Tsingy. (a) Penitentes (Rio Blanco, Central Andes of Argentina).
Crédits: P. Dubuc, Arvaki, CC BY-SA 3.0 license. (b) Tsingy of Bemaraha [47, 48]. Credits:
A. S. Maloney, CC BY-SA 3.0 license.

because of the low atmospheric pressure on Europa [39, 40]. From base to tip, these spikes
can reach heights of a few centimetres [39] to several metres [41], depending on environmental
conditions. The cross-section of the penitentes is rather lenticular, tapering towards the pointed
summit, and their blades are parallel to the sunlight at midday. The horizontal spacing is of the
same order of magnitude as the height of the tips [42]. The orientation of the penitentes in terms
of azimuth is linked to the local geometry of the insulation [43]. In particular, Matthes et al. [44]
observes an inclination of the penitentes following the elevation of the midday sun. For geometric
reasons, sublimation is more effective in hollows. Illumination plays a key role [45], as do heat
transport in the ice and the transport of vapor from the ice [46]. The bedforms detected on the
surface of icy substrates, even if their formation is induced by sublimation, can be interpreted in
different ways. Knowledge of the mechanism of formation of the different sublimation induced
shapes can help to classify solid bedforms between penitentes and other bedforms, such as
scallops (Figure 2(a)) or transverse linear waves (Figure 3(a)).

Pointed shapes can also be found in the dissolution of rocks, in karst. In that case, the
limestone substrate is rigid and not very porous. One of the most intriguing sharp-edged
landscapes formed by rock dissolution are limestone forests, found at tropical locations such as
in the western part of Madagascar in the area called Tsingy [47, 52], in Malaysia [53] or in south
China [54]. Spectacular sharp and vertical pinnacles, tens of meters high, rise from the surface of
a horizontal Karst plateau (Figure 1(b)). The general shape is needle-shaped, with a slope of 15°
to 20°, which remains even when the material has been strongly dissolved. These sharp-edged
karren forms, which develop in groups, have several degrees of evolution: from dragon teeth to
sharp-edged pinnacles before evolving to Tsingy [55]. The smallest in size belong to the lappies’
family (2–3 m) and the largest, by one order of magnitude, belong to the mega-lappies’ family
(20–30 m). On their slopes, centimeter scale rillenkarren (see Section 2.4) can be observed.
Because the material is pure and not porous, dissolution remains on the surface, not in the
bulk. Formation of the limestone forests appears to be complex, but is believed to be caused by a
dissolution process under the run-off caused by tropical heavy rain. The rainfalls channelized by
large scale fractures are collected into an underground cave network. Subjected to run-off flow,
soluble rock are less dissolved as it flows along the slope, such as the layer gain in concentration.
This could preserve the homothetic character of these forms (recession of these faces parallel
to itself). If the material is porous, such as dolomite, then the shape is not sharp-edged, but
resembles a mushroom. In very seldom locations, in very arid area like the Atacama desert in
Chile or the banks of the Dead Sea in Israel, salt pinnacles of few ten centimeters can be observed
on salt deposit [56].
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Figure 2. Scallops on different substrates. (a) Icy scallops formed by sublimation (French
Alps). Credits: A. Mounier. (b) Icy scallops formed by melting on an overturned iceberg
(Paulet Island, Antarctique). Credits: P. Colla. (c) Limestone scallops formed by dissolution
(Grotte de Saint-Marcel d’Ardèche, France). Credits: M. Bordiec/S. Carpy/O. Bourgeois,
reprinted with permission from [49]. (d) Limestone scallops by dissolution (Moulin de
Vogüé, France). Credits: M. Bordiec/S. Carpy/O. Bourgeois, reprinted with permission
from [49].

2.2. Polygonal depression

Suncups and ablation hollows are bowl-shaped, circular or oval in plan, and parabolic or tapered
in vertical section, and occur on ice and snow. In comparison to penitentes on Earth, they
are located at lower altitudes, where the ambient temperature is generally higher (e.g. in the
Alps [45]), and in areas more exposed to winds than those where penitentes develop. With
amplitudes ranging from a few centimetres to half a metre, they do not reach heights comparable
to those of the penitentes, although they are also controlled by solar radiation and influenced
by albedo and the amount of dust in the ice/snow [45, 57]; the role of wind is not clearly
excluded. Suncups could constitute a surface texture found particularly on the North Polar Cap
of Mars [9, 58–61] and on the Sputnik plain of Pluto [62]. Similar shapes appear on the walls
of ice caves [63–65] and are known as “scallops”. Ice caves, although they represent only a tiny
fraction of the Earth’s cryosphere, exist on every continent outside the tropics and are defined
as rock caves containing ice, in seasonal or perennial form [12]. Conceptual models of the
climate prevailing in these ice caves have been built from measurement campaigns conducted
over several decades [66], in particular in the Eisriesenwelt cave (Salzburg, Austria) [65], which is
one of the largest known ice caves in the world, with its more than 40 km of galleries. In winter, the
temperature of this cave is below 0 °C and the air is dry [32], which favors episodes of sublimation,
enhanced by cold, dry air that is blown and circulates through the cave, at speeds not exceeding
0.2 m·s−1 [63, 65, 67]. In most ice caves, the temperature of the ice surface remains relatively
stable throughout the year, with varying rates of sublimation depending on the geometry of the
cave. For example, although ablation is restricted to the winter months when sublimation is most
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Figure 3. Ripple-like bedforms over different substrates submitted to mass transfer: (a) by
sublimation (blue ice ripples in Svea, Antarctica adapeted from [50]. Copyright 1999 by
the American Geophysical Union). (b) By melting, Rivière St-Croix ice ripples, Wisconsin,
USA [51]. (c) By sublimation, martian North polar Cap, reprinted with permission from [49].
HiRISE PSP_009689_2645. (d) By dissolution, Coups de Gouge, Grotte de Saint-Marcel
d’Ardèche, France. Credits: M. Bordiec/S. Carpy/O. Bourgeois, reprinted with permission
from [49].

effective, the annual ablation rate in ice caves ranges from 3 mm·year−1 [68] to 35 mm·year−1 [64],
resulting in sublimation rates of between 3.8×10−10 m·s−1 and 4.5×10−9 m·s−1.

Scallops are widespread polygonal depression patterns, both on ice [63, 64] (Figure 2(a–b))
and on soluble rock walls [12, 55] (Figure 2(c–d)), and on many other substrates [6]. By analogy,
Meakin and Jamtveit [69] suggest that these shapes can be likened to those observed on certain
meteorites [5], on corroding metal pipe surfaces [70] and cohesive surfaces in fluvial systems [71].
The characteristic sizes of scallops range from centimetres to metres. They are shell-shaped,
ablation-induced depressions. When they cover a surface, they exhibit uniformity in terms of
size, shape and spacing (Figure 2). They are formed when solid surfaces are immersed in a fluid
different from their composition when subjected to mass transfer induced ablation. The scallops
are asymmetrical compared to suncups, which are circular depressions. They are oriented with
respect to the flow: the downstream side forms a sharp shape and the upstream side is steeper
in longitudinal section (Figure 2(d)). Similarly, scallops have sometimes been assimilated to
shapes transverse to the flow direction [6, 22], although they differ from ripples and flutes, which
are transverse waves (Figure 3), which are considered to be special cases of scallops [20] (see
Section 2.3). Due to the complexity of flows and possible variations in the conditions that lead to
the formation of these solid bedforms, the understanding of their development is not completely
acquired [69].
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2.3. Crested patterns perpendicular to the flow direction

Transverse linear waves (Figure 3) form and develop on the surface of icy substrates (by
sublimation or melting) or soluble rocks (by dissolution), and they are known as “sublimation
waves”, “ices ripples”, “fluted scallops”, “flutes” or “solution ripples” in karstology. Their crests
are regularly spaced and parallel, oriented perpendicular to the flow [12, 55]. The waves are
likely to migrate in the direction of flow over time. Their cross-sectional profile in relation to
the direction of flow is slightly asymmetrical (Figure 3(b)), with a downstream slope greater than
the upstream slope [20, 72]. They exist on all types of solid substrates, such as salt [73] and ice,
immersed in liquid water [23, 31], in ice caves [67] or on Antarctic ice surfaces exposed to strong
winds [74]. If dissolution forms are naturally very common in limestone caves [19, 67, 71] with
a range of wavelengths from a few centimetres to several metres (Figure 3(d)), measurements of
the flow characteristics responsible for their formation are rare in these natural environments.
Sublimation waves (Figure 3(a)) are periodic, linear and transverse bedforms of different scales
(from centimetres to metres) depending on their dry windy environment [74, 75]. On Earth, Blue
Ice Areas that cover 1% of Antarctica reveal the presence of sublimation ice ripples [4], about
10 cm in wavelength that emerge in ∼2 month and migrate at 2 cm/month. The difficulties of
field campaigns in such remote places with uncontrolled environmental conditions explain the
very few field measurements collected on sublimation waves. The compilation of documented
natural examples of sublimation waves has revealed a real lack of morphological and kinetic
data related to the development of these solid bedforms [32]. Shapes on the North Polar Cap
of Mars (Figure 3(c)) and certain shapes on the surface of Pluto (plain Sputnik Planitia) can also
be interpreted as sublimation waves [11].

2.4. Crested patterns parallel to the flow direction

The term Karren designates the dissolution patterns, which are created by the run-off flows on
denuded rock walls [12, 55, 76]. We focus here on the patterns, which are caused by the flows of
water driven by gravity along the bare slope and originated from rain and snow falls. Some effects
of seepage are possible for slightly porous and fractured rocks and can affect the morphologies.
The Karren patterns occur mainly by dissolution of limestone and dolomite, but they can also
appear on gypsum and salt (Halite) [56]. In view of the wide variety of shapes and front, a specific
terminology has been defined to classify the different types [76]. Among the most important
examples, Rillenkarren are adjacent grooves or small channels directed along the main slope [76,
77] (Figure 4(a–d)). In cross-section, their profiles are parabolic, separated by sharp ridge lines.
Viewed from above, these lines are remarkably parallel and spatially regular, typically 1.5 to
2.5 cm wide and 2 to 6 mm deep in limestone. However, the typical size can be significantly
larger than the centimeter, like for the Rillenkarren found on Madre de Dios Island in Chile
(Figure 4(c)). In the field, the flow creating these patterns is a thin film of water that runs down
the slope. The run-off flow is fed by the impact of droplets and the role of the droplet impact
remains an open question [15]. Moreover, Rillenkarren grooves are preferentially observed on
the sloped wall (typically 45°) above a smooth area, where the water film is thicker [15]. The
Wandkarren are a special case of the Rillenkarren and occurs on nearly vertical walls created
by large rock fractures. The Rinnenkarren or Runnels are dissolution channels of larger size,
which are formed once the water has been channelized in a rivulet. Rundkarren are similar to
Rinnenkarren, but the ridges between the channels are rounded by subsoil dissolution [76] or
maybe by snow cover. Meanderkarren are Rinnenkarren with meanders. The flow dynamics of
water channelized in Rinnenkarren systems have been studied on the field and in laboratory
reproduction with non soluble materials [47].
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Figure 4. (a) Nearly vertical Rillenkarren on limestone. The photo was taken in Velebit
(Croatia). The typical groove width is about 1 cm. Credits S. Courrech du Pont.
(b) Rillenkarren of the order of one meter on Madre de Dios Island in Chile, Ultima
Patagonia expedition, Centre Terre. Note the human at the bottom of the picture, to get
an idea of the characteristic scale. From Tourte et al. [78]. (c) Inclined limestone pavement
or Lapiaz at the site Combe Oursière near Lans en Vercors, France. Rounded Rillenkarren
are directed along the main slope of about 45° inclination. Credits M. Berhanu, M. Chaigne
and J. Derr. (d) 3D reconstruction of Rillenkarren on the previous field site at small scale
using a structured light scanner. The slope is aligned along the x axis. Sharp ridges can be
seen.

2.5. Stepped bedforms

Cyclic steps are bedforms that are shaped like a succession of steps, moving against the flow [79].
These steps are associated with hydraulic jumps at the free surface. Cyclic steps occur at the
bottom of bedières (Figure 5(a)). They have been studied experimentally on sloping ice over
which liquid water flows [24]. Cyclic steps have also been described on solid rock substrates over
which rivers flow [80]. In the case of sublimation, the spirals of the North Cap of Mars have been
interpreted as cyclic steps of several kilometers in wavelength, influenced by jumps of katabatic
origin [7].

There are also stepped, regular undulations known as trittkarrens, stepkarrens or heelprint
karrens (Figure 5(b)), which are observed in dissolving rocks with a gentle slope. They are
perpendicular to the sharp ridge lines of the rillenkarrens described in Section 2.4 and therefore
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Figure 5. (a) Cyclic steps by melting in Bédières. Crédit: L. Karlstrom, adpated from [80]
with permission of John Wiley and Sons. (b) Trittkarrens steps perpendicular to the crests
of Rillenkarrens. Crédit: L. Perrella, CC BY-SA 3.0 license.

perpendicular to the flow. They are small-scale karrens (on the order of centimetres) that can
form on various dissolving rocks, such as limestone and gypsum [81]. Morphologically, they are
described by Ford & Williams [12] as arched-front forms with a flat floor, 10 to 30 cm in diameter,
which are open at the end of the downslope. Mottershead [81] characterizes them more by their
“stepped shape” in cross-section and the presence of a slight gradient.

2.6. Debris-covered ice structures

Natural pattern can also form because an object changes boundary conditions. Rock or debris
covering the ice can insulate the underlying ice or increase the melting rate. The resulting
differential melting forms characteristic structures observed on glaciers such as glacier tables,
dirt cones or ice sails as shown in Figure 6 [82–86]. Glacier tables are large rocks standing on an
ice foot (Figure 6 top), dirt cones are ice cones covered by a layer of debris (Figure 6 bottom left),
and ice sails (or ice pyramids) are clean ice structures protruding from the debris-covered surface
(Figure 6 bottom right).

Many glaciers are covered by a layer of debris, which modifies the melting rate of the
ice. Several field measurements have shown that the melting rates initially increases with the
thickness of debris cover, reaches a maximum for a thickness of about 2 cm, and then decreases
with debris thickness [87–89]. Debris insulate the underlying ice, which explains the decrease
in melting rate with the thickness of debris. The initial increase with thickness is ascribed to
the patchiness of the debris coverage, which gradually changes the albedo of the surface as the
coverage proportion increases and to a wind-shielding effect of the cover; the wind velocity at the
ice/debris interface rapidly decreases with debris thickness [89]. This decrease in wind velocity
reduces the rate of evaporation of the melt water and the consumption of energy in latent heat
(for evaporation), which increases the energy available for melting [89].
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Figure 6. Melting and sublimation structures due to debris or rock cover. Top: Glacier
table (rock supported by a pillar of ice) forming on the Mer de Glace glacier in the French
Alps from Hénot et al. [85]. Inset: Zen stone (stone supported by a pillar of ice) on Lake
Baikal, southern Siberia. Credits: Olga Zima. Glacier tables and zen stones form at different
scales and by slightly different mechanisms (Section 4.3), figure adapted under the CC BY
4.0 license. Bottom left: Dirt cones (ice cones covered by a layer of grains) on Sólheimajökull
Glacier, Iceland. Credits: Patagonier, CC BY-SA 3.0 license. Bottom right: Ice Sails on the
Baltoro Glacier (Karakoram mountain range, Pakistan), from Evatt et al., 2017 [82]. Credits:
C. Mayer, 2011, under the CC BY 4.0 license.

3. Modelization of phase change dynamics in presence of a flow

The natural bedforms reviewed in Section 2 emerge when there are heterogeneities in the
ablation velocity of a bed, which can result from a coupling between the rate of phase change
(dissolution, sublimation or melting) and a flow. Here we introduce the equations that allow
to model these processes occurring at the solid/fluid interface. Solidification, condensation
and precipitation are not discussed in this review, but in some natural examples deposition
and ablation effects may be intertwined [69]. The set of equations which will be found
for melting, sublimation or dissolution will also be valid for solidification, condensation or
precipitation.

During a phase change of a solid, the chemical bonds between the particles constituting the
solid are broken to form a liquid phase or gaseous phase depending on the thermodynamic
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conditions, usually the temperature and the pressure. A phase is a region of material in
which the chemical and physical properties are locally homogeneous at the molecular scale.
Thermodynamics determines the equilibrium state, with the occurrence of one or another
specific phase, or even the coexistence of several phases. The dynamics of the phase transition,
the rate of phase change from one phase to another, is an out of thermodynamic equilibrium
phenomenon.

In some cases, the dynamics is set by kinetic effects at the molecular scale associated to
chemical bonds breaking and formation. However, when these processes are “fast”, the limiting
mechanism that determines the dynamics of the phase change is a transport mechanism that
either transfers the energy necessary for the phase change, or removes chemical species to
maintain the interface in a non-equilibrium state, or even a combination of both phenomena.
For example, the melting of ice in salty (NaCl) water could be limited either by the heat transport
or by the salt transport to the ice through the melt water, because the melting temperature
depends on the salt concentration. In the absence of flow, these transfers occur by thermal
diffusion or by chemical species diffusion. In the presence of a flow in the fluid phase, they are
generally greatly enhanced by advection phenomena. The modeling of phase change dynamics
can be thus often described as an advection–diffusion problem in the fluid phase, where the rate
of phase change is expressed as a boundary condition.

3.1. Boundary conditions at an evolving interface

We consider the phase transition between a solid and a fluid phase, liquid or gas. For simplicity,
we focus on the melting of a pure substance, the dissolution of a homogeneous solid in a fluid
phase composed of a solvent and a solute and the sublimation of a solid in a gaseous phase
containing a small proportion of the vapor generated by the phase change. In the second case,
the solute molecules are produced by the dissolution of the solid and in the third cases, the vapor
molecules are produced by the sublimation of the solid. These two cases are formally equivalent.
Dissolution patterns can therefore have analogous counterparts for sublimation.

3.1.1. Kinetics of the phase change

At the solid/fluid interface, the rate of detachment of the molecules and atoms constituting
the solid is modeled by the chemical kinetics of phase change. In a first approximation, this rate
can be taken to be proportional to the distance to thermodynamic equilibrium [90, 91].

Melting. For the melting/solidification, except for the rapid phase change of metastable materials
such as supercooled water, the kinetic molecular effects are usually negligible [92]. In this case,
the solid/interface can be considered locally at the thermodynamic equilibrium. This means that
the pressure and the temperature at the interface belong to the coexistence curve for two phases
at thermodynamic equilibrium. If the pressure is imposed externally, then the temperature is the
corresponding melting temperature Tm, which can be determined by the Clapeyron relation [93].
For example, when ice melts at atmospheric pressure on Earth, the melting temperature during
the phase change is equal to 0 °C. The melting temperature also decreases with the local curvature
of the interface due to Gibbs–Thomson effect [90], as the local environment differs when a
molecule on the solid is located at a tip. This effect, which is important for crystal growth, is
often negligible for melting at macroscopic scales. Under these conditions, the melting rate is
determined by the thermal energy input (see Section 3.1.3).

Dissolution. In contrast, in the case of dissolution, kinetic effects are often considered
relevant [91]. We consider the case of a pure solid in contact with a liquid phase constituted
of a solvent and a solute, whose molecules or ions are the same as those in the solid phase. The
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proportion of solute particles in the solution is quantified by the mass solute concentration field
c(x, t ), i.e. the local mass of solute per unit volume. This case corresponds for example to the
dissolution of solid salt (NaCl, halite crystal), which decomposes into the ions sodium Na+ and
chloride Cl− in water. Due to electroneutrality, the concentrations of positive and negative ions
are equal at the macroscopic scale and the solute concentration is numerically equal to the sum
of the concentrations of positive and negative ions. For example the mass solute concentration
of NaCl: the mass of solute per unit volume is equal to the mass concentration of ions Na+ plus
the mass concentration of ions Cl−. The saturation concentration csat is the solute concentration
when the solid and the liquid phases are at thermodynamic equilibrium. The attachment and
detachment rates of ions are then equal. As a thermodynamic parameter, csat depends on the
temperature, the pressure, the presence of other chemical species and also on the local curvature
by a phenomenon analogous to the Gibbs–Thomson effect [94]. This last effect is relevant
for scales below the micron and is neglected in the remainder. For small concentrations, the
chemical activities can be assimilated to concentrations.

Sublimation. In the case of sublimation of a solid (e.g. water ice), the concentration of the volatile
substance (e.g. water vapor), is usually expressed in terms of the partial vapor pressure. According
to the ideal gas law, which holds for diluted gases, the partial pressure is proportional to the
mass concentration, i.e. px = cx RT /Mx , where Mx is the molar mass of the specie x and R
is the universal gas constant. Similarly, when the interface between the atmosphere and the
sublimating solid is at thermodynamic equilibrium, the partial pressure is equal to the saturation
vapor pressure psat. This quantity can vary strongly as a function of the temperature according
to the Clapeyron relation [93].

3.1.2. Relationship between phase change rate and kinetic effects

Dissolution and sublimation rates can be related to the rate of the chemical reaction R, which
corresponds to the breaking of the chemical bonds in the solid phase. We define R as the solute
mass flux for dissolution or the vapor mass flux for sublimation. R is homogeneous to a mass per
time and surface unit. The simplest models for dissolution/sublimation processes assume that
R is proportional to the distance to equilibrium expressed in terms of concentrations, ci − csat,
where ci is the solute or vapor concentration at the solid interface. We call α, the proportionality
coefficient, which expresses the speed of the chemical reaction. This linear relationship can be
justified by more rigorous considerations of chemical kinetics [95] or gas kinetics [96–98].

If ci < csat, the solid recedes by dissolution (sublimation) and vice versa if ci > csat, the solid
grows by precipitation (condensation). Writing the conservation of solute mass, the mass flux R

is also equal to the product of the density (mass per unit volume) and the velocity of the interface.
The following equation then relates the velocity of the interface, i.e. the rate of phase change, to
the speed of chemical reaction in the laboratory reference frame for a motionless solid phase, at
a point of the interface:

R(x, t ) =α(csat − ci) =−ρs vi(x, t ) ·n, (1)

where ρs is the solid density and vi is the interface velocity (or dissolution/sublimation velocity)
and n is the vector normal to the interface pointing outwards the solid surface.

To summarize, the mass flux for the two ablation processes, sublimation and dissolution,
actually share a common formulation, in the sense that the existence of the transfer and the
direction in which it takes place are conditioned by a concentration, either in the atmosphere or
in the solution. For dissolution and sublimation,α is a positive coefficient expressing the speed of
the chemical reaction and is homogeneous to a velocity. α qualitatively translates the finite time
required to break and create chemical bonds in the dissolution and sublimation processes. The



14 Sabrina Carpy et al.

Figure 7. Scheme for determining the jump conditions at the evolving interface S(t )
separating two phases, for example a solid Rs and a liquid Rl. We consider an infinitesimal
spatial domain Ω(t ) on either side of the interface S(t ). vi is the velocity field of
displacement of the interface. The outer boundary of the domain is denoted by ∂Ω(t ),
which is composed of ∂Ωs and ∂Ωl for the part in contact with Rs and Rl, respectively.

interface velocity can vary along the solid surface and its heterogeneity causes pattern formation.
For sublimation, using the theory of gas kinetics, the coefficient α for vacuum or very tenuous
atmospheres is the product of a thermal velocity of the gas molecules times a dimensionless
adsorption coefficient ε on the surface [96–98]:

α= ε
√

RTs

2πMs
. (2)

α is thus a function of the surface temperature of the solid Ts and depends on the molar mass of
sublimated molecules Ms.

3.1.3. Moving interface

In Equation (1), the concentration at the interface, ci, must be determined to solve the
dissolution or sublimation problems. Therefore, to determine the phase change rate vi, in
addition to these kinetic considerations, it is necessary to take into account the balance equations
through the continuity equation, the solute (or vapor) mass equation and the energy equation, in
the presence of a moving interface. In melting problems, kinetic effects are usually negligible, so
the interface temperature is the melting temperature Tm given by the thermodynamics, and the
melting rates are in most cases determined by the balance equations.

The Kotchine’s theorem or jump relations [92, 99] provides an elegant method to derive the
conservation relations in three dimensions. We consider a quantity f (x, t ) obeying to a local
conservation equation with no source or sink term

∂ f (x, t )

∂t
+∇· (Jf(x, t )) = 0, (3)

where Jf(x, t ) is the incoming flux of the scalar quantity f , which can be mass, concentration or
temperature and ∇ · (s) is the divergence operator. By applying the Reynolds transport theorem
for the quantity f (x, t ) to the infinitesimal domainΩ(t ) shown in Figure 7, where the two phases
considered are the solid (s) and the liquid (l), the Kotchine’s theorem gives:

( f l − f s)(vi ·n) = (Jl − Js) ·n. (4)

This relation gives the boundary condition that relates the interface velocity vi to the quantities
on each side of the interface: f l and f s, and the flux of f , i.e. Jl and Js, where n is the vector normal
to the interface pointing outwards the solid surface. This theorem can be applied to any physical
quantity following a local conservation Equation (3).
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Mass balance. The mass flux corresponds to an advection term Jf(x, t ) = ρu of the density field
f (x, t ) = ρ by the velocity field u. Substituting this into the Equation (3) gives the conservation of
mass, in three dimensions:

∂ρ

∂t
+∇· (ρu) = 0. (5)

Considering an evolving interface S(t ) of local velocity vi between a liquid phase and a solid phase
(subscripts l and s, respectively), Figure 7, the jump relation, Equation (4) gives:

(ρi −ρs)(vi ·n) = (ρiui ·n−ρsus ·n) (6)

ui and ρi are the velocity and the density in the liquid phase at the position of the interface. us

is the velocity in the solid phase, which is zero (no advection in the solid) and ρs is the density of
the solid, supposed homogeneous.

By generalizing to any type of fluid, this jump relation determines the normal fluid velocity at
the evolving interface:

ui ·n = (vi ·n)

(
1− ρs

ρi

)
. (7)

This condition for the normal velocity in the fluid translates the non penetration of the liquid
phase in the solid. It must be completed by an expression for the velocity tangential to the
interface in the liquid. Here, the tangential velocity of the fluid is zero at the dissolving boundary,
as usual for a viscous fluid in contact with a solid wall, which reads u∧n = 0.

Balance of solute or vapor concentration. The local conservation relation (Equation (3)) applied
to the mass solute concentration c(x, t ) reads:

∂c

∂t
+∇· (Jc) = 0 with Jc = cu−D∇c, (8)

where ∇ is the gradient operator. As an example of the incoming flux Jc, we consider a
volume element including the solid/liquid interface (see Figure 7) in dissolution. The chemical
species can be transported by advection and diffusion. According to the Fick’s law, the
diffusive flux is proportional to the solute gradient: Jc = −D∇c, where D is the solute diffusion
coefficient. Applied to an incompressible flow and homogeneous diffusion coefficient, this
equation identifies with the classical advection–diffusion equation for the concentration (solute
or vapor):

∂c

∂t
+u ·∇c = D∇2c. (9)

When considering a pure solid phase (i.e., concentration and density in the solid are equal) of
the same chemical specie as the solute, specifying the fluxes in Equation (4) for the concentration
gives:

(ci −ρs)(vi ·n) = ciui ·n−D∇c|i ·n−ρsus ·n. (10)

The diffusive flux −D∇c|i at the solid interface depends on the concentration gradient at the
interface in the fluid. After simplification by assuming that the solid phase is immobile (us = 0),
one finds:

ρsvi ·n = ci(vi ·n−ui ·n)+D(∇c|i ·n). (11)

Substituting the value of ui ·n from Equation (7) into this expression gives a general boundary
condition for the interface velocity vi:

(vi ·n)ρs

(
1− ci

ρi

)
= D(∇c|i ·n). (12)

Moreover, the interface velocity is also related to the mass solute flux R given by Equation (1).
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Heat balance. Finally, we express the conservation of energy. Similarly, the spatial variation of
the temperature in the solid and fluid phases leads to thermal diffusion according to the Fourier’s
law. The heat flux due to conduction is equal to −λ∇T , where T is the temperature field and λ is
the thermal conductivity (different for solid and liquid phases). The enthalpy h per unit mass is
h = (1/2)u2 + cp T where cp is the specific heat capacity at constant pressure (different for each
phases) and T is the temperature. In absence of source term, negligible fluid dissipation and for
an incompressible flow, the heat balance is [100]:

∂(ρcpT )

∂t
+∇· (ρcpT u) =∇· (λ∇T ), (13)

where λ is the thermal conductivity. The heat transport by diffusion is modeled using the Fourier
law, JT =−λ∇T , where JT is the heat flux. It has the dimension of a power per surface unit. If the
properties of the fluid (ρ, cp and λ) are homogeneous, this last equation resumes to the classic
advection–diffusion equation for the temperature field:

∂T

∂t
+u ·∇T = κ∇2T, (14)

where κ=λ/(ρcp) is the thermal diffusivity.
In general, a phase change reaction leads to an energy variation due to the breaking of

molecular bonds. If a mass mx has experienced a phase change from a phase 1 to 2 at constant
temperature and pressure, the difference of enthalpy reads: ∆H = mx hr, where hr is the reaction
enthalpy per mass unit. For condensed phases (liquid or solid), the reaction enthalpy reads as a
function of the heat capacity per unit mass cp:

hr = cp,2Ti − cp,1Ti, (15)

where Ti is the interface temperature. For the melting of a pure substance at constant
temperature, Ti and hr identify to the melting temperature Tm and to the latent heat Lm. The
melting is an endothermic process and Lm is always positive, as well as in sublimation. In contrast
the reaction enthalpy for dissolution can be positive (e.g. salt NaCl or sucrose) or negative (e.g.
like caustic soda NaOH) [101].

Applying Kotchine’s theorem to energy conservation (Equation (13)) gives:

[ρicp,lTi −ρscp,sTm]vi ·n = [ρlcp,lTiui −λl∇T |l,i +λs∇T |s,i] ·n. (16)

where subscript l and s, stand for liquid and solid phase, respectively. Using Equation (7) for the
expression of ui ·n gives:[

ρicp,lTm

[
1−

(
1− ρs

ρi

)]
−ρscp,sTi

]
vi ·n = [−λl∇T |l,i +λs∇T |s,i] ·n. (17)

Using the definition of the reaction enthalpy Equation (15), where 2 and 1, stands for liquid and
solid, subscripts l and s, respectively we obtain the following relation, which identifies to the
classic Stefan condition, when Ti = Tm and hr = Lm:

ρshrvi ·n = [−λl∇T |l,i +λs∇T |s,i] ·n. (18)

This last equation determines the rate of phase change of a pure substance, which is controlled
by the difference of thermal energy flux on both sides of the interface.
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Mass transfer versus heat transfer processes. The same formalism apply to dissolution/
sublimation and to the melting of multi-component systems. In both cases, the combination of
Equations (1), (12) and (18) are coupled because the fluid physical properties (densities, diffusion
coefficient, the saturation concentration, the latent heat, the heat capacity, . . . ) are function
of the temperature or of the composition. The combined resolution of the three equations is
not addressed in the literature, to our knowledge, for ablation problems. However, with the
hypothesis of local thermodynamic equilibrium (fast kinetics), the phase change of binary or
multi-components systems can be modeled, using energy conservation and mass conservation
of each specie [102].

Nevertheless, in most practical cases, the interface motion is governed by one limiting process,
either the temperature or the solute transport. For example, for dissolution, the phase change
rate is assumed to be not controlled by the energy input, but by the concentration field at
the interface [91, 95, 103]. Similarly, for the melting of pure ice into salt water, the local salt
modifies the melting temperature, which can lead to complex phenomena, where the hypothesis
of thermodynamic equilibrium is not valid [90, 92]. In some conditions, the phase change can
be controlled by the salt concentration and the ice melting problem is closer to a dissolution
problem [104]. In this review, we do not address in details the case of melting of pure water
ice in salt water, which is a rich topic with a large variety of phenomena. This topic of crucial
environmental importance on Earth is covered by recent reviews [105–107].

In many natural dissolution phenomena, the temperature can be considered constant and set
by the external conditions, i.e. the heat transport is fast enough to compensate the dissolution
reaction enthalpy [108]. In this case, the rate of phase change is given by Equations (1)
and (12). Combining these two equations leads to the boundary condition for the dissolving
interface:

ρsvi =−α(csat − ci)n = 1

1− ci/ρi
D(∇c|i ·n)n. (19)

This boundary condition combines the concentration value ci and the concentration gradient
∇c|i at the interface. By introducing the typical length scale δc of the concentration gradient,
i.e. ∇c ∼ (cb − ci)/δc where cb is the far field concentration, we can define the Damköhler
number

Da = (αδc )/D, (20)

which compares the relative importance of the chemical reaction (middle-hand side of
Equation (19)) to the diffusive transport (right-hand side of Equation (19)). In the case of natural
rocks, for which ci ≪ ρi, the interfacial concentration is given by ci = cb/(1+Da)+ csatDa/(1+
Da) [109]. If the chemical reaction rate is the limiting process at low values of Da compared to
one, then ci ∼ cb+Dacsat. This corresponds to the case of slow dissolution reaction, valid for most
weakly soluble minerals, as the low values of α correspond often to small values of csat [110]. In
contrast, large values of Da give ci ≈ csat and correspond to fast dissolution regime. This occurs for
very soluble substances like salt or sugar in water. In this case, the advection–diffusion equation
(Equation (9)) is thus solved with the boundary conditions ci = csat and Equation (12), which
relates the normal concentration gradient to the interface velocity.

Finally, we remark, that the previous boundary conditions determine the normal projection
of the interface velocity (vi · n) and do not constrain the tangential part. We assume thus,
that the interfacial velocity is directed along the local normal to the interface n. This
condition has important geometric consequences in the evolution of interfaces undergoing
phase changes [111].
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3.2. Models for melting, dissolution and sublimation

For an evolving interface undergoing a phase change, the interface velocity vi is thus coupled
by boundary conditions to advection–diffusion equations, which set the transport of the solute
concentration field and/or of the temperature field, by the velocity field u(x, t ) in the fluid
phase. To close the problem, the determination of the velocity field is given by the Navier–Stokes
equations, which express the local conservation of momentum. However, the spatial variations
in composition due to the solute concentration and temperature affect the fluid properties. The
density, the fluid viscosity, the diffusion coefficient, the diffusivity, the latent heat then vary
spatially. The heterogeneity of the properties makes the question difficult to address theoretically.
For sake of simplicity, we assume hereafter weak solute concentrations and weak variations of
fluid properties with temperature. The density variations, which depend on concentration and
temperature, are only taken into account when multiplied by the gravitational term (Boussinesq
hypothesis). This is true for small variations in concentration and temperature. Finally, we
assume that the properties of the fluid are homogeneous.

3.2.1. Melting/solidification of a pure substance

In these conditions, the model describing the melting/solidification of a pure substance in
presence of a flow in the liquid phase is given by the following set of partial equations:

∂T

∂t
= κs∇2T (solid phase) (21)

∂T

∂t
+u ·∇T = κl∇2T (liquid phase) (22)

∇·u = 0 (liquid phase) (23)

ρl,0
∂u

∂t
+ρl,0(u ·∇)u = −∇P +µ∇2u+ρl,0(1−β(T −T0))g (liquid phase). (24)

Balance in total energy, mass, and momentum are described by the heat transport equation
(Equations (21) and (22) in solid and liquid phases, respectively), by the continuity equation
for an incompressible flow (Equation (23)) and the Navier–Stokes equations (Equation (24)) for
a viscous flow. β is the thermal expansion coefficient (for example β = 2.06 × 10−4 K−1 for
liquid water at 20 °C), P is the pressure field, g is the gravity acceleration and µ the dynamic
viscosity of the liquid phase (the kinematic viscosity ν is equal to µ/ρ). κs and κl are the thermal
diffusivities in the solid and liquid phase, respectively. The liquid density ρl,0 is assumed to
be homogeneous and constant in the Navier–Stokes equation (Equation (24)) according to the
Boussinesq approximation, where the density is only slightly modified in the gravitational term.
T0 is the temperature for which ρl(T0) = ρl,0. Note that the coefficient β corresponds to a
linearization of the equation of state in the liquid phase, whose knowledge is required to solve
the Navier–Stokes equation.

These equations must be associated to the following boundary conditions at the melting
interface, whose velocity is vm:

u ·n = vm

(
1− ρs

ρi

)
(25)

u∧n = 0 (26)

Ti = Tm (27)

ρsLmvm ·n = −λl∇T |l,i ·n+λs∇T |s,i ·n. (28)
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Table 1. List of relevant dimensionless numbers for melting phenomena

Melting Definition Interpretation
Stefan number St = Lm/(cp∆T ) Competition of the latent heat with the

stored thermal energy
One Stefan number for each phase

Prandtl number
Pr = ν/κ Momentum transport by viscosity

versus heat diffusionPr ∼ 10 (water)

Density ratio
rρ = ρl/ρs Ratio liquid phase density to solid

phase density at the interfacerρ ∼ 1.09 (water)

Reynolds number Re = (δU U )/ν Competition between flow advection
and the viscous diffusion

Thermal Péclet number PeT = (δU U )/κ= Pr Re Competition between flow advection
and the temperature diffusion

Thermal Rayleigh number Ra = β∆T gδ3
T

κν

Competition between buoyancy driven
advection and diffusion phenomena

Interface motion number rm,U = κTm

ρsLmδT U

Ratio of the melting interface velocity
to the typical flow velocity

δU is the characteristic length scale of the flow, either the typical scale of velocity gradient or
the thickness of a viscous boundary layer. δT is the characteristic scale of the temperature
field (such as the thickness of a boundary layer). Note that the Stefan number may be defined
differently in the literature.

For the other interfaces, the relevant boundary conditions depend on the considered problem,
like for example cancellation of the velocity field on solid walls and of thermal gradient for
insulating walls. The pressure field depends also on the external boundary conditions.

Moreover, as the solid/fluid interface evolves the domain of each phases as a function of
time, the interface evolution introduces thus geometrical non-linearities by domain variation
and induces computational challenges for direct resolutions.

Relevant dimensionless numbers can be introduced to define flow and melting regimes, see
Table 1. The density ratio ρi/ρs, where ρi is taken at the melting temperature, determines the
normal velocity at the melting interface. For each phase, we can define a Stefan number St =
Lm/(cp∆T ), with ∆T the typical temperature variation in the problem. This number compares
the latent heat to the stored thermal energy, the lower the St value, the higher the melting speed.
Note that the inverse definition of the Stefan number is also commonly used in the literature. The
Prandtl number, Pr = ν/κl = µ/(ρκl) is the ratio of kinematics viscosity to thermal diffusivity. Pr
for water is about 13.5 at 0 °C and 6.99 (smaller) at 20 °C, because the fluid viscosity decreases
with temperature, whereas the thermal conductivity increases. The momentum transport is thus
faster than the heat transport, but without a clear separation of scales. For the hydrodynamics,
we can introduce the Reynolds number Re = (δUU )/ν, where δU is a characteristic length and the
thermal Rayleigh number RaT = (∆ρgδ3

T )/(µκl) with ∆ρ = ρ0β∆T , where δT is a characteristic
scale of the temperature field. δT and δU depend on the considered system and flow conditions.
The thermal Péclet number PeT = (δUU )/κl = Pr Re compares in Equation (22) the heat advection
to the heat diffusion. For sufficiently large Rayleigh numbers and unstable density stratification,
the liquid can move by thermal convection: the onset of convection (Rayleigh–Bénard instability)
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between two horizontal solid plates maintained at constant temperatures, is predicted for a
Rayleigh number above a critical value equal to 1707.8 [100].

3.2.2. Dissolution/precipitation of a solid in a solvent

For the dissolution/precipitation of a solid in a liquid phase (solution) consisting of a solvent
and a solute of concentration c, the set of equations to solve in the liquid phase is, with the
previous simplifying hypotheses:

∇·u = 0 (29)
∂c

∂t
+u ·∇c = D∇2c (30)

ρl,0
∂u

∂t
+ρl,0(u ·∇)u = −∇P +µ∇2u+ρlg. (31)

Equations (29) and (31) are again the incompressible Navier–Stokes equation in the Boussinesq
approximation, the fluid density is assumed homogeneous and equal to the mean value ρl,0,
except for the gravity term. The equation of state of the liquid phase relates the local density
to the temperature and the chemical composition (here the solute concentration). For negligible
temperature variations, the liquid density is related to the concentration by the relation: ρl =
c(ρsat −ρl,0)/(csat)+ρl,0, where ρsat is the saturation liquid density. This linear dependency of
density with concentration is valid for most solutes. The increase in density with c leads to
buoyancy effects through the term ρlg. The boundary conditions at the solid/liquid interface
are:

u ·n = vi

(
1− ρs

ρi

)
(32)

u∧n = 0 (33)

ρsvi = −α(csat − ci)n (34)

ρsvi

(
1− ci

ρi

)
= D(∇c|i ·n)n, (35)

where α is the chemical dissolution rate coefficient.
To close the set of equation, like for melting, additional boundary conditions are required

at non dissolving interfaces of the domain. Then, the dissolution velocity vi at each point of
the interface can be in principle computed to predict the erosion rate and a possible pattern
emergence. Several dimensionless numbers are relevant to distinguish the hydrodynamic and
dissolution regimes, see Table 2. We have already introduced the Damköhler number Da =αδ/D ,
which compares the chemical kinetics of the dissolution reaction with the diffusion transport at
the solid/liquid interface. The Schmidt number Sc = ν/D =µ/(ρD) is the ratio of the momentum
diffusion due to viscosity to the solute diffusion. Note that for the dissolution of ions or organics
substances in liquid water, the Schmidt number is always of the order of 1000, i.e. the particle
diffusion is always slow compared to the momentum diffusion. Consequently, the concentration
boundary layers are usually significantly thinner than the viscous boundary layers, because
on a given time scale momentum diffuses farther than solute δc ∼ (DT )1/2, δv ∼ (νT )1/2 and
D ≪ ν. In addition, the ratios csat/ρsat ≈ csat/ρi and ρi/ρs are also useful to define the weak
concentration regime and the density jump at the interface, respectively. To characterize the
hydrodynamics, the Reynolds number Re = δU U /ν evaluates the importance of the nonlinear
term in the Navier–Stokes equation (velocity field advection) in front of the viscosity term, where
δU and U are the characteristic length and velocity of the flow. Using δc the characteristic
scale for the concentration field, usually small in front of δU , we can define the solutal Rayleigh
number Ra = [(ρi − ρb)gδ3

c ]/(µD), where ρb is the liquid density of the “bath” i.e., far from
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Table 2. List of relevant dimensionless numbers for dissolution phenomena

Dissolution Definition Interpretation
Damkhöler number Da =αδc /D Competition between chemical

reaction rate and diffusive transport

Schmidt number
Sc = ν/D Momentum transport by viscosity

versus solute diffusionSc ∼ 1000
(ions in water)

Density ratio
rρ = ρsat/ρs Ratio liquid phase density (solute +

solvant) to solid phase density of a
soluble body

rρ ∼ 0.55
(solid and saturated water)

Concentration number
rc = csat/ρsat Ratio of the saturation

concentration to the saturation
liquid density. Determine the
condition of weak concentration

rc ∼ 0.2 (salt)

Reynolds number Re = (δU U )/ν Competition between flow
advection and the viscous diffusion

Péclet number Pe = (δU U )/D = Sc Re Competition between transport due
to flow advection and the
concentration diffusion.

Solutal Rayleigh number Ra = (ρsat −ρb)gδ3
c

Dµ

Competition between buoyancy
driven advection and diffusion
phenomena

Interface motion number rd ,U = Dcsat

ρsδcU

Ratio of the dissolving interface
velocity to the typical flow velocity

δU is a characteristic scale of the flow, either the typical scale of the velocity gradient or the
thickness of a viscous boundary layer, and δc is the characteristic scale of the concentration
field.

the dissolving interface. Like the thermal Rayleigh number we introduce in Section 3.2.1, the
solutal Rayleigh number determines the condition of appearance of convective motion by a
hydrodynamic instability mechanism [21, 109, 112]. Finally, the Péclet number Pe = (δU U )/D
compares advection with diffusion. The Péclet number is directly related to the Reynolds and
Schmidt numbers Pe = Sc Re.

3.2.3. Sublimation/condensation between a solid and a gas phase

The hydrodynamic and mass transfer equations for the sublimation of a solid in an
incompressible fluid whose composition is different from that of the sublimating material
(sublimation of water ice in air for exemple) are identical to Equations (29) and (31). The fluid
is subject to small temperature variations (constant ρl,0). The transport of the ablated species
within the fluid is treated as a passive scalar, satisfying an advection/diffusion equation for
the concentration (Equation (30)). The boundary conditions (34)–(35) are identical to those
for dissolution, with α representing the sublimation reaction rate coefficient. The sublimation
velocity will be influenced by the type of flow (natural or forced convection) and the nature
of the flow (laminar or turbulent). Special attention must therefore be paid to the turbulence
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Table 3. List of relevant dimensionless numbers for sublimation phenomena

Sublimation Definition Interpretation
Damkhöler number

for sublimation
Das =αδs/D Competition between sublimation

reaction rate and diffusive transport

Schmidt number
Sc = ν/D

Momentum transport by viscosity versus
molecular diffusion

Sc ∼ 1
(for gas)

Density ratio rρ = ρsat/ρs Ratio gaseous phase density (gas +
sublimated specie) to solid phase density
of a soluble body

Relative humidity
RH = pvap

psat
Determine the conditions favorable to
sublimation of the specieRH < 1 sublimation

Reynolds number Re = (δUU )/ν Competition between flow advection
and the viscous diffusion

Péclet number Pe = (δUU )/D = Sc Re Competition between flow advection
and the concentration diffusion

Mass Rayleigh number Ra = (ρsat −ρb)gδ3
s

Dµ

Competition between buoyancy driven
advection and and diffusion phenomena

Interface motion number rs,U = Dcsat

ρsδsU

Ratio of the sublimating interface
velocity to the typical flow velocity

δU is a characteristic scale of the flow, either the typical scale of the velocity gradient or
the thickness of a viscous boundary layer. δs is the characteristic scale of the concentration
field.

models used. As with dissolution, dimensionless numbers for phase change in sublimation are
defined in Table 3. The Damkhöler number for sublimation, Das = αδs/D , is used to compare
sublimation kinetics with diffusion transport at the gas/solid interface. The Schmidt number is
the ratio of momentum diffusion to viscosity and molecular diffusion in the gas. For gases, this
number is often close to 1, i.e. 1000 times lower than for dissolution, meaning that molecular
diffusion is comparable to momentum diffusion. In this case, the velocity and concentration
boundary layers are of the same order of magnitude. In the case of sublimation, the rρ = ρsat/ρs

ratio is very small, indicating a concentration jump at the interface. Temperature and pressure
of the environment control the value of psat. Heat can come from radiation, which would add a
source term in volume in the heat equation that has to be solved. To ensure a weak concentration
regime, in the case of sublimation we are interested in the specific humidity, RH = pvap/psat,
where pvap is the vapor pressure of the specie and psat the saturated pressure of the specie. A low
value of this number corresponds to a dry atmosphere (and therefore favorable to sublimation).
As in the case of dissolution, the Reynolds number is used to assess the competition between
viscous diffusion and advection by the flow and the combination of Sc and Re gives the Pe
number, which compares concentration transport by flow advection and diffusion. If buoyancy
forces are driving the flow, the same Rayleigh number Ra as in the dissolution case can be
used to estimate the relative strength of buoyancy due to concentration/density variations and
diffusion.
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3.2.4. Melting, dissolution and sublimation. Analogies and differences

The dissolution/sublimation velocity is set by the normal to the surface component of the
concentration gradient (Equation (12)) and the concentration field in the fluid phase is found
by solving an advection diffusion equation for the concentration. As seen previously, for large
values of the Damköhler number Da, the concentration at interface is close to the saturation
concentration (ci = csat). The problem becomes thus mathematically identical to the melting
situation in case of negligible temperature diffusion in the solid (often valid for large Stefan
number St = Lm/(C p∆T )), where the advection–diffusion equation of the temperature is solved
with the boundary conditions Ti = Tm. In that case, Equation (18) relates the interface velocity
to the normal temperature gradient. In both cases, the kinetics of the molecular mechanisms
(attachment and detachment) is assumed fast enough to be neglected and the interface state
corresponds to the thermodynamics equilibrium, when the coexistence between two phases
occurs. The motion of the interface is yet an out-of-equilibrium process caused by the difference
of fluxes on each side of the interface. Therefore, dissolution and melting patterns can often
be paralleled [69], as they arise qualitatively by the same mechanisms. Nevertheless, some of
dimensionless numbers have always very different orders of magnitude. The Schmidt number Sc
is about 1000 for dissolution, whereas the Prandtl number Pr is about 10, meaning that the heat
diffuses faster than the concentration and that the diffusion of both quantities is less efficient
than momentum diffusion. Typically, the sizes of the concentration structures like plumes,
eddies, boundary layers are smaller than those corresponding to the temperature.

Another important difference, is related to the external boundary conditions of the problem.
Despite the mathematical analogy, the saturation concentration does not play the same role
than the melting temperature in practical cases. Usually in dissolution experiments in a closed
domain, the process stops, when the liquid concentration reaches the saturation value, due to
accumulation of the solute. Providing fresh water for concentration is the most suitable way to
avoid this effect. For melting examples, an energy input is externally supplied to sustain the phase
change and if it is maintained constant, the melting continues until the solid has completely
disappeared. However, it can also stop if the system is closed without loss of energy, allowing it to
reach equilibrium temperature. In both case, for the ablation process to be effective, the system
must be out of equilibrium.

For dissolution, the kinetics effects are often considered more relevant that for melting. For
most low solubility minerals, such as quartz and other silicates [91], the rate of dissolution is often
considered to be limited by the chemical kinetics. For minerals of intermediate solubility, such as
limestone and gypsum, the interaction between transport and reaction has been addressed in a
recent review [113] of dissolution in porous media, wormhole formation and fracture growth by
dissolution. The reaction seems to be confined to a small distance necessary to reach conditions
close to saturation. In addition, the role of the reaction in the presence of a flow, and thus of the
coefficient α in the dissolution rate, has only been directly shown in very few experiments. Using
a microfluidic flow experiment combined to dedicated numerical simulations, Dutka et al. [114]
find an intermediate situation (Da ∼ 3) for dissolution of gypsum samples. In this example, the
dissolution rate is mainly limited by diffusion, but is significantly influenced by the reaction
rate coefficient α. For very soluble materials like salt (NaCl) or sucrose, to our knowledge, in
macroscopic experiments the role of the reaction is not perceptible for dissolution dynamics and
pattern formation [21, 109, 112]. Therefore, most macroscopic dissolution experiments belong
to the diffusion limited regime, i.e. large Da. The case of the generation of meter scale natural
conduits in limestone caves is debatable and could depends if the dissolution occurs in acid
conditions (large Da) or in alkaline conditions (small Da) [115].

Then, according to Equation (1), the kinetics define a maximal dissolution velocity
vd ,max = αcsat/ρs. Although, the values of α are not always well determined experimentally, the
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order of magnitude of the maximal dissolution velocity, vd ,max, is of the order of 10−5 m/s, for
fast dissolving materials like salt [103]. Consequently in the presence of a flow at a macroscopic
scale, the interface velocity is usually very small in front of the hydrodynamic velocity, in the
case of dissolution or sublimation. The evolution of the interface and of the hydrodynamic acts
thus with two separated time scales. For the melting of a pure substance in extreme situations,
the separation of time scales is not always guaranteed. A dimensionless number to quantify this
time scale separation can be defined as the ratio between the interface velocity to the typical
flow velocity: rd ,U = Dcsat/(ρsδcU ) for dissolution and rm,U = κTm/(ρsLsatδT U ) for melting
respectively. These numbers are usually very small compared to one, but must be evaluated in
each situation.

We note also an important analogy between dissolution/sublimation and melting in the
context of erosion processes. Once thermodynamic equilibrium is broken, the flow in the fluid
phase always affects the rate of phase change. At a melting interface, an increase of the local flow
velocity increases the shear rate in the thermal boundary layer or the concentration boundary
layer. The thickness of boundary layers decreases and the local phase change rate increases.
Contrary to mechanical erosion, for which erosion occurs when the shear stress overcomes a
threshold, there is no such threshold for dissolution or melting. An infinitesimally weak velocity
can thus participate to the emergence of a dissolution/sublimation or melting pattern.

Finally, as we pointed out before, the sublimation of a solid in a atmosphere, where the
sublimated vapor is in small proportion is formally analogous to the dissolution of a solid in
a solvent. As the theoretical description is identical, the same dimensionless numbers arise
naturally, by considering the concentration field of vapor in the atmosphere (the index l (liquid
phase) by g (gas phase)). However, the physical properties of the liquid and gas phases differ
strongly, leading to different orders of magnitude for the physical coefficients cp, ν, κ, D , . . . In
addition, because the heat capacity of gases is smaller, the coupling between concentration and
temperature fields is stronger. Sublimation is usually modeled by addressing the vapor transport
and taking into account the temperature variations, which change in turn the saturation vapor
pressure, with the hypothesis of local equilibrium of the interface [116]. As the molecular
mechanisms at the origin of diffusion and viscosity are similar in gas (which is not the case for
liquids), the Schmidt number and the Prandtl numbers are of order one (Sc = 0.63 for water vapor
in air and Pr = 0.7 for air) [101]. Compressibility effects can also become significant, modifying
the hydrodynamic description.

3.3. Choice of analog material for an experiment

As many natural patterns created by a phase change often occur in complex situations with
intermittent conditions and entangled physical mechanisms, model laboratory experiments are
useful to identify their formation mechanism and dynamics. However, the timescales in which
they appear and evolve are often very long compared to human time scales. It is therefore
necessary to accelerate the phenomenon in order to carry out experiments within a manageable
time, typically one hour. The question is then whether the physics studied for fast evolution is
qualitatively similar to the natural case, and whether the laboratory results can be extrapolated
to the field, by examining the relevant dimensionless number. A list of these dimensionless
numbers are summarized in the Tables 1–3.

For melting experiments by a fluid flow, most of experiments are performed with ice in
contact with water. The melting/solidification temperature of 0 °C is relatively close to ambient
temperature compared to other common pure materials and is accessible using standard
laboratory equipment. The melting rate can be conveniently adjusted by varying the temperature
of the water flow. Ice can also be used to mimic the melting of minerals or materials at high
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temperatures. This has been done in an experiment where an impinging jet of molten material
hits a solid wall [117]. Organic phase change materials are also used to investigate the interaction
between phase change and melting, like cyclohexane [118] (Tm = 6.38 °C), hexadecane [119]
(Tm = 17.7 °C) or polyethylene glycol wax [120] (Tm = 19 °C). The latent heat and thermal
parameters are of a similar order of magnitude, but the organic liquid are much more viscous
and less thermally conductive. Consequently the Prandtl number Pr = ν/κ is large compared to
one and of order 1000 instead of about 10 with water. Fluid mechanics experiments with phase
change material have been also performed with liquid metals like gallium [121] (Tm = 29.7 °C),
which have larger densities and allow to reach small values of the Prandtl numbers (about
2×10−2).

For phase changes by dissolution, the three most important types of soluble rocks are salt
(Halite or sodium chloride, NaCl), gypsum (CaSO4·2H2O) and limestone (Calcite, CaCO3), whose
solubility (approximately the saturation concentration) in water are around 360 g/L, 2.0 g/L
and 15 mg/L, respectively. The solubility of limestone is strongly dependent on carbon dioxide
concentration and the acidity, which is measured with the pH scale. These three rock examples
belong respectively to three mineral families with similar chemical and physical properties, the
halides, the sulfates and the carbonates, respectively. In general, the dissolution parameters, csat

and α will have similar value for components belonging to the same family.
The chemical dissolution/precipitation reactions are:

(NaCl)s ⇆Na++Cl−

for salt (sodium chloride) and:

(CaSO4·2H2O)s ⇆Ca2++SO2−
4 +2H2O

for gypsum (dihydrated calcium sulfate).
They are described by simple dissolution/precipitation reaction. Limestone is the most

common and important case, due to the large distribution all over the continents of regions
shaped by the hydrochemical erosion of limestone called Karsts [122]. The chemical reactions
for removal or deposition of the calcite are quite complex with several elementary steps [91, 123].
However, they can be summarized in a single chemical equation:

CaCO3 +CO2 +H2O⇆Ca2++2HCO−
3

Note that the reaction involves CO2 as a gas dissolved in the aqueous phase, whose presence
in the solution acidifies the water. Therefore, the rate at which calcite dissolves depends on
exposure to the atmosphere and pH. To simplify, the limestone dissolves at low pH (acid) with the
consumption of CO2 and precipitates at high pH (basic) with the production of CO2 especially
for acid enough water, erosion is often assumed to be controlled by solute transport rather
than dissolution kinetics [91]. The values of the relevant experimental parameters for the most
common soluble materials are given in Table 4 for a temperature of about 20 °C. We note that
the dissolution rate α conveying the chemical kinetics, is not well known, especially for fast
dissolving materials, because the hydrodynamic methods (like the rotating sample one) depends
on a laminar model for the boundary layer and could suffer from biases [124]. In absence of
external flow, the use of a holographic method to follow the evolution of the density profile by
diffusion provides a consistent method to measure α for gypsum [95]. As mentioned previously,
dissolution of a gypsum sample in a microfluidic cell allows to measure α [114]. The obtained
values are compatible with the holographic measurement without flow motion. Nevertheless, it
appears that in general the largest values of α are associated to large saturation concentration,
as it has been tested for the dissolution of some organic substances [110]. Sugar (sucrose) and
similar organic compound like glucose or benzoic acid are convenient to perform dissolution
experiments [21, 125, 126], because they can be molded to the prescribed shape after thermal
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Table 4. Characteristic parameters for dissolution in fresh water at a temperature of about
20 °C

Solid
density ρs

(kg·m−3)

Saturation
concentration
csat (kg·m−3)

Saturation
density ρsat

(kg·m−3)

Dissolution
rate α

(m·s−1)

Diffusion
coefficient
D (min|max)

(m2·s−1)

Dynamic
viscosity
µ (min|max)

(Pa·s)

Limestone
CaCO3

2711 0.312 997.432 3×10−6 1.4×10−9 1.002×10−3

Gypsum
CaSO4·2H2O

2320 2.04 999.16 2.7×10−6 1.0×10−9 1.002×10−3

Salt
NaCl

2170 317.5 1200 5.0×10−4 1.5×10−9

1.6×10−9
1.00×10−3

1.99×10−3

Sugar
C12H22O11 1540 887 1327 ≳5×10−6 5.2×10−10 1.00×10−3

Sucrose 7.1×10−11 0.212

The density of fresh water is ρ0 = 997.12 kg·m−3 and its dynamic viscosity µ0 = 1.002 ×
10−3 Pa·s [101]. Limestone, data from Kaufmann et al. [127] at high carbon dioxide pressure. For
limestone, csat is strongly dependent on the carbon dioxide pressure and on the pH. This value is
particularly high, csat ≈ 0.015 kg·m−3 under standard conditions. Gypsum, data from Colombani
et al. [95]. Salt, data from Alkattan et al. [103] and from the Handbook [101]. Sucrose, data from
Cohen et al. [21], and others [128, 129] and from the Handbook [101].

melting. However, viscosity increases by several orders of magnitude with concentration, which
is not the case for mineral rocks, and some of the observations may not be relevant for soluble
rocks. Plaster has the same chemical composition than gypsum. It has an intermediate solubility
between salt and limestone and can be easily molded. This is why plaster has been used in
several important studies of dissolution in water flows within a matter of hours [15, 17, 20].
Yet, the obtained samples are often porous, which may influence the surface patterning and
the measured erosion rates. Furthermore, some experiments can be performed with synthetic
large salt crystals (like NaCl, KCl or KBr), but the samples are expensive and limited to a
few centimeters. Then, mineralogical samples from mines and quarries can be also used in
experiments. However, they often show defects in composition if they contain impurities, and
in mechanical properties due to grain boundaries or fractures.

Finally, we now consider the case of sublimation of a solid. Sublimation technique [130] has
been used to obtain informations about heat transfer in experiments. Analogies have been made
between mass and heat transfer. Naphthalene (C10H8), with its high sublimation rate at room
temperature [131], has been used as sublimating substrate for its good casting and machining
properties but it is considered carcinogenic and to our knowledge has not been used to study
bedforms. Camphor has already been used to test the influence of material surface roughness
on the triggering of the laminar–turbulent transition when objects coming from space enter the
atmosphere. However, it requires high temperatures for sublimation [132]. Water ice under
controlled cold and dry atmospheres appears to be the most obvious substrate. The use of water
ice as the substrate for sublimation experiment has some advantages over the previous ones: it is
not toxic, it requires less extreme temperatures, the material is inexpensive to produce and can
be shaped in any desired manner. But here the duration of experiments can be a problem. For a
fixed ambient and partial pressure, the saturation margin psat −pvap determines the sublimation
velocity (see Table 5). Thus, water–ice experiments would have to run for weeks to achieve
the same depth of ablation that a CO2–ice experiment can achieve in hours. Under similar
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Table 5. Characteristic parameters for sublimation in N2 atmosphere

Solid
density ρs

(kg·m−3)

Saturation
pressure
psat (Pa)

Vapor
pressure pvap

Pa (min|max)

Sublimation
velocity vs

(m·s−1)

Diffusion
coefficient D

(m2·s−1)

Kinematic
viscosity ν
(m2·s−1)

Svéa,
Antartica H2O

865 336 100–166 3×10−9 2.9×10−5 1.5×10−5

Nantes, wind
tunnel CO2

1560 1.4×105 40 1.4×10−6 1.5×10−5 1.5×10−5

Kinematic viscosities are computed from Sutherland’s law for the viscosity of gases. In both cases,
sublimation velocities are estimated in the absence of wind. Water ice data from Bintanja [50] with
RH ∼ 0.3, CO2 ice data with RH ≪ 1 from Bordiec et al. [32].

environmental conditions, water ice will always sublime about three orders of magnitude slower
than CO2 ice.

4. Dissolution, melting and sublimating patterns in experiments

Pattern can be shaped by an instability of the flow, be periodic with a characteristic wavelength,
but recognizable shapes can also be driven by specific boundary conditions. Here, we have
chosen to classify experiments as a function of the external forcing and boundary conditions,
which, we believe, modify the coupling processes described in Section 3 that drive pattern
formation. Because diffusion tends to homogenize concentration and temperature fields, it
cannot drive the spatial variation of the concentration/temperature field that leads to pattern
formation (but when associated with specific boundary conditions); a flow is required. This flow
can be buoyancy driven by the phase change itself or externally driven (or both). When externally
driven, the flow can be deep, as in caves or oceans, or shallow and possibly interacting with the
free surface, which is the usual case of a surface exposed to rainfall. Riverbeds can be subject to
both deep and shallow flows.

4.1. Buoyancy driven flow and associated bedforms

Melting or dissolution of a body in quiescent water leads to density stratification at the eroding
surface, either because the solution density depends on temperature or on solute concentration.
This density stratification may be stable or unstable with respect to gravity. In either case, this
density stratification drives a buoyant flow (but in the singular case of an infinite and perfectly
flat surface). Experiments usually consist of simply following the dissolution of a block of sugar
(glucose, sucrose, or a mixture) [21, 48, 108, 133, 134], salt (NaCl), or plaster [21], or the melting
of an icy block in a tank of water [135].

4.1.1. Stable density stratification

The dissolution of axisymmetric sugar bodies in quiescent water has been studied
experimentally by Pegler and Davies Wykes [108] and by Huang et al. [48] for the case of stable
density stratification (Figure 8). In this case, the erosion creates a thin convective boundary layer
of concentration that grows while flowing along the body surface. These experiments show that
an initial upright cylinder sharpens with time while receding [48] whereas an initial cone blunts
with time [108]; the erosion dynamics depends on the initial shape [108]. The erosion dynamics
and shapes are well described by a boundary layer model derived by Acrivos [136], in the limit
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Figure 8. Left: dissolution of a candy cone (from Pegler and Davies Wykes [108]). Copyright
Cambridge University Press 2020. The cone slowly blunts with time and the receding
velocity slowly decreases with time. Right: A block seeded with vertical pores dissolves
and form an array of sharp pinnacles (from Huang et al. [48]), under the CC BY 4.0 license.

of high Schmidt number, i.e., the concentration boundary layer is within the viscous layer [108,
137]. They have shown in particular that in this 2D-model convex upward shapes sharpen with
time with a receding rate that increases with time, whereas triangles and concave upward shapes
blunt with time with a receding rate that decreases with time [137]. For simple shapes, self similar
solutions exist but no asymptotic, stationary shape [108, 137]. Huang et al. also interestingly
“speculate that this mechanism contributes to the formation of pinnacles in nature”, such as
tsingys or stone forests [48], the sharp patterns described in Section 2.1, Figure 1(b). Weady
et al. studied the melting of initial vertical cylinder in a tank of water at different temperature
T∞ [135]. These cylinders sharpen to form upward pinnacles when T∞ ≳ 7 °C and downward
pinnacles when when T∞ ≲ 5 °C, because water density is maximum around 4 °C [135]. At
intermediate temperatures, scallop-like patterns form at the ice surface. Authors explain these
patterns as imprints of a Kelvin–Helmholtz instability between the rising fluid near the surface
and the sinking outer flow [135].

4.1.2. Unstable density stratification

If the density stratification induced by the dissolution or melting of an object is unstable
rather than stable, i.e. if the density gradient is opposed to the gravity direction, the results are
significantly different, both at the global scale and at a smaller scale, where patterns appear. The
first observations of this phenomenon date back to at least the beginning of the 20th century,
when Schürr described the appearance of “convection stripes” on the surface of immersed
soluble crystals in 1904 [138, 139]. The appearance of patterns on the surface of solids under
the effect of convection flow generated by their dissolution [140, 141] or melting [142, 143] was
subsequently observed, but the first quantitative studies of patterning date from the late 1990s.
Drawing an analogy with turbulent thermal convection, Sullivan et al. proposed that a solutal
Rayleigh–Bénard instability determines the thickness of the concentration boundary layer, and
therefore the dissolution rate, but also the characteristic size of the patterns. It proved to be in
good agreement with experiments conducted on horizontal salt crystals [112, 144, 145].

This can be explained with the schematic in Figure 9. When a soluble solid is brought
into contact with water, a boundary layer of concentration is created around it, which grows
initially by diffusion. At downward facing surfaces, the boundary layer eventually destabilises
when buoyancy overcomes diffusion in concentration transport, i.e., a solutal Rayleigh–Bénard
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Figure 9. Left: Shadowgraph of a plaster block in water showing the sinking plumes of the
solutal convection. The bottom surface is 20 cm long. Credits: Martin Chaigne. Right:
Sketch of the solutal Rayleigh–Bénard instability and its imprint on the block (from Cohen
et al. [21], with the permission of the American Physical Society).

instability happens, analogous to the thermal Rayleigh–Bénard instability. The instability
threshold is given by a criterion involving the solutal Rayleigh number:

∆ρgδ3
c

ρbνD
= Rac , (36)

with ∆ρ the difference in density between the saturated fluid and the fluid in the bath, η the
dynamic viscosity of the fluid, D the diffusion coefficient of the solute in the fluid, and Rac a
critical value of the solutal Rayleigh number. Using the values in Table 4 and taking Rac = 1101,
which is the theoretical value for the onset of the Rayleigh–Bénard instability with mixed slip
and no-slip boundary conditions [100], we find that the thickness δc is of the order of 0.1 mm
for salt, 0.4 mm for gypsum and between 0.7 and 2 mm for limestone. Experimental values of
the dissolution rate rather suggest Rac ≃ 100 [112, 144], which modifies the estimated thickness
of the boundary layer by a factor of 2. The nonlinear evolution of the destabilized boundary
layer then leads to the emission of thin plumes of solute-laden fluid. Their typical thickness is
that of the boundary layer, while the typical spacing between two plumes is of the order of a
few boundary layer thicknesses [21, 144]. In Figure 9, they are visualised using the shadowgraph
technique under a block of plaster suspended in water at an angle of 20° to the horizontal. From
the time the first plumes are emitted, the flow enters a quasi-permanent regime during which the
boundary layer remains, in average, marginally stable.

At a large scale, the boundary layer therefore has a constant thickness that leads to a constant
dissolution rate. At a smaller scale, however, the convection flow induces a spatially variable
dissolution rate: the boundary layer is thicker (and therefore the dissolution rate lower) vertically
across a plume than between two plumes, where it is thinned by the arrival of fresh water rising
from the bottom. These local variations in the dissolution rate then imprint on the soluble solid,
all the more so as the emergence of a topography locks the position of the plumes [21]. Under
a horizontal surface, this leads to the appearance of a pattern of cavities surrounded by sharp
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crests reminiscent of scallops [111, 112, 145], the size of which reflects the wavelength of the
hydrodynamic instability.

If the surface is inclined, the patterns obtained are qualitatively different. The dissolution flow
tends to follow the inclination of the block as observed on the shadowgraph in Figure 9. This
flow causes a spatial coherence of flow structures along the block and leads to the appearance
of parallel stripes in the direction of gravity [21, 133]. It can be seen in Figure 10, which shows
photos at different time intervals of the underside of a block of plaster dissolving in water. The
block of plaster was suspended in an aquarium of fresh water at room temperature, frequently
replenished so that the concentration of solute remained far from saturation. Stripes appear,
becoming deeper and wider, until they form grooves with very sharp edges. These same stripes
can be observed on inclined caramel plates immersed in water, as shown in Figure 11. In this case,
however, the initial pattern of stripes is itself unstable. The stripes rapidly cross to form chevrons
and then asymmetrical concave, open at the bottom, scallop-like patterns, which run up the
block in the opposite direction to the flow while widening [21, 133]. The same succession of
patterns can be seen on salt blocks. Figure 12 shows the (transverse) pattern, made up of cavities
surrounded by sharp crests. The propagation of the patterns in the opposite direction to the flow
can be explained by the fact that the plumes of solute-laden water detach at the crests (Figure 12).
Thus, the dissolution rate is greater immediately downstream of a crest than upstream, causing
it to propagate upstream [21]. Cohen et al. suggest that differential upstream velocities could
explain transversalization of the initial stripe pattern because solute flow channelize on crests.
Yet the precise mechanism explaining why this initial pattern destabilises in caramel and salt
to form propagating scallops, which is not observed in plaster, remains to be elucidated. One
of the major differences between the two cases is that the large differences in density between
pure water and water saturated with salt or sugar (∆ρ/ρ0 = 0.2 for salt and 0.33 for sugar) lead
to highly turbulent convection flows, with typical velocities of the order of a few cm/s, much
larger than for plaster, for which ∆ρ/ρ0 = 1.7 × 10−3. For limestone, the density differences
are even smaller (∆ρ/ρ0 < 3× 10−4), which makes it difficult to extrapolate these experimental
results directly to the natural case. Although Cohen et al. point out the morphological similarity
between the scallops appearing on blocks of salt or caramel and those adorning the walls of
limestone caves [21, 133], the possibility that solutal convection plays a role in the formation of
the latter remains an open question, all the more so when an externally imposed flow is present.
Underground rivers flowing in cave conduits can indeed reach typical velocities of the order of
1 m/s, much larger than the typical velocities induced by solutal convection. How such flows
might influence the convection instability and the associated pattern formation is unclear. It is
more likely, however, that the natural convection instability is at the origin of the large arrays
of scallops observed on the immersed walls of icebergs, which melt in the polar oceans (see
Figure 2(b)). Similar pattern formation is indeed expected when melting induces thermal or
solutal convection. Cohen et al. [133] reported the formation of scallops at the top face of an ice
block of fresh water melting in a bath of (densier) salt water. Between fresh water and seawater,
the relative density difference ∆ρ/ρ0 equal to 0.025.

On a much larger scale, the average thickness of the boundary layer is fixed by the balance
between diffusion and buoyancy (Equation (36)). For a flat surface inclined downwards, the
dissolution rate is therefore constant over time and globally uniform along the surface. This was
verified by Davies Wykes et al., who showed that sugar cones or prisms suspended upside down
in an aquarium of water retain their shape [134]. The authors found no significant variation in
erosion rate as a function of surface inclination angle, in contrast to Cohen et al. who found that
erosion rate decreases with the inclination of the block. They argue that inclination should be
taken into account in the gravity term, which predicts a dissolution rate proportional to cos(θ)1/3,
in agreement with their measurements [21]. This dependency of angle only becomes significant
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Figure 10. Patterning of the bottom surface of a plaster block immersed in tap water at
an angle of 20° from the horizontal. The water was at room temperature, between 17 °C
and 21 °C. The plaster block was regularly removed from the tank to take photographs of
the surface and to record the topography. The scale is the same for each photograph. The
block on the left is 20 cm long. Gravity points downward. d is the mean eroded thickness
of the bottom surface. From left to right, photographs were taken after 148, 343, 541, and
928 h of immersion. Credits: Martin Chaigne.

Figure 11. Patterning of the bottom surface of a caramel block immersed in tap water
(20 °C) at an angle of 60° from the horizontal (from Cohen et al. [21], with the permission of
the American Physical Society).

for large inclination, which may explain why Davies Wykes et al. did not observe it. We can
therefore expect that an object of arbitrary shape dissolving from below will not always retain
its shape. The large-scale convection can also shape cavities in confined geometries. By injecting
water at a low flow rate into a cylindrical hole dug in salt, Gechter et al. observed that, due
to the convective instability, the ceiling dissolved much faster than the sides and floor [146].
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Figure 12. Left: Bottom surface of a salt block after immersion for 1 h in tap water (20 °C)
at an angle of 60° from the horizontal. Right: Detail showing plumes of solute-laden fluid
detaching from the crests of a caramel block. Both images are from Cohen et al. [21], with
the permission of the American Physical Society.

The initially circular profile deforms to become, over time, a triangular prism with a vertical
ceiling. Sharma et al. obtained a similar shape by studying the formation of alcoves from defects
on horizontal sugar walls dissolving in water [147].

4.2. Forced surface flows and associated bedforms

In the case of wind over sublimating surface or river current under a melting or dissolving surface,
the velocity of the flow can be much larger than the velocity of the ablation process. In that
case, two boundary conditions for convective flows have to be considered: the deep flow and
the shallow water flow. Experiments should therefore be considered with care, ensuring that the
wavelength of the patterns is either small in front of the flow thickness or much greater than
it, respectively. To this end, the dimensionless number kδU has to be considered, where k is
the wave number and δU , the thickness of the fluid layer under consideration. This thickness
corresponds to the height of the boundary layer thickness in atmospheric wind tunnels or in a
closed water channel and to the height of the flow in a free surface flow. If kδU > 2π, then deep
flow condition should be considered, and if not, shallow water.

4.2.1. Deep flows

The patterning in response to a unidirectional water flow at high Reynolds number has been
mainly investigated in deep flow regime for the dissolution of plaster plates, which have the
same chemical composition than gypsum. By imposing a flow velocity of order the meter per
second, several studies [18, 19, 70, 148, 149] report after about a hundred hours the formation
of a scallop pattern, similar to the polygonal depressions observed in the nature and previously
described in Section 2.2, Figure 2(c–d). In experiments, the typical scallop size and the surface
roughness increase in time. In particular Allen [18, 71] studies the temporal evolution of the
pattern and the emergence of the scallops and pointed out the crucial role of initial defects,
which are unavoidable with plaster due to its slight porosity. Defects larger than a critical size
(about the centimeter) depending on the hydrodynamics give rise to “heel-shaped hollows of
parabolic plan called flutes”. The subsequent pattern evolution generates an assemblage of
scallops (Figure 13(c)). Smaller defects in contrast, grow mainly in length to produce narrow
grooves parallel to the flow and of width about the centimeters. These patterns correspond to
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Figure 13. Deep flow conditions experiments. (a) Dissolution waves from Blumberg and
Curl [20], copyright Cambridge University Press 1974 and (b) sublimation waves from
Bordiec et al. [32], with permission from Elsevier. (c) Scallops from Allen [18] by dissolution
of plaster. Copyright Cambridge University Press 1971. (d) Schematic of the parameters
used in the scaling laws: wavelength λ, amplitude ∆h, propagation angle φ and ablation
rates q0, adapted from Blumberg and Curl [20], copyright Cambridge University Press 1974.

the crested patterns parallel to the flow direction described in Section 2.4, but are surprisingly
generated rather in deep flow regime, whereas the natural examples correspond mostly to thin
film flows. Allen proposed that these dissolution structures may be related to structures of the
wall turbulence, the streaks. However, these grooves can generate for longer flow exposure in a
second step, flutes and finally a scallop assemblage.

Regularly spaced crests, parallel to each other and oriented perpendicular to the turbulent
overlaying flow (Section 2.3, Figure 3) are known to be formed under deep flow conditions. We
will show in the remainder, that they have been reproduced in dissolution, sublimation and
melting experiments. The mass transfer at work, coupled with the flow, induces a modulation
of the surface on which transverse linear waves appear. In Blumberg and Curl [20] experiment,
dissolution waves are reproduced on a plaster block as an analogous material of soluble rock
(Figure 13b). Their morphodynamic study revealed wavelengths, amplitudes, propagation
angles and dissolution rates defined in Figure 13(d) as a function of flow velocity and the
ratio between fluid viscosity and diffusion coefficient, a dimensionless quantity known as
the Schmidt number (see Table 2). By comparing the flow velocity with the ablation rate
(typically 1 m·s−1 and 0.5 µmm·s−1), these experiments are well placed in a quasi-static interface
evolution, i.e. rd ,U ≪ 1 (see Table 2). The boundary layer of this flow δU ≃ 7.6 cm is imposed by
the water tunnel geometry. This height must be greater than the wavelength of the patterns.
Depending on the set of parameters, that we can reduce here to the dependence on two
dimensionless numbers (Schmidt and Reynolds), dissolution waves have wavelengths between
2–5 cm. They have a millimetric amplitude and migrate at different speeds (1–3.2×10−7 m·s−1)
in the direction of flow.

The aim of this approach is to understand the process of dissolution wave formation in a
qualitative way, and help to enrich a database. It highlights a regime of appearance of this
undulating surface roughness formed by dissolution in a transition regime, by considering a
dimensionless number, the Reynolds number (see Table 2), based on the wavelength over the
viscous length (i.e. the kinematic viscosity of the fluid ν over the friction velocity u∗). The friction
velocity used for the velocity scale [150] is based on the wall shear stress such as u∗ = (τw/ρf)

1/2

with ρf, the fluid density. However, this approach does not allow the exact determination of
the growth time of the patterns, which in this case do not emerge from an initially perfectly flat
surface. In order to promote the appearance of patterns, the authors dug grooves transverse to
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the flow at regular intervals to disrupt the flow. Nevertheless, according to the authors, these
initial disturbances to the topography did not appear to affect either the wavelengths or the final
profiles, as demonstrated by the tests they were able to carry out by varying the distance between
intervals for the same set of parameters. The patterns obtained evolved gradually by increasing
or decreasing the wavelength initially imposed by the grooves, in response to hydrodynamic
instability.

A correlation has been established between dissolution waves (Figure 13(b)) and sublimation
waves observed in the field (Figure 3(a)) and the analog sublimation experiment on CO2 ice
performed in an atmospheric wind tunnel [32] (Figure 13(c)). This theoretical study [11] is
based on a 2D linear stability analysis of the coupled system between turbulent flow and mass
transfer, following on from pioneer work [22, 32, 151]. It highlights the unstable wavelength
range for solid bedforms by varying the Schmidt number, showing the dependence on it of
the parameters involved in the dispersion relations (wavenumber λ, growth rate σ, angular
frequency ω). The growth rate and angular frequency are functions of the wavelength-based
Reynolds number (Reλ = λu∗/2πν = (kν/u∗)−1 = k−1+ ), and a positive growth rate is found in
the transitional near-wall regime, whereas modes in the turbulent or laminar regime decay due
to their negative growth rate in the deep flow condition. The critical mode is the mode with the
strongest positive growth rate, meaning that with time it will become the dominant wavelength
visible on the ice surface. The dimensionless values of this critical growth rate, wave number and
angular frequency are found numerically, and can be dimensionalised to give rise to three scaling
laws:

λc = ν

u∗
2π

k+
c,ref

Sc1/5 (37)

vc =
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c,ref
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ρs
(38)
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ν

u∗
Sc1/6 (39)

with k+
c,ref = 6.7×10−3, ω+

c,ref = 0.013×10−3, σ+
c,ref = 8.9×10−3 where reference values are given

for Sc = 1 [11]. The first scaling law links the friction velocity to the critical wavelength that
correspond to the most amplified mode. The second scaling law links the migration velocity to
the ablation rate. The third scaling law combines the ablation rate and friction velocity estimated
before into formation timescale, allowing to constrain the age of the surface.

Similar work could be carried out to extend the database in order to include melting
bedforms [30, 31, 152, 153]. Experimental works showed that under turbulent flow conditions,
ice-water ripple patterns developed in response to an initial perturbation in the ice interface.
While the topography was initially disturbed in previous experiments from Gilpin et al. [153],
recent experimental work form Bushuk et al. [154] shows that the waves can develop from
an initially flat bed with millimeter-scale imperfections but observes the formation of these
patterns in the same flow regime known as laminar–turbulent transition based on Reλ. These
two-dimensional ice waves, which develop perpendicularly to the direction of flow, migrate in
the direction of flow, indicating that the maximum mass flux is not found in the troughs, but
slightly upstream from the creation of these patterns (see Figure 13(a)). These patterns can then
evolve into three-dimensional structures, known as ice-scallops. They identify 3 stages of the
evolution, starting from the flat bed to the scalloped interface. Recirculating 3D effects could
induce reinforcing feedback due to turbulence redistribution for the three component of the
kinetic energy due to wall effect. They identify a length of the shear production zone that could
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constrain the wavelength of the scalloped bedforms. Finally, we note that the understanding
of the evolution of an initial flat bed by melting or dissolution remains an open question. The
conditions of the flow and of the bed, which will give rise either to wavy bedforms perpendicular
to the flow or to straight patterns parallel to the flow, are not known. The initial defects or bed
preparation seem to play a crucial role. Yet, further experimental and theoretical studies seem
necessary to elucidate the question.

4.2.2. Shallow flow

In shallow water, the flow may strongly depend on the thickness of the flow and may
couple with channel shape or free surface deformation, which can promote the growth of
specific patterns. The case of melting/dissolution in presence of shallow water has been mainly
investigated experimentally in creeping flow regime in the context of fracture dissolution and
in the context of wormhole formation in a soluble porous medium. We refer to the recent
review of Ladd and Szymczak [113] for more information on the subject. In transport controlled
regime, the fracture aperture in gypsum decreases with the distance [155]. However, especially in
experiments with NaCl the general shape and small scale pattern formation occurs in presence
of buoyancy instabilities [156–158], which have been already discussed in Section 4.1. For faster
flows, the shallow water situation corresponds often to the case of thin films flows, which occur
in the nature as the run-off caused by the rainfalls. In this case the water free-surface dynamics
may affect the pattern emergence and its evolution with time.

To our knowledge, among the diversity of Karren patterns (see Section 2.4) only the generation
of Rillenkarren has been reported in quantitative experiments. Around 1980, Glew and Ford [15]
applied artificial rain with an intensity about 35 mm/h upon molded plaster blocks of various
inclination, leading to film flows about 100 µm depth. After several hundred hours an array of
parabolic centimeters wide grooves were obtained. Their cross sections are well approximated
by parabola. Sharp ridges separate the rills. The grooves disappear at the bottom of the blocks,
when the film thickness exceeds approximately 150 µm. The obtained morphology resembles
thus well to natural Rillenkarren reported on limestone. The authors estimate that an important
condition to generate these pattern consists in the impact of the rain droplets on the water film,
which may generate small scale turbulence and efficient solute mixing in the film. With a similar
protocol, some morphological difference on the rain flutes development are found as a function
of the water temperature (24 °C and 45 °C) [16]. More recently, Guerin et al. [17] demonstrate
that dissolution grooves appear without drop impacts, by subjecting inclined soluble plates to
runoff water flows. For flowing film of homogeneous thickness of order 200 µm, nearly parallel
rills of similar width appear after few minutes on pink salt plates and after few hours on plaster
plates (see Figure 14). Their width and depth increase linearly with time by pattern coarsening,
until their crests emerge and channelize the flow, leading a slower increase of channel width.
The initial typical channel width (of order 0.5 mm) appears to be proportional to the water film
thickness, which is set by the hydrodynamic conditions. By rescaling the measured channel width
and depth by the film thickness, the experimental points obtained for different flow parameters
values and during all the experiment duration (few 10 h for plaster) gather on one master curve.
Two formation scenarios have been proposed, a bed instability mechanism and an imprint of
flow structures. In the first case, a locally greater fluid depth corresponds to a higher flow velocity,
which increases the local dissolution rate. Any perturbation is thus amplified, leading to a linear
instability of the bed. In the second scenario, a streamwise modulation of the flow velocity
would produce a modulation of the dissolution rate, which could explain the linear growth of
pattern amplitude with time. Recent theoretical studies [25, 26] investigate more thoroughly the
first scenario. The spontaneous emergence of rills is confirmed. The initial pattern wavelength
selection arises from a balance between the film flattening at large scale by gravity and capillarity
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Figure 14. (a) Side view of the experimental setup of Guerin et al. [17] with a block of
pink Himalayan salt. (b) Front view. A homogeneous film of streaming water flows on a
plaster block. (c) Evolution of the surface of a plaster block subjected to a runoff water
film in the experiment. Flow rate 2.8 L/min, inclination 39°, average velocity 0.84 m/s. A
pattern of dissolution grooves develops progressively in the direction of flow. Reproduced
by permission of the American Physical Society.

and the viscosity that acts as a low-pass space filter for small scale perturbations. However,
the comparison with experiments and the field remains challenging, because once the pattern
becomes noticeable with naked eye, its amplitude is likely large enough to perturb the flow
hydrodynamics of the thin film. The regime of validity of the linear instability analysis would be
limited to short times. Finally, we note that in the field, the age of the Karren are not precisely
known, as well as the meteorological conditions that accompanied their formation. Further
experimental and numerical studies are required to identify the mechanisms explaining the
emergence of Rillenkarren and their long term evolution.

Although less investigated in the literature, dissolution patterns emerging from runoff flows
have also some counterparts generated by melting. In particular, at the surface of glaciers, the
meltwater is channelized into liquid water streams [159]. The flow in these channels may increase
the heat exchange and thus their depths by enhancing melting. Mantelli et al. [160] proposed an
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Figure 15. Penitentes in a laboratory scale experiment (from Bergeron et al. [161],
reproduced by permission of the American Physical Society).

explanation of the regular spacing between the ice streams by a linear stability analysis coupling
the bed topography, the water flow and the heat transport. To our knowledge, no laboratory
experiments have been reported in the literature. Finally, we note that the ice streams are an
equivalent of the Rinnenkarren for dissolution. An analog of Rillenkarren is missing. Arrays of
adjacent parallel grooves on steep slopes do not seem indeed commonly observed. The reason
of this statement deserves also further studies.

4.3. Pattern formation stimulated by radiation

The heat required for melting or sublimation can come largely from the absorption of light, which
is often the case in glaciers under sublimation conditions or where the ambient temperature is
low. Then, modulation in albedo, or exposure to light, plays an important role in the formation
of patterns such as penitentes (Figure 1(a)), glacier tables or dirt cones (Figure 6).

Penitentes have been reproduced in a laboratory scale experiment by Bergeron et al. [161].
A block of snow was kept in a chamber with a plexiglas cover at low temperature in a dried air
environment (relative humidity was typically between 5 and 10%) and illuminated from above
with a 120 W lamp, disposed outside the chamber. In sublimation conditions, for temperature
between −10 and −20 °C, penitentes appeared after two hours of irradiation with a characteristic
of a few millimeters (Figure 15). In melting conditions, above −4 °C, no structures were observed.
In sublimation condition, under −35 °C, no penitentes formed after irradiation time as long
as ten hours. Authors suggest that the block may be saturated in water vapor because vapor
pressure of water rapidly decreases with temperature below 0 °C. They also report that a breeze
of 2.5 m/s above the snow prevents penitentes formation. Authors propose that initial pattern
are the smallest possible ablation structures, which are limited by the optical extinction length
(characteristic length on which light is absorbed in the snow) [42, 161]. The optical extinction
length depends on particle radius and ice volume fraction in the snow, and is estimated to be of
the order of 1 mm in their experiment [161].

Pattern formation is generally ascribed to a geometric coupling between light absorption and
topography: light absorption is greater at troughs than at peaks [41, 42, 162, 163]. Claudin et al.
did a linear stability analysis and found two driving mechanisms: the above mentioned geometric
effect but also a Mullins–Sekerka type mechanism [46, 164]. Since the light is absorbed by the
snow (or ice) on a given distance from the interface, and the temperature of the interface is held at
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the (cold) ambient air temperature, the temperature increases with depth in the snow. This drives
a heat flux in the snow toward the interface, which is greater at troughs than at peaks. In their
calculation, the balancing stabilizing effect comes from vapor diffusion, which authors arbitrarily
limit to a boundary layer of finite thickness, thereby providing the characteristic wavelength
of the instability and pattern formation [46]. Authors suggest that this characteristic thickness
could be set by wind, forcing turbulent mixing above a certain height above the snow. However,
this seems to be challenged by the observation of Bergeron et al. [161]. Cohen et al. proposed
that this length scale could be set by a solutal Rayleigh–Bénard instability, because density of
water vapor is less than density of air [21]. This instability in the buoyancy-driven vapor flow
would prevail over other mechanisms in initiating the pattern and selecting the wavelength
of formation.

Patterns are not exclusively shaped by instabilities. Recognizable structures can also be
formed by differential ablation due to specific boundary conditions, such as the interaction with
a non-melting (or less eroding) cover. This is the case for fairy chimneys (also named hoodoo),
glacier tables, dirt cones, and zen stone, for example (Figure 6). Here we review recent laboratory
experimental works that have addressed the formation of glacier tables, dirt cones, and zen stone
described in Section 2.6, Figure 6.

Hénot et al. have studied the formation of glacier tables and, in particular, the conditions for
their formation [84]. They followed the melting of an ice sheet partially covered by a cylindrical
cap made of different materials and with different height-to-radius aspect ratios. The ice melts
at room temperature (25 °C) due to infrared radiation from the walls (at room temperature)
and convection in the air (because cold air at the ice interface is denser than the air at room
temperature). They found that, depending on the cap material, the cap may sink into the ice sheet
or a glacier table may form, which corresponds to the ice under the cap melting faster or slower
than the surrounding sheet, respectively (Figure 16). They explained the onset of table formation
by the competition between two effects. On the one hand, the cap insulates the underlying ice
because the cap temperature is higher than the ice temperature, which decreases the infrared
radiative influx (and increases the infrared radiative outflux) and the convective flux. On the
other hand, the cap exposes a larger area to the incoming heat than the covered (contact) area,
which may increase the (conductive) heat flux to the covered ice. The relative weight of these
two effects depends on the thermal conductivity of the cap the material. The conductive flux
(from the cap to the ice) decreases and the cap temperature (and insulation) increases as the
thermal conductivity decreases, which is favorable for table formation. This modeling proved to
be predictive in the field [85].

Hénot et al. used the same approach to study the formation of dirt cones: they followed the
melting at room temperature of an ice sheet partially covered with a pile of plastic grains [86].
Differential melting resulted in the formation of an ice cone covered by a granular layer. The
authors explain the formation of dirt cones (Section 2.6, Figure 6), not directly by the dependence
of the melting rate on the debris thickness [89], but by the same mechanisms as for glacier tables
with the additional coupling to the granular medium: as the cone forms, the exposed capped
area increases and the shape can reach a steady state [86, 165].

Taberlet and Plihon have studied the formation of zen stones by ice (differential) sublimation
in a lyophilizer [166]. The initial flat ice sheet is partially covered with a 3 cm-diameter
5 mm-thick disk. Using various metals for the covering disk, they showed that the material
conductivity is of little importance in the formation of zen stone. They observed the formation
of a zen stone for aluminum, grooved aluminium, and copper disks. They conclude that
the main mechanism is an umbrella effect, the covering disk shields the ice from external
radiations [166].



Sabrina Carpy et al. 39

Figure 16. Ice underlying cylindrical caps melts faster or slower than the surrounding ice
sheet depending on the cap material (from Hénot et al. [84], reproduced by permission of
the American Physical Society).

5. Discussion and conclusions

5.1. Solid bedforms as imprint of flow structures

The objectives of this review paper were: (i) to examine the natural bedforms induced by phase
change that occur at the solid surface of Earth and of planets and (ii) to demonstrate how
laboratory experiments can contribute to a better understanding of the pattern formation and
their evolution. These bedforms are produced largely by the combined action of a flow and a
phase change, which may be melting, dissolution, or sublimation. Although the phase changes
at work are not the same, the natural objects inventoried in this study have similar shapes,
whether the substrate is rock or ice. We proposed a classification of patterns in the field, based
on morphologic indicators, into 6 categories: sharp patterns, polygonal depression, crested
bedforms perpendicular or parallel to the flow, stepped patterns, and structures due to capping.
Then, we presented the theoretical framework for modeling the interaction between a flow and
a phase change, with the objective of elucidating the evolution of the solid/fluid interface and
the emergence of patterns. Subsequently, a review of the previous experimental studies in
the literature reporting bedforms was conducted, and a classification of experiments has been
established based on the type of flow (flow generated by the phase change or imposed externally)
or boundary conditions.

To be able to relate the classification of these shapes to that of the type of flow (forced and
natural convection) and boundary conditions, it is necessary to consider whether some of these
shapes form part of a continuum or not. For example, by experimentally reproducing in a
controlled environment ice scallops in a water-tunnel under unidirectional turbulent flow [153],
2D structures similar to the sublimation ripples observed in blue ice-areas in Antarctica, were
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initially obtained, some of which subsequently evolved into 3D structures. There could therefore
be a continuum between these forms, which would explain why they all line up with the curve
proposed by Thomas [6]. In addition, these scallops exist in both forced and natural convection
flows, and one can ask if there is a morphometric parameter that could provide insight into
the competition between inertia and buoyancy? The dynamic nature of these objects, which
propagate downstream (forced convection) or upstream (natural convection), should help to
refine the processes involved and better understand the environments in which they were
formed.

5.2. Effect of non-linearities on the resulting bedform

Among the solid bedforms in ablation, some of them are generated by instabilities of the flow or
of the bed that can initiate a characteristic scale related to the parameters of the flow. However,
as the pattern amplitude grows several effects must be taken into account to explain its shape
at a given time, and these often cannot be analyzed linearly. Firstly, geometric coarsening
occurs when the small structures are absorbed by the large ones. By this merging process, the
characteristic wavelength increases with time. A measured pattern size must be put in relation
with the pattern age. This effect has been particularly evidenced in laboratory experiments [17]
and interface evolution models [111]. In addition, other geometric focusing effects can lead
to crest formations by normal ablation. This phenomenon initially proposed by A. Lange in
the fifties to explain the scallop shapes in limestone wall [167] has been recently revisited by
Chaigne et al. [111]. They have shown that any ablation process on an interface displaying sign
changes of curvatures will show in finite time emergence of singularities, i.e. discontinuities of
the gradient. This effect can explain, why the sinusoidal patterns predicted by linear instability
mechanism evolve generically to structures with sharp tips and crests. Although the singularities
are regularized at small scale by material properties or the boundary layer hydrodynamics, this
concept describes well the qualitative shape of a solid surface undergoing an ablation process
like melting, dissolution or sublimation.

Once a pattern has reached a sufficient size, it can retroact on the flow that created it. In
the case of the patterns emerging from a bed instability like for the mechanisms proposed for
scallops [22] in turbulent flows or for Rillenkarren by run-off [17, 25, 26], this mechanism is a
part of the instability mechanism. The pattern amplitude increases the flow modulation, which
amplifies in turn the pattern growth. However, the saturation of the instability relies often on
nonlinear mechanisms, which may involve higher order terms in amplitude equations [168].
Physically, a nonlinear feedback can decrease the flow modulation, once the pattern amplitude
exceeds a characteristic scale, typically the boundary layer thickness of the relevant field
(temperature, solute concentration, vapor concentration), the free-surface in thin films or the
system size. For patterns emerging by an instability of the flow like those created by from
Rayleigh–Bénard convection [21, 112, 133], the hydrodynamic feedback is more complex. In
linear regime, the surface is a fingerprint of the flow structures. However, we noted the need
of plumes position locking to explain the emergence of coherent dissolution [21] or melting
patterns [169]. These effects are currently not well addressed quantitatively and deserve further
study.

Hydrodynamic focusing constitutes a more specific situation of feedback of the pattern
topography on the flow. For example, in a free-surface flow, once separated channels have been
formed, they will collect more water, until a drainage network emerges. This phenomenon is
more described for rivers carved by erosion, but analogous cases occur by dissolution like the
Rinnenkarren [55] on limestone pavements or by melting like the ice streams on Glacier [160].



Sabrina Carpy et al. 41

The nonlinear study of ablation pattern in nature could constitute the next step of future
researches.

5.3. On the use of scaling laws for planetary applications

Because of the large timescale required to form natural solid bedforms, the choice of analogous
materials that enable to sustain experimental timescale is a real challenge. In this context,
experiments on the dissolution of plaster, caramel, sugar or salt have provided an opportunity
to explore a wide range of natural bedforms under different flow conditions (deep flow, free
surface flow, buoyancy driven flow with or without stable stratification). It is then possible to
reproduce most of the natural shapes identified, such as sharp-edged, crested bedforms parallel
or perpendicular to the flow, and scalloped. To our knowledge, stepped bedforms have not yet
been reproduced in dissolution, to date just in melting [24]. For cyclic steps (Section 2.5, Figure 5),
therefore, modelling and comparing models with laboratory experiments has only been tackled
to a limited extent. Other experimental studies in melting concern crested bedforms parallel to
the flow and scallops [153, 154]. Experiments in sublimation are difficult to implement, requiring
highly constrained environments (temperature, humidity, hygrometry). As a result, they only
exist for penitentes and crested bedforms perpendicular to the flow, without any systematic
exploration of the parameters involved.

However, sublimation dominates on many icy surfaces of planetary bodies. Therefore,
complementary phase change studies would provide additional databases that could be useful
for validating scaling laws that are commonly used in planetology. Further work is needed both
on modeling and on comparative analogue studies between different phase changes to confirm
some of these scaling laws. A first step in this direction has been initiated by Carpy et al. [11],
in the case of crested waves perpendicular to the flow direction, considering dissolution and
sublimation. They use sublimation and dissolution database to validate scaling laws obtained
theoretically on the basis of a linear stability analysis of the coupled system of equations between
mass transfer and the turbulent boundary layer in a deep flow case. Further development is
required to include melting database. These scaling laws link the friction velocity to the critical
wavelength and the critical migration velocity to the sublimation rate. The third scaling law that
combines the sublimation rate and friction velocity estimated before into a sublimation wave
formation timescale, allowing to constrain the age of the ice surface has yet to be validated.
Before applying scaling laws to planetary surfaces, it is necessary to bear in mind the constraints
on the use of these laws, independently of the non-linear effects discussed in the previous
paragraph (5.2). In the case of penitentes (Section 2.1, Figure 1(a)), new experiments (and
models) are needed to understand the role of fluid flow in their formation in order to ascertain if
buoyancy-driven vapor flow plays a role in their formation as suggested by Cohen et al. [21].

5.4. Concluding remarks

Although geomorphology and planetology have been the main motivation for the experimental
studies reported here, they raise fundamental questions that combine several fields, including
hydrodynamics, thermodynamics, materials science, nonlinear physics, and morphogenesis.
Laboratory-scale experiments are key to understanding the role of flows in the formation
processes and dynamics of these solid bedforms undergoing ablation phase change. Since
experiments take place over shorter timescales, forcings and boundary conditions can be tested.
As we have seen from the various experiments collected, these solid bedforms correspond to
imprints of the flow, driven either by boundary conditions, by instabilities intrinsic to the flow,
or by instabilities associated with a perturbation of the topography at the interface. This is an
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important distinction. However, the non-linear pattern dynamics and geometric effects result in
a time evolution of the pattern, with a typical slow increase in characteristic length scales through
coarsening and the occurrence of sharp structures. In some specific cases, in particular when the
pattern emergence can be explained by a linear instability mechanism of the interface, scaling
laws can be derived relating the typical bedform length to hydrodynamic parameters.

Comparing phase changes with each other provides a better understanding of the processes
occurring at the interface, and allows to investigate the large dimensionless numbers and
different scales involved. Due to the complex nature of the flow or the complicated boundary
conditions, as well as the geometric shapes of natural objects, numerical simulations are limited,
so experiments play a key role. Many natural pattern shapes have not yet been addressed, which
could lead to new experimental projects. In addition, further experimental studies are required
to address some pending questions, such as the evolution of a flat, dissolving or melting bed in
the presence of a turbulent flow. Similar work could be carried out on accumulation patterns
(solidification, precipitation, condensation). In this case, will the change in the sign of the
transfer lead to a “photo negative”, or will this have an effect on the shape, size and diversity
of the patterns obtained? This question opens up new experimental perspectives to be explored.
Improving models through the laboratory experiments could help predict landscape evolution or
infer past conditions from patterns.
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