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Abstract. We challenge the standard picture of decohering Schrodinger cat states as an ensemble average
obeying a Lindblad master equation, brought about locally from an irreversible interaction with an environ-
ment. We generate self-consistent collections of pure system states correlated with specific environmental
records, corresponding to the function of the wave-particle correlator first introduced in Carmichael et al.
[Phys. Rev. Lett. 85 (2000)]. In the spirit of Carmichael et al. [in Coherent States: Past, Present and Future,
World Scientific, 1994], we find that the complementary unravelings evince a pronounced disparity when the
“position” and “momentum” of the damped cavity mode — an explicitly open quantum system — are mea-
sured. Intensity-field correlations may largely deviate from a monotonic decay, while Wigner functions of the
cavity state display contrasting manifestations of quantum interference when conditioned on photon counts
sampling a continuous photocurrent. In turn, the conditional photodetection events mark the contextual dif-
fusion of both the net charge generated at the homodyne detector, and the electromagnetic field amplitude
in the resonator.
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1. Introduction

Coherent states occupy a central position in quantum electrodynamics (QED). They create a
connection between quantum and semiclassical theories of photoelectric detection [1-9]: being
eigenstates of an operator that annihilates photons from the electromagnetic field, they are
natural candidates of quantum states of light that have the same effect on a photoelectric detector
as coherent fields. Coherent states are also essential in telling apart classical and non-classical
optical fields, featuring in the definition of the Glauber-Sudarshan P-representation [10,11]
which sets the boundary. In fact, Glauber established their central place in his early work on
quantum theory of coherence, which revolved around an analysis of photoelectric detection [11-
13]. With the advent of cavity and circuit QED, non-classical states of light were routinely within
experimental reach and control in configurations where one atom, be it natural or artificial,
strongly interacts with one or a few photons. In situations of the like, the P-representation no
longer maps quantum dynamics into a classical stochastic process, while proposed modifications
to press on with such a mapping come with their own shortcomings [14].
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Keeping the master equation (ME) description of a single decaying cavity mode as an open
QED system explicitly in mind [15-25], the formalism of quantum trajectories starts with photo-
electric detection and addresses the following question: how does the evolution of the quantum
oscillator state run in parallel with the classical stochastic process of photoelectric counts? The
answer is given by a quantum mechanical theory which is able to simulate the evolution of the os-
cillator before taking the ensemble average to form the reduced system density operator p(?). In
this process, a quantum and a classical stochastic process are consistently coupled. Here we will
make use of this coupling to investigate the decay of macroscopic superposition states [18,26-35]
in conditional homodyne detection [36-41], an extension of the intensity correlation technique
and its reliance on a conditional measurement, introduced by Hanbury-Brown and Twiss [42-44].
In 1986, Yurke and Stoller [45] proposed an idea on how a macroscopic superposition state might
be prepared and subsequently observed by means of homodyne detection [14,46-48]. Several
alternative schemes and physical systems have been suggested since [22,25,29,32,49-82], while
later work also established that the photoelectron counting distribution in homodyne detection
is given by a marginal of the Wigner function representing the state of the cavity — the local os-
cillator phase determines the marginal [83,84].

Data of the discrete, particle type, and continuous wave type are simultaneously collected [85],
such that light scattered from a cavity initially prepared in a Schrodinger cat state [16,57,86—
93] is seen in the simulated experiment to act as particle and wave. Both attributes serve
to explain why p(#) changes from a pure-state to a mixed-state density operator in a time
much shorter than the cavity decay time by means of an unbalance in the two components
of the superposition, operationally ascertained. Furthermore, the data correlate the quantum
interference of a macroscopic Schrédinger cat with the emission of cavity photons. We will find
that while these photon emissions sample the quadrature amplitude, the interference fringes
in phase space conditionally resolve an accumulated amplitude and phase diffusion. At the
two ends of the accomplished wave-particle correlator unravelings sit direct detection and
(balanced) homodyne detection, exclusively pertaining to the corpuscular and wave attributes
of light, respectively. Complementary displays of steady-state bimodality for a single nonlinear
Kerr resonator with two photon driving depend on the measurement protocol, as reported
in [94]. The bistable switching is found to occur either between even and odd cat states under
direct photodetection, or between the coherent states that define a statistical mixture for high
intracavity excitation, under homodyne detection.

Coupling superposition states to another subsystem readily tracks the operational conse-
quences of quantum coherence. For instance, a joint measurement of a shifted parity opera-
tor [32,95] and the projection of the Bloch vector of an atom entangled to the cat state leads to
a correlation where the Wigner function of the cavity is weighted by the atomic spin orienta-
tions [96]. In a twist, detecting dipole radiation from the dressed states of Jaynes—Cummings in-
teraction [97-100] in a phase sensitive way via homodyne detection realizes an optical analogue
of the Stern—Gerlach experiment [101,102] where the conditioned wavefunction makes a selec-
tion between initially superposed dressed states [103]. More recently, in a dispersive detection
circuit QED setup, a combination of heterodyne and homodyne detection was used for a super-
conducting qubit subject to decoherence owing to both relaxation and dephasing, attaining a full
quantum-state tomography using incompatible and simultaneous measurements [104]. Mean-
while, a “single quadrature” measurement accomplished by coherently driving a qubit and mod-
ulating cavity sidebands with a relative phase produced an angular diffusion akin to a random
walk [105]; in both cases, the dynamical evolution of the qubit state was modelled by a stochastic
ME [104,105].

Conditional homodyne detection of a single system mode prepared in a coherent-state super-
position resolves correlations similar to those read from entangled subsystems in various config-
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urations [20,21,23,34,73,76,82,93,106-111]. It does so by preserving or destroying the quantum
coherence monitored through continuous measurement [15,19,112-133] simulating individual
experimental runs where the output field is detected.

The central aim of this report is to compare and connect key complementary methods of
record making to manifestations of the coherence characterizing the free decay of an initial
macroscopic state superposition. The attribute operational, frequently employed in this report,
refers to the photon-counting sequences and/or deposited charge sets measured in quantum
optical experiments, within the framework of photon scattering theory. In Section 2, we introduce
the simplest possible formulation to account for the interaction between system and reservoir
on an ensemble average level. We also recall the role of decoherence in destroying quantum
interference through the illustrative example of direct detection. Section 3 takes us to an
unraveling strategy of the master equation accomplished by a device which underscores the
subtlety involved in the coexistence of waves and particles under Bohr’s complementarity. A
particular operation mode of such device links the statistical behaviour of the charge produced by
a homodyne detector to a phase difference between the two components of a macroscopic state
superposition, as discussed in Section 4. A transient and conditioned reading of coherence along
single realizations is examined in Section 5, where the difference between probing “position”
and “momentum”. The rapid decoherence time is contrasted to the time required for the
interference pattern to take shape in the dynamically unfolding distribution of the accumulated
charge as an ensemble average. The last part of our discussion in Section 6 is devoted to yet
another distribution of the charge produced on one arm of the correlator, this time one which is
conditioned on photon clicks at the other arm. Concluding remarks close the report out.

2. Master equation for free decay, and direct detection

We are concerned with a set of quantum-trajectory unravelings of the primordial Lindblad master
equation [134] modelling the decay of a single cavity mode with frequency wg [17,135] to a
surrounding reservoir in the vacuum state:

d

d—i :K(Zapaf—aTap—paTa), (1)
written in the interaction picture with respect to the system Hamiltonian Hg = hwga' a; here, 2x
is the photon loss rate. At ¢ = 0, the cavity mode a is prepared in the macroscopic superposition

state .
|A) + &P |- A)

\/2[1+cosgpexp(-242)]
a Schrodinger cat state with a fixed phase difference between its two components. In the above,
| A) is a coherent state and A is any positive number, while 0 < ¢y < 27. Even and odd cat states
have ¢po = 0 and 7, respectively.

A coherent-state superposition of the form (2) provides the canonical illustration of the role
of decoherence in the rapid destruction of quantum interference [136,137], much faster than the
energy decay time (2x)~!. Under direct detection, the measurement scheme suggested by the
very form of ME (1), the evolution of the conditioned state consists of a sequence of jumps, with
continuous evolution in between. The jumps occur at the ordered count times ¢4, f, ..., t; over an
interval of length ¢, at which the photoelectron “clicks” are registered by detectors placed in the
environment surrounding the cavity. The un-normalized conditioned state [zgc) keeps track of
the emission sequence, putting together discontinuous jumps and coherent evolution [18]:

|Ae ¥ty + (=1)"eiP0|— Ae™*1)
\/2 [1+ cos¢oexp(—242)]

|WREC(0)) = )

[Wrec(D) = (V2K Ae™ ) - (V2K Ae™ ") exp[ 2 A (1 — )] G
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from which we obtain the record probability density as (Wgpe(f)|Wrec(?)). The term
exp[§A*(1—e >")] stems from combining all the pieces of continuous evolution between
the jumps, and equals the probability of no photoelectron counts in the interval considered —
the so-called null-measurement probability which stands out as a non-trivial prediction of quan-
tum trajectory theory. The probability of the null-measurement result sequence is multiplied by
the probability density 2k A%e~ %% for individual counts at the times t;,, with k=1,2,..., n.

For an ensemble of such realizations the number of photon emissions up to a given time
cannot be predicted. Upon a lapse of a time interval ¢ ~ (2kA?)~!, the time waited for the
escape of the very first photon from the cavity, any ensemble will contain an equal number of
sequences with n even and with n odd for A > 1. Consequently, the interference fringes will
be cancelled in the ensemble average in a very short time. The form of Eq. (3) suggests that
maintaining the coherence between the two components of the superposition boils down to
tracking every single photon leaving the cavity and transferred to the environment. This instance
creates a “connection” between system and environment: we are not to strictly pronounce the
cat “dead” in view of the rapid decoherence. Rather, if we are to retain access to the coherence of
the prepared cat state, we need to know what part of it is on the inside and what on the outside
of the cavity down to the level of one photon [18].

3. Complementary unravelings for wave/particle duality

Direct detection is only one of the infinite possible methods of record making. In this part, we
explore complementary unravelings [138-140] produced under the action of the wave-particle
correlator [38,39,141,142] in the following fashion. Photons (particles) trigger “clicks” in an
avalanche photodiode (APD) resetting conditioned records of an electromagnetic field amplitude
(wave) in the photocurrent output of a balanced homodyne detector (BHD) [143].

3.1. Conditioned state and sampling process

The BHD samples the quadrature phase amplitude with the local oscillator field phase 8 (for
0 <60 < m), defined as the operator 2v/2x (1 — r) Ag, where
i

Ag = 3(ae ¥ + ate™9) 4)

and 0 < r < 1. Meanwhile, the local-oscillator photon flux |&,|2e™2*! (with |&j,|? > xA?) is
matched to the decaying signal flux, to perform what is termed a mode matched conditional
homodyne detection. The charge dgy deposited in the detector circuit! in the interval from ¢ to
t+dt generates the BHD photocurrent Iy (¢) viadly = —16‘11 (Ipdt—dgyg), where 131 is the detection
bandwidth.

Between triggers, the un-normalized conditioned state [Wppc) satisfies now the following
Stochastic Schrodinger Equation (SSE) [14,47,142]:

diWpee) = (~xa’adt+v/2x(1—r)ae™ ™ d&)[Wgpe), (5)
where
dé = & (Gléiol) " dao

. . (6)
=2k -1)[(e"(aYrec + e (a)rec) dt] +dW.

1The term charge stands for a broadly defined detected signal corresponding to the generalized detector gain G, in
view of the current circuit QED architectures in the microwave regime.
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Here, G is a generalized circuit gain and dW is a Gaussian-distributed random variable with zero
mean and variance d¢ (a Wiener increment). The two averages in Eq. (6) are to be calculated with
respect to the normalized conditioned state

|[Wrec()
\/(ERECU) |¥Rec ()

Since the reservoir is in the vacuum state, the conditioned average field measured at the APD is
proportional to v2kr (a(t))REC, while the sample making is triggered with a probability equal to
2xr{wgec(?) | al a|1,l/REc(t)) d¢. The cumulative (or integrated) charge deposited in the detector is
defined as the real number

t t ,
Qo= @(Gléz‘lol)_lf dqgp = @f e ae, ®)
0 0

an explicitly stochastic quantity. Carmichael has demonstrated [14,103] that the probability
distribution P(Qp) over an ensemble of realizations in the limit # — oo and for 7 = 0 measures
a marginal of the Wigner distribution representing in phase space the state of the cavity field
immediately before the period of free decay. In this case P(Qp) arises as steady-state solution to
a Fokker—Planck equation, whose form depends on the quadrature amplitude selected by the LO
phase 0 (see Appendix A).

Realizations of Iy(1), the set of APD trigger times {¢;} and the conditioned state WREC(I)) obey
a set of stochastic differential equations than can be simulated on a computer via a Monte Carlo
algorithm in the general case. In the specific example of a damped macroscopic superposition,
we find that the stochastic dynamics can be formulated in a semi-analytical fashion without
introducing a Hilbert space for the cavity mode (see Appendix B).

[Wrec() = @)

3.2. The transient intensity-field correlation function

By sampling an ongoing realization of the quadrature amplitude Ag () for several “start” times ¢,
j =1,..., N5, we can calculate an intensity-field correlation function [38,39,129,141,142,144] as
the following transient conditioned average [14,47],

1, ——— N
hg(t=0;T) =y.2vaxi=n 2 (Ao (tj+ 1) )ppcy ©)
N j=1

where (Ag(tj +7))ppc = (Wrec(tj + T)|A9|1//REc(l'j +1)) is a conditioned average along a single
realization. The sum over j in Eq. (9) is evaluated as an average over past and future measurement
samples, before and after ¢; [145]. The definition differs from the average photocurrent defined
in [38,141,142] because the number of samples (starts) available along a single trajectory is
determined by Ny = A%, which is not sufficient to reduce the shot noise appreciably when A2
is of the order of the detection bandwidth (in units of x). Furthermore, /gy (0; 7) is to be evaluated
with reference to the initial coherent superposition state at ¢ = 0, instead of the steady state. For
large-amplitude cats, we define hg (0;7) = (1/Nj) ij:sl Iy(tj+1), since there are enough samples to
recover the signal out of the shot noise. We expect on average N; = r A> APD trigger “clicks” along
any trajectory. Note that the ME (1) predicts {Ag (1)) ~ 2sin¢sinf exp(-2A?) as an ensemble
average over different records with initial state (2), which entails a vanishingly small average
(hy(0;7)) for large initial photon numbers.

4. Charge distribution and the phase ¢, of the initial superposition

Direct detection we briefly met in Section 2 stands out as a special case in the limit r = 1, destined
to assess the corpuscular nature of the scattered light. We will now operate in the opposite limit
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by setting r = 0 to produce an uninterrupted continuous photocurrent at the BHD, thus focusing
on the wave aspect of radiation. In Figure 1, we explore the effect of a varying phase between the
two components in the initial superposition (2) to the cumulative charge released by the detector
in the course of the entire evolution to the vacuum, for § = /2. The Wigner function of the initial
cavity state is [57,96,103,146-148]

W(x,y;t=0) = 2me 4 cosh A2) " e 2 [e 20 | g 2t A 4 9025 cog(hg +44y)],  (10)

where the last term (cosine) indicates quantum interference [149]. A contour plot of W (x, y; t = 0)
for ¢ = 0 is given in inset (i). The Wigner function of the cavity state maintains the form of
Eq. (10) with A — A(1) = Ae X! throughout the evolution dictated by ME (1) but, crucially, the
cosine term is scaled by the factor exp[—2A%(1 — e"*")]: the greater the initial distance of the
two components the faster the off-diagonal elements of p(#) are dephased [26,27,30,150]. The
disparity between the weights of the Gaussian peaks and the interference fringes brings in the
short timescale (2x A?)™! as the relevant decoherence time we met in Section 2. Simultaneously,
the Wigner function maintains its symmetry with respect to the x- and y-axis in all stages of the
decay, and so do its corresponding marginals.

Setting 6 = m/2, the marginal distribution — obtained by integrating Wrgc(x, y; ¢ = 0) along
the x-axis — reads

P(y; £ =0) = (vV2mcosh A2)"Le 2" +4% [1 4 cos(¢pg + 4A)]. (11)

The charge distribution P(Qy/2) depicted in insets (ii)—(iv) is obtained after the light has left the
cavity in the decay of an ensemble of scattering records to the vacuum. In Section 5, we will put
this decay into a dynamical context with reference to the timescale x t,,, = (1/2) In(2A?) required
for phase “localization” across individual realizations of Q/2, and for interference fringes to
appear in their ensemble average. The distribution P(Qy/2) and the marginal (11) are related by a
simple scale factor with Qy/2 = 2y. For all values of ¢ different to 0 and 7, P(Qy/2) is asymmetric
with respect to the Q2 = 0 axis, yet the average deposited cumulative charge remains zero, as
expected from the vanishing integral /% yP(y; ¢ = 0)dy. The probability of depositing Q> in
the vicinity of zero scales as 2cos?(¢pg/2) — a direct observational consequence of the initial
phase. Therefore, mode-matched balanced homodyne detection performs a phase-sensitive
tomogram [57,84,95,151-153] of the initial cavity state. In contrast, as we have previously
remarked, the interference term in the Wigner function corresponding to p(#) evolving from the
initial state (2) under the action of the ME, disappears fast after the lapse of the decoherence
time (2x A%)~! and, together with it, any remain of the initial phase difference between the two
components in superposition.

5. Conditioned intensity-field correlations for “position” and “momentum” measure-
ments

Let us now meet further evidence on how individual Monte Carlo realizations [9] under the action
of the wave-particle correlator (see also Appendix B.2) subvert the picture offered by the ME (1)
and the Wigner function of the cavity state (10) formulated as a statistical mixture over an ensem-
ble of pure states. Figure 2 depicts results obtained when the correlator operates with r = 0.5. The
pair of sample trajectories in frame (al) show a decaying conditioned intracavity photon num-
ber <a*a(t)>REC for the same input state and two different settings of the LO phase, 8 = 0 and
0 = n/2. No large differences are noted between the two records, perhaps apart from some col-
lapses leading to higher conditioned photon emission probability deviating from the exponential
decay in three instances. The trend of such instability is visible in the histogram of total photon
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Figure 1. Schematic illustration of the wave-particle correlator (center) realizing conditional homodyne detec-
tion, with a macroscopic coherent superposition as an initial source state. The device operates with a fraction r
of the input light flux going to an avalanche photodiode (APD) in the “trigger” channel, and the remaining 1 —r
directed to a balanced mode-matched homodyne detector (BHD). The BHD samples the quadrature phase am-
plitude that is in phase with the local oscillator (LO) field; 6 is the LO phase. The cavity mode a is prepared in
the superposition of coherent states (2) at time ¢ = 0, from which it decays to produce the scattered field (signal).
Inset (i) depicts a contour plot of the Wigner function W (x +iy; t = 0) of the initial state (2), with A=4 and ¢pg = 0.
Insets (ii)-(iv) depict histograms of the cumulative charge Qg-,,» deposited in the BHD after the light has left the
cavity, when the correlator operates with r = 0 and 8 = n/2, for an initial Schrodinger cat state with A = 4 and:
¢o =0 (ii), /2 (iii) and 7 (iv). The vertical lines indicate the location of Q;/2 = 0.

counts N recorded along a given trajectory, computed over thousands of realizations. The distri-
bution displays a longer tail when @ is set to /2 as opposed to 8 = 0, and marks a clear departure
from a Poisson distribution with mean photon number r A%. Additional APD trigger “clicks” are
registered in individual realizations generated with 6 = /2, often past the average photon life-
time, abruptly increasing the conditioned photon emission rate 2Kr(1//REc(t)|aTa|1//REc(t)> and
marking a departure from its expected exponential decay pictured in frame (al).

The time-symmetric intensity-field correlations plotted in frames (a2)—(a4) are the first quan-
tities we meet that point to a clear operational disparity between two of the complementary un-
ravelings. Since the ensemble-averaged field tr(p(t) A(.)) (obtained from the solution of the ME (1))
is zero for O = 0, we expect conditioned correlation functions with positive peaks to cancel those
with negative over an ensemble of realizations. Sharply decaying intensity-field correlations for
6 = 0 gradually transition to highly oscillatory functions with alternating sign and notable de-
viations from their zero-delay values as 8 — n/2. For the latter setting, there is also a notable
difference between the intensity-field functions obtained for different realizations, testifying to
another manifestation (in addition to the one of Figure 2(al)) of the instability reported in [139].
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Figure 2. Conditioned Monte Carlo averages and state representations in single realizations. (al) Conditioned
intracavity photon number <“T“(f)>REC against three cavity lifetimes, for 8 = 0 (dashed line) and 7/2 (solid line).
The strokes underneath (@ = 0) and above (0 = n/2) the main plots indicate photon emissions triggering the
homodyne current generation at the BHD. The two insets depict relative frequency [f(INs)] histograms of APD
photon “click” resets, collected for 6 = 0 (left) and 6 = /2 (right), over 4,000 realizations. The curves in red depict
the Poisson probability density p(Ng) = ANs e~/ Nq! for A = r A2 = 8. The small pink-shaded rectangular frame
underneath shows a close-up of a different sample trajectory (aTa(t))REC generated with 6 = 7/2, in the course
of half a cavity lifetime. The four red strokes underneath denote APD “clicks”. (a2)—(a4) Individual realizations
of the intensity-field correlation function over its zero-delay value, % (1) = hy(0;7)/ hy(0;0), for 6 = 0 in (a2), n/2
in (a3) and (7/2 —60) = 0.0078 in (a4). Frame (a5) depicts the conditioned average of the quadrature amplitude
Ag = (A (1))Rgc corresponding to the trajectory of (a4). The dotted strokes in (a5) mark photon triggers, while the
long vertical line marks the time x t;;, = (1/2) ln(2A2) ~1.733. (b) Contour plot of the conditioned Wigner function
WRrgc(x +iy; 11), at the time x#1 = 0.004 of the first photon trigger, along the trajectory of (a) generated for 8 = 0.
(c) Similar to (b), with Wrgc(x +iy; t2) at the time x 2 = 0.096 of the third photon trigger. The lower inset depicts
a numerical approximation of the conditioned marginal distribution Prgc(y; t2) = ffgo WRgc(x +iy; t2) dx. (d)
Contour plot of the conditioned Wigner function Wrgc (x+iy; ti), atthe time x t{ = 0.018 of the first photon trigger,
along the trajectory of (a) generated for 8 = /2. (e) Similar to (d), with Wrgc(x+iy; tﬁ), at the time Kl’é =0.098
of the second photon trigger. (f) Similar to (d), with WRgc(x+iy; té), at the time KL;, =0.392 of the eighth photon
trigger along the trajectory generated for 8 = n/2. The lower insets in (e) and (f) depict numerical approximations
of the conditioned marginal distributions PRec(¥; £}) = fSo, WREC (X + iy; ;) dx for k = 2,3, respectively. In all
realizations, the initial state (2) has A =4 and ¢ = 0, while the correlator operates with r = 0.5. The time step size
is kAt =0.002, and the Fock-state basis is truncated at the 30-photon level; see Appendix B.2.

With every photon trigger, a phase change of 7 is generated between the two components of the
cat state. However, not all triggers lead to a phase change in the conditioned field amplitude. The
last trigger is the one to direct the field quadrature to one of the periodic wells of the modulated
potential governing the evolution of Qy [139] through the drift term of a Fokker-Planck equation
(for the distribution of Qg) and its equivalent SSE (for individual realizations).

Pronounced deviations are routinely observed past the time ¢, = (1/2) In(2A2%) =~ 1.733,
which is the time required for the potential to develop a deep periodic modulation (see Appen-
dix A.2). In Figure 2(a3), for example, a large oscillation of the field amplitude occurs within a par-
ticular potential well, dictating the frequency at which the conditioned field amplitude oscillates.
The period and phase of this oscillation depend on the closeness of 6 to 7/2, as well as on the past
phase diffusion between the two components, which determines whether a sign change occurs or
not after a photon is recorded at the APD. In Figure 2(a4)—(a5), we meet a sample intensity-field
correlation and the corresponding realization of field amplitude, respectively, calculated for 14
resets (well in excess of r A2 = 8) when 8 — /2. Atk t,,, a large excursion of the field amplitude is
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initiated after the last photon trigger in the series. The last reset following an APD “click” resolves
the accumulated diffusion and is responsible for a sign change in the field amplitude. We note
here the sensitivity of the dynamics to the value of 8; a small deviation from 6 = /2 produces a
steady-state potential of rapidly decaying well heights with increasing Qg (see also Appendix A.2),
working against the localization into a particular well in the presence of shot noise. The intense
fluctuations in the field amplitude visible in Figure 2(a4)—(a5) testify to a weaker localization.

We now move to the phase-space representation of the conditioned cavity states. Wigner
functions of the cavity state conditioned on photon triggers, calculated for the pure system
state prec(t) = |Wrec())(Wrec(2)| (through the algorithm detailed in Appendix B.2), are more
ostensibly at odds with the ensemble-averaged profile described by Eq. (10). We first measure
the “position” of the oscillator (8 = 0) prepared in the superposition state (2). The contour
plot depicted in Figure 2(b) corresponds to the state collapse following a “click” occurring at a
time which is an order of magnitude shorter than the decoherence time (2x A%)~! predicted by
the ME (1). The interference fringes are in place, although there is a visible asymmetry in the
amplitude of the side Gaussian peaks. With the lapse of about three decoherence times, past the
value (2xrA?)~1, the right peak has completely disappeared (Figure 2(c)), leaving behind only
insignificant trails of quantum interference. From that point onwards, the evolution essentially
concerns the decay of a single coherent state with a peak centered at —Ae ¥ in phase space.
For other trajectories generated with 6 = 0, the single peak in the phase-space profile is instead
centered at Ae *'. Therefore, the conditioned states produced for an unraveling with 6 = 0
challenge the decoherence picture offered by the ME (1) through a fast-developing unbalance
between the two state components. Past the decoherence time, the statistics of the photon
resets — the vast majority of the recorded APD “clicks” — align with a decaying coherent state.
An unbalance of similar kind is also met in the direct-photodetection unraveling of the ME (1),
where the times of photoelectron counts bring into play a dynamical competition for an initial
superposition state of different amplitudes [18,103].

Measuring the “momentum” of the harmonic oscillator (6 = 7/2) restores the interference
in the conditioned Wigner distributions at all times (Figure 2(d)—(f)), present even when the
damped cavity mode contains half of its initial photons (Figure 2(f)). Phase diffusion over an
ensemble of such states is responsible for a nearly uniform quantum phase distribution past
the very short decoherence time (2x A%)~1. Moreover, the previous asymmetry with respect to
the y-axis, is now developing with respect to the x-axis and distorts the interference, a trait also
reflected in the conditioned marginals Prgc(y) obtained by integrating the Wigner function of the
cavity state conditioned on an APD “click”. Photon triggers interrupt the otherwise continuous
phase diffusion by injecting a m-phase difference between the two components of the cat state,
in a similar fashion to the (—1)" factor in Eq. (3), as the cat state leaves the cavity to partly exist
in the output field. The interference fringes in Figure 2(d)-(f) resolve the phase change. All
photon emission times corresponding to the conditioned Wigner functions in Figure 2(d)-(f)
are well below the time x¢,,. Upon approaching that time, we expect phase localization of the
cumulative charge trajectory to a particular potential well. Since for the vast majority of sample
realizations we have (a*a(t ~ tm)>REC < 1forevery A% > 1, this timescale also marks the eventual
degradation of fringe visibility in the conditioned cavity Wigner function while the two coherent-
state peaks decay to the phase-space origin. Nevertheless, rare deviations from this trend do
occur.

To place these deviations in context, it is first instructive to compare the markedly different
dynamical evolution of the conditioned cavity state when measuring “position” and “momen-
tum’, to the quantum state diffusion of a qubit, initialized in a superposition state, with selective
quadrature measurement of a dispersively coupled cavity field. In the circuit QED experiment re-
ported in [154], trajectories were confined either to the equator or a meridian of the Bloch sphere,
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depending on whether the amplified quadrature of the cavity field conveyed information on the
qubit state, or whether it encoded intracavity photon number fluctuations shifting the phase of
the qubit state. In the latter case, persistent oscillations of the polarization were recorded against
the induced phase shift, with the inversion remaining uncorrelated with the measured signal.
The confinement to the equator of the Bloch sphere certainly reflects the probed coherence of
the initial pure-state superposition, as does the persistence of interference fringes when setting
0 = /2 in the wave-particle correlator; ’u/REC(t)> remains a superposition of coherent states at
all times. The quantum state diffusion in the contextual decay of a cat state when setting 0 = n/2,
however, is governed by a highly nontrivial equation, nonlinearly depending on both time ¢ and
amplitude A (intracavity excitation) as we have already discussed. Instead of the random walk
in the angular diffusion of the probability density matrix observed in the circuit QED experiment
of [105] measuring non-commuting observables, we are now dealing a diffusion process [139]
solving an SSE with an initially flat potential eventually to be succeeded by a deep periodic mod-
ulation at a sub-photon cavity occupation, responsible for phase localization at ¢,,,. Only after this
succession has seen operational consequences can we speak of a steady state at which fringes are
formed in the measured signal — the cumulative charge.

Perhaps the most illustrative example of the “tension” between particles and waves when
measuring “momentum” is the one noted in parallel with the aforementioned degradation of
the fringe visibility in the cavity Wigner function close to f,,: a relative  phase shift between the
two components of the coherent-state superposition, induced by a photon emission (particle),
works against the phase localization due to the monitoring of one quadrature phase amplitude
(wave). Such instability is correlated with the large excursions of the field amplitude past t,,
as well as with departures from the Poisson distribution of the APD photoelectron “clicks” (see
Figure 2). Several trajectories of the conditional transmitted photon flux, 2K<aTa(t))REC, visibly
deviate from a monotonic exponential decay in the vicinity of #;,. In the absence of registered
APD “clicks”, it often exhibits a local maximum or a plateau about ¢,, with a periodic modulation.
The latter reflects the charge oscillation about a certain potential well (phase localization) whose
depth increases with time.

For instance, in recognition of two closely-spaced photoelectron “clicks” in the small coloured
frame underneath Figure 2(al), the conditioned emission probability increases to operationally
substantiate photon bunching [138] — ensuring the second photon from each pair will be
emitted a short time after the first — during an interval At < (2x)~! along the trajectory, centered
at t,. In this particular realization, 18 APD “clicks” are registered in total (only the last four are
shown), in what reinforces the deviation from the Poisson distribution of mean A = rA% = 8
as a long tail of the corresponding right histogram in Figure 2(al). Furthermore, we note that
this type of photon bunching about #,, disappears for the trajectories generated with 6 = 0, or
equally for those unraveling the ME of a decaying cavity mode initialized in a single coherent
state. Notwithstanding these intricacies, the ensemble average of the conditioned cavity states
|1VREC(I)><1VREC( t)| over all realizations, produced by the wave-particle correlator operating at
0 = n/2, formally obeys one and the same deterministic ME (1) (as it does for any value of 6)
rather than following a stochastic evolution which depends on the selected quadrature [105].

Having explored key differences in the correlations between the APD trigger “clicks” and the
cavity state depending on the monitored quadrature phase, both in the time domain and in the
phase-space representation, we may ask the question how is the electromagnetic field amplitude
fed back to the photon emission events that condition it. Instead of laying down the entire photon
emission sequence as we did in Figure 2(al), in Section 6 we will restrict our attention to the first
pair of the APD trigger “clicks” positioned against their waiting-time distribution, another key
quantity attributed to the corpuscular nature of the scattered light.
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6. Photon emissions as diffusion markers

Owing to the consistent coupling between a classical and a quantum stochastic process accom-
plished by quantum trajectory theory [9,104,133,139,154,155], we can derive semi-analytical for-
mulas connecting the charge production in the BHD and the trigger rate (see Appendix B.1 for
further details). As we have already seen, central to the evolution between the triggers is a diffu-
sion process either in the relative amplitude (6 = 0) or phase ( = 7/2) [or a combination of the
two for any other value of 8] between the two components of the cat state (2), encapsulated in
the null-measurement record, i.e. with no registered APD trigger “click”:

[Wrec,nurL () = exp[Qo(NAVI—re ] |Ae™™")
+exp(igo)exp[-Qp(DAVI—re P]|-Ae™"). (12)

For r = 0 we recover the ansatz in [103, Egs. (22)-(23)] for balanced mode-matched homodyne
detection, while, at ¢ = 0, there is no net charge released from the detector (Qg = 0), whence we
arrive at the un-normalized version of the initial state (2). For r — 1, diffusion does not participate
in the conditioning and we reach Eq. (3) as direct detection is performed in the one arm left of
the correlator.?

The central difference between the coefficient ratio of the decaying coherent states in Egs. (3)
and (12) lies on the presence of a complex-argument exponential involving the cumulative charge
in the place of unity in Eq. (3) for n = 0. This instance highlights a diffusion process with an
inherent stochasticity instead of the deterministic evolution characterizing a null-measurement
record in direct photodetection. For 8 = 0 the two exponents remain real throughout the
evolution. During a single realization, Qg is rapidly directed to either side of a A-shaped potential,
which means that one component of the superposition wins over the other and creates the
imbalance we met in Section 5 (see Appendix A.2). On the other hand, for 8 = /2, the exponents
in (12) are purely imaginary, and the two components acquire a phase difference conditioned on
the charge production at the BHD; their relative weight equals unity and is not affected by the
phase diffusion.

We focus on higher-amplitude cat states, such as those generated via conditional qubit-
photon logic in circuit QED [32,59], to produce a large number of closely-spaced photon triggers.
We operate the correlator with r < 1 to approach a pure balanced homodyne detection, yet
satisfying rA> > 1. The waiting-time distribution [156-158] for the first photon trigger, a
characteristic particle-type attribute, is approximated by the analytical expression

exp[-rA?(1 - e 2x7)]

fol exp[-rA2(1-e 4] du’
in line with a no-“click” measurement record obtained for a decaying coherent state with initial
amplitude VA2 [18]. The average time waited until the first photon emission is 74, = (2x rA3H)-L,
The two insets of Figure 3 show that the emission times of the first photon and the second,
conditioned on the first reset, follow Eq. (13) — the latter with the replacement A — Ae™*7av —
when the “momentum” of the oscillator is measured. We find that the same trend is followed
when measuring “position”; the obtained waiting-time distributions overlap with those shown in
the figure.

The cumulative charge diffusion conditioned on a photon detection and registered at the
BHD, however, is very different in these two settings, as we can observe in the main plots of
Figure 3. Within the average photon emission waiting time, the distribution of Qg diffuses at
a similar rate when 6 = 0 and 6 = n/4, while a pronounced and disproportionate difference is

w1 (1) =2k (13)

2The common pre-factor omitted between the two components must be reinstated to interpret
Wrec, NULL (D) | WREc, NULL (1)) as a record probability density.
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Figure 3. Normalized distributions (histograms) of the net charge Qy deposited in the BHD at the time #; of the
first photon trigger “click”, for three different settings of the LO phase, 8 = 0, 8 = n/4 and n/2, indicated accordingly.
The two insets on either side of the histograms depict distributions of waiting times for the first (right) and second
(left) photon emissions. Anj (Anp) is the number of times photon 1 (photon 2) is emitted in the time interval
[7,7+ A7) [156]. The continuous lines plot an ensemble average of 150,000 trajectories with bin size kA7 = 0.0025,
while the dashed lines correspond to Eq. (13) with A (right) and A — Ae ¥V (left). The initial state has: A = 20,

¢o =, while the correlator operates with r = 0.05.

noted for 8 = n/2. Considering that waves (quadrature amplitudes) condition the emission of
particles (photons), we deduce from Egs. (6) and (8) that the conditioned electromagnetic field
amplitude will vary at a slower rate when measuring “momentum”. For the latter setting, the
charge distribution is found to remain virtually unchanged when conditioned on the second
photon trigger as well. Finally, we remark that x7,, < (1/2)In(2A?), whence no fringes are created
in the charge distributions of Figure 3, like those we discussed in Section 4.

7. Concluding remarks

In summary, we have shown the following.

(i) The steady-state solution of a Fokker—Planck equation reflects the statistical behaviour of

(i)

(iii)

the cumulative charge produced by mode-matched balanced homodyne detection. The
charge distribution drastically changes with the initial phase between the two compo-
nents of a macroscopic quantum state superposition (Section 4).

Even for moderate intracavity excitation (A = 1), the stability in the stochastic dynamics
associated with measuring “position” of the damped cavity mode is accompanied by a
rapidly developing asymmetry in the relative weight of the two state components while,
when measuring “momentum”, the associated instability manifests in large relative de-
viations of the intensity-field correlation function with a characteristic long timescale.
While the cavity remains in a superposition of coherent states at all times, it is the
above timescale that determines the appearance of interference fringes in the ensemble-
average distribution of cumulative charge records (Section 5). The underlying phase lo-
calization is linked to an instability occasionally resolved as a rare fluctuation with a =
relative phase change arising when a photoelectron “click” is registered at the APD.
Photon emissions from the cavity can be used to mark the extent by which the cumula-
tive charge has diffused by amplitude and/or phase, which is indicative of the electro-
magnetic field variation inside the cavity (Section 6).
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Our perspective has thus moved from a posteriori inferring a set initial phase difference from
an ensemble of realizations to measuring a dynamical and complementary amplitude and phase
diffusion along single realizations, in an unraveling method which takes both the particle and
wave aspects of the scattered light into account. Notable differences in wave-particle correlations
across complementary unravelings can be detected even for low-amplitude optical cat states
subject to the current experimental limitations [75,88-92,159-162]. The “tension” between
particles and waves illustrated in [85] is revealed via two distinct timescales. In the one extreme,
when the local oscillator is tuned to measure “position”, a strong unbalance between the two parts
develops from the very start. By the lapse of the decoherence time required to turn the initial
pure state into a statistical mixture in the ensemble average governed by the ME, the interference
pattern effectively disappears while the cavity contains a significant amount of excitation. Most
photons are subsequently emitted in the presence of a single coherent state in the cavity. On the
other end, when the local oscillator is tuned to measure “momentum”, the interference fringes
make their appearance late, after In(2A?) photon decay times, when the cavity output pulse has
reached the tail of the exponential decay. Occasional conditional emission probability “spikes”
occur as rare fluctuations in that timescale — the ones responsible for the long tail in the right
histogram of Figure 2(al).

The aforementioned timescale separation in the decay of macroscopic coherent-state su-
perpositions (A > 1) leaves no room for the quantum interference to influence the waiting-
time distribution of the overwhelming majority of the emitted photons resetting the bal-
anced homodyne detection. Nonetheless, photon emission times serve as diffusion markers
of the charge generated at the homodyne detector, and of the electromagnetic field ampli-
tude in the cavity. Such markers are to be applied through conditioned cavity state tomo-
grams [60,76,77,84,95,137,152,163-169], and are embedded in a highly contextual intensity-field
correlation function.

In the appendices, we detail the amplitude and phase diffusion of the conditioned state under
the complementary wave-particle correlator unravelings. We derive a Fokker-Planck equation
and an associated potential for mode-matched homodyne detection, and point to the link
between the steady-state distribution and the marginal distribution of the initial Wigner function.
We derive the general form of trajectories for conditional homodyne detection and, finally,
delineate the steps to produce them via the corresponding Monte Carlo numerical procedure.
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Appendix A. Stochastic Schrodinger equation, Fokker-Planck equation and the asso-
ciated potential in homodyne detection

A.1. Stochastic Schrodinger equation and its transformation
We wish to determine the evolution of the cat state (2),

|A) + "% |- 4)
\/2[1+cosgpexp(-242)]

conditioned upon the operation of the wave-particle correlator. Between photon triggers, corre-
sponding to the action of the super-operator 2xra([¥gpc) (Wrecl)a', the un-normalized condi-
tioned state [yyp) satisfies the following Stochastic Schrédinger Equation (SSE) [14,47,142]:

|WRrec(0)) = (14)

d[@pee) = (~xa'ade+v/2x(1 1) ae™ d&) [Wpee), (15)
where
d¢ = e (Gl&iol) " dgp = v2x (1= [ (e"¢aYrec + €7 (aypec) d 1] +dW. (16)

In the above, G is the detecting circuit gain coefficient; dW is a Wiener increment with zero mean
and variance d¢. These equations govern the photocurrent production after taking into account
the detection bandwidth.

To proceed we set [14]

[Wrec) = @_mfmlx% 17)
which transforms Eq. (15) to
diy) = \/mem*mae—iee—m*m délp
= \/me_”ae_ie dé | (18)
= a\/mngefielx),

with solution |y) = e4V1-T¢ " |x(0) = e 1=reQg |WrEc(0)). Substituting for |ygec(0)) the
initial state (2), we find

exp[—A%(1 - e~ 31)]
\/2[1 +cos¢oexp(—2A2?)]
X {exp[QgA\/ 1-r eiie] |Ae™ ") + exp[iho — Qg AV — reiig] |—Ae7’<t)}. (19)

The common prefactor is omitted in Eq. (12), while for » = 1 we obtain the null-measurement
record for direct photodetection, as with setting n = 0 in Eq. (3) [18].

Knowing the form of the system wavefunction in conditional homodyne detection, we can
then evaluate the conditioned expectation of the quadrature amplitude until the first photon
trigger:

[Wrec () =

V1-1{Ag(t))gpc
1 0 e\/ﬁan"ei‘9 e—KaTataTeiBe—KaTatengae’ig 0)) +c.c.
:_\/lTr<WREC( )| _ . |1//REC( ))
2 <wREC(0)|e\/1—nguTe’9 e—KuTate—KaTale\/l—ngue’lg|U/REC(0)> 20)
1 0 i —i
= —e_’“—ln[<wREc(0)|ev T=rQua'e® y-2xa'at ,V1-rQgae™™ W’REC(O))] .
2 0Qg
Substituting this conditioned expectation to Egs. (15) and (16), yields
0
dQp = ———V(Qp, 2k e 2" dr) + V2xe ¥ dW, 1)

0Qg
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where, in anticipation of a “drift” term in a Fokker-Planck equation, we have introduced the time-
dependent potential

ViQp, 1) = _ln[<1I/REc(0)|emQMTem gm2Kalat /1= Qoae™? WREC(O)>], (22)

explicitly depending on the initial state. With the change of variable [14] n = 1 - ™2, Eq. (21) is
transformed to

0
dQ@ =34 V(Q@) 77) dT] + dcr (23)
0Qo

where d{ is another Wiener increment with zero mean and variance dr.
After the first photon click at time ¢, the initial wavefunction |1//REC (O)) isupdated at t; +dt to

alypec(n)
(Wrec(t)|a’ alyppc(t)’

and the potential (22) is modified accordingly.

(24)

A.2. Balanced mode-matched homodyne detection (r = 0): Fokker—Planck equation and
individual realizations

For r = 0, there are no photon “click” resets, and we recover the potential corresponding to mode-
matched homodyne detection. The treatment is considerably simplified since Eq. (23) applies
throughout the evolution. Distributions are then obtained after generating an ensemble of single
realizations solving the stochastic Eq. (23) with the transformed potential

V(Qp,) = —1n{cosh(2Q9Acos9) exp[A%(1 - 2ncos?0)]
+cos(¢pg +2Qy AsinB) exp[—A2(1 —2nsin?0)] } (25)

The steady-state limit is taken n — 1 (# — 00), and results are plotted in Figure 1.

For 8 = 0, the potential has a A shape throughout the evolution, and each realization of
Qp(n) solving (23) is directed to either a positive or a negative value. This type of symmetry
breaking is revealed by the vanishing peak in the Wigner function of Figure 2(b)-(c). For 6 =
m/2, the potential remains flat until the second time-dependent factor in Eq. (25) approaches
the order of magnitude of the first, with exp(—2A%e~?!m) ~ 1/e. On approaching that time
t ~ tm = (2x)7'1In(2A4?) in the evolution, the potential develops a deep periodic modulation.
The well heights are very sensitive to variations of 6 about n/2. The conditioned quadrature
amplitude attains then an appreciable value with respect to ME ensemble average, depending
on (Ae ¥t|—Ae7¥!y = exp(—ZAze‘Z’“). This is the charge accumulation time required for the
interference pattern to appear in the distribution P(Qy=5,2) of the cumulative charge deposited
in the BHD. All realizations of the cumulative charge used for Figure 1 have progressed well past
that time. In contrast, the average time waited until the first photon trigger in Figure 3 (with
r<1)is 7, = (2xrA?)~' < ty,, a priori precluding the appearance of any interference fringes in
the conditioned transient P(Qy/2; t1), Where f; is the time of the first photon “click” at the APD.

The stochastic differential equation (SDE) (23) with r = 0 is equivalent to the following Fokker—
Planck equation for the charge distribution P(Qg,7) [103]:

OP(Qg,n)_( 0 (6V(Q9,1}))+1 92

P(Qg,m). 26
2502 (Qg,m (26)

op | 0Q\ 0Q




32 Themistoklis K. Mavrogordatos

By direct substitution, we find the solution in the form:

P(Qg,m) = [21/277 cosh(A2)] ' e~/ 2
x {COSh(ZQQACOSH) exp[A%(1 - 2ncos?0)]

+cos(¢pg +2Qg Asin) exp[— A% (1 - 2nsin® 0) } 27

With the passage of time, the above expression converges at different rates (depending on the
LO phase) to the marginal of the Wigner function of the initial cavity state. The marginals
are obtained by integrating over the phase-space co-ordinate transverse to the direction of the
phasor representing the local oscillator. The distribution should be rescaled with Qg = 2(cosf x +
sinf y) in the steady state (n — 1), to be identified a posteriori with the inferred initial marginal.
For 6 = /2, we obtain Eq. (11), namely the marginal

P(y;t=0) = (vV2mcosh A2)"Le 2" +4° [1 4 cos(¢hg + 4A)], 28)

plotted in Figure 1 and superposed on the histograms of the long-time limit in the realizations
solving (23) with r = 0, for different values of ¢.

Appendix B. Conditioned wavefunction and Monte Carlo algorithm
B.1. Conditioned evolution and photon emission rates

The wave-particle correlator unraveling consists of a continuous homodyne current generation
reset by photon “clicks” recorded by the APD. Putting the pieces together and, owing to the
linearity of the SSE (15), for the conditioned wavefunction we obtain the superposition:

[Wrec(®) = [Whec (D) + [Whze (), (29)

with each component of the initial state following a different evolution for a trajectory with n
photon resets at the times 1, fo, ..., t;:

[0 (1) = exp[ - 1B (e 2" — 72N [VarT B(1)] P10 QinVITT e P QuzVI=T e
X eXP[—%|ﬁ|2(e_2Ktl _ e—zktz)] [ /_ZKrﬁ(tl)]eﬁ(O)Q(’:lme_w

x exp[—2IBIF(1—e > M)]|B(1)), (30)

where (1) = fe " and f = A,—A. The cumulative charges Qp.1,Qp:2,...,Qp;, are stochastic
quantities produced after each reset and correspond to the intervals (#; —0), (f2—t1),..., (tn—tn-1),
respectively.

For r =1, we revert to:

W;@C(ID = (V2x e ™) (V2k fe ) exp[-21BIP(L - e *N)] | B(D), (31)

the familiar formula for direct photodetection [18]. Now the factor exp[—%l BI?(1 - e2¥1)] cap-
tures the no-“click” evolution.

We can now apply Eqgs. (29) and (30) to determine the emission probabilities of the first two
photons recorded by the APD, used for Figure 3 [138]. The conditioned probability density
of the first trigger, resetting the charge generation process, is given as a function of the null-
measurement record WREC'NULL(I)) as [14]

(Wrec,nur (0] @' alwgec nor (0)

(Wrec,nuLL () | Prec, nurL (D)
cosh[¢(6, 1)] - cos[po + PO — /2, 1)] e 24°D
cosh[¢(8, 1)] +cos[po + PO — /2, 1)]e=24° D)’

p1(t) =2xr
(32)
= (2xr)A%(D)
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where A(f) = Ae " and ¢(6,1) = 2Qy.1 (1) AV1—rcosf. In a Monte Carlo procedure without
a Hilbert space, the quantity p;(¢) dt is compared against a random number R uniformly dis-
tributed between 0 and 1, to decide whether a jump (APD “clock”) occurs. This is done for Fig-
ure 3. If p; (¢) dt > R, the system state is updated to

algee nurL()

\/ (Wrec, nuLL (D [Wrec, nurL ()

We can proceed to determine the probability density of a second reset at £ on the condition
that the APD has registered the first photon “click” at time ¢ = ;. For #; < t < £, we find
(Wrec1 (0]a’ a[@ggc, (0)

(Wrec1 ()| Vreca (D)

cosh[@(6, ; 11)] + cos[o + 9O — 712, £; 1) ] e 24°D)
cosh[p(0 —7/2,t;11)] — cos|po + 9@ —7/2, t; 1) | e=24°(1) '

|wrec,1 (D) = (33)

pa2(t; 1) =2xr
(34)

= (2xr) A% (1)

where now ¢@,t;11) = [2Qp,2(H)A(f1) + 2Qp.1(t1)A]V1—rcosf. Once again, comparing
p2(t; 1) dt against R decides for the second photon emission. Here Qp;»(f) is the cumula-
tive charge produced at the BHD after the first photon triggers a fresh sample making of the
photocurrent. It satisfies Eq. (21), with the potential (22) evaluated for the updated initial state
|1l/REc,1 (t)). For 0 = /2, the term 2Qy.; (#;) A incorporates the effect of phase diffusion marked
by the first APD photodetection event. The presence of such marker is also imprinted on the
sign alternation between the numerator and denominator in Egs. (32) and (34). Phase diffusion
is responsible for the dephasing of an ensemble of realizations, annihilating the interference
fringes over a decoherence time.

B.2. Numerical generation of individual realizations in a Hilbert space

Finally, independently of the expressions derived in the Appendix B.1, we implement a
Monte Carlo algorithm which propagates the pure system state |u/REc(t)) (with prec =
|1//REc(t))<1//REc(t)|) forward in time with a step of size At, in a Fock-state basis truncated at a
set photon level ~ 2A? upon ensuring convergence. Results are depicted in Figure 2. The basic
steps of the numerical procedure follow below [9,142].

(1) The initial state for the cavity is the normalized cat state (2).
(2) The probability for photon trigger “click” is calculated as

(rec(|a’ alygec (D)

(Wrec () | ¥rec (D)

(3) Associate with the photon loss channel a uniformly distributed random number R be-
tween 0 and 1. If p(¢) > R, then the conditioned wavefunction collapses to

p(t) =2xr (35)

[Wrec(t+AD) = V2xr a|yrpc (D). (36)

(4) If p(t) < R then WREC(ID is propagated through SSE (15). The field averages are
calculated as

_ (Wrec (D] a|¥rec(®)
(Wrpc () | Wrpc (D)
along with its complex conjugate.

(5) Normalize the system wavefunction and repeat from step (2).

(a)rReC (37



34 Themistoklis K. Mavrogordatos

For an ensemble of normalized pure states |y x);rec()), k=1,2,..., N, generated by the above
procedure, the expansion of p(#) solving the ME (1) is approximated as a sum over records by

1 Y 1 X
p(8) == > |Wa;rec(O) )W w;rec(D)]| = = D P rEC(D)- (38)
N o N o

Realizations of the cumulative charge were generated (with r = 0) by summing over the incre-
ments dgg weighted by the decaying exponential mode profile, calculated from Eq. (16), at each
time step where the system wavefunction was updated through the above Monte Carlo proce-
dure. The steady-state values matched the histograms of Figure 1 obtained from the autonomous
equation (21) with the potential (25) (setn = 1 — e=2X),
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