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Abstract. The Berry phase of wave functions is a key quantity to understand various low-energy properties
of matter, among which electric polarisation, orbital magnetism, as well as topological and ultra-relativistic
phenomena. Standard approaches to probe the Berry phase in solids rely on the electron dynamics in
response to electromagnetic forces. In graphene, probing the Berry phase π of the massless relativistic
electrons requires an external magnetic field. Here, we show that the Berry phase also affects the static
response of the electrons to a single atomic scatterer, through wavefront dislocations in the surrounding
standing-wave interference. This provides a new experimental method to measure the graphene Berry phase
in the absence of any magnetic field and demonstrates that local disorder can be exploited as probe of
topological quantum matter in scanning tunnelling microscopy experiments.

Résumé. Les interférences de quasiparticules observées par microscopie à effet tunnel sont particulièrement
utiles pour étudier les propriétés électroniques de matériaux en surfaces. Ces interférences possèdent des
informations sur la surface de Fermi du système et leur résolution en énergie permet, dans certains cas,
de reconstruire la relation dispersion. Nous montrons ici que les images d’interférences de quasiparticules
peuvent aussi contenir une information sur la phase de Berry qui caractérise la structure de bande du

∗Corresponding authors.

ISSN (electronic) : 1878-1535 https://comptes-rendus.academie-sciences.fr/physique/

https://doi.org/10.5802/crphys.79
https://orcid.org/0000-0002-7557-7838
https://orcid.org/0000-0002-3028-9875
https://orcid.org/0000-0001-5032-9304
https://orcid.org/0000-0001-5165-7553
https://orcid.org/0000-0001-6242-9468
mailto:clement.dutreix@u-bordeaux.fr
mailto:hector.gonzalezherrero@aalto.fi
mailto:ivan.brihuega@uam.es
mailto:M.Katsnelson@science.ru.nl
mailto:claude.chapelier@cea.fr
mailto:vincent.renard@cea.fr
https://comptes-rendus.academie-sciences.fr/physique/


134 Clément Dutreix et al.

matériau. La phase de Berry est une phase géométrique que les fonctions d’onde electroniques acquièrent
lors d’une évolution cyclique dans un espace de paramètres. Elle est quantifiée lorsque la trajectoire de
l’évolution ensèrre une singularité des fonctions d’onde. Il s’agit alors d’une propriété topologique de la
structure de bande. La phase de Berry dans les solides est traditionnellement mesurée en appliquant des
champs électromagnétiques pour forcer les particules à former de trajectoires fermées. L’utilisation de la
figure d’interférence de quasiparticules permet de s’extraire de ce paradigme car la phase de Berry peut
affecter la réponse statique des électrons au désordre en l’absence de champ électromagnétique.

Keywords. Berry phase, Graphene, STM, Wavefront dislocations, Topology, Atomic defect.

Mots-clés. Phase de Berry, Graphène, Microscope à effet tunnel, Topologie, Interférence de quasi-particules,
Défaut atomique.
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1. Introduction

In quantum mechanics, the phase of the wave function is (locally) arbitrary. This U(1) gauge
invariance nonetheless allows observable manifestations of the wave-function phase through
cyclic evolutions. A spectacular example is the demonstration of the physical relevance of the
magnetic vector potential in quantum mechanics, when a charged particle orbits around a thread
of magnetic flux. In this experiment, the Aharonov–Bohm phase evidences the existence of the
magnetic flux without the particle ever passing through it [1]. Another fundamental illustration
concerns the adiabatic journey of a wave function in some parameter space. If the wave func-
tion comes back to the initial state, it may have accumulated a phase shift that is reminiscent of
the geometry of its trip in Hilbert space. This geometrical quantity is known as Berry phase [2].
Similarly to the Aharonov–Bohm phase, it is gauge invariant and leads to observable effects. On
his way to the discovery of this geometrical phase, Berry was concerned with spectral degenera-
cies in two dimensions [3]: “[. . .] These degeneracies require two parameters—one is in general not
sufficient to produce a degeneracy—and in terms of these parameters the energy levels are sheets
in the form of a double cone. The double cone is also called a diabolo (after a spinning toy of the
same shape), so I called the intersections “diabolical points”. But how can we know that the two
sheets really touch, rather than avoiding each other as energy levels typically do when just one
parameter is varied? In 1978 I found the criterion: while encircling a diabolical point in the space
of parameters, each of the two wave functions, when smoothly continued round its sheet, must
change sign”. In other words, the wave functions accumulate a π quantized phase shift along its
journey provided it encloses a diabolic degeneracy point. The Berry phase is then topological in
this case.

The spectral degeneracies described by Berry exist in the band structure of graphene, in which
the Dirac cones are the diabolo and the Dirac points the diabolical points. As a consequence the
waves functions also pick a π Berry phase when travelling around a Dirac point. This topological
feature of graphene’s band structure has been demonstrated beautifully for electrons confined in
whispering gallery modes in this material [4]. In a semi-classical picture, the confined electrons
can be viewed as bouncing from circular p–n junctions created by the electrostatic potential
of a Scanning Tunnelling Microscope (STM) tip or a charge embedded in the substrate. They
perform loops that do not enclose the Dirac points in momentum space. These trajectories can
be engineered to enclose a Dirac point with a small perpendicular magnetic field. The inclusion
provokes abrupt changes in the energy spectrum of the resonator. Such spectral features result
from the π-quantised Berry phase picked up by the wave functions orbiting around a Dirac point.
More generally, the Berry phase associated with magnetic cyclotron orbits around a Dirac point
shifts the energy of the Landau levels, the magneto-oscillations, and the Hall conductivity that
becomes anomalously quantised on half-integer values of the conductance quantum [5, 6].
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The present article presents an alternative approach to access the Berry phase of graphene in
the absence of magnetic field. It relies on disorder-induced standing-wave interference resolved
in scanning tunnelling microscopy (STM).

2. Quasiparticle interference: measurements of energy bands with a STM

The determination of energy bands with an STM has history which starts in the early days of this
technique [7–10]. In a STM experiment, the tunneling current between the STM tip and the con-
ducting surface of a material provides access to the local density of states of the surface (LDOS).
The later can fluctuate near defects to form a standing wave usually called a Quasi-Particle Inter-
ference (QPI). The LDOS fluctuations around a single impurity have characteristic features infor-
mative of the host material. They exhibit long-range oscillations that decay algebraically with the
distance r to the impurity. The characteristic wavelength of the oscillations is 1/qF, where qF is
the Fermi wavevector. For the two-dimensional electron gases realized on some surfaces of noble
metals, the LDOS fluctuations asymptotically behave as

δρ(r,E) ∝ 1

qFr
cos(2qFr ), (1)

where we omit any phase shift for simplicity. They are often referred to as (energy-resolved)
Friedel oscillations in hommage to French physicist Jacques Friedel who predicted the long-range
oscillations of the electron density screening charged impurities in metals [11]. The Fourier-
transformed local density of states (FT-LDOS) offers a clear connection to the iso-energy con-
tours of the band structure in momentum space. Indeed, the Fourier transform of (1) outlines a
2qF-radius ring in Fourier space mapping the circular Fermi surface of radius qF [9]. This map-
ping shows that elastic backscattering is the most efficient scattering process. Since the STM can
also measure the standing wave at any energy EF −eVb (Vb is the tip-surface bias), it also enables
the resolution of the parabolic dispersion relation of the electron gas at low energy. Thus, the
LDOS fluctuations are informative about the energy bands of materials. As such QPI have been
widely used to study the band structure of novel materials [12].

3. Graphene’s pseudospin evidenced in QPI

After the discovery of graphene, researchers realized that QPI could also be informative on the
pseudospin of the wave functions. The low-energy properties of the massless relativistic electrons
in graphene are well described by the following Hamiltonian matrix

H(K+q) '
(

0 vFξqeiξθq

vFξqe−iξθq 0

)
, (2)

written in the sublattice basis (A,B). The Fermi velocity is vF ' 106 m·s−1. The index ξ=±1 labels
the two nonequivalent valleys at ±K in the Brillouin zone, while q and θq denote the norm and
polar angle of wave vector q with respect to direction x (cf. Figure 1). The dispersion relation is
conical E±(K+q) '±vFq and the eigenstates satisfy

p
2 |u±(K+q)〉 = |A 〉∓ξe−iξθq |B 〉. The spinor

structure results from the two sublattices and refers to the pseudospin σ = (ξcos(θq),sin(θq),0)
represented in Figure 1c. A remarkable property of the electron wave-functions in graphene is the
lock-in relation between the sublattice pseudospin and the wave vector.

Figure 2 illustrates how QPI measurements in STM have proven the existence of the wave-
function pseudospin [13–15]. Figure 2a shows a large STM image recorded on a single layer of
graphene, grown on the silicon face of SiC [15]. A single atomic impurity induces both intravalley
and intervalley elastic scattering. Similarly to the noble metals, the iso-energy contour of each
valley has a circular geometry at low energy. A naive expectation is that intravalley scattering and
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Figure 1. (a) The bipartite hexagonal lattice of graphene. (b) Dirac cone at the K point. CK

and C ′
K re present two types of closed trajectories in reciprocal space enclosing (resp. not

enclosing) the Dirac point (Adapted from Ref. [4]). (c) Graphene’s pseudospin is locked on
momentum but does not have the same texture in the two valleys.

intervalley scattering should both yield a 2qF-radius ring in Fourier space. Nevertheless, such
a ring is absent for intravalley scattering (Figure 2d), while for intervalley scattering, the ring is
present but shows pronounced extinctions in the directions perpendicular to ΓK (Figure 2e–g).
It turns out that the pseudospin texture in each valley allows a geometrical explanation of these
two observations.

The pseudospin texture shown in Figure 1c imposes that the pseudo spin has to flip in
intravalley backscattering. Figure 2j illustrates this for a particular direction. This π rotation of
the pseudospin induces a π/2 rotation of the wave-function spinor in Hilbert space, and so the
term 〈u±(K − q)|u±(K + q)〉 = 0 yields destructive interference [16]. The absence of intravalley
backscattering in graphene has profound consequences as it is responsible for Klein tunneling
through smooth potential barriers [17]. In the case of a sharp atomic potential barrier, the
absence of backscattering removes the 2kF-radius ring in the Fourier transform of the QPI. In
real space, this corresponds equivalently to the absence of the leading 1/r -decaying Friedel
oscillations, leaving an unconventional decay of 1/r 2 in the intravalley scattering QPI [14, 18,19].
This strong suppression of the intravalley signal makes it hardly observable in practice.

The situation is different for intervalley scattering. The two valleys have different pseudospin
textures (Figure 1c). In general, intervalley backscattering between states of wave vectors paral-
lel to KK′ does not require the pseudospin to flip and is therefore allowed (Figure 2j). Neverthe-
less, backscattering is forbidden in a specific direction, where the scattering wave vectors are per-
pendicular to KK′ (Figure 2j). This explains the extinctions observed in intervalley backscattering
(Figure 2e–g) and shows that they too are manifestations of the wave-function pseudospin. Sim-
ilarly to noble metals, the 2kF-radius ring due to intervalley backscattering also allows the reso-
lution of the dispersion relation at low energy [13, 15]. This is shown in Figure 2h, i and clearly
highlights the linear dispersion relation with expected Fermi velocity vF ' 106 m·s.

Therefore, the absence of intravalley back scattering signal and the peculiar intervalley
backscattering signal observed in the QPI in graphene are evidences of the wave-function
pseudospin. The importance of such observations is at least twofold. First, they confirm that
the sublattice atomic structure (distances of a few angstroms) is responsible for the pseudospin
physics of the electron wave-function at low energy (wavelengths of a few tens of nanometers).
Second, they also demonstrate the ability of the STM technics to probe wave-function proper-
ties, in addition to the spectral ones. Now we show that the QPI can also reveal the topological
Berry phase of the electron wave-functions associated with the diabolical Dirac points in the
band structure.
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Figure 2. (a) STM image of a graphene layer grown on the silicon face of SiC. The observed
periodicity is related to a moiré caused by the substrate and not relevant here. (b) Numerical
zoom in the image showing atomig resolution. (c) Fast Fourrier transform of the image
presented in panel (a). (d) Zoom in the center of the FFT showing no signal related to
intravalley scattering. (e–g) Zoom in the FFT at position of intervalley scattering signal.
Clear extinctions are observed perpendicular to the ΓK direction. (h) Intervalley scattering
signal measured for different energies. (i) The dispersion of graphene reconstructed from
the measurement of the ring diameter in panel (h). (j) Intra- and intervalley back scattering
explaining the observations above. The figure is adapted from Ref. [15].

4. Wave-function Berry phase in graphene QPI

4.1. Berry phase in graphene

The π-quantised Berry phase γ gained by the wave functions along an orbit CK that encloses a
“diabolical” Dirac point (see Figure 1b) can be calculated from Berry’s definition:

γ= i
∮
CK

〈u±(K+q)|∇qu±(K+q)〉 ·dq = 1

2

∮
CK

d(ξθq) = ξπ. (3)

For a given valley ξ, the Berry phase does not depend on details of the orbit CK. It only depends
on whether the orbit encloses the Dirac point or not, which makes the Berry phase not only
geometrical but also topological. Importantly, the Berry phase relates directly to the pseudospin
winding, as expressed by the second equality in (3). Measuring the pseudospin winding is
therefore equivalent to measuring the Berry phase. This is precisely what is done in magneto-
transport experiments where the pseudospin winding along cyclotron orbits around a Dirac
point lead to the anomalous Quantum Hall Effect [20].

C. R. Physique — 2021, 22, n S4, 133-143
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While the absence of backscattering observed in the STM experiments proves the pseudospin
of wave-function exist, there remains to determine if the wave-function Berry phase can also
be extracted from QPIs. Since the Berry phase is a manifestation of the wave-function phase
allowed by the U(1) gauge, phase coherence is crucial in the experiment. The STM images
shown in Figure 2 have a large area (100× 100 nm2). If this improves the signal-to-noise ratio
and long wave-length measurements, the phase coherence is blurred by more atomic scatterers.
Instead, we can exploit the local nature of the LDOS observable and resolve the QPI around a
single atomic scatterer.

4.2. Wavefront dislocations in STM images

There are several ways to create atomic scatterers in graphene. Electron and ion bombardments
can induce structural defects such as vacancies [21–23]. One can also use another approach
consisting in absorbing atoms and molecules at the surface of graphene [24–27]. Here, we
focus on hydrogen adatoms chemisorbed on graphene. They form covalent bonds with the pz

orbitals of the carbon atoms. The hydrogenated carbon atoms then become mainly unavailable
for the conduction electrons [28, 29] making it similar to a vacancy. Contrary to vacancies that
imply structural reorganisations of the neighbouring atoms in pentagones, the H adatom locally
preserves the honeycomb structure. This allows the control of their positions on the graphene
surface with a STM tip [30].

Figure 3a presents a STM topography image of a single H adatom on graphene. Far from the
bright protrusion, the effect of the H adatom vanishes, which highlights the pristine hexagonal
lattice. Closer to the adatom, an other periodic signal develops associated with a wavelength
of 3.7 Å. This wavelength is characteristic of intervalley scattering, as confirmed by spectro-
scopic measurements. The energy-resolved image of the LDOS in Figure 3b also captures the
3.7 Å-wavelength modulations of the topographic signal. To visualise the LDOS fluctuations of
wavelength 3.7 Å more clearly, one can filter the intervalley signal out from other scattering
wavevectors in Fourier space. For a specific direction of intervalley scattering, this results in
the LDOS fluctuations shown in Figure 3d. Now the interference fringes of wavelength 3.7 Å are
clearly visible in real space. They also reveal a very striking pattern around the H adatom with the
presence of two wavefront dislocations.

The dislocations in the wavefronts of the LDOS fluctuations are already visible in the raw STM
images, so they are not artefacts of the filter we use in Fourier space. Figure 3d, for instance, shows
that the wavefronts are identical before and after the filtering procedure for a given direction of
intervalley scattering. Figures 3e, f also show that the interference fringes do not disperse with
the energy and that the dislocations are a stable feature of the electronic structure at low energy.

4.3. The dislocation strength is a measure of the Berry phase

From the STM evidence of the absence of backscattering in graphene, we know that the rotation
of the pseudospin has observable effects in the QPI. Then, let us see how the pseudospin
rotates in intervalley backscattering and could affect the QPI. The orientation of the STM
tip at point M supports the cylindrical representation (r,θr), where r is the distance to the
H adatom and θr is the polar angle with respect to the (O, x) axis aligned to the ∆K direction
(Figure 4a, b). The backscattering signal at point M results from the interference between an
incoming wave of wave-vector orientation θq = θr −π and a reflected wave of wave-vector ori-
entation θ−q = θq +π= θr. Due to the lock-in relation between the wave-vector and pseudospin
orientations, we find that the pseudospin rotation is −2θq = −2θr for intervalley backscattering
(Figure 4a).

C. R. Physique — 2021, 22, n S4, 133-143
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Figure 3. (a) STM topography image of an hydrogen adatom at the surface of graphene.
The image is 8 × 8 nm2. The bias is Vb = 200 mV and the tunnel current is it = 5 pA.
(b) Local density of states image of the same atom at the same energy. (c) Modulus of
the Fourier transform of the STM image presented in (b). The image is 78.5 nm−1 ×
78.5 nm−1. (d) The local density of states image of panel (b) is fourier filtered to reveal
the intervalley backscattering interference. The inset shows the filter used. The right part
shows the raw image in which dotted lines highlight the wave fronts. Equivalent result are
obtained by filtering along the other directions of intervalley backscattering. (e, f) Energy
resolved images measured at Vb = 50 mV and Vb =−300 mV respectively the wavefront for
one direction of inter-valley scattering. The red dotted lines correspond to the additional
wavefronts. Similar results are obtained in the other directions.

The wave-vector rotation between the incident and reflected waves is also locked on the tip
orientation around the adatom. By moving the STM tip around the H adatom, we then probe
(twice) the pseudospin winding of the incident electron along an orbit that encloses a Dirac point
in reciprocal space. This is analogous to the magnetic cyclotron orbits induced by a perpendicular
magnetic field. Since θr winds by 2π when the tip circulates around the H atom it follows that the
pseudospin rotation is 4π. This is in agreement with the two additional wave fronts inserted in
the standing wave to accommodate for this phase picked up in the intervalley scattering process
when circulating around the adatom. This measure of the pseudospin winding around a Dirac
cone equivalently constitutes a direct measurement of the Berry phase in real space.

To support this explanation, we further describe the impurity scattering of the massless rela-
tivistic electrons within a T -matrix approach based on Green functions [31]. This diagrammatic
perturbation approach leads to an analytical solution for on-site potentials, regardless of the po-
tential strength. Thus, it enables the description of realistic point scatterers in graphene. For a
H adatom on sublattice A, the surrounding electronic density reads:

δρ(∆K,r,Vb) = δρA(r,Vb)cos(∆K · r)+ξξ′δρB (r,Vb)cos(∆K · r− (ξ−ξ′)θr), (4)

where Vb is the local bias applied between the STM and the graphene sheet. The two terms
on the right-hand side describe the electron density on sublattices A and B , respectively. The
asymptotic behaviours of δρA and δρB characterise isotropic Friedel oscillations. One recovers
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Figure 4. (a) Backscattering process in graphene. Intervalley backscattering between
wavevector states q and −q belonging to nearest-neighbour valleys K and K′ leads to a ro-
tation of the pseudo spin of −2θq. (b) Relation between the STM tip position (M point) and
the pseudospin rotation in intervalley backscattering by a H atom. The figure is adapted
from Ref. [31].

their unusual 1/r 2 decay for intravalley scattering (∆K = 0 and ξ = ξ′) [14, 18, 19]. For intervalley
scattering (∆K 6= 0 and ξ′ =−ξ=−1), there exist sub-wavelength anisotropic oscillations that are
independent of the energy. If they exist on both sublattices (Figure 5a, b), the electron density
on sublattice B has an additional phase shift −2θr, which is nothing but the pseudospin rotation
associated with intervalley backscattering since −2θr =−2θq. Thus, the H adatom on sublattice A
maps the phase singularity of the pseudospin at the Dirac cone apex into real space, and it acts as
a 4π vortex for the charge density on sublattice B , as discussed above in the context of Figure 4a, b.
The strength N of the dislocation is then given by the vortex charge, that is, the circulation of the
gradient phase of the ∆K-wavevector oscillations around the adatom:

2πN =
∮

C
dr ·∇r(∆K · r−2ξθr) =−2

∮
C

dr ·∇r(ξθr) = 4π. (5)

This explains the N = 2 wavefronts emerging from the H adatom in Figure 5b and shows explicitly
that they reveal the pseudospin winding and so the Berry phase. This double dislocation splits
into two single dislocations in the experiments (Figure 3d). This particular feature is recovered
when taking into account the contributions of the two sublattices in the STM signal, as shown in
Figure 5c.

5. Conclusions

The Berry phase π is a topological property that characterises a phase singularity of the wave-
function pseudospin at the diabolic degeneracy point. So far experimental measurements in
graphene relied on magnetic cyclotron orbits enclosing this phase singularity in momentum
space. We have demonstrated instead that one can materialize the phase singularity directly
in real space with an atomic scatterer. The scatterer acts as a vortex for the pseudospin of the
scattering waves and is the source of wavefront dislocations in the LDOS. The dislocation strength
then relates to the circulation of the wave-function pseudospin around the scatterer and so to the
Berry phase around the phase singularity.

Phase singularities were known to be the source of wavefront dislocations, regardless of the
wave equations. Wavefront dislocations are then ubiquitous from the physics of tides and sound
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Figure 5. (a) Charge density modulation induced by intervalley scattering on sublattice A.
(b) Charge density modulation induced by intervalley scattering on sublattice B . (c) Total
charge density modulation induced by intervalley scattering and resulting from the two
sublattice contributions. The modulations have been normalized to 1. The images are
10 nm × 10 nm and the signal is integrated from 0 eV to Vb = 0.4 eV. The white disk depicts
the H adatom. The figure is adapted from Ref. [31].

to electromagnetism, singular optics, and quantum mechanics in connection to the Aharonov–
Bohm wave function [32–38]. As in graphene, the phase singularities of electron wave-functions
in solids are generally associated with the spectral degeneracy points of nodal band structures.
Phase singularities are then at the heart of electronic properties of semimetals and topological in-
sulators and superconductors. We then expect that topological defects in the wavefronts of LDOS
fluctuations may also occur ubiquitously in such materials. This expectation is also supported by
recent predictions and observations in other semimetallic and insulating systems, where wave-
front dislocations also appear as evidence of the band-structure topology [39–42]. Thus, topolog-
ical defects in the wavefronts of the LDOS around point scatterers appear as a promising alterna-
tive approach to identify topological materials in the experiments.
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