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Abstract. Analogue Hawking radiation from acoustic horizons is now a well-established phenomenon, both
theoretically and experimentally. Its persistence, despite the modified dispersion relations characterising
analogue models, has been crucial in advancing our understanding of the robustness of this phenomenon
against ultraviolet modifications of our spacetime description. However, previous theoretical approaches,
such as the Bogoliubov transformation relating asymptotic states, have somewhat lacked a straightforward
physical intuition regarding the origin of this robustness and its limits of applicability. To address this, we
revisit analogue Hawking radiation using the tunneling method. We present a unified treatment that allows
us to consider flows with and without acoustic horizons and with superluminal or subluminal dispersion
relations. This approach clarifies the fundamental mechanism behind the resilience of Hawking radiation
in these settings and explains the puzzling occurrence of excitations even in subcritical (supercritical) flows
with subluminal (superluminal) dispersion relations.

Résumé. Le rayonnement analogue de Hawking généré par les horizons acoustiques est désormais un phé-
nomène bien établi, tant sur le plan théorique qu’expérimental. Son universalité, malgré les relations de dis-
persion modifiées qui caractérisent les modèles analogues, a été essentielle pour faire progresser notre com-
préhension de la robustesse de ce phénomène contre les modifications ultraviolettes de nos descriptions de
l’espace-temps. Cependant, les approches théoriques précédentes, telles que la transformation de Bogoliu-
bov reliant les états asymptotiques, ont quelque peu manqué d’une intuition physique directe concernant
l’origine de cette robustesse et ses limites d’applicabilité. Pour remédier à cela, nous revisitons le rayonne-
ment de Hawking analogue en utilisant la méthode de l’effet tunnel. Nous présentons un traitement unifié

∗Corresponding author

ISSN (électronique) : 1878-1535 https://comptes-rendus.academie-sciences.fr/physique/

https://doi.org/10.5802/crphys.239
https://orcid.org/0000-0001-9599-9125
https://orcid.org/0000-0002-7632-7443
https://orcid.org/0000-0001-5727-7850
mailto:fdelporr@sissa.it
mailto:liberati@sissa.it
mailto:mschneid@sissa.it
https://comptes-rendus.academie-sciences.fr/physique/


2 Francesco Del Porro et al.

qui nous permet de considérer des courants avec ou sans horizons acoustiques et avec des relations de dis-
persion superluminales ou subluminales. Cette approche clarifie le mécanisme fondamental derrière la ré-
silience du rayonnement de Hawking dans ces contextes et explique l’apparition surprenante d’excitations
même dans des courants sous-critiques (super-critiques) avec des relations de dispersion subluminales (su-
perluminales).

Keywords. Analogue gravity, Particle creation, Hawking effect, Tunneling method, General dispersion rela-
tions.

Mots-clés. Gravité analogique, Production des particules, Rayonnement de Hawking, Méthode de l’effet
tunnel, Relations de dispersion modifiées.
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1. Introduction

The discovery of Hawking radiation from black holes set a pivotal milestone in our understanding
of gravity and its intricate relationship with quantum physics. This phenomenon has not only
deepened our insight into black hole thermodynamics but also raised profound questions such
as the information loss issue and the trans-Planckian problem. The latter concerns the apparent
dependence of Hawking radiation on the ultraviolet (UV) completion of quantum field theory
and the underlying structure of spacetime.

To explore these questions, analogue gravity models were developed, beginning in 1981
with William Unruh’s seminal paper [1]. These models simulate quantum field theory (QFT)
phenomena in curved spacetime within laboratory settings. In addition, they offer a concrete
example where the UV completion of the theory is explicitly known.

Indeed, about ten years after Unruh’s paper, it was realised in [2] that analogue gravity could
provide a physical model for the “trans-Planckian modes” believed to be relevant for the Hawking
effect. Shortly thereafter, the investigation of Hawking radiation in the presence of modified
dispersion relations was further explored [3,4].

It was soon recognised that analogue gravity systems (see [5] for an extensive review) provide
an ideal testing ground for the robustness of Hawking radiation against high-energy modifica-
tions. This is due to their theoretical simplicity and versatility, as well as their capability to offer
explicit tabletop experimental settings to test such predictions.

Following the aforementioned pioneering works, the resilience of Hawking radiation in ana-
logue systems was later investigated and confirmed through numerous theoretical studies (see
e.g. [4,6–11]). Nonetheless, it was mainly due to the exhaustive investigations carried out by
Parentani and collaborators in the second decade of this century that a more comprehensive
understanding of this phenomenon was accomplished [12–19]. However, these theoretical ap-
proaches relied predominantly on the Bogoliubov coefficient method, complemented by semi-
analytical and numerical analyses.

Although Bogoliubov transformations provide a versatile method, they imply the comparison
of asymptotic states and assumed certain boundary conditions, such as asymptotic flatness,
to solve the integrals of the overlap matrix elements. While the mathematical standing of
this method is unrivaled, its intrinsically non-local nature comes with the drawback of being
oblivious to the local physics behind the effects it describes.

Here, to address these shortcomings, we employ a quasi-local technique: the tunneling picture
for Hawking radiation [20,21]. This method uses a geometric optics approximation to describe
the particle creation process as a quantum tunneling event, involving complex paths across the
causal boundary. In contrast to the Bogoliubov coefficients, no knowledge of the system’s asymp-
totic boundary is necessary, allowing particle creation to be studied almost entirely locally, wher-
ever the event may happen in spacetime. This property is especially useful for localising effects
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involving effective horizons, such as those associated with modified dispersion relations that
characterise fields in analogue spacetimes. Still, the tunneling method has its own limitations
such as the local nature of its insights, which remain oblivion to propagation effects (e.g. gray
body factors), or the intrinsic assumption of the validity of the WKB approximation (something
shared with the Bogoliubov based calculations and well established at the horizon also in pres-
ence of modified dispersion relations).

Building upon the method of characteristics introduced in [6], we show that the application of
the tunneling method allows us to reproduce most of the known results in the literature through
simple analytic calculations. Furthermore, it provides a physically elegant interpretation of the
Hawking effect and its robustness in acoustic analogue gravity. Our analysis will encompass
dispersion relations with both superluminal and subluminal group velocities, with respect to the
low-energy speed of the phononic excitations, propagating on fluid flows (analogue spacetimes)
with or without acoustic horizons. In particular, we shall explain in a simple and intuitive way
the puzzling persistence of particle creation (depending on the form of the dispersion relation)
observed in flows that fail by a little to generate an acoustic horizon and are everywhere subsonic
or supersonic.

Note, the scope is of this paper is to be a primer into the tunneling formalism for analogue
systems and to illustrate its usefulness in capturing the salient features of the Hawking effect in
acoustic flows. As such, we will limit ourselves to the process of local particle production, while
a full agreement with the complexity of the analysis of the Bogoliubov coefficients would require
additional steps that go beyond the aim of this work.

In what follows, we start our investigation with a brief recap of the general setup in Section 2,
covering the acoustic metric as well as the fields evolving with a generalised dispersion relation.
In Section 3, we introduce the tunneling picture and show how the Hawking effect is derived
for modes subjected to subluminal as well as superluminal dispersion. Having established the
general framework, we particularise our treatment to the three different cases in flow velocity:
supercritical (cf. Section 4), critical (cf. Section 5), and subcritical (cf. Section 6). In these sections,
we perform a deep dive into the expected particle production, concluding with insights into
some remaining subtle but intricate issues related to the formalism in Section 7. Finally, in the
conclusion, we discuss our results and contextualise them with respect to previous findings.

Throughout the article, we will use a mostly positive metric signature and take (unless other-
wise stated) ħ= kB = 1. Additional conventions adopted later will be introduced at the appropri-
ate positions.

2. General setting

Let us consider a (1 + 1)-dimensional stationary geometry, in which the background acoustic
metric is given by the line-element

ds2 =−c2
s (x)dt 2 + (dx − v(x)dt )2 =−(c2

s (x)− v2(x))dt 2 −2v(x)dxdt +dx2, (1)

where cs(x) describes the speed of sound c2
s ≡ ∂p/∂ρ, while v(x) represents the velocity profile of

the fluid [5]. Normally, in analogue gravity experiments, sonic horizons are realised by keeping cs

constant and varying the velocity profile or vice versa (for example, by a Feshbach resonance
in a Bose–Einstein condensate). In what follows, we shall adopt for simplicity (and easier
transposition to Lorentz breaking spacetime settings) the first ansatz and assume cs = constant.

In (1), the sign of v(x) determines the nature of this spacetime. This line element has the same
structure as the Schwarzschild one in Painlevé–Gullstrand coordinates, which covers a black hole
region or a white hole one depending on if v(x) ≤ 0 or v(x) ≥ 0, respectively [22]. This is why,
as in most of the extant literature, we shall adopt the convention of a negative velocity flow
transitioning from subsonic to supersonic as x goes from positive to negative, i.e. with a black
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hole exterior on the rhs of the x-axis). Note also that hereinafter we will omit to write the x-
dependence explicitly, unless necessary.

We now notice that this geometry enjoys a Killing vector, associated to time translation
invariance in the lab frame, given by χa∂a = ∂t . Together with such a lab frame, it will be useful
to introduce the so-called preferred frame, which is the system of reference where the fluid is at
rest, described by the two normalised vectors

ua∂a ≡ (∂t + v∂x ) , sa∂a ≡ ∂x . (2)

Here, ua represents a notion of preferred time direction, while sa is the preferred notion of space.
Note also, that the metric (1) admits a Killing horizon located at

|χ|2 = v2 − c2
s = 0. (3)

It is due to the presence of such an horizon, where the fluid velocity overcomes the speed of
sound, that we refer to this system as sonic black hole.

2.1. Perturbations with modified dispersion relation

In acoustic gravity, long wavelength perturbations, the so-called phonons, behave like a massless
scalar field φ on the background (1) (see e.g. [5]). They obey, therefore, the Klein–Gordon equa-
tion □φ = 0 and enjoy a linear dispersion relation ω2(k) = c2

s k2. However, at short wavelengths
the microstructure of the effective spacetime, characterised by some scaleΛ, emerges from more
general dispersion relations of the form ω2(k) = c2

s F (k2,Λ) (where we are assuming invariance
under parity and that for low k one has F (k2,Λ) = k2 +O(k4,Λ) to recover the relativistic limit).
Hence, the equation of motion for the perturbations becomes [23]

−(∂t +∂x v)(∂t + v∂x )φ+ c2
s F (∂2

x ,Λ)φ= 0. (4)

This setup accommodates two free functions: the fluid’s velocity profile v(x) and the dispersion
relation function F (k2,Λ). For what concerns our stationary flow’s velocity profile v(x), we shall
assume that this quantity can in general be described by a monotonous function and we will
treat setups in which the flow admits a subsonic and a supersonic region (super-critical flow) or
a purely subsonic setup (sub-critical flow) separately1. We address the limiting case in which the
flow is everywhere sub-critical except for a sonic point (critical flow) too.

For what concerns the dispersion function, F (k2,Λ) we limit ourselves to the first order
corrections to the phononic dispersion relation, i.e. to modified dispersion relations of the form
ω2 = c2

s (k2 +O(k4,Λ)). Such dispersion relations could stem from a modified Klein–Gordon
equation of the form (

□+ξ∆
2

Λ2

)
φ= 0. (5)

Here ∆ = (g ab +uaub)∇a∇b is a purely spatial operator in the preferred frame provided via the
flow four-velocity ua which plays the role of an aether field in the analogue model. The parameter
ξ = ±1 determines the sign of the higher derivative operators. However, different analogue
systems predict different values for such parameters.

In what follows, we shall call the dispersion relations with ξ = ±1 superluminal (upper sign)
and subluminal (lower sign) respectively, as they correspond to cases for which the group velocity
of perturbations is always larger/smaller than the speed of sound cs. This is somewhat an abuse
of language as these scenarios would be more precisely labelled as supersonic/subsonic but
we decided to avoid such labelling to not risk any confusion with the nature of the underlying
hydrodynamic flow.

1Later on, we shall also discuss purely supersonic flows, but only as a dual case with respect to the purely subsonic
ones.
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2.2. Particles

Now we delve further into the nature of the modified Klein–Gordon Equation (5), and provide a
particle interpretation to the field φ. To this aim, we adopt a WKB approximation

φ=φ0eiS and ka =−∂aS (6)

where φ0 is a slowly varying amplitude and S is a phase that represents the point-particle action.
The trajectory of the associated ray is determined by minimising the classical action. Particles

on this curve will move with the group velocity determined from the dispersion relation of
the system. Introducing the four-momentum ka enables us to rewrite the field equation as a
dispersion relation for a point particle, at the leading order in the WKB formalism2

ω2 = c2
s

(
k2 +ξ k4

Λ2

)
. (7)

The relation for ω(k) given in (7) has been written in the preferred frame, such that ω = kaua

becomes the preferred notion of energy and k = ka sa the preferred (spatial) momentum.
Of course, due to the stationarity of our flow, the system features a timelike Killing vector ∂t

and thus provides a notion of Killing energy Ω = kaχ
a for the particle. This can be linked to the

preferred frame’s energy ω in the very simple way

Ω=ω− vk. (8)

Since Ω is associated to a translational symmetry, the idea is to find mode solutions φΩ of (7)
at fixed Killing energy, which can be proven to be a conserved quantity even for a modified
dispersion [26]. This, together with the dependence of our modified dispersion relation on the
effective field theory scale Λ, strongly suggest the introduction of a dimensionless parameter
α ≡Ω/Λ that captures most of the mild deviations from the relativistic behaviour (recovered in
the limit α→ 0 if one excludes the special case of the zero-mode).

Although one could explore (7) in principle also forα≥ 1, its interpretation as the lowest order
of a Taylor expansion renders this limit physically and logically unsound. For this reason we
shall trust our results only for small α values, say α ≲ 0.1. Actually, for the subluminal branch
of (7), there is in any case a “hard limit”, provided by α= 0.5. This marks the upper value of α for
which the subluminal dispersion relation remains meaningful, that is, ω ∈ R. For this reason, in
what follows, we shall use such “objective” value as a reference upper bound αmax for both the
superluminal and subluminal dispersion relation branches, albeit, as said, in realistic analogue
models lower values of αmax would certainly have to be considered.

2.3. Particle trajectories on the background

Once we have found our WKB set of modes {φΩ}, a particle notion is given by their superposition,
peaked around some energyΩ. The resulting particle then travels with the group velocity

cg = ∂ω

∂k
= c2

s
k

ω

(
1+2ξ

k2

Λ2

)
≈ cs

(
1+ 3

2
ξ

k2

Λ2

)
, (9)

where the last step holds in the physically relevant limit k ≪ Λ. Let us point out that, as
anticipated, from the above expression follows immediately that for any k one has |cg | ≥ cs for
ξ> 0 and |cg | ≤ cs for ξ< 0. The corresponding trajectory is locally given by

(cg ua + sa)dxa = 0 ⇐⇒ dt

dx
= 1

cg + v
, (10)

where the dual vectors ua = (−1,0) and sa = (−v,1) are deduced from (2).

2For the sake of simplicity, we limit our analysis to dispersion relations without a deep minimum in the ultraviolet.
Indeed, such minima are known to cause roton instabilities that are in tension with the universality of the Hawking effect
and deserve a more situational analysis of the particle production, cf. [24,25].
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The above expression also implies that the action for such point particle will take the form

S =−Ω
∫ (cg ua + sa)

(cg ut + st )
dxa =−Ω

(
t +

∫
dx

cg + v

)
(11)

The last expression can be formally integrated, to obtain the shape of the trajectory t (x,α) in the
(x, t )-plane, which, as we shall see, is a function that depends on the Killing energy of the particle
through α. For a relativistic particle, cg = ±cs which exhibits that (10) describes an everywhere
regular, ingoing mode as well as an outgoing mode with a simple pole at the Killing horizon,
where cs + v = 0.

However, for modified dispersion relations the solution space is larger [27]: analysing (7), while
keeping Ω fixed, amounts to solving a 4th order algebraic equation. Nonetheless, the number of
solutions at any given point x is not always the same, and in particular it depends on the norm of
the Killing vector. This becomes clear when plugging Equation (8) into the dispersion relation (7)
so to obtain

ξc2
s

k4

Λ2 − (v2 − c2
s )k2 −2vΩk −Ω2 = 0. (12)

If we consider a flow, modelling a black hole, i.e. v(x) ≤ 0, we find that all the coefficients in
front of the various kn-terms are of fixed-sign, with the exception of the coefficient in front of k2.
This particular one is proportional to |χ|2 and thus changes sign at the Killing horizon. Therefore,
there will always be a region of spacetime with four real solutions for k and another one where
this number reduces to two.

The boundary between these two regions depends on the energy and is located at the point
xTP(α) (with TP standing for “turning point”) where two of the four solutions become degenerate.
In terms of trajectories, this represents two smoothly merging trajectories at xTP(α). The name
turning point can be understood graphically in the (t , x)-plane. The curves at the meeting point
can always be interpreted as two branches of a single trajectory that, in the (t , x)-plane, turns
back at xTP(α). Additionally, the position of xTP(α) depends crucially on the sign of ξ. In the
superluminal case, xTP(α) can always be found inside the horizon, where |χ|2 > 0, while in the
subluminal case xTP(α) lies outside. This follows directly from the discriminant of (12). The shape
of the trajectories is sketched for both cases in Figure 1.

In the limit for which α→ 0 (Λ→ ∞), the sub- and superluminal cases degenerate and we
recover the relativistic behaviour, that is, two of the four solutions cease to exist, leaving us only
with the upper branch of the turning mode (the dashed part of Figure 1), on one side of the Killing
horizon, and with half of the lingering mode on the other side. These two represent the usual
outgoing-ingoing relativistic particles (the would-be Hawking pairs) that peel infinitely at the
horizon.

3. Hawking radiation by tunnel method

In relativistic settings, i.e. when considering phononic dispersion relations, the presence of a
sonic/Killing horizon is sufficient for sonic black holes to emit particles. Essentially, such a pro-
cess reflects the analogue of the standard Hawking effect [4]. Within a tunneling approach [20,21],
this correspondence can easily be seen by analysing the outgoing particle peeling off outwards
from the horizon and its counterpart peeling off inwards on the other side. This approach
has been substantiated by several investigations, e.g. [28] where its connection with the quan-
tum correlation function across the horizon is shown by means of algebraic quantum field
theory.

Let us stress, that while original derivation through null-geodesics [20] relied on specific coor-
dinates and had to include the effect on the horizon of the Hawking quanta emission—so mixing
the cause-and-effect relation between Hawking radiation and the shrinking of the horizon—here
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Figure 1. Numerical repesentation of the four different solution of (12) at fixed Ω. The
horizontal axis shows v , without specifying any profile v(x) yet, while cs = 1 everywhere.
The dashed black vertical line is the Killing horizon v = −1 in both figures. In all plots,
we have taken α = 0.02 for each ray. Left panel: subluminal case (ξ = −1); we see that the
turning point, where the dashed and the solid orange lines meet, lies outside the Killing
horizon. Right panel: superluminal case (ξ= 1) for which we find turning point to be inside
the Killing horizon. Both cases share a regular mode (in blue) which travels inwards and a
mode (in red) which lingers at the horizon. The latter changes its direction depending on
the sign of ξ, while the blue one remains qualitatively unchanged.

we shall adopt an Hamilton–Jacobi formalism providing a physically more sensible framework
which does not require to include such backreaction3. For a more detailed discussion, and a
proof of the equivalence of the two methods, see [30].

If xKH be the horizon’s location, the tunneling rate will be given by [30,31]

Γ= e−2Im(S), where Im(S) =− lim
ε→0+

∫ xKH+ε

xKH−ε
kx dx =− lim

ε→0+
Ω

∫ xKH+ε

xKH−ε
dt (x)

dx
dx, (13)

where we have used Equation (11) and, from here on, set cs = 1, for the sake of simplicity.
Formula (13) can be heuristically understood as a complex path in x followed by the two

Hawking partners, one peeling off the horizon from inside and the other from outside (cf. [30,31]
for details). In the relativistic limit, i.e. taking (10) with cg = 1, we get

Im(S) =−Im

[
lim
ε→0+

Ω

∂x (1+ v)|xKH

ln(x −xKH)

∣∣∣∣xKH+ε

xKH−ε

]
= Ωπ

κKH
. (14)

Here, we have defined κKH := ∂x (1 + v)|xKH , that is the surface gravity of the Killing horizon.
Plugging (15) into the rate Γwe obtain

Γ= exp

[
−2πΩ

κKH

]
. (15)

which can be compared with a Boltzmann factor e−E/T to extract the thermal behaviour driven
by the usual Hawking temperature TH = κKH/2π.

3It is interesting nevertheless to note, that in some analog systems like in a canonical acoustic black hole in Bose–
Einstein condensates, the Hawking radiation backreaction can been studied—simply it is ruled by geometrodynamical
equations different from the Einstein ones—and it was found to lead to a shrinking of the horizon as in general
relativity [29]. This is not so surprising: for example it is what one would expect for an idealized radial flow in a sink
endowed with an acoustic horizon. For a regular isolated system, the energy extracted via the related Hawking process
can only be provided by the flow kinetic energy. The Hawking process would then induce a reduction of the flow speed
(a change in the velocity profile) implying the realization of the sonic horizon deeper down in the sink geometry, i.e. a
shrinking of the acoustic black hole.
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It is important to note that, at least locally, the tunnelling method and the Bogoliubov coef-
ficient approach are equivalent (cf. Appendix A). However, when considering asymptotic fluxes,
the Bogoliubov method is more comprehensive as it accounts for all propagation-related effects.
In this sense, our present work should be viewed as a pedagogical model for capturing the basic
mechanisms of particle production, rather than a method intended to match experimental data
in realistic scenarios.

3.1. Non-relativistic case

Mathematically speaking, in the above relativistic treatment, non-zero transition rates presume
the presence of a simple pole in the expression of dt/dx. However, in a non relativistic scenario,
nothing comparable will ever occur, given that the modified dispersion relation, never produces
an exact peeling (see Figure 1) and therefore the particle trajectories at the Killing horizon remain
analytic. In turn, one would expect an absence of Hawking radiation in this settings (or, at least,
that this effect cannot be described via the tunneling method).

However, even in the presence of modified dispersion relations, analogue systems have shown
to be able to reproduce Hawking radiation both theoretically and experimentally [15,32–34]. Also,
a similar situation has been studied by the authors in the context of a gravitational black hole in
Lorentz violating gravity [27], supporting this conclusion. Finally, such an effect is expected just
by a continuity argument: if we analyse energies well below the cutoff, sayΩ≪Λ, the relativistic
behaviour should be recovered approximately.

In the following section, we shall focus on how to describe this effect in a simple, analytical
way via the tunneling method. To this aim, we assume the validity of the Hamilton–Jacobi
approach in the case of dispersive modes4. As we shall see, the extension of the latter to
setups with modified dispersion relations will prove itself useful and informative, thus, nicely
complementary to previous, semi-analytical or numerical studies [12–19,34,36], based on the
Bogoliubov coefficients analysis.

3.2. Approximating the modes

The idea behind the calculation from the previous section was to find a trajectory which approx-
imates the two partners while enjoying a simple pole structure. In the case of cg = 1+δcg , we
recover that this trajectory behaves almost like a relativistic null trajectory with the pole at the
Killing horizon. One can go beyond such a crude approximation, however, to do so, we shall
need first to analyse the asymptotic behaviour of the solutions of Equation (7).

3.2.1. Outside the horizon

Let us consider a flow velocity profile v(x) that has a subsonic region at large x > 0 where it
asymptotes v = 0. For cs = 1 this is equivalent to impose that our geometry is asymptotically flat.
If we try to solve (7) in the regime where |v |≪ 1 at the leading order we get

ω=Ω+O(v), Ω2 = k2 +ξ k4

Λ2 +O(v). (16)

Since for v = 0 the dispersion relation becomes an equation for k2 we obtain only two real
solutions with opposite signs that we name k±

0 (Ω), with k+
0 =−k−

0 . Only these solutions will reach
the v = 0 line for both superluminal and subluminal dispersion relations.

4An extension of the Hamiltonian geometry of the phase space to particles with modified dispersion relations can be
found in [35].
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Specifically, with reference to Figure 1, such solutions describe either the regular ingoing mode
and the upper branch of the turning mode for the subluminal dispersion relation, or the regular
ingoing one and the outside branch of the lingering one for the superluminal case. If we name the
three group velocities associated to the aforementioned modes respectively creg

g , c turn
g and c ling

g ,
we find at v = 0 that

creg
g =

−c turn
g if ξ=−1

−c ling
g if ξ= 1

. (17)

In both, the subluminal and the superluminal case, −creg
g describes the trajectory of our Hawking

quanta in the |v | ≪ 1 region. Looking back at (12), we can easily see that this approximation,
which is exact at v = 0, can be extended beyond this region, and is valid wheneverΩ≫ kv , thus

v2 ≪ 1+
√

1+4ξα2

2
. (18)

3.2.2. Inside the horizon

Let us now assume that for some intermediate value of x our flow admits an unique acoustic
horizon. Inside the latter, the asymptotic region will be described by the regime |v | ≫ 1. If we
solve (12) in this limit, we have again two solutions with opposite group velocities such that

k∞ =− Ω

v +1
, ω±

∞ =± Ω

v +1
. (19)

These two solution are as well associated to the regular mode and to the Hawking partner of
Figure 1. For the choice ξ= 1 the latter is represented by the upper branch of the turning mode,
while for ξ=−1 this role is taken by the lingering mode. In summary, at the leading order we have

creg
g =

−c turn
g if ξ= 1

−c ling
g if ξ=−1.

(20)

Again, looking at Equations (7) and (8) one can realize that the above approximation is still valid
whenever k2 ≪Λ2 which translates into the following condition for the flow velocity.

(v +1)2 ≫α2. (21)

3.2.3. The approximant trajectory

Putting all of the previous analysis together, we realise that (17) and (20) tell us that the
trajectory defined through −creg

g describes always the modes associated to the “effective Hawking
pair” in both the regions |v | ≪ 1 and |v | ≫ 1, independently from the nature of the dispersion
relation. In other words, this path effectively interpolates between these two different solutions.
Hence, we call such an effective trajectory the “approximant”.

We shall return to this later when we assert the range of validity of such an approximation
as well as the question why it is sufficient to reproduce the Hawking radiation derived via a full
Bogoliubov approach. For the moment let us see how the adoption of the approximant as a proxy
for the trajectory of the Hawking pairs enables the emergence of a simple pole structure. Figure 2
provides a plot of this trajectory for both subcritical and supercritical flows and shows clearly the
capacity of the approximant to uncover the presence of the effective horizon experienced by the
modes associated to the Hawking process. Consequently, we can apply the tunneling method
even though α is not perturbatively close to zero.
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Figure 2. Approximant trajectory (dashed blue) versus actual solutions. The dashed trajec-
tories mimic the branches responsible for the particle production in the subluminal (left)
and superluminal (right) case asymptotically. Here again α = 2× 10−2. The dashed black
vertical line is the point where the approximant peels, i.e. the effective horizon v(xEFH).

3.3. Tunneling method via the approximant

Let us now apply the ideas from the previous section to the calculation of the tunneling rate. To
do so, we consider modes with energiesαΛ, such that the trajectories of the Hawking partners are
effectively estimated by our approximant. In particular, we take the outgoing ray to travel with
speed −creg

g (x,α) in the preferred frame. For this trajectory we find

dt

dx
= 1

−creg
g + v

. (22)

The position of the simple pole associated to this expression localises xEFH(α) of the “effective
horizon” (EFH) for a particle of energy α, so that

creg
g (xEFH,α) = v(xEFH). (23)

Please note, that the solution of this equation depends on α, on the range of values of v(x), and
on ξ. If a solution to (23) exists, it will allow us to define the trajectory outside of the EFH as

t (x) = 1

v ′(xEFH)(1−∂v creg
g )|EFH

ln[x −xEFH(α)]. (24)

In analogy to our calculations in (13), we use (24) to calculate the tunneling rate as

Γ= exp

[
− Ω

T (α)

]
where T (α) =

v ′(xEFH)(1−∂v creg
g )|EFH

2π
≡ κ(α)

2π
, (25)

where we have defined κ(α) as the peeling factor of the EFH and T (α) as the associated “effective
temperature”. Let us stress that, despite the name, T (α) is energy dependent, and so the rate Γ
cannot be considered as a true Boltzmann factor; thus the emission is not purely thermal.

After this general treatment, we are going to discuss next the tunneling rate of our effective
trajectory. In doing so, we address the subluminal and superluminal dispersion relations indi-
vidually and specifically distinguish further between subcritical (|v | < 1, without a horizon) and
supercritical (with a horizon) flow (in doing so we also comment on the critical flow). As we shall
see soon, the resulting cases have remarkable similarities but also striking differences.

4. Particle production: supercritical flow

Our starting point will be the supercritical flow, that is to say, the permitted range for v(x)
supports the presence of a horizon, i.e. |v(x)| > 1 for some x. For now, we keep our treatment
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Figure 3. Supercritical velocity profile (26) for a left-going flow with one subsonic region
(x > 0) and one supersonic region (x < 0). The dashed line marks the location of the
sonic/Killing horizon, for which xKH = 0 and v(xKH) =−1.

as general as possible without particularising to a specific profile for v(x). We demand: (i) v(x)
to be monotonous to avoid inner Killing horizons (namely, v(x) =−1 has a single root), (ii) v → 0
for x →−∞, and (iii) conditions (18) and (21) hold almost everywhere apart from a small region
around the effective horizon. A typical example of such flow is the one considered in [37] and
shown in Figure 3

v(x) = tanh(κKHx)−1. (26)

This profile interpolates between v(−∞) := v−∞ = −2 and v(∞) := v∞ = 0 while the Killing
horizon is located at xKH = 0, such that κKH = v ′(xKH) denotes the horizon’s surface gravity. As
long as the surface gravity (the profile steepness at the KH) is large, the region around the horizon,
where the approximant will deviate from the real trajectory of the Hawking pair, will be small.

As a general feature, the supercritical flow connects our calculation with the relativistic limit
in both, the subluminal and in the superluminal case, because the particle production for
relativistic fields happens only in the presence of a horizon. As already mentioned, the relativistic
behaviour appears when the higher order of the dispersion relation can be neglected, or in other
words whenα→ 0. Now we explore such corrections for our specific dispersion relation and flow
further; in doing so, we extend our investigation to a broader range of α.

4.1. Superluminal dispersion relation

If we choose ξ= 1 in (7), we will get |creg
g | ≥ 1 everywhere. Hence, in this case, the solutions of (23)

must always be located inside the Killing horizon (i.e. for negative x), where v ≤ −1 (with the
equality valid for α= 0).

Nominally, the allowed range for α spans from α= 0, solving creg
g =−1 up to α= αmax, which

is when the group velocity reaches the lower bound of v(x), namely, creg
g = v−∞. In the case at

hand, that is, v−∞ = −2, we find αmax ≃ 3. This is clearly in conflict with the effective meaning
given to (7). Hence, as anticipated, we limit ourselves to values of α ≤ 0.5. In the left panel of
Figure 4, we show the location of the effective horizon, determined numerically by Equation (23),
for different values of α within the allowed range.

Similarly, once we know the shape of xEFH(α), one can evaluate κ(α) via Equation (25) and
contrast it with κKH of (26). The ratio κ(α)/κKH is plotted in the left panel of Figure 4: its deviation
from unity and constancy can be taken as a measure of the deviation from thermality induced by
the dispersive behaviour. As we can see, in agreement with the previous studies, the Hawking
effect displays a remarkable robustness given that values of α of order or larger than 0.1 would
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Figure 4. On the left: shape of xEFH(α) for the profile (26) up toα= 1/2. On the right: shape
of the ratio κ(α)/κKH. We see that, since |xEFH(α)| ≥ |xKH|, so the EFH is inside the KH, the
temperature of it appears to be slightly hotter than TH at low α and then showing a O(5%)
deviation from thermality for α∼ 0.5. Note that we can directly compare the positions due
to the monotony of v(x).

have to be considered already in the far UV (as they corresponds to energies close to the effective
field theory scaleΛ).

4.1.1. Low-energy regime

Here, we focus on the low energy regime where an analytical treatment is possible. Let us start
by solving (23) perturbatively in α, one obtains

v(xEFH(α)) =−1− 3
8α

2 +O(α3), (27)

or, if (26) is taken into account

xEFH(α) =− 3α2

8κKH
+O(α3). (28)

In both cases we find xEFH to be perturbatively close to xKH with corrections starting at O(α2).
As already mentioned, for the superluminal case |xEFH| > |xKH|. Given (27), we can compute the
correction to κ(α). Since 1−∂v creg

g = 1+δαv = 1+3α2/8+O(α3) and v ′(xEFH) = κKH+O(α4) (with
chosen profile (26)), we get

κ(α) = κKH(1+ 3
8α

2)+O(α3). (29)

The result shows a similar qualitative behaviour was predicted at the Killing horizon of a Hořava
black hole in [27]. We find the first corrections to arise at O(α2), highlighting how the emission
still remains quasi-thermal for low-energy particles. The coefficient in front of the correction is
different from the one found in the black hole case in [27], however, this is not surprising because
its value depends crucially on the specific geometry, in particular on the shape of cs(x) and v(x).

4.2. Subluminal dispersion relation

For what regards the subluminal case, ξ = −1, we have |creg
g | ≤ 1 always, as such, (23) admits

possible solutions only outside the Killing horizon (i.e. for positive x), where |v | ≤ 1. Again, the
equality is valid for α= 0, but for values close to this minimum, perturbative analyses around the
Killing horizon can be safely performed. For what concerns the upper bound in the α-range we
can scrutinise (12) evaluated at v = 0. The solutions are given by (16) with ξ=−1. As anticipated,
we find real solutions exclusively for α≤ 1/2. Once again, we compute the position of xEFH(α) as
well as the value of the ratio κ(α)/κKH numerically so to test the robustness of Hawking radiation.
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Figure 5. On the left: shape of xEFH(α) for the profile (26) up toα= 1/2. On the right: shape
of the ratio κ(α)/κKH. We see that, since |xEFH(α)| ≤ |xKH|, the effective horizon is inside the
Killing one, the temperature of it being slightly colder than TH at low α and then showing a
O(10%) deviation from thermality for α≳ 0.4.

The results are collected in Figure 5 for the allowed range. We can see again that for α≪ 0.1 the
spectrum is basically thermal with small deviations from the relativistic result.

4.2.1. Low energy regime

Similarly to the treatment in previous section, we can now analyse the low-energy regime for
the subluminal case. Effectively the calculations change only for the sign of ξ, hence we find

v(xEFH(α)) =−1+ 3
8α

2 +O(α3), (30)

suggesting an effective horizon that lies outside the Killing horizon. Recalling the velocity
profile (26) we get

xEFH(α) = 3α2

8κKH
+O(α3). (31)

which consequently leads to

κ(α) = κKH(1− 3
8α

2)+O(α3). (32)

showing a similar correction but with the opposite sign with respect to the superluminal case.
Once again, we discover that the low-energy regime admits a quasi-thermal behaviour, as ex-
pected.

5. Particle creation: critical flow

This section discusses a second possible regime for the fluid velocity: the critical flow for which
v−∞ =−1 and |v | < 1 otherwise. An exemplary profile could be

v(x) = 1
2 [tanh(κ◦x)−1], (33)

which we plot in Figure 6. Note, κ◦ is a fiducial scale to compensate the dimension of x.
Here, the Killing horizon moved to xKH =−∞ where the surface gravity vanishes κKH = v ′−∞ =

0. The analysis of (23) can be split into various cases based on the type of dispersion relation as
follows:

• Superluminal case: The only solution to (23) is found for α→ 0. However, since v ′∞ = 0,
κ(α) = 0 and no particle production takes place, whatsoever.

• Subluminal case: We instead solve (23) for 0 ≤α≤ 1/2 and numerically compute xEFH(α)
and κ(α) (see Figure 7).
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Figure 6. Critical velocity profile (26) for a left-going flow with one subsonic region (x >
−∞) and one sonic point at (xKH = −∞). The dashed line marks the location of the
sonic/Killing extremal horizon, for which xKH =−∞ and v(xKH) = 0.

Figure 7. On the left: shape of xEH(α) for the profile (33) up to α = 1/2. One can see that
xEFH → −∞ when α → 0. On the right: shape of the ratio κ(α). This quantity goes to 0
(which is the relativistic value) for very low energies but it still shows some nonzero value
for α> 0.

Interestingly, the subluminal case still supports particle production processes even when
the relativistic mechanism has ceased. Let us point out that both setups, subluminal and
superluminal, resonate with what we have found in the perturbative analysis of (29) and (32)
around α= 0 which returned κ(α) =O(α3).

6. Particle creation: subcritical flow

Now, we complete our analysis by investigating a subcritical flow for which |v | < 1 besides
|vmax| ∼ O(1). Then, no Killing/sonic horizon exists, hence such a flow mimics an horizonless
ultra compact object (a quasi-black hole) rather than a black hole, cf. [38,39] for further refer-
ences. This is a quite interesting case, given that experimental problems in shallow water waves
experiments concerning the stability of horizons led to the prevalent realisation of such “near-
critical” flows [33,40–42]. Experiments that nonetheless observed particle production. This led
to several numerical [18,19] and analytical investigations [32] which verified the presence of a
particle flux albeit generically characterised by substantial deviations from thermality.

Here we shall re-analyse this phenomenon using the tunneling method with the above intro-
duced approximant trajectory. As we shall see, our technique will be able to capture the spon-
taneous emission of an analogue ultra compact object in an “Hawking-like” picture, through the
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tunneling method in a non-relativistic setting like ours. The absence of an acoustic horizon, how-
ever, will reflect in a strong non-thermal character of such “pre-Hawking” particle production
phenomenon.

It is however important to stress that this effect will not be the only source of particle produc-
tion for a subcritical flow in the presence of subluminal perturbations. What is described in the
following reflects the fact that, for subluminal dispersion, and depending on the asymptotic val-
ues of the flow velocity v(x), some high-energy (high α) modes enjoy the presence of a turning
point, as in Figure 1. These modes, despite the absence of a sonic horizon, feel the presence of
an EFH, and can be treated the same way as we have done in the supercritical case (because they
admit two real solutions inside the EFH and four outside).

However, besides this, there is always a dominant set of low-energy (low α) modes, which will
not show any turning point, thus admitting four real solutions on the whole (x, t ) plane. For such
modes, it is possible to show, by analyzing the Bogoliubov coefficients in a 4×4 scattering matrix,
that a stimulated processes may occur as well [43]. This latter effect has a completely different
root to the one we focus here and could easily be dominant in a noisy experimental environment.

Indeed, this would be more similar in nature to the so called “Klein-paradox” which describes
a special case of superradiant amplification for scalar fields impinging on a potential barrier [44].
Such a mechanism requires an incoming wave to start with, while the high-energy modes
experiencing an EFH will also probe an effective ergoregion which allows for a spontaneous
emission (vacuum instability).

Nonetheless, we feel it is quite interesting to see how a spontaneous channel can be present
even in the absence of a full fledged acoustic horizon, as it predicts that even ultra compact
horizonless object could be evaporating in non-relativistic matter frameworks (like, for example,
the so called Standard Model Extension, see e.g. [45]).

Let us then start our analysis with the EFH condition (23).

• Superluminal dispersion relation (ξ = 1): particles fail to see any effective horizon, in
fact, (23) can never be fulfilled, since |creg

g | ≥ 1 always and |v | < 1 everywhere,
• Subluminal dispersion relation (ξ = −1): |creg

g | ≤ 1 always, hence, there can be solutions
of (23), even if |v | < 1 everywhere.

Before particularising to a specific profile of v(x), we quantify first how far the flow’s most
negative value can be from the sonic point, v =−1, while still admitting some solution to (23) for
our subluminal dispersion relation. Within our setting this yields numerically the upper bound
(namely, the solution of (23) for α= 1/2)5

vmin ≃−0.88. (34)

For flows for which the maximally negative value remains smaller in norm than this |vmin| there
cannot be any particle production, at least within the here considered formalism. Actually,
particle creation will take place for a subluminal dispersion relation only if |v−∞| > |vmin|. Indeed,
the set of solutions to (23) is consequently limited to the range of x in which |v−∞| ≥ |v | ≥ |vmin|
instead of 1 > |v | > |vmin|.

In order to proceed further in our investigation, let us now assume a velocity profile like in
Figure 8 given by the form

vε(x) = 1

2+ε [tanh(κ◦x)−1], (35)

5The value for α is in principle arbitrarily chosen. In this setup, the threshold is determined by the value where the
dispersion relation becomes multivalued. From a physical point of view, the minimal value represents that basically every
object, no matter how far from forming a horizon, would radiate modes k ∼Λ.
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Figure 8. Profile for vε(x) of Equation (35) with ε = 5× 10−2. The dashed line represents
v(x) =−1.

Figure 9. κ(α) for different values of ε: increasing ε reduces the range of α for which (23)
has a solution. Moreover, κ(α) starts from 0 with a non-vanishing derivative (apart from
the critical case ε = 0) which implies a deviation from thermality in the emission that will
be the topic of the last section.

where ε> 0 and κ◦ is again a fiducial scale to compensate the dimension of x. Note, (35) shows a
similar shape than the critical one shown in Figure 7, however |v−∞| < 1. Indeed, we have

lim
x→−∞vε(x) =− 2

2+ε >−1. (36)

In order to achieve somewhere |v | > |vmin|, we need ε≤ 0.27. In Figure 9 we have plotted κ(α) for
different values of ε.

As a final remark, we stress that the presence of particle production in absence of a Killing
horizon has been noticed also in the “dual” case for which the flow is everywhere supercritical
and the dispersion relation is superluminal [15]. Remarkably, it is easy to see that within our
framework, this case is analogous to the just considered subluminal–subcritical case.

Indeed, for |v | > 1 everywhere, one still obtains roots for (23) only when ξ = 1 and, if the flow
is not “too much” supercritical (a dual condition of that implied by Equation (34)), this effect
can be detected in the range α ≤ 0.5, obtaining a behaviour which resembles closely the one
found in Figure 9 for subluminal–subcritical case. This correspondence in behaviour is indeed
just another manifestation of the duality between supercritical–superluminal and subcritical–
subluminal settings already noticed in previous analogue gravity investigations.
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Figure 10. Deviation from thermatity in a supercritical flow. On the left: δ(α) for the
subluminal case. On the right: δ(α) for the superluminal case. The dashed line is f (α) = 0.1.

7. Phenomenological considerations

In this section, we highlight some important aspects and subtleties related to our approach to
provide a complete and comprehensive picture. For instance, we analyse the properties of the
spectrum and the internal consistency of the methodology.

7.1. Deviation from thermality

The first question addresses the problem whether the predicted particle production leads to a
thermal (or approximately thermal) spectrum or not. To answer this, we define the quantity

δ(α) =
∣∣∣∣∂ακ(α)

κ(α)

∣∣∣∣ . (37)

Whenever δ(α) ≪ 1, the change in κ(α) remains negligible with respect to κ(α) itself; therefore
the emission will be considered as thermal.

7.1.1. Supercritical flow

For the supercritical regime, we can see, from (32) and (29) that within the low energy region,
the surface gravity behaves as

κ(α) ≃ κKH +O(α2) and ∂ακ(α) ≃ 3
4ξακKH +O(α3). (38)

As a consequence, for α ≃ 0, δ(α) = O(α) implying that the emitted spectrum shows perturba-
tively thermal features. This can be also extracted from Figure 10.

7.1.2. Subcritical flow

While we perturbatively recover thermality in the supercritical case, we see that a subcritical
(and subluminal) setup displays the complete opposite behaviour. Albeit having generically
∂ακ(α) ̸= 0 for α ̸= 0, we find that κ(α) = 0 at the minimum value of the subcritical profile
v = −2/(2 + ε)6. This, in turn, means that δ(α) diverges, thus maximising the deviation from
thermality. This should come as no surprise given the essential role of the presence of a
Killing/sonic horizon to which the EFH has to be close, in order to assure the approximate
constancy of T (α).

6This particular feature depends on the fact that v approaches the value −2/(2+ ε) with vanishing derivative. So it
depends crucially on the detailed shape of v .
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Figure 11. Plot (the vertical axis is displayed in a logarithmic scaling) of Γ for a supercritical
flow. The dashed black line depicts the relativistic rate, while the blue solid line represents
the superluminal and the red the subluminal case. For convenience, here we have set
2πΛ= 1, such that Γ= e−α/κ(α) and κKH = 1.

Figure 12. Plot of Γ in the subluminal case for some values of ε. The case ε= 0 represents
the critical regime. Again we have set 2πΛ= 1.

7.2. Spectrum

Whether or not thermal, the emission spectrum is determined by the tunneling rate (13). In
Figure 11, we plotted Γ for the supercritical regime, while the subcritical case (subluminal
dispersion relation) is shown in Figure 12.

Comparing both spectra, we observe that Γ stays close to the relativistic tunneling rate—at
low energies in the supercritical phase independently from the nature of the dispersion relation.
However, when increasingα, the subluminal as well as the superluminal scenarios depart further
and further from the relativistic behaviour, describing respectively a colder and a hotter object.

Finally, let us stress that even if subluminal dispersion relations predict particle production for
super- as well as subcritical flows, it remains true that

|Γsubcrit|≪ |Γsupercrit|. (39)

I.e. even if subluminal dispersion allows for an in-principle particle production in the absence of
a sonic/Killing horizon, this effect is strongly suppressed with respect to the particle production
in the presence of an horizon.
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7.3. Energy conservation: subcritical flow-subluminal dispersion relation

The particle creation found in Section 6 confirms previous results based on Bogoliubov coeffi-
cients [18,19,32]. However, given that in stationary geometries the spontaneous particle creation
from the vacuum always requires the presence of an ergoregion to ensure energy conservation,
this result might seem puzzling at first sight. Indeed, for this production to be consistent, the in-
going Hawking partner must carry a negative Killing energy to compensate for the positive one
carried to infinity by the Hawking quantum. However, this can happen only within an ergoregion
apparently absent in the considered subcritical flow. In what follows, we shall explain how this
apparent paradox is resolved by the peculiar nature of subluminal dispersion relations.

Starting with Equation (7) (with cs(x) ≡ 1), the requirement for the existence of a quantum with
Ω < 0 can be recast into the condition ω < kv (considering positive preferred energies amounts
to k < 0) which in turn means

0 > cph = ω

k
> v, (40)

that is, the phase velocity’s absolute value must be smaller than the fluid velocity.
For superluminal dispersion relations this requires |v | > 1 which implies the necessity of the

presence of a sonic/Killing horizon. However, for subluminal dispersion relations we can write

c2
ph = ω2

k2 = 1− k2

Λ2 < v2. (41)

This inequality is satisfied whenever

Λ2 > k2 >Λ2(1− v2), (42)

where the upper bound Λ2 > k2 was added to respect the perturbative interpretation of the
dispersion relation as well as to ensure ω2(k) ≥ 0. Equation (42) then reveals two important
features

• The energy balance can be satisfied in the subluminal case regardless of the presence
of any sonic/Killing horizon. In particular, if |vmax| is close to the speed of sound, the
window of opportunity described by (42) may allow for the presence of an EFH for k <Λ.
While for deeply subcritical flows, such window rapidly closes and only for k ≃ Λ some
mode can be excited7.

• The lower branch of the negative energy mode for the subluminal case (which is the
lingering mode in Figure 1) is dispersive around v = 0 (the origin of the axes in Figure 1).
In (16) we have shown that the regular solutions around v ≃ 0 consist in two positive-
Ω solutions, one ingoing and one outgoing. However, none of the lower branches of
the lingering or the turning mode reach v = 0, meaning that those branches are non-
regular in that region of spacetime. This can be explained by the following fact: for these
two branches |k| increases while approaching v = 0, so much so that for the subluminal
dispersion relation ω(k) becomes imaginary and no real mode of these branches can be
further propagated towards v = 0.

Let us notice, that the possibility of having negative-energy modes only when |v | > |cph| is an
established, well-known fact, see cf. [46,47].

7.4. Validity of the approximation

As a last topic we would like to quantify the validity of our approximation. All calculations are
based on finding an approximant trajectory to our non-relativistic particle. Since this fiducial

7However, one should study the non-perturbative structure of the dispersion relation, to verify the reasoning in such
regimes.
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curve experiences an effective horizon, it allows us to perform a tunneling calculation as it is
associated with a simple pole which is instead is absent in the true trajectory. Nonetheless our
results confirm the expectations based on the Bogoliubov methods. How can this be?

The crucial issue here is that the actual particle creation process does not happen arbitrarily
close to the horizon, but rather when the partners of the Hawking pair are sufficiently stripped
apart from tidal forces for them to be distinguishable “on-shell” particles. Such critical distance
is usually identified with the de Broglie wavelength (or Compton, if they are massive) of the
particles [48–50]. Thus, in turn, we assume that if our process happens within a de Broglie
wavelength, the calculation can be considered as trustworthy.

In an analogue setting, the de Broglie wavelength of an acoustic excitation has to be defined
using the speed of sound cs explicitly [5]. After restoring all relevant physical quantities, we can
write

λs = hcs

Ω
. (43)

The idea is the following: since λs denotes the characteristic distance between the Hawking
partners at which they go on-shell, we must require that the approximant trajectory fails to mimic
the physical trajectories only when these are separated by a distance smaller than λs , in order for
our method to apply. This is tantamount to say that the physical trajectories and the approximant
are indistinguishable from the point of the particle creation process. In other words, if we define
x1(α) as the point where we violate (18) (the approximant fails to trace the ray outside the effective
horizon) and x2(α) as the point where (21) is violated (the approximant digresses strongly from
the inside ray), then their distance ∆x(α) has to be smaller than λs :

|∆x(α)| = |x2(α)−x1(α)| ≤λs = hcs

αΛ
. (44)

Since (21) and (18) involve v(x), we have to specify a profile for the flow velocity to determine
actual values for ∆x. Let us then take the following profile

v(a,b; x) = a

2
[tanh(bx)−1]. (45)

controlled by the two parameters a and b which are associated to alternative features of the flow:

• a =− limx→−∞ v(a,b; x) controls the lower limit of v and can be identified as a = |v−∞|.
• b controls the slope, i.e. the bigger b is, the steeper v becomes in passing from 0 to −a.

This profile for v allows us to include all investigated cases in the discussion and, given that we
can invert the function

x(a,b; v) = 1

b
artanh

(
1+ 2v

a

)
, (46)

we can use it to study ∆x.

7.4.1. Superluminal case

Taking ξ= 1, the effective horizon will always be located inside the Killing horizon, as such we
have to consider the case v ≤−1 in condition (21). So let us consider, for a given α, the values of
the flow velocity for which the conditions (18) and (21) are saturated

v1(α) =−
√

1+
p

1+4α2

2
, and v2(α) =−1−α. (47)

Then, after multiplying (44) by α and collecting the α-dependence, we can use (46) to write

α ·∆x(α) = α

b

[
artanh

(
1+ 2

a
v2(α)

)
−artanh

(
1+ 2

a
v1(α)

)]
. (48)

Since we are in the superluminal case, particle production occurs only in the supercritical regime,
namely for a ≥ 1. In general, the expression forα·∆x(α) is parametrically small, depending on the
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value of b as follows: if b increases, then v will change rapidly in a very narrow region in x, such
that the particles will be produced in a small neighborhood around the Killing horizon. Note that
b for a = 2 represents exactly the Killing surface gravity, as one can immediately see from (26).

At low energies, one can expand (48) for α≃ 0+ obtaining

α ·∆x(α) =− aα2

2b(a −1)
+O(α3), (49)

which reveals that (44) will be always satisfied at low energies for a > 1, independently from the
value of b. For a = 1, representing the critical behaviour for the flow, (49) must be analysed
separately due to the obvious pole. If we set a = 1 and then expand for α≃ 0,

α ·∆x(α) =− α

2b
ln

(α
2

)
+O(α2), (50)

which is again perturbatively small and satisfies the bound given by (44).
The only point where the approximation fails independently from b, occurs when v is a slightly

supercritical flow (a ≳ 1) such that we can have particle production up to v−∞ for α ≤ 1/2. This
happens only8 when

v2(α) =−a = v−∞ ⇐⇒ α= a −1. (51)

When (51) is fulfilled at a finite α ̸= 0, the product α ·∆x(α) diverges and we cannot satisfy (44).
This can be understood, simply because for α = a − 1, particle production should happen for
velocities v−∞, viz. in the point x =−∞.

7.4.2. Subluminal case

For the subluminal case the discussion resembles the previous one in most parts. By setting
ξ = −1 while considering that the effective horizon lies outside of the Killing horizon, the
breakdown of the approximation, outside and inside the EFH, is destined to happen respectively
at

v1(α) =−
√

1+
p

1−4α2

2
, and v2(α) =−1+α, (52)

which yields an expression for α ·∆x(α) very close to (49). In general, this expression changes
antiproportionally with b. At low energy, for a > 1 (supercritical flow), we find again (49) while
for the critical case a = 1 we recover (50). This confirms that the low energy behaviour is well
described by our approximant.

Again, here, we violate (44) when ∆x(α) diverges at a finite α, which is at

v2(α) =−a = v−∞ ⇐⇒ α= 1−a. (53)

This is possible only for the subcritical scenario, since α> 0. In this case, we discover again that
the approximation breaks down at x = −∞ when particles fulfil α = a − 1, then our treatment
becomes invalid.

Let us then summarise:

• our approximation is always valid for low energy particles, in the supercritical and critical
case, both for super- and subluminal perturbations and independently of the model,

• for a generic value ofα, the validity of the approximation depends strongly on the model,
namely, the energy scaleΛ, the sound speed cs and the steepness of the profile v(x),

• for a v(x)-profile of the tanh(x)-type, there exists an α for the supercritical and super-
luminal case (α = a −1) and one for the subcritical and subluminal case (α = 1− a), for
which our approximation fails.

8Notice that |v2(α)| > |v1(α)|.
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In conclusion, we see that quite generically the particle creation process described via the
tunelling method and the approximant, is basically insensitive of the near-horizon behaviour
which is where the details of the dispersive behaviour of our modes matter most. This res-
onates with the more complete, but also more convoluted, results of the Bogoliubov approach,
where the same robustness to the short-distance details of the process has been found, see
cf. [36].

8. Discussion

This article was devised as a pedagogical primer for Hawking radiation in acoustic gravity, pro-
viding an accessible and physically intuitive description of this phenomenon via the tunneling
method. Due to its simplicity and versatility, this formalism allowed us to explore several differ-
ent, albeit sometime idealized, scenarios that may be relevant in analogue gravity set-ups. We in-
vestigated three different flow types—supercritical, critical, and subcritical—over which we anal-
ysed the particle creation for a scalar field with generalised dispersion relations of subluminal
as well as superluminal type. As a result, we found that particle creation can be associated with
an effective horizon experienced by a trajectory that interpolates those of the Hawking partners
outside and inside the (effective) horizon. Such approximant only fails to track these particles in
a region of size below their de Broglie wavelength (where they cannot be treated as separated on-
shell particles). The aforementioned effective horizon is always located inside the Killing horizon
for superluminal particles and always outside for subluminal ones.

For supercritical flows, endowed with a proper acoustic/Killing horizon, we confirmed the
robustness of Hawking radiation for both types of dispersion relations. Indeed, we observed
that the standard Hawking temperature acquires only very small corrections (of order O(α2))
given that values of α≳ 0.1 should not be considered as physically relevant in realistic analogue
systems.

Another relevant insight from our analysis provides the simple discovery of how the creation
of subluminal particles, described theoretically [18,19,32] and experimentally [33,40–42] in sta-
tionary subcritical flows, can have a spontaneous component, in addition to a dominant stimu-
lated one. Indeed, we unveiled that in such set-ups, some high-energy modes can experience an
effective horizon, if the flow gets sufficiently close to forming a Killing horizon. For such modes,
we showed that the Hawking partner, propagating inside the effective horizon, is endowed with a
negative Killing frequency, and hence energy conservation can be made to hold as usual in spite
of being in vacuum and in a time independent geometry.

A final comment must be made on the vacuum state. In our analysis, we implicitly assumed
a “no drama” scenario for observers crossing the effective horizon or the acoustic/Killing hori-
zon along the “approximant” trajectory. One could interpret this as implicitly assuming the exis-
tence of the usual global Unruh vacuum state, similar to what is done in the Bogoliubov method
for stationary flows. However, rather than comparing particular states, the tunneling method
performs a time-resolved analysis that selects an instantaneous local vacuum to count parti-
cles [51]. In other words, as long as a near-horizon vacuum remains valid, the method is predic-
tive. This assumption is justified by the physical intuition of how such a vacuum would be pro-
duced in a realistic experiment generating a supersonic flow and is substantiated by experimental
data [52].

In conclusion, we hope that the simple analysis presented here can be extended to more
realistic settings and specific experimental set-ups for analogue Killing horizons in the future,
possibly allowing the investigation of dynamical trapping ones [31]. We leave these investigations
to future work.
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Appendix A. Tunneling vs. Bogoliubov

This appendix clarifies the relation between the tunneling and the Bogoliubov approach. The
main point of our discussion will be to understand why the interpretation of a tunneling rate Γ as
defined in (13) can be interpreted as a signature of thermality for the observer at infinity (v(x) =
0) where the particle content is usually determined by evaluating the Bogoliubov coefficients
between the near-horizon modes and the modes at infinity. This analysis, being a proof of
concept, will be conducted fully in the relativistic case, but we will argue that it can be applied
to fields with modified dispersion relations, since the short-range details of the modes will not
matter in the evaluation of the Hawking effect. For further details on the derivations, see [53]
(chapter 2) and for similar consideration see [28].

Let us then consider a relativistic field φ, solving the massless Klein–Gordon equation in a
static, (1+1) dimensional9, asymptotically flat geometry with a Killing horizon, such as (1),

□φ= 0. (54)

In order to compute the Hawking effect we focus on the outgoing branch of the solutions. This
can be described labelling the modes at fixed Killing energy Ω. Both inside and outside the
horizon, these modes assume the usual logarithmic non-analyticity in the near-KH limit

φKH,out
Ω

= exp

[
−iΩt +Ω i

κKH
ln(x −xKH)

]
, φKH,in

Ω
= exp

[
−iΩt +Ω i

κKH
ln(xKH −x)

]
, (55)

while at infinity, where the geometry is flat, they assume the shape of a plane wave:

φ∞
Ω = exp[−iΩ(t −x)] . (56)

The Bogoliubov relation between the two (inequivalent) bases {φKH,out
Ω

} and {φ∞
Ω }, together with

the assumption of the state to be vacuum for the freely-falling observer at horizon crossing,
essentially captures the spontaneous particle production of a black hole, that is the Hawking
effect.

An intuitive way to compute the Bogoliubov coefficients is to perform a trick à la Unruh [54],
where we get rid of the non-analyticity given in (55), building a new set of solutions which is thus
analytical across the KH [55]:

Φ±
Ω =C±

[
φKH,out
Ω

±e
∓ Ω

2κKH (φKH,in
Ω

)∗
]

. (57)

9The very same discussion can be made with a spherically symmetric black hole example.
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The exponential e∓(Ω/2κKH) that appears in the expression above, represents nothing else than
the analytical continuation of the logarithm in (55) across the KH on the upper and lower half
complex x-plane, depending on the sign of the exponent. The coefficients C±, instead, are
normalization coefficients. The analyticity of Φ+

Ω (Φ−
Ω) allows us to express this as a sum of

only positive (negative) frequency modes at infinity φ∞
Ω . This means that the vacuum state for

the observer at infinity is the same vacuum defined through the Φ+
Ω. So, the evaluation of the

Bogoliubov coefficients can be equivalently made, instead of between {φKH,out
Ω

} and {φ∞
Ω }, just

between {φKH,out
Ω

} and {Φ±
Ω

}.
As a matter of fact, the mean value of the number operator turns out to be given by [53]:

−C− =−〈Φ−
Ω,φKH,out

Ω
〉 =

∫
dΩ̄

2π
|βΩΩ̄|2 = 〈N̂Ω〉. (58)

Taking into account the normalization condition ofΦ±
Ω

we get:

〈N̂Ω〉 =
∫

dΩ̄

2π
|βΩΩ̄|2 =

1

e2πΩ/κKH −1
, (59)

which is a Bose–Einstein distribution, underlying a thermal character of the particle number
N̂Ω (the expetation value is taken on the freely falling vacuum) with temperature T = κKH/2π,
that is the Hawking temperature. However, this is not the distribution which an observer far
from the horizon would detect since, due to the curved geometry, the propagation affects the
particle content in an energy-dependent way through the so-called grey-body factor Γgrey(Ω) that
quantifying the probability of a single particle of energyΩ to overcome the gravitational potential
and eventually reach infinity. The resulting spectrum is given by [55]:

Γgrey(Ω)

e2πΩ/κKH −1
. (60)

Let us underline that the grey-body factor always affects the propagation of the outgoing modes,
apart from the particular case of a massless relativistic particle in (1+1)-dimensional geometry,
because any such metric is conformally flat [14].

The equivalence between the tunneling and the Bogoliubov approach relies on the fact that
the source of thermality is mathematically given by the non-analyticity of the outgoing modes
near the horizon. The tunneling rate (13) represents exactly the computation of this factor, since
it involves the imaginary part of the phase ofφ. This equivalence is possible due to the exact WKB
character of the solution near the horizon. In other words φKH,out

Ω
, takes the form given in (55)

without relying on any approximation, due to the exponential peeling.
Usually, the tunneling rate Γ has a statistical interpretation [56]. In this case, one can interpret

the existence of an outgoing particle as the sum of two processes

φKH,out
Ω

=C−Φ−
Ω+C+Φ+

Ω, (61)

which tells us that a particle φKH,out
Ω

can be originated by a the outgoing flux with probability
−C− = Pem and by the reverse process with probability C+ = Pabs. The ratio between those two
processes gives us exactly

Γ= Pem

Pabs
= 〈φKH,out

Ω
,Φ−

Ω〉
〈φKH,out
Ω

,Φ+
Ω
〉
= e−2πΩ/κKH . (62)

From the formula above we recognize immediately that the numerator and the denominator of
the ratio exactly correspond to the ratio of the α and β Bogoliubov coefficients:

Γ=
∫ dΩ̄

2π |βΩΩ̄|2∫ dΩ̄
2π |αΩΩ̄|2

= e−2πΩ/κKH . (63)
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This, together with the completeness relation:

1 =
∫

dΩ̄

2π
(|αΩΩ̄|2 −|βΩΩ̄|2) (64)

allows us to derive ∫
dΩ̄

2π
|βΩΩ̄|2 =

1

e2πΩ/κKH −1
(65)

as obtained above.
This confirms that, through the tunneling rate, one can directly read the relation between the

non-analyticity of the modes and the thermal character of the state off. If Γ turns out to be
a Boltzmann factor, one finds the temperature automatically. Morevoer, this analysis helps to
understand where the choice of vacuum plays a role in a context like the tunneling formalism. In
fact, such a Boltzmann factor gives rise to a thermal state in the analytical basis only when the
non-analytical one is set in vacuum and the number of particle can be identified as the integral
|β|2 only. If the state is not taken to be vacuum for the freely falling observer, this is not true
anymore, and, despite Γ assumes the same shape, the shape of the state at infinity cannot be
directly inferred from it in the same way.

Additionally, let us emphasize that this calculation can be performed locally near the horizon.
However, as we have already pointed out, this does not correspond exactly to the detection at
infinity, due to propagation effects. This is of particular importance when we consider modified
dispersion relations where, even for the massless case, one expects a nontrivial effect from the
propagation. Therefore, the results of this article cannot be quantitatively compared, beyond the
zeroth order inα, with the Bogoliubov coefficient approach, without a previous estimation of the
effect of the modes’ propagation up to infinity.
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