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Abstract. Renaud Parentani was one of the leading figures in Quantum Field Theory in curved spacetime, in
particular concerning its applications to Hawking-like radiation in analogue models. In this paper dedicated
to him, we discuss the characteristic features appearing in the correlation functions in an acoustic black hole
formed by a Bose–Einstein condensate, considered as signature of the presence of Hawking radiation in this
system.

Résumé. Renaud Parentani était l’un des principaux leaders de la Théorie des Champs en espace-temps
courbes, en particulier sur les applications à la radiation de type Hawking dans les modèles analogues. Dans
ce papier qui lui est dédié nous discutons les éléments caractéristiques qui apparaissent dans les fonctions
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de corrélations dans un trou noir acoustique formé par un condensat de Bose–Einstein, considérés comme
la signature de la présence de la radiation de Hawking dans ce système.
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1. Introduction

In 1981 Unruh [1] suggested that Hawking’s black hole (hereafter BH) radiation can have an
analogue in a fluid whose flow undergoes a transition from a subsonic regime to a supersonic
one. The locus where this happens is the so called “sonic horizon”, since sound waves are trapped
inside the supersonic region and cannot propagate upstream; they are trapped by the flow and
dragged downstream. Unruh showed that in this situation one should expect an emission in the
subsonic region of thermal phonons at a temperature proportional to the surface gravity of the
sonic horizon exactly as predicted by Hawking for gravitational BHs [2,3].

In the following years many systems were proposed to experimentally detect this analogue
Hawking radiation [4]. The most promising appeared to be the ones constructed by Bose–
Einstein condensates (BECs), since in this case one can arrange the experimental setup so that
the associated Hawking temperature is expected to be just one order of magnitude smaller than
the BEC background temperature (100 nK). Nevertheless even this difference has so far prevented
any direct detection of these thermal phonons.

In 2008 it was shown that, since the Hawking effect is a genuine process of entangled pair cre-
ation in which for each thermal phonon in the subsonic region there is a corresponding negative
energy partner inside the horizon, a characteristic correlation band in the in-out density–density
correlation function should appear [5,6]. This is the smoking gun of the Hawking effect. This
band was observed in a series of experiments performed by Steinhauer and his group [7–9]. This
represents the best evidence to date for the presence of Hawking radiation in sonic BHs.

Renaud Parentani suggested that besides this main band, two other minor bands should
appear in the density–density correlation function because of backscattering effects on the
modes [10]. While there is as yet no experimental evidence for these bands, numerical calcu-
lations have confirmed their presence [11–13].

In this paper, dedicated to Renaud Parentani for his invaluable contributions to this field,
we shall investigate, using the framework of Quantum Field Theory in curved space (see for
example [14–16]), the significative features of the density–density correlation function connected
to Hawking radiation for two flow profiles having the same asymptotic sound speed limits and
horizon surface gravity, outlining similarities and differences.

2. The setting

In a BEC the phase fluctuation θ̂ on top of the condensate in the hydrodynamical approximation
obeys an equation which is formally identical to a wave equation for a massless scalar field
propagating in a fictitious curved space-time1 described by the line element

ds2 = n

mc
[−c2dT 2 + (dx⃗ − v⃗dT )(dx⃗ − v⃗dT )], (2.1)

1More details of the review in this section can be obtained in [4].
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where n is the condensate density, c the local speed of sound, v⃗ the velocity field and m the mass
of a single atom. The wave equation reads

□θ̂ = 0, (2.2)

where □≡∇µ∇µ is the covariant d’Alembertian calculated with the metric (2.1).
This system can be treated by using the methods of Quantum Field Theory in curved space-

time. This has been done in a paper written in collaboration with Parentani [17]. Here we just
outline the main points.

We shall consider for simplicity a stationary unidimensional flow directed along the x̂ axis
with a constant velocity v⃗ , the density n is also constant. By an appropriate rescaling of the phase

operator θ̂ =
√

mc/nħL2
⊥θ̂

(2), where L⊥ is the size of the transverse direction with L⊥ ≪ħ/mc so
that excitations with transverse momenta are frozen, Equation (2.2) can be rewritten as(

□(2) −V
)
θ̂(2) = 0, (2.3)

where V is given by

V =−1

2

(
1− v2

c2

)
d2c

dx2 +
(

1

4c
− 5v2

4c3

)(
dc

dx

)2

(2.4)

and □(2) is the two dimensional (2D) d’Alembertian associated with the 2D section of the line
element (2.1), namely

ds2 = n

m

[
−c(x)2 − v2

c(x)
dt 2 + c(x)

c(x)2 − v2 dx2
]

. (2.5)

Here we have introduced a “Schwarzschild” time t such that

t = T −
∫ x

dy
v

c(y)2 − v2 . (2.6)

By considering the coordinate x∗, given by

x∗ =
∫ x c(y)dy

c(y)2 − v2 , (2.7)

we can rewrite (2.3) in the form (
∂2

∂t 2 + ∂

∂x∗2 +Veff

)
θ(2) = 0, (2.8)

with effective potential

Veff =
c2 − v2

c
V. (2.9)

The BEC flows along the x̂ direction from right to left (i.e. v⃗ = −v0x̂, with v0 > 0). By varying
c(x) one can engineer the flow so that it is subsonic for x > 0 (R region) and supersonic for
x < 0 (L region). x = 0 is the sonic horizon. c(x) can be further assumed to approach constant
values asymptotically; namely limx→+∞ c(x) = cR > v0 and limx→−∞ c(x) = cL < v0. Note that the
effective potential Veff (2.9) vanishes asymptotically and on the horizon. The Penrose diagram of
the spacetime is depicted in Figure 1.

For further use we introduce the retarded (u) and advanced (v) null Eddington–Finkelstein
like coordinates as

u = t −x∗, (2.10)

v = t +x∗, (2.11)

and the Kruskal one
U =± 1

κ
e−κu , (2.12)

where κ is the surface gravity of the horizon

κ= dc

dx

∣∣∣∣
x=0

(2.13)
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Figure 1. Penrose diagram of the spacetime of Equation (2.5). H+ is the future horizon, H−

the past one, I±R,L are null infinities. R is the region outside the horizon, L is the one inside.

Figure 2. Modes for the Unruh state.

and in Equation (2.12) the plus sign is for the L region and the minus sign is for the R region.
The quantum state of our field θ̂(2), as is well known, can be approximated at late times after

the formation of the BH by the Unruh state |U 〉 [18]. This corresponds to an expansion of the
quantum operator as

θ̂(2) =
∫ ∞

0
dωK

[
âK (ωK )uK

H +h.c.
]+∫ ∞

0
dω

[
âI (ω)uR

I +h.c.
]

, (2.14)

where the form of the mode uR
I on I−R is

uR
I (ω, x) = e−iωv

p
4πω

, (2.15)

while that for the mode uK
H on H− is

uK
H (ωK , x) = e−iωK U

p
4πωK

. (2.16)

The Unruh state |U 〉 is defined as

âK (ωK )|U 〉 = 0 = âI (w)|U 〉 (2.17)

for every ω,ωK . In Figure 2 we illustrate these modes on the Cauchy surface H−∪ I−R .
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Figure 3. Backscattering of the uR
I modes.

Note that while uR
I is a positive frequency mode with respect to Schwarzschild time, uK

H is
positive frequency with respect to Kruskal time. The Unruh state describes a situation in which
one has no incoming radiation on H− ∪ I−R , while at I+R one has a thermal flux at the Hawking
temperature TH =ħκ/2πkB, where kB is Boltzmann’s constant.

It is convenient for the calculations of the 2-point function to express the modes uK
H in terms

of modes (Boulware modes [19]) that on H− behave as

uR
H = e−iωu

p
4πω

, x > 0, (2.18)

uL
H = eiωu

p
4πω

, x < 0. (2.19)

Note the + sign in front of the exponential in Equation (2.19). uL
H has negative frequency (while

having positive norm), it is associated with the negative (Killing) energy partners. We have

uK
H (ωK , x) =

∫ ∞

0
dω

[
αR
ωKω

uR
H +βR

ωKω
uR∗

H

]+R ↔ L. (2.20)

The Bogoliubov coefficients are given in Ref. [17]2 and are summarised in Appendix A. Because
of the presence of the effective potential Veff in (2.9), the incoming modes will be modified from
their asymptotic forms in Equations (2.15), (2.18), (2.19) due to backscattering effects. In Ref. [5],
V was neglected and the modes maintained their expressions (2.15), (2.18), (2.19) throughout the
space-time. In Figures 3–5 we schematically describe the backscattering of each mode.

In any case, since Veff vanishes asymptotically at future null infinity each incoming mode will
be a linear combination of e−iωv and e±iωu .

We will consider two profiles of the sound velocity. The first one has been proposed in a
numerical simulation fully based on the Bogoliubov theory of a BEC [6] which confirmed the
presence of a peak in the in-out correlation function as predicted by [5] using only QFT in curved
space methods. It is

c(x) =
√

c2
L +

1

2
(c2

R − c2
L)

[
1+ 2

π
tan−1

(
x +b

σv

)]
, (2.21)

b = σv tan

[
π

c2
R − c2

L

(
v2

0 −
1

2
(c2

R + c2
L)

)]
, (2.22)

2In Ref. [17] there is a misprint in Equations (4.14b)–(4.14e). ωK should be replaced by ωK /κ.
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Figure 4. Backscattering of the uR
H modes.

Figure 5. Backscattering of the uL
H modes.

where σv is an arbitrary positive constant. The horizon is at x = 0. The surface gravity for this
profile is

κ= dc

dx

∣∣∣∣
x=0

= 1

2πv0σv
(c2

R − c2
L)sin2

[
π(c2

R − v2
0)

c2
R − c2

L

]
. (2.23)

We call this the “original” profile. In this case the equation for the modes Equation (2.3) has to
be solved numerically. The explicit construction of the modes has been given in Ref. [17], written
in collaboration with Renaud Parentani, where all the details can be found. The second profile,
which we call “analytical”, is

c(x) = cR√√√√√√1+
(

c2
R

v2
0
−1

)
exp

− 2
c2

R
v2

0
kx(

c2
R

v2
0
−1

)

θ(x)+ cL√√√√√√1−

(
1− c2

L

v2
0

)
exp

− 2k
c2

L
v2

0
x(

c2
L

v2
0
−1

)

θ(−x), (2.24)

where x = 0 is the horizon and k is a positive constant of dimension L−1 and the corresponding
surface gravity is

κ= dc

dx

∣∣∣∣
x=0

= k v0. (2.25)
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This profile has been introduced in Ref. [20]. The advantage of this profile is that the modes can
be computed analytically in terms of hypergeometric functions.

3. Correlation functions

As mentioned in the Introduction, the only experimental support for the existence of Hawking-
like radiation in an acoustic BH formed by a BEC comes from the observation of a correlation
band appearing in the in-out (one point inside the horizon and the other outside) equal time
density-density correlation function, in agreement with the theoretical prediction [5].

Defining the operator n̂ as the quantum density fluctuation on top of the condensate, the
density–density correlation function is

G2
(
T, x;T ′, x ′)= 〈U |n̂(T, x)n̂(T ′, x ′)|U 〉 . (3.1)

In the hydrodynamical approximation we have [4]

n̂ = ħn

mc2

[
v0∂x θ̂−∂T θ̂

]
. (3.2)

One finds that

G2
(
T, x;T, x ′)= ħn

2mL2
⊥c2(x)c2(x ′)

D
√

c(x)c(x ′)〈U |{θ̂(2)(t , x), θ̂(2)(t ′, x ′)}|U 〉, (3.3)

where
D ≡ ∂T ∂T ′ − v0∂x∂T ′ − v0∂T ∂x′ + v2

0∂x∂x′ . (3.4)

Using Equations (2.15) and (2.20) and integrating over ωK (see [17]) the two-point function
entering (3.3) can be written as [5]

〈U |{θ̂(2)(t , x), θ̂(2)(t ′, x ′)
} |U 〉 = I + J , (3.5)

where

I =
∫ ∞

0
dω

1

sinh
(
πω
κ

) {
uL

H (ω, t , x)uR
H (ω, t ′, x ′)+uL∗

H (ω, t , x)uR∗
H (ω, t ′, x ′)

+uR
H (ω, t , x)uL

H (ω, t ′, x ′)+uR∗
H (ω, t , x)uL∗

H (ω, t ′, x ′)

+ cosh
(πω
κ

)[
uL

H (ω, t , x)uL∗
H (ω, t ′, x ′)+uL∗

H (ω, t , x)uL
H (ω, t ′, x ′)

+uR
H (ω, t , x)uR∗

H (ω, t ′, x ′)+uR∗
H (ω, t , x)uR

H (ω, t ′, x ′)
]}

, (3.6)

J =
∫ ∞

0
dω

[
uR

I (ω, t , x)uR ∗
I (ω, t ′, x ′)+uR ∗

I (ω, t , x)uR
I (ω, t ′, x ′)

]
(3.7)

and the relation between Schwarzschild time t and T is given by Equation (2.6).
If one neglects the effective potential in Equation (2.8), the modes maintain the form given

by Equations (2.15), (2.18), (2.19) throughout the entire space-time. In this case one can obtain
an analytical expression for G2(T, x;T ′, x ′) which, taking the point x in the asymptotic R region
where c(x) ∼ cR and the point x ′ in the asymptotic L region where c(x) ∼ cL , can be written as

G2(T, x;T, x ′) = ħn

2mL2
⊥c3/2

R c3/2
L

{
− 1

(cR − v0)(v0 − cL)

κ2

cosh2 κ
2 (u −u′)

+ 1

(cR + v0)(cL + v0)

1

(v − v ′)2

}
. (3.8)

We see that this function has a negative minimum peaked along u = u′ which corresponds (in the
geometrical optics approximation) to the trajectory of the Hawking quanta (u = const) and its
partner (u′ = const). Beside this no other structure is present. This feature is the one observed by
Steinhauer’s group [8,9]. We see that the no-backscattering asymptotic correlation function (3.8)
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Figure 6. Plot for the profiles of Equations (2.21) (blue curve), (2.24) (orange curve) arrang-
ing them to have the same surface gravity and asymptotic behaviour.

Figure 7. Plot of the effective potential (2.9), (2.4) for the profiles of Equations (2.21) (blue
curve), (2.24) (orange curve) with the same asymptotic behaviour and surface gravity.

has the same form for all profiles having the same cR ,cL , v0 and surface gravity κ; in particular the
height, width, and location of the minima are identical. We shall impose this to be the case for
our two profiles introduced in the previous section. In Figure 6 we have plotted the two profiles
for v0 = 3/4,cL = 1/2,cR = 1,σv = 8 and numerically matched the two surface gravities. Even with
all these parameters matched, there are noticeable differences in the comparison of the sound
profiles. This leads to differences in the scattering of the modes as can be seen in Figure 7, where
the effective potential for the two profiles is plotted. The extrema of the potential appear to be
higher and narrower for the original profile. All this has a significant signature in the correlation
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Figure 8. Density–density correlation function for the two sound speed profiles. Left:
Original profile (2.21). Right: Result using the analytical profile (2.24). Each figure is
oriented so that the bottom left quadrant where both points are in the interior and the
upper right quadrant where both points are in the exterior of the analog black hole. The
green-dashed lines highlight the main band (i) by showing the locations of two parts of its
negative correlation peak. The black-dashed and brown-dashed lines do the same for the
secondary positive band (ii) and the secondary negative band (iii) respectively. Regions
shaded in gray are outside of the ranges of the plots.

Figure 9. Correlations between u,u′ modes on both sides of the horizon.

functions as we shall see. In Figure 8 we have represented the correlation function Equation (3.3)
at equal time T = T ′ for the original and the analytical profile respectively. This function is sym-
metric under the exchange x ↔ x ′ and diverges when the points come together and thus the re-
gion x = x ′ is cutoff for this reason. In each figure one can clearly see the large negative correla-
tion band, (i), when one point is in the interior and the other point is in the exterior region. This
is the one predicted by the no-backscattering asymptotic expression (3.8) and corresponds to the
correlation between the modes depicted in Figure 9. One can also see two much smaller bands
predicted by R. Parentani: a positive one, labeled (ii), when one point is inside the horizon and the
other outside (correlations between the modes represented in Figure 10) and a negative one when
both points are inside the horizon, labeled (iii) (correlation corresponding to the modes in Fig-
ure 11). These two secondary correlation bands exist because of the backscattering of the modes.
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Figure 10. Correlation between u, v ′ modes modes across the horizon.

Figure 11. Correlation between u, v ′ modes modes inside the horizon.

Figure 12. The density–density correlation function at x ′ = −250 when one point is in the
interior and one point in in the exterior of the analog black hole. Blue dot: Original profile
(2.21). Orange diamond: Analytic profile (2.24).

To see the differences between the two profiles, we have taken in Figure 12 a slice at x ′ =−250
of the in-out region (x ′ < 0, x > 0) of Figure 8. In this and in the following figures the extrema of the
correlations bands will appear as peaks. The large main peak corresponding to the (i) correlation
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Figure 13. A comparison of the secondary peak at x ′ = −250 when one point is in the
interior and one point in in the exterior of the analog black hole. Blue dot: Original profile
(2.21). Orange diamond: Analytic profile (2.24).

Figure 14. Density–density correlation function for both points in the interior at a fixed
x ′ = 400. Blue dot: Original profile (2.21). Orange diamond: Analytic profile (2.24).

band is clearly visible but the peak height and location are offset for the two profiles. The main
negative peak for the analytic profile appears slightly smaller and shifted to the left as compared
to that of the original one. The opposite occurs for the smaller secondary peak corresponding
to the band (ii) as seen in Figure 13, where we have magnified the scale to better appreciate this
point. More striking is the relative difference appearing in the negative peak corresponding to
the band (iii) in the in-in region, see Figure 14. The backscattering also affects the main peak.
In Figure 15a comparison is made for the two profiles with the no-backscattering approximation
Equation (3.8). The differences are more significant for the original profile.
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Figure 15. A comparison of the main peak at x ′ = −250 when one point is in the interior
and one point in in the exterior of the analog black hole. Left: Blue(Solid): Curve for
the analytic expression (3.8). Blue dot: Numeric data for original profile (2.21). Right:
Orange (solid): Curve for the analytic expression (3.8). Orange diamond: Numeric result
for analytic profile (2.24).

Finally, it is interesting to compare the ratios of the heights of each of the two minor peaks to
that of the main peak. The ratio of the height of the positive minor peak with one point inside
and one point outside the horizon to that of the main peak for the original profile is 0.0293. For
the analytical profile it is 0.0302. The ratio of the height of the negative peak when both points
are inside the horizon to the main peak for the original profile is 0.261. For the analytical profile it
is 0.191. In both cases there is agreement in the first digit only, so differences in the profiles lead
to relatively significant differences between the two profiles.

4. Scaling

There is a scaling related to the surface gravity κ that works for both sound speed profiles used in
this paper, (2.21) and (2.24). It is

ω̄ = ω

κ
, (4.1a)

τ = κt , (4.1b)

ξ = κx. (4.1c)

It is easy to see that for this scaling both sound speed profiles, written in terms of ξ, are
independent of κ.

In general, for any sound speed profile that, when written in terms of ξ, is independent of κ
one can substitute (4.1) into the Boulware and Kruskal modes of (2.14) and show that they both
scale as κ−1/2. Using these results, one can show that the two-point function (3.5) is independent
of κ. Then one finally has from (3.3) that

G2(T, x;T ′, x ′) = κ2 G2(T̄ ,ξ; T̄ ′,ξ′). (4.2)

This means that the heights and depths of the correlation peaks are larger for larger values ofκ.
Since x = ξ/κ, the widths of the correlation peaks in terms of the space coordinate x are narrower
for larger values of κ. See Figures 16, 17.

5. Conclusions

While awaiting the direct detection of the thermal phonons, the correlations bands and their
related peaks in the density–density correlation function are the major tool to experimentally
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Figure 16. Scaling present in the density–density correlation function: Left: Result using
the original profile (2.21) with σv = 8 with axis limits at −400 ≤ x ≤ 400. Right: Result
using the Original profile (2.21) with σv = 4 with axis limits at −200 ≤ x ≤ 200. The green-
dashed lines highlight the main band (i) by showing the locations of two parts of its negative
correlation peak. The black-dashed and brown-dashed lines do the same for the secondary
positive band (ii) and the secondary negative band (iii) respectively. Regions shaded in gray
are outside of the ranges of the plots.

Figure 17. Comparison of the main peak in analytic and numerical results for with σv = 8
and σv = 4 along a slice at x = −100. Blue (solid ): Theoretical curve (3.8) for the original
profile (2.21) withσv = 8. Blue diamond: Numerical result for the original profile (2.21) with
σv = 8. Red (solid): Theoretical curve for original profile (2.21) with σv = 4. Red square:
Numerical result for the original profile (2.21) with σv = 4.

investigate the analogue of Hawking radiation in a sonic BH formed by a BEC. Of the three char-
acteristic bands only one, the main one predicted in [5], has been observed so far. The detection
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of the other much smaller two, whose existence was predicted by R. Parentani, represents the
next challenge for the experimentalists in this field.

In this paper we have investigated the details of the three characteristic bands for two specific
sound velocity profiles. The profiles we use have flow speeds that are constant and sound speeds
that vary with position. To date, the experimental profiles have had both flow and sound speeds
that vary with position. However, the three bands are expected to be very robust in the sense that
they should occur for any profiles in which the sound and flow speed profiles are effectively one
dimensional, result in a single sonic horizon, and approach constant values far from that horizon.

The goal of this work was to show how sensitive the correlations are to differences in the sound
speed profile. We find that significant differences occur for each of the characteristic bands even
though the sound speed profiles have the same asymptotic and horizon limits. Since the profiles
are quite similar, this implies that one would expect a significant amount of sensitivity to the
details of the experimental profiles as well.

Future improvements in the precision of the experiments, including hopefully the detection
of the secondary bands, will allow for a more detailed analysis of the experimental results. This
in turn should allow us to determine the extent to which the gravitational analogy and the
corresponding quantum field theory in curved space calculations can be trusted to explain the
fine structure features of the correlations in the Hawking radiation for a BEC analogue black hole.
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Appendix A. Bogoliubov coefficients relating the Kruskal and Boulware modes

We report here the Bogoliubov coefficients appaearing in Equation (2.20),

uK
H (ωK , x) =
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