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1. Introduction

Our current version of quantum theory does not place fundamental bounds on the ability to
prepare quantum superposition states of isolated degrees of freedom of objects (for our purpose
here: the center of mass). Decoherence only occurs once we allow coupling to an environment
and ignore some of the environmental degrees of freedom [1]. In principle, any sufficiently well-
isolated experiment should be able to prevent that from happening. In practice, of course, this
may become arbitrarily difficult as increasing system size unavoidably increases the coupling
to the environment. One way to see that is in the many current demonstrations of quantum
delocalization of massive objects, which span an impressive 17 orders of magnitude in mass: the
larger the mass, the smaller the achievable delocalization; from half-meter scale superpositions
for single atoms [2], over hundreds of nanometers for macromolecules [3] to picometer and
attometer for solid-state mechanical systems [4-7].

If we add gravity to the game, things become (as of to date) undefined. We do not yet have
an experimentally backed theory that tells us what the gravitational field of a massive object in a
spatial superposition looks like. Our current theory of gravity is a classical field theory that cannot
deal with quantum-delocalized source masses [8]. The standard approach of most physicists is to
assume that we can extend gravity theory to a quantum field theory, which works reasonably well
if one stays away from Planck-scale energies to avoid UV divergence [9,10]. If we stick with this
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approach then a table-top gravity experiment with delocalized quantum source masses, of the
type originally suggested by Feynman [11], has a well-defined outcome given by the low-energy
non-relativistic limit of the quantum field theory: the superposition of a source mass will result in
a superposition of space-time metrics, which will lead to entanglement with a distant test mass
(for a quantitative treatment see e.g. [12-17]). Naturally, if we trace out the test mass we would
see decoherence of the source mass superposition, but the overall coherence in the entangled
state is maintained and will not decay.'

The less standard approach is to assume new physics beyond orthodox quantum theory, one
example being gravitational collapse models a la Diési [18-20] and Penrose [21,22] (inspired
by early work of Karolyhazy [23]). In a nutshell, in these models gravity adds an intrinsic
decoherence mechanism to a spatial superposition of a single mass that is quantified by the
gravitational self-energy between the two branches of the superposition. In other words, one
has to treat each branch as an actual source of gravitational energy that interacts with the
other branch. The dynamics is governed by the von Neumann-Newton equation and results in
a computable decoherence rate at which each single-mass superposition state decays [19,24].
Consequently, these gravitational quantum state reduction models pose a fundamental limit to
the validity of the superposition principle.

2. Gravitational quantum sensing

For the following discussion consider two masses m; = m (i = 1,2) centered at z; = (0,0, z;)
at a distance d = |z; —zp| along the z-direction. Each mass is prepared in a superposition
of its center of mass degree of freedom along the x-direction with a superposition size Ax; =
[x; —x’il (Figure 1). This specific scenario, first discussed in [14,15], generates entanglement by
gravitational interaction at a rate [25]

= %mzszd_s. 1)
In the idealized case, the two masses are point-like masses and only their center of mass
separation and delocalizations Ax are taken into consideration for analyzing the entangling
dynamics (Figure 1(a)). In an actual experiment, however, each mass is realized by an extended
physical object (here: a sphere of radius R and mass density p(r)). This imposes additional
constraints on the parameter space. Specifically, since two solid-state objects cannot penetrate
each other, the centers of mass of two equivalent, homogeneous spheres have to be separated
by a distance greater than twice their radius, i.e. d > 2R (Figure 1(b)). In addition, based on the
experience from small-scale gravity experiments [26-28], it seems unlikely that isolating gravity
as a coupling mechanism in table-top experiments will be possible without a physical shielding
mechanism in the form of a conducting Faraday shield between the two masses (Figure 1(c)). This
results in two additional restrictions: first, the surface distance dg = d — 2R between the spheres
will have to be in the regime of some micrometer (~ 10~%m) to accommodate the Faraday shield;
second, any finite dissipation in the conducting Faraday shield will lead to localization of the
particle due to which-way information in form of image charges in the shield [29,30]. Even in the
absence of external charges, unavoidable internal dipole moments (due e.g. to trapping fields or
material defects [31]) will have to be shielded in the same way [30]. This decoherence mechanism
restricts the ratio between delocalization and distance to the Faraday shield to? Ax <« d/2 [30].

INote that even if we would start from a more involved quantum theory of gravity, e.g. string theory or loop quantum
gravity, we would expect an effective quantum field theory to emerge as the correct description of low-energy quantum
gravity phenomena.

2The relevant dynamics occurs from an interaction between the virtual dipole formed by charge and mirror-charge
distribution, and a point close to the dipole axis within the plane of the Faraday shield. By geometry, any such paraxial
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Figure 1. Experimental constraints on entanglement generation by gravity. (a) Idealized experimental scenario
assuming two point-like masses with delocalization Ax (along the x-direction) and center-of-mass distance d
(along the z-direction). (b) Actual experimental situation with two extended masses of radius R and surface
distance d, restricting the available parameter space to d > 2R. (c) Table-top gravity experiments necessitate
electromagnetic shielding in form of a conducting Faraday shield. To avoid decoherence due to image charges
requires Ax < d/2.

The immediate and somewhat surprising consequence of these physical constraints is the
following: the rate at which entanglement is created (through actual gravitational interaction via
Eq. (1)) is always smaller than the intrinsic decoherence rate of each of the masses predicted
by gravitational collapse theories. Any observation of entanglement will therefore exclude a
decoherence model based on gravitational interaction between branches. In other words: the
time required to generate entanglement between delocalized quantum source masses is always
larger than the intrinsic “gravity-induced” decoherence time of each delocalized mass, which
excludes by principle the generation of entanglement if the idea of gravitational collapse is
correct.

To see this quantitatively recall that for gravitational collapse models a la Diési-Penrose the
decoherence of a single mass delocalized by Ax in its center of mass degree of freedom is given
by [24]

En(x,x) — EnX',X) +2EN(X,X)

I'y= o , (2)
with the Newtonian gravitational (self-)energy
®)px @)
En(xx) = - ffdrd ’p"lr p:,| , 3)

and with mass density p,(r) for a mass centered at x. Note that the decoherence rate strongly
depends on the modeling of the actual mass-density distribution. This has been done in different
ways. In early works of Penrose [21] and Diési [18,19,32], the mass density of the object is
assumed to be distributed in form of “little homogenous balls of radius ¢” [19]. This is also known
as the natural parameter-free version of the Diési-Penrose model [33]. Since no mass is present
outside the physical dimension of the object, the most conservative lower bound on decoherence
due to gravitational collapse is given by assuming a homogeneous density distribution over the
full extent of the object, i.e. 0 = R. For the case of a spherical mass of radius R this yields
S 2ARR, Ax<R,
ry=42h @

G 6 2R~
R Ax > R.
2h5

perturbative (Taylor) expansion of the interaction will grow in orders of Ax/d.
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The decoherence rate I'; due to gravitational collapse needs to be compared to I', from Eq. (1),
i.e. the rate at which entanglement is generated between two gravitationally coupled delocalized
quantum source masses. If I'; > I', no entanglement can be generated.® The first constraint
discussed above is that the gravitating masses are of finite size R and cannot penetrate each other,
i.e. d > 2R. For the case of small source-mass delocalization Ax < R this results in I'; > 4T, and
hence no entanglement can be generated irrespective of the surface distance d; between the
gravitating spheres. For the case of large source-mass delocalization Ax >> R the decoherence
rate saturates and one can expect to find a critical distance d. below which I', > I';. Concretely,
['./T4 < (10/12)(Ax/d)?, which can be made larger than 1 (i.e. entangling) for (Ax/d) > 1.4
However, the physical constraints of electromagnetic shielding in gravity experiments (see above)
restrict the accessible parameter space to Ax < 2d to prevent decoherence due to localization by
image charges in the conducting Faraday shield. As a consequence, I'; > I', for all Ax, which
means decoherence of the individual masses will happen at a faster rate than the generation of
entanglement in any experimental implementation that is predominantly sensitive to gravity.

These results are in agreement with the recent full analysis of the two-mass scenario provided
in [34], in which Trillo and Navascués show that the dynamics imposed by gravity models a la
Di6si—-Penrose can be entangling. This is consistent with the view presented earlier that these
models introduce an additional but finite decoherence rate (due to gravitational quantum state
reduction). They also show that, for a chosen delocalization Ax, entanglement generation is re-
stricted to distances d < d. = Ax+0.850. Here, o is the regularization parameter that is com-
monly used in the Digsi-Penrose models to parametrize the effect of mass-density distribution
in form of Gaussian-smeared points. To compare it with our analysis from above, we can inter-
pret o as the confinement radius of physical mass of the object. For the case of a spherical source
mass of radius R the most conservative bounds on decoherence are then obtained by assuming
a homogeneous density distribution over the whole physical object, i.e.> o = R. In that case, en-
tanglement generation is therefore limited to distances d < Ax +0.85R. For small delocalization
Ax < R this condition cannot be fulfilled in an actual experiment, since the physical boundaries
of the spheres require d > 2R. For large delocalization Ax — oo they find the critical distance for
entanglement generation to be d; = 2.210. Even though this allows for two physical spheres to
be separated (by surfaces distances on the order of 10% of the radius), the additional require-
ments due to electromagnetic shielding and image-charge localization will unavoidably restrict
the available superposition size to Ax <« d,2R, and hence the wanted parameter regime of large
delocalization Ax — oo cannot be realized in an actual experiment.

It is interesting to note that instead of parametrizing physical mass distribution, o can also
be introduced as a free phenomenological parameter that measures the spatial resolution of a
continuously monitored mass density [20]. In this version of the Didsi-Penrose model, o is not
bounded by the physical size of the object and the simple argument presented here does not
apply. In fact, Trillo and Navascués provide an explicit example for entanglement generation
by the Diési-Penrose model for o > R [34]. There are, however, constraints on o from other

3Two implicit assumptions are made: (i) since I'; is the local, single-particle decoherence rate, we assume that
the contributions to decoherence from 2-particle dynamics (computed e.g. in [34]) only add to the overall system
decoherence, hence making I'; a conservative lower bound; (ii) we assume the validity of current laws of physics, in
particular Newton’s law down to the short distances relevant for such experiments, and linearity of quantum theory for
non-gravitational interactions [35]. This can be tested in independent experiments.

4For a rigorous analysis we note that Eq. (1) is obtained via Taylor expansion in Ax/d and hence does not hold for
arbitrary Ax. A full analysis has been provided in [34] and is discussed below.

5This is only an approximation as the analysis provided in [34] assumes a Gaussian distribution with no cut-off at the
physical boundary of the sphere.
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experiments, most notably precision measurements of gravity at short distances.® For example,
Lee et al. [26] have performed percent-level measurements of Newton’s constant at separations
down to 50 um, thereby placing a bound o < 50um. This bound is still less strict than o < R, but
already sufficiently strict to prevent entanglement from being generated in the case study of [34].
It hence leaves an open challenge for both theory and experiment to either exploit or close this
loophole of this version of the Di6si-Penrose model.

3. Conclusion

In conclusion, even though gravitational (collapse) models a la Diési-Penrose can allow for gravi-
tational entanglement [34], the strict physical boundary conditions imposed by the actual imple-
mentation of any such gravitational quantum sensing experiment likely prevent this from hap-
pening. This is because table-top gravity experiments require both (i) extended physical source
masses that — in contrast to point masses — cannot penetrate each other, and (ii) electromag-
netic shielding to isolate gravity as the relevant coupling mechanism. In a broader context, this
discussion contributes to the still debated question “what do we learn from observing entangle-
ment generated by gravity?” beyond the original motivation as a phenomenon “which the classi-
cal theory [of gravity] (without quantization) is unable to explain” [11] (see also [35-39]).
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