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Abstract. All-dielectric subwavelength structures made of high-refractive-index materials combine a unique
set of advantages in comparison with their plasmonic counterparts. In particular, they can interact resonantly
with light through the excitation of both electric and magnetic multipolar Mie-type resonances. This review
discusses novel approaches to manipulate light with Mie-resonant dielectric subwavelength structures,
spanning from individual nanoparticles to metasurfaces, and covering a broad range of effects, from near-
field energy enhancement to far-field beam shaping.

Résumé. Les matériaux diélectriques à indice de réfraction élevé peuvent interagir de manière résonnante
avec la lumière grâce à l’excitation de modes de Mie électriques et magnétiques. Cette revue présente un état
de l’art du contrôle de la lumière par les résonances électriques et magnétiques de Mie dans les nanostruc-
tures diélectriques. Elle décrit tout d’abord la reproduction des conditions de Kerker pour un contrôle de la
diffusion avant ou arrière de la lumière. Elle décrit ensuite l’intérêt des résonances de Mie pour (i) le contrôle
de l’interaction entre la lumière et la matière dans les antennes optiques diélectriques (exaltation de champ
proche, densité d’états et directivité d’émission), (ii) la génération d’états photoniques liés dans le continuum
ou encore (iii) la génération de couleurs structurelles par des métasurfaces diélectriques.
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1. Introduction

All-dielectric metamaterials were proposed in the 2000’s to achieve an artificial optical mag-
netism without metals [1, 2]. They were based on materials with high values of dielectric per-
mittivity, typically larger than 100. Composite materials with such high dielectric permittivities
were proven to yield negative permeabilities when applying an effective medium theory [2]. Un-
fortunately, common materials studied in the visible and near infrared (near-IR) spectra feature
much smaller values of dielectric permittivity, typically smaller than 20. This constraint limited
the soar of all-dielectric metamaterials in the visible and near-IR spectra.

However, it was highlighted also in the 2010’s that silicon (Si) nanoparticles feature low-order
electric and magnetic Mie resonances [3–8] which can also be employed for the realization of
optical magnetism, although Si exhibits much smaller dielectric permittivities (typically around
12). Soon after, in 2012 the first experimental observations with dark-field spectroscopy of a
strong magnetic response of individual Si particles were reported by two experimental groups [9,
10]. The spectral response observed with dark-field spectroscopy in the visible and near-IR
spectra evidenced several peaks associated with low-order electric and magnetic Mie resonances.
In particular, the possibility to excite both electric or magnetic resonances, and to balance
the weight between the electric and magnetic dipolar modes to tailor the scattering properties
of the particles triggered a huge interest. The resonant interaction of electromagnetic waves
with high-index nanostructures offers the possibility to engineer and control their phase and
amplitude [11]. The possibility to combine electric and magnetic resonances inside the same
dielectric nanostructure opened novel routes to develop planar metasurfaces able to tailor the
phase of light as well as its transmittance and reflectance spectra.

Soon after, the field of “all-dielectric metamaterials”, based on effective averaged parame-
ters, has been replaced naturally by “metaphotonics” (or “meta-optics”, also called “Mie-tronics”)
where not averaged parameters but individual resonances become important. This field is in-
spired by the physics of the magnetic dipole resonances and optical magnetism originating from
the resonant dielectric nanostructures with high refractive index [12]. The concepts of meta-
optics and all-dielectric resonant nanophotonics are driven by the idea to employ subwave-
length dielectric Mie-resonant nanoparticles as “meta-atoms” for creating highly efficient op-
tical metadevices, and the term “meta” is attributed to the importance of an optically-induced
magnetic response.

Because of the unique optical resonances and their various combinations employed for re-
alizing interference effects and strong localization of the electromagnetic fields, high-index
nanoscale structures are expected to complement or even replace different plasmonic compo-
nents in a range of potential applications. Moreover, many concepts developed for plasmonic
structures, but fell short of their potential due to strong losses of metals at optical frequencies,
can now be realized with Mie-resonant dielectric structures.

2. Mie resonances

Light scattering by small particles is a fundamental problem in optics and electromagnetism. It
can be studied by solving Maxwell’s equations in the spherical coordinates. This theory, called
multipolar theory or Mie theory, was developed originally by Gustav Mie in 1908 [13] and
improved by several contributors all over the XXth century [14, 15].

Spherical microstructures host high-order multipolar resonances associated with extremely
high quality factors (Q factors) that are called whispering gallery modes. They are observed in
almost lossless dielectrics such as silica or silicon nitride microstructured in microspheres or
microdisks [16, 17]. When decreasing the size of the dielectric cavities from the micro to the
sub-micrometer scale, the strength of the resonance weakens with refractive index typically
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considered in whispering gallery modes (typically around n ≈ 1.3 and n ≈ 1.9). The order of
the excited mode decreases with the size. The smallest size of an optical resonator is achieved
when the lowest mode is excited. However, an efficient excitation of a low-order mode requires
an increase of the refractive index, typically from 1.5 to values larger than 2.2 and ideally larger
than 3. In the visible and near-IR spectra, semi-conductors such as silicon or germanium exhibit
refractive index ranging between 3 and 4 while some oxides also feature nice optical properties
such as titania.

Efficient resonant light-matter interactions at the nanoscale can be achieved for low-order
resonances in sub-micrometer sized particles. Compared with high order multipolar whispering
gallery modes, low-order resonances are characterized by smaller Q factors and a wider spectral
response (see Figures 1(a–d)). The scattering cross section of a single dielectric particle is plotted
in Figure 1(a), where R is the radius of a spherical particle. Several peaks can be observed over
the visible spectrum. A multipolar decomposition of the scattered field (see Figure 1(b)) allows to
identify the nature of the mode associated with each peak. When decreasing the wavelength, i.e.
for the largest ratio between the wavelength and size of the scatterer, the first peak corresponds
to the excitation of the magnetic dipolar mode, the second peak to the electric dipolar mode. The
Mie resonances can also be obtained in non-spherical scatterers. This property results from the
fact that the interest is brought in low-order resonances. Such resonances are less sensitive to
high spatial frequencies than high-order multipolar resonances. That is the reason why a large
set of geometries has been investigated to tailor low-order Mie resonances.

Spherical silicon particles can be fabricated with the laser ablation technique [19]. This tech-
nique is very convenient since it allows to disperse particles on glass cover-slips and to perform
dark-field optical spectroscopy, see Figure 1(c). It is enlightening to observe such well defined
electric and magnetic resonances that nicely match the numerical calculations. If the first inter-
est of Mie resonances was brought in their far field response to retrieve for example the so-called
Kerker conditions, one of the main interest of such resonances is to yield strong field intensities
inside high-refractive-index materials.

It turns out that the terminology of “Mie resonance” is classically employed for describing res-
onances in dielectric particles. However, we stress that plasmonic and dielectric resonances can
both be described by the Mie theory. In a sake of illustration, let us consider a silver particle at the
frequency that maximizes its dipolar plasmonic resonances, i.e. at the frequency that maximizes
its dipolar electric Mie coefficient a1. It turns out that a dielectric scatterer can also maximize this
Mie coefficient. An analytic expression between the two dielectric permittivities, of positive and
negative real parts, derived in Ref. [18], permits to calculate the dielectric permittivity that max-
imizes the electric dipolar resonance, or in other words, the plasmonic resonance. The calcula-
tion of the scattering cross-section of the metallic and dielectric particles displayed in Figure 1(d)
shows that the two particles can exhibit the same optical response. However, the magnetic re-
sponse is almost negligible with spherical metallic particles and strong magnetic responses can
be obtained only with more complex geometries.

The field of plasmonic metamaterials has investigated different geometries to overcome this
limitation and to yield a strong magnetic response. Among a wide variety of plasmonic shapes,
one can cite the U - and the Ω-shaped scatterers [20, 21]. Coupling a set of plasmonic scatter-
ers that exhibit a resonant electric polarizability is also an efficient way to yield artificial mag-
netism [22]. The terminology employed to describe this effect is inspired by molecular chemistry
where electronic orbitals of different atoms can couple. The coupling modifies the energy of the
electronic orbitals and leads to the formation of bonding and anti-bonding chemical bonds [23].
The set of plasmonic scatterers is therefore called “plasmonic oligomers”. This field of research
aims at engineering the coupling between the different modes of the plasmonic scatterers to op-
timize either the electric or magnetic response of the plasmonic oligomers.
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Figure 1. Scattering properties of subwavelength particles. (a) Scattering efficiency spectra
of a spherical Si particle with the radius R in air. (b) Extinction and scattering spectra of
a Si particle with R = 65 nm. The arrows indicate the electric dipole (ed) and magnetic
dipole (md) contributions to the total efficiencies. Adapted with permission from [3].
(c) Experimental reflectance spectra of a 208 nm Si sphere on a glass substrate. Inset:
Scanning Electron Microscopy (SEM) image of the corresponding Si nanoparticle and
dark-field microscopic images. Adapted with permission from [10]. (d) Equivalence of Mie
resonances in plasmonic and dielectric particles. Scattering cross-section with respect to
the wavelength. Dotted line: silver particle A with ε=−2.5+0.5i ; Solid blue line: dielectric
particle B with ε= 112+0.5i . Both particles have the same diameter: 50 nm. Adapted with
permission from [18].

The ability of spherical dielectric particles to yield a strong magnetic response is one of the
main feature of Mie resonances. This property is at the core of many investigations with dielectric
nanostructures to tailor the light scattering through the coherent excitation of electric and mag-
netic modes and also to enhance the magnetic interaction between matter and electromagnetic
waves, i.e. the wave-matter interaction via the magnetic component of the field. The magnetic
mode yields a strong magnetic response in the near field of the dielectric scatterer. The magnetic
field distribution can be engineered and strong magnetic field intensities can be obtained. The
strong magnetic response can also be used to engineer the magnetic local density of states and
to promote magnetic spontaneous emission of quantum emitters. In the far field, the coherent
excitation of both electric and magnetic dipoles leads to unique scattering properties.
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3. Kerker effect and Kerker conditions

In 1983, Milton Kerker and co-authors [24] discovered an interesting effect in the scattering of
electromagnetic waves by a spherical particle made of a magnetic material characterized by mag-
netic permeability µ and dielectric permittivity ε. This study revealed very unusual effect, nowa-
days called Kerker effect. More specifically, Kerker and his collaborators revealed the possibility
to redirect the scattered radiation to either forward or backward direction, depending on the fre-
quency. They discovered two conditions, known as the first and second Kerker conditions. The
first Kerker condition corresponds to a cancellation of the backward scattering (with a maximum
in the forward scattering), while the second Kerker condition corresponds to a deep minimum
in the forward scattering direction. The backward and forward scattering are defined by the scat-
tering along the axis of the incoming waves. The optical theorem states that the extinction cross-
section of a scatterer can be cast with respect to its forward scattering, which means that the for-
ward scattering cannot be canceled. Kerker and co-workers established that the first condition is
obtained when ε=µ, and the second condition is satisfied when

ε=−µ−4

µ+1
.

Initially, this important study did not find a wide audience due to a lack of required magnetic
materials, and also because the Kerker conditions require special values of the parameters.

Nevertheless, as was shown independently by two groups in 2011, the Kerker conditions
can be extended to nonmagnetic dielectric spheres supporting both electric and magnetic Mie
resonances [6, 25, 26]. This property of Mie scatterers to satisfy both Kerker conditions due to the
electric and magnetic Mie resonances was actually one of the first unusual property investigated
in this new field of all-dielectric metaphotonics. The artificial magnetism provided by the Mie
resonances allows to mimic the anomalous scattering properties of magnetic spheres.

The Kerker conditions are predicted through the calculation of the electric and magnetic
polarisabilities of the dielectric scatterer, αe and αh , respectively. It is convenient to derive the
electric and magnetic polarisabilities from the elements of the T (e,h)

n matrix (e and h standing for
electric and magnetic respectively), conventionally noticed an and bn , with n standing for the
multipolar orders:

αe =−T (e)
n = 3iεa1

2k3 , αh =−T (h)
n

3ib1

2µk3 .

For a dipolar scatterer, i.e. a scatterer for which the multipolar Mie scattering coefficients an and
bn can be safely neglected for n ≥ 2, the first Kerker condition is obtained when a1 = b1 while
the second Kerker condition satisfies the relations: ℜ(ε−1αe ) =−ℜ(µαm) and ℑ(ε−1αe ) =ℑ(µαm)
[25,26]. These analytical derivations can be assessed by calculating and the scattering patterns of
a single sphere at the first and second Kerker conditions [29] and first observed experimentally for
microwaves [25, 30]. Experimental values of the scattered intensity of a sphere can be matched
well with the theoretical results, as shown in Figures 2(a,b). Experimental observations of the
Kerker conditions in the visible spectrum has been reported for Si and GaAs nanoparticles [27,31].
In Ref. [27], an AlGaAs particle was fabricated by reactive ion etching followed by a transfer on
a transparent fused silica substrate. Bright field spectroscopy on a single particle allowed the
measurement of the reflected spectrum and the observation of a cancellation of the reflected
intensity in a short spectral range [27].

The first Kerker condition finds straightforward applications in the design of Huygens sources
in planar metasurfaces [32]. This condition meets several conditions that make dipolar Mie
scatterers ideal candidates to build metasurfaces: besides their weak losses, they can scatter light
in the forward direction, with a maximum of forward light scattering when a1 = b1 while the
phase of the polarisability of a dipolar scatterer experiences a phase shift of π at a resonance.
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Figure 2. Kerker effects in dielectric nanoantennas. (a) Evidence of the Kerker effect in a
germanium sphere. Scattering diagram plotted for the two polarization cases (TE (blue)
and TM (red)) when illuminating a 140 nm Ge sphere at the wavelengths λ = 2193 nm
(top; forward scattering) and λ = 1823 nm (bottom; backward scattering). Adapted with
permission from [25]. (b) Observation of the Kerker effect in optics. Left: Spectrum of light
intensity backscattered by an individual GaAs nanodisk of radius 90 nm. Black dotted curve:
measurement; red curve: numerical spectrum. Right: sketch of the measurement: white
light is weakly focused on a GaAs particle. Backscattered light is separated by a 50/50 beam-
splitter and sent to a spectrometer. Adapted with permission from [27]. (c) Concept of the
transverse Kerker effect. Electric dipole (ED) is in phase with a magnetic dipole (MD), and
an electric quadrupole (EQ) is in phase with a magnetic quadrupole (MQ), whereas the
dipoles are out of phase with the quadrupoles. Adapted with permission from [28].

When combining electric and magnetic resonances, the phase of the polarisability of a single Mie
resonator can be tuned over 2π [32]. The forward light scattering being based on the excitation
of both electric and magnetic dipolar resonances, this forward scattering can be associated with
a strong modulation of the light phase. Efforts have been put to optimize the geometry of the
scatterer to optimize the forward light scattering [33]. Regarding the second Kerker condition, we
mention that besides the modulation of phase, it finds applications to develop highly refractive
metasurfaces [34].

The extension of the Kerker effect to other multipoles has been discussed in a number of
papers, and these studies have been summarized recently [35]. Here, we also mention a re-
cently demonstrated novel effect of the so-called transverse scattering of light by Mie-resonant
subwavelength particles with simultaneous suppression of both forward and backward scatter-
ing [28]. This generalized Kerker effect occurs when in-phase electric and magnetic dipoles be-
come out of phase with the corresponding pairs of quadrupoles. Shamkhi et al. [28] obtained the
general conditions for the simultaneous suppression of scattering in both forward and backward
directions, and generalized these conditions to non-spherical particles, see Figure 2(c). They ver-
ified the concept in a proof-of-principle microwave experiment, with good agreement with an-
alytical and numerical results, and also studied metasurfaces composed of the nanoparticles
with the transverse scattering patterns. In a sharp contrast to Huygens’ metasurfaces, these novel
metasurfaces scatter neither forward nor backward, being almost invisible [36].

Subwavelength structures demonstrate many unusual optical properties which can be em-
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ployed for a control of scattering of light and invisibility cloaking. Suppression of light scatter-
ing can be achieved for a uniform dielectric object with high refractive index, based on the novel
physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous di-
electric rod [37]. Scattering cancellation and optical cloaking have been reported for a variety of
systems based on dielectric metamaterials [38–40].

4. All-dielectric nanoantennas

Optical antennas are nanostructures aimed at manipulating spontaneous emission of solid-state
emitters at room temperature [41]. Plasmonic antennas were proposed early in the 2000’s, first to
engineer the local density of states in the vicinity of metallic nanostructures [42–46], and second
to control the direction of emission of quantum emitters [47]. This field of research has led to
impressive results since metallic nanostructures can yield giant decay rates and can efficiently
shape the emission pattern. Among the wide range of metallic antennas, Yagi–Uda antennas and
corrugated antennas exhibit high gains in directivity [48, 49]. Self-assembled metallic particles
were also proved to yield extremely high decay rates, either with DNA template nanoantennas
in which is grafted a single fluorescent molecule [50, 51], or with gap plasmons obtained by
depositing colloidal particles on metallic substrates and by inserting quantum emitters inside
the extremely small nanogap separating a metallic film from a colloidal particle [52, 53].

Electromagnetic Mie resonances experienced in dielectrics with weak losses are very promis-
ing to develop highly radiative and directive optical antennas. The use of dielectric particles was
first investigated with silica microspheres that host high multipolar orders [54]. The use of higher
refractive index combined with a decrease of the size of dielectric particles was investigated nu-
merically with a titania particle [55]. The titania particle was used to shape the emission pattern
of an electric dipole located in the nanogap of a silver dimer of nanoparticles. The dimer was used
to enhance the decay rates while the high refractive index was used to shape the emission direc-
tion into a narrow lobe [55]. A hybrid metal-dielectric antenna was experimentally developed in
2018 [56]. It was composed of a bow-tie gold nanoantenna coupled with 3 silicon nanorods. This
antenna was fed by the photoluminescence of gold.

Silicon particles were numerically investigated in 2011 and 2012 to tailor the emission pattern
of electric dipolar emitters. By studying the emission pattern of an electric dipole coupled with a
silicon particle hosting electric and magnetic dipolar modes, it was showed as early as 2011 that
the direction of emission can be optimized either in the backward or the forward direction [6].
The main interest of Mie resonant antennas comes from the possibility to couple the quantum
emitter with both electric and magnetic modes [6–8]. The coherent excitation of electric and
magnetic modes offers a higher degree of freedom to engineer the emission in a given direction
through the phase and amplitude of electric and magnetic modes. The coherent excitation of
electric and magnetic dipoles can be seen as an extension of the Kerker conditions in the near
field, i.e. when the Mie resonator is excited from the near field. The emission of a quantum
emitter coupled with a dielectric Mie resonator can therefore be maximized in either the forward
or the backward directions. The gains in directivity that are obtained in these two conditions are
higher than those that could be achieved with an antenna hosting a single mode resonance, i.e.
an electric dipole resonance like in the case of spherical plasmonic nanoparticles.

Besides their strong interest to shape the emission pattern of solid-state emitters, dielectric
Mie resonators are also very interesting to enhance the excitation strength of quantum emitters,
to tailor their local density of states and to control their spontaneous emission rates. When
compared with their plasmonic counterparts, the total decay rate enhancements yielded by
dielectric antennas are smaller but the ratio between radiative and total decay rates can be
larger thanks to smaller intrinsic losses. However, dielectric Mie resonators offer key properties
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to manipulate spontaneous emission: (i) they can tailor decay rates of both electric and magnetic
dipolar transitions, (ii) they exhibit weak intrinsic losses and can efficiently collect the emitted
photons, (iii) semi-conductor based antennas can be easily integrated into photonic chips,
(iv) internal fields can be engineered to boost the photoluminescence properties of emitters
located inside the high refractive index material [57].

Controlling the electric or magnetic nature of the dipolar transition with Mie resonances, and
more generally controlling higher order transition moments, is an inspiring way of investiga-
tion [58]. This field of research rapidly raised the interest since it coincided with the raise of in-
terest in the higher order transition moments in rare earth ions [59–61]. Electric and magnetic
resonances of Mie resonators were therefore investigated to promote either an electric or a mag-
netic transition of coupled rare-earth ions [62, 63]. However, from an experimental point of view,
coupling rare earth ions with Mie resonators and more precisely locating the emitter at the posi-
tion where the magnetic local density of states (LDOS) is maximum is very challenging. The main
achievements in the control of magnetic spontaneous emission were reported only recently with
either individual Si-based antennas [64] or Si-based metasurfaces [65].

If interest in Mie resonant antennas was initially driven by the original concept of magnetic
spontaneous emission, they also offer a strong interest to enhance the electric LDOS that is
suitable to enhance fluorescence of quantum dots or molecules (see Figure 3). Taking inspiration
from plasmonic nanogap antennas [50, 51, 69, 70], dielectric dimer antennas were proposed to
manipulate the spontaneous emission, as evidenced first numerically [62, 71] and in a second
step experimentally [67, 68, 72]. The main challenge is to optimize the field outside the high
refractive index and to yield strong electric field intensities with a strong contrast with the
background in order to detect fluorescence signal of molecules located in the nanogap (see
Figure 3). This method allows the enhancement of the electric field excitation on fluorescent
molecules and to increase by several orders of magnitude their fluorescence signal [68, 72].

If dielectric gap antennas are based on the strong enhancement of the electric field intensity
in the gap separating the two particles, a major interest of Mie resonant antennas lies in the fact
that they can be fed directly inside the cavity where the Purcell factor is maximum [73]. The first
result was reported in 2017 with quantum dots embedded in silicon nanodisks [74]. Let us notice
that the concept of hybridization also applies to this case so that dimers and trimers of doped
Si-nanodisks can be coupled to further boost the photoluminescence of quantum dots. The
strong enhancement of the internal field intensity driven by Mie resonances can also be exploited
to enhance the Raman signal of silicon particles [75, 76] and non linear signals. The richness of
this field of research will undoubtedly lead to several outcomes in the upcoming years.

A very promising way of development is to consider active materials to design the photonic
cavities (see Figure 4). For example, the high refractive index of diamond can be used to form
a Mie resonant cavity around color centers [77, 78]. The resonant scattering of light on nanodi-
amonds due to the excitation of electric and magnetic dipolar modes has been evidenced (see
Figure 4(a)). The photoluminescence of color centers can therefore benefit from Mie resonances.
An enhancement of the photoluminescence of Nitrogen Vacancy (NV) color centers in nanodi-
amonds was reported recently: the fluorescence efficiency can be enhanced thanks to Mie reso-
nances and the emission lifetime can be decreased [79] (see Figure 4(b)).

A very promising approach for developing active Mie resonators is to consider halide per-
ovskites, a class of semi-conductor materials characterized by a high refractive index. The dis-
covery of the exceptional excitonic properties almost 10 years ago triggered a huge interest to im-
prove the efficiency of photovoltaics and light emitting devices [80]. Halide perovskites feature ex-
ceptional excitonic properties. Bridging the gap between this novel class of light emitting materi-
als and Mie resonant cavities will lead to outcomes in integrated light sources [81]. Enhancement
of the photoluminescence of halide perovskites was first reported in 2018 by considering par-
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Figure 3. All-dielectric nanogap antennas. (a) Electric field distribution in the vicinity of
a 20 nm nanogap separating two Si microdisks (diameter 2 µm, thickness of 200 nm)
illuminated in normal incidence with an incident electric field linearly polarized along the
x-axis at a wavelength of 2.437 µm. Adapted with permission from [66]. (b) SEM image
of a silicon nanogap antenna fabricated with e-beam lithography. Diameter of 170 nm
diameter, thickness of 60 nm and nanogap of 20 nm. (c) Enhancement of the electric
field intensity yielded by a GaP dimer antenna composed of two GaP pillars, 100 nm in
diameters, 200 nm in height and separated by a 35 nm nanogap. The field distribution
is taken at mid-height (100 nm). Adapted with permission from [67]. (d) Brightness per
emitter with respect to the emission power for two different nanogap lenghts, 20 nm and
30 nm, with the Si dimer nanogap antenna displayed in (b). Comparison with the brightness
per emitter measured without antenna (measured signal × 50). Adapted with permission
from [68].

ticles made of MAPbI3 created by using a laser ablation technique on a perovskite thin film. A
maximum of the photoluminescence signal was reported at the wavelength corresponding to the
quadrupolar magnetic resonance [82]. The next challenge after performing Mie enhanced photo-
luminescence lies in the stimulated emission and the development of a novel class of laser cavi-
ties by forming Mie cavities in halide perovskites. The latest results were obtained with nanocubes
made of CsPbBr3 (see Figures 4(c–e)). High quality monocrystalline CsPbBr3 nanocubes are first
synthesized chemically on a sapphire substrate (see Figure 4(c)). Dark field spectrum performed
on a single 420 nm nanocube displayed in Figure 4(d) clearly evidences the resonant light scat-
tering due to the excitation of electric and magnetic multipoles. The photoluminescence spec-
trum of CsPbBr3 is indicated by the green zone in Figure 4(d). A peak of the dark field spectrum
can be observed in this spectral range. The resonant light scattering is assessed by observing a
strong dependence of the scattering spectra on the size of the nanocubes. The photolumines-
cence spectra are recorded when exciting nanocubes with a 150 fs laser. Importantly, the spectra
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Figure 4. Mie resonances in excitonic materials: colored centers in nanodiamonds (top
row) and perovskites (bottom row). (a) Unpolarized scattering spectrum of a single nanodi-
amond. Black line: experimental spectrum. Red line: numerical simulations implemented
with FDTD (Finite Difference Time Domain) when considering a spherical nanodiamond
with a diameter of 320 nm under the experimental conditions of the collection. Adapted
with permission from [77]. (b) Time-resolved photoluminescence measurements for two
sets of samples: NV centers in optically small (<100 nm) nanodiamonds (orange dots)
and in large and optically resonant nanodiamonds (purple dots). Adapted with permission
from [79]. (c) SEM images of CsPbBr3 nanocubes placed on a sapphire substrate. Scale bar
is 500 nm. (d) Dark-field spectra of the CsPbBr3 nanocubes. The photoluminescence spec-
tral range is indicated by the green zone. Pump intensity-dependent emission spectra for
three different fluences compared with the lasing threshold: above (red), equal (orange)
and below (green) the lasing threshold. (c–e) Adapted with permission from [83].

reveal a threshold-like appearance of a photoluminescence signal in the range λ= (532;538) nm,
that corresponds to the red side of the emission line of the exciton (see Figure 4(e)).

5. Bound states in the continuum

Bound states in the continuum have attracted a lot of attention in photonics recently, and they
originate from a coupling between the leaky modes in dielectric structures such as photonic
crystals, metasurfaces, and isolated resonators [84]. These resonances provide an alternative
mean to achieve very large Q factors for lasing [85] and also allow to tune a photonic system into
the regime of the so-called supercavity mode [86]. A true bound state in the continuum (BIC) is a
mathematical object with an infinite value of the Q factor and vanishing resonance width, and it
can exist only in ideal loss-less infinite structures or for extreme values of parameters [87, 88]. In
practice, BIC can be realized as a quasi-BIC mode, being directly associated with the supercavity
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mode [86], when both the Q factor and resonance width become finite. However, the localization
of light inspired by the BIC physics makes it possible to realize high-Q quasi-BIC modes in many
optical structures such as cavities and coupled waveguides.

Importantly, there exists a direct link between quasi-BIC states and Fano resonances since
these two phenomena are supported by the similar physics. More specifically, quasi-BIC reso-
nance can be described explicitly by the classical Fano formula, and the observed peak positions
and linewidths correspond exactly to the real and imaginary parts of the eigenmode frequencies.
The Fano parameter becomes ill-defined at the BIC condition, which corresponds to a collapse of
the Fano resonance. Importantly, every quasi-BIC modes can be linked with the Fano resonances,
whereas the opposite is not always true: the Fano resonance may not converge to the BIC mode
for any variation of the system parameters.

As an example, we consider all-dielectric metasurfaces with the in-plane symmetry break-
ing [89] that can support sharp high-Q resonances arising from a distortion of symmetry-
protected BICs. We follow the recent paper [90], we consider a metasurface made of As2S3 and
placed on a glass substrate consisting of a square lattice of meta-atoms with broken in-plane in-
version symmetry, as illustrated in Figure 5(a). The meta-atom is constructed of a pair of rect-
angular bars which have lengths L and L − δL, respectively. The asymmetry of the unit cell is
controlled by the difference in bar lengths, which is characterized by the asymmetry parameter
α= δL/L, see Figure 5(b).

Figure 5(c) demonstrates the dependence of the simulated transmission spectra on the wave-
length of excitation and the asymmetry parameter α. The white dashed line illustrates the eigen-
mode dispersion. The eigenmode simulations show that the metasurface with a symmetric unit
cell (α= 0) supports a symmetry-protected BIC at 795 nm, which has infinite Q factor and is not
manifested in the transmission spectrum. The BIC is unstable against perturbations that break
the in-plane inversion symmetry, so for α > 0 it transforms into a quasi-BIC with a finite Q fac-
tor [89]. The quasi-BIC is revealed in the transmission spectra as a sharp resonance with a Fano
lineshape whose linewidth increases with the magnitude of asymmetry. The dependence of the
radiative Q factor on α follows the inverse quadratic law for small values of the asymmetry pa-
rameter [89], as shown in Figure 5(d). Hence, the meta-atom asymmetry is necessary to obtain a
sharp resonance whose position and width can be adjusted by the degree of asymmetry.

Thus, bound states in the continuum provide a new approach for engineering a resonant
response of dielectric metasurfaces composed of meta-atoms with broken in-plane inversion
symmetry. The similar approach can be applied to the case of nonlinear metasurfaces [91, 92]
with broken-symmetry or nonlinear metasurfaces composed of arrays of chalcogenide nanores-
onators designed for the nonlinear optical generation of higher harmonics.

6. Applications of Mie resonances: structural colors

Colors perceived by eyes result from the interaction between the incoming light and the three
types of cone cells. A modification in the spectrum of the incoming light will result in a modifica-
tion of the perceived color. When white light interacts with structured matter, its broad spectrum
experiences a strong variation with peaks and dips which yield a color to the nanostructured mat-
ter. Colors resulting from the interaction between light and nano or microstructures are called
structural colors. The terminology “structural” means that the color depends on the morphology
of the structured matter. A modification of the morphology modifies the structural color. Struc-
tural colors can be found in a wide set of biological species, the most famous example being cer-
tainly the wings of the Morpho butterfly [93, 94]. Wings are structured at a sub-micrometer scale
which provides photonic band gaps. In the case of the Morpho butterfly, the photonic band gap
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Figure 5. Metasurfaces with bound states in the continuum. (a) Design of a metasurface
consisting of a square array of As2S3-bar pairs of different length placed on a glass sub-
strate. The inset shows the orientation and polarization of the incident field. (b) Defini-
tion of the asymmetry parameter α. (c) Numerically simulated transmission spectra with
respect to the excitation wavelength and the asymmetry parameter α. The white dashed
line illustrates the quasi-BIC dispersion. (d) Dependence of the radiative Q factor on the
parameter α. The dashed line shows an inverse quadratic fitting. Adapted with permission
from [90].

is centered on the blue part of the spectrum. The blue part of the spectrum is therefore reflected
which provides a vivid blue color to the wings.

Structural colors can also be found in plasmonics. When observing metallic particles of
different sizes and shapes dispersed in a transparent substrate in dark field spectroscopy, a
myriad of colors can be observed. It turns out that each particle yields its own color and behaves
like a colored pixel. The pixel size stands under the diffraction limit and achieves the limit of
resolution. This approach is very promising to create non fading colors with a high resolution.
When assembling different scatterers on a surface, colored images can be finely designed which
opens plenty of rooms to create images at high resolution [95]. Structural colors have benefited
from intense developments to extend the gamut of colors, to decrease the cost of this technology
and to extend its range of applications [96].

When observing silicon particles in dark-field spectroscopy, structural colors can also be
observed (see Figure 1) [9, 10, 19, 97]. This result was expected since their resonant interaction
with light strongly modulates the scattered spectrum. The coupling of light with electric and
magnetic Mie resonant modes of high-index particles results in a perceived color that can be
controlled through the shape and composition of the particles, and also through their mutual
coupling. This result strengthens the field of resonant structural colors since cost effective and
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Figure 6. Silicon Mie-resonant metasurfaces for generating colors and holograms. (a) Mon-
drian’s painting reproduced at a 1:1200 scale with silicon particles on a transparent sub-
strate observed in dark-field imaging. Adapted with permission from [99]. (b) Extended
gamut of colors obtained by coupling the nanostructured silicon layer with an unpatterned
underlying high refractive index layer made of Si3N4. Adapted with permission from [100].
(c) Palette of colors obtained when varying the diameter of the silicon nanodisks and the
period of the 2D array. Example of a painting reproduction. Here “The Scream” by the Nor-
wegian painter Edvard Munch. Adapted with permission from [101]. (d) Experimental holo-
graphic images from two holograms at a 1600 nm wavelength. Adapted with permission
from [106].

non toxic materials with high refractive index can be found. A strong interest has been brought
to the case of silicon based nanostructures. One of the first examples of structural colours in
silicon was presented in 2014 with periodical grooves patterned in silicon substrates [98]. When
assembling silicon Mie resonators on a substrate and when controlling their size to tailor finely
their spectral response, colored images can be obtained and painting can be reproduced. This
was shown in 2016 in dark field spectroscopy with silicon particles of different diameters etched
on a silicon film coated on a transparent substrate [99]. A palette of structural colors has been
created when considering several arrays of similar Si nanodisks. In a second step, a Mondrian’s
painting was reproduced (Figure 6(a)). Mie resonant scatterers have been optimized to extend
the gamut of colors, in particular through the control of their shape or through the coupling
with an underlying layer [100] (see Figures 6(b,c)) or by adjusting the diameter of nanodisks
and the period of the 2D array of nanodisks [101, 102]. This technique can also be employed
to design spectral filters [102, 103]. Over the last two years, outstanding achievements have
been reported in terms of designs and color rendering with different dielectric materials and
fabrication methods [101, 104, 105]. The strong efforts devoted to the development of structural
colors are motivated by numerous applications in anti-counterfeiting, spectral filtering, and
color rendering of surfaces. The latest developments are focused on novel applications such as
complex holograms [106, 107] (see Figure 6(d)).

7. Conclusion

The field of high-index dielectric metaphotonics has emerged recently as a new and rapidly de-
veloping direction of research in nanophotonics and metamaterials. The study of all-dielectric
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resonant nanostructures is motivated by the rich physics of Mie resonances allowing to excite
both electric and magnetic multipole modes in individual subwavelength particles. Metaphoton-
ics has a broad range of applications, highlighting the importance of optically-induced magnetic
response, and including structural coloring, optical sensing, spatial modulation of light, nonlin-
ear and active media, as well as both integrated classical and quantum circuitry and topologi-
cal photonics, underpinning a new generation of highly-efficient active metadevices. We antici-
pate further rapid development of these ideas into the field of active metaphotonics for creating
new types of light sources, light-emitting metasurfaces, quantum signal processing, and efficient
nanolasers.
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