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Abstract. For the theoretical study of Šolc filters, used in particular in solar observatories or coronagraphs, we
use the complex plane representation of polarization, which had apparently never been done before in this
context. This avoids the cumbersome matrix calculus, for the two models of basic Šolc filters. That technique
seems promising for further studies on the important question of the apodisation of these filters.
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1. Introduction

Since the end of the xixth century, the interest for very narrow-band optical filters (100 pm or
less) appeared in solar observations, to study prominences, the chromosphere and the corona.
Bernard Lyot conceived such a filter in 1927, and began to realize it in 1933 [1], but could
not complete it because it used calcite polarizers, and at that time calcite was under military
embargo in France, England, Germany, etc: high-grade optical calcite was used for gun sights,
specifically in anti-aircraft weaponry and bombsights. Lyot’s filter was the first birefringent
filter: in its simplest form, it consists in a succession of typically 6 to 9 birefringent plates of
a uniaxial material, cut parallel to its optic axis, whose thickness is in geometric progression
with common ratio 2, each plate being placed between parallel polarizers. With such a device,
a passband of 12 pm tunable over ±1.6 nm has been achieved [2]. Apart from astronomy, and
more recently, Lyot-type filters have found applications to snapshot spectral imaging (used for
monitoring combustion dynamics, or for retinal imaging) [3], to telecommunications [4], to laser
systems [5–7], to sensors [8], etc.

In 1953, Ivan Šolc proposed another birefringent filter [9], simpler and more luminous because
it uses a set of N identical plates placed between only one polarizer before the stack and one
analyser at the end. Both filters have a spectral transmission curve showing a sequence of very
fine peaks. However, in their basic forms, Šolc filters suffer from secondary maxima (at relative
level 11%) three times higher than those of Lyot filters just next to the spectral transmission
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peaks; hence the compelling need of an apodisation, i.e. a reduction of the secondary maxima—a
classical task in image formation and in spectroscopy [10].

While Šolc [11] had computed the spectral properties of his filter with help of a general for-
mula deduced from the Jones matrices calculus [12–14] for a system of N birefringent plates [15],
Evans [16] used this calculus to directly derive a compact formula describing the overall proper-
ties of the basic models of Šolc filters. Some interesting realizations of these filters with astronom-
ical applications have been described first by Valnicek [17], then by Evans [18], Fredga [19], and
lately by Berger et al. [20] for the NASA IRIS solar physics mission. Birefringent Šolc-type filters
are also of current interest for routing wavelength multiplexed fiber-optic signals [21], for sensing
gas concentration [22], for amplifying light in Raman devices [23], etc.

The analytical theory of Šolc filters is computationally much heavier than that of Lyot filters.
Unfortunately, most of further theoretical developments in the synthesis of lossless birefringent
filters do not apply to Šolc filters: for example, Ammann and Chang [24] have considered filters
containing one crystal, one compensator and one polarizer per stage (with the Lyot filter as a
peculiar case) and Ammann has given general theorems which apply to these lossless birefringent
filters [25].

In order to go beyond the basic study of polarization problems, several approaches are
open [26–28] in the case of non-depolarizing and linear devices: (i) a matrix approach, where
polarization is represented by a vector, and the action of an optical component by multiplication
by a Jones matrix, which for non-dichroic devices is proportional to a matrix of the SU(2) unitary
group; (ii) a geometrical approach, where a polarization is represented by a point of the Poincaré
sphere (Σ), and the action of a retarder plate by a rotation of (Σ) on itself, or by an element of the
rotation group SO3(R); (iii) an algebraic approach, where a perfect polarization is represented by
a point of the complex plane, and the action of a linear non-depolarizing device by a complex
homography. Although in practice these three approaches lead to very different calculations,
their respective fecundities are fundamentally linked, because of the group morphisms of SU(2)
towards SO3(R), and of SO3(R) towards the complex homography group—the latter resulting in
the stereographic projection of (Σ), the pole of this projection being the point of (Σ) representing
the linear polarization parallel to Oy [27].

The algebraic approach is rarely used. With it however, Azzam and Bashara [28] derived
elegantly the fundamental equation of the nulling scheme ellipsometry—a fruitful technique to
study a material sample by measuring the ratio of its reflection coefficients for components of
the electric field respectively parallel and perpendicular to the incidence plane. But for the study
of Šolc filters, it seems that the algebraic approach has never been used. The aim of this article
is to show that this technique is a good alternative to study theoretically Šolc filters. We consider
their two basic models—the fan filter and the folded filter [9, 16, 29–31]. Both are made up of N
identical retardation plates, normal to Oz, each producing a retardation (phase shift) 2γ of the
electric field component (of a monochromatic beam passing through the filter) on its slow axis
relative to the component on its fast axis.

For each of these filters, we consider the effect of light propagating through them in the
direction of Oz; the axes to be considered for all the plates are parallel to the xOy plane. In
order to obtain the expression of the spectral transmittance T of the filter (which depends on
the orientations of the polarizer and of the analyser), according to the third approach we use
the correspondence [26–28] between, on the one hand, the polarization of a spectral component
(proportional to e−iωt ) of the electric field, which is written E = E x ux +E y uy using the direct
orthonormal basis (B) := (ux,uy ,uz) (the symbol := indicating a notation or a definition), and
on the other hand a point of affix Z := E y /E x in the complex plane, extended (i.e. compactified
by adding infinity, in order to be able to take into account the linear polarization parallel
to Oy).
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Luc Dettwiller 91

Firstly, to study the transmission by the output analyser (whatever the device that precedes it),
we introduce a generalized form of the Malus law in the complex plane. Then, in a second and a
third step, we shall revisit, using the complex plane, the study of the fan Šolc filter, then the folded
Šolc filter, in order to obtain the rigorous expression of their transmittance T in these classical
cases.

2. Expression of Malus’ law in the complex plane

Let us consider a light of perfect polarization—characterised by Z in the orthonormal basis
(B)—and of complex electric field E, incident on a perfect analyser A which transmits without
absorption the light whose complex electric field is proportional to a of components (ax, ay ,0)
in (B); the perfect polarization of the latter being characterised by ZA := ay /ax . The intensity of

the light incident on A is proportional to ‖E‖2 = |E x |2(1 + |Z |2), while that of the transmitted

light is proportional to |E · a∗|2/‖a‖2 = |E x a∗
x |2|1 + Z Z∗

A |2/‖a‖2 where ‖a‖ :=
√

|ax|2 +|ay |2 =
|ax|

√
1+|ZA |2. So

|E ·a∗|2 = |E x |2|a∗
x |2|1+Z Z∗

A |2 = |E x |2‖a‖2|1+Z Z∗
A |2/(1+|ZA |2) (1)

and the spectral transmittance is written as follows:

T = |E ·a∗|2
‖E‖2‖a‖2 = |1+Z Z∗

A |2
(1+|Z |2)(1+|ZA |2)

. (2)

This result is clearly related to the fact that the polarizations (not necessarily linear) associated
with Z and ZA are orthogonal if and only if Z Z∗

A =−1 [26–28]. On the other hand, T ≤ 1 according
to the Cauchy–Schwarz inequality.

Example

If the incident light has a linear polarization of azimuth α= (ux,E), and if the axis of the analyser
has the azimuth β= (ux,a), then Z = tanα, ZA = tanβ and

T = |1+ tanα tanβ|2
(1+ tan2α)(1+ tan2β)

= [
cosαcosβ(1+ tanα tanβ)

]2

= (
cosαcosβ+ sinαsinβ

)2 = cos2(β−α) (3)

in accordance with ordinary Malus’ law.

3. Basic fan Šolc filter

In this filter, the azimuth (with respect to Ox) of the slow axis Ln of the retardation plate number n
is θn = nθ defined only modulo π (see Figure 1).

3.1. Relationship between incident and emergent polarizations for the plate stack

To begin with, we look at the effect of the passage of light through L1, of incident polarization
characterised by Z with the basis (B). For this purpose, we introduce the direct orthonormal
basis (B1) such that its first and second vector are respectively directed by the slow and fast
axes of L1. For light incident on L1, the change of basis from (B) to (B1) := (u′

x,u′
y ,uz), where

E = E ′
x u′

x +E ′
y u′

y , changes Z into

Z ′ :=
E ′

y

E ′
x
=

−E x sinθ+E y cosθ

E x cosθ+E y sinθ
= Z − tanθ

1+Z tanθ
, (4)

which must then be multiplied by u := e−i2γ, to account for the passage of the light through L1.

C. R. Physique — 2021, 22, n 1, 89-97
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Figure 1. Orientations of the slow axes Ln of the N plates of the fan filter and of the polarizer
axis P . In the usual configuration the axes of the polarizer and of the analyser A are parallel
to each other (β=α mod π), which explains why A is not represented here.

Then, with a fan filter, the complex number Zn characterising the perfect polarization of the
light emerging from plate number n is therefore—in the direct orthonormal basis (Bn) such that
its first and second vectors are respectively directed by the slow and fast axes of Ln—given by the
recurrence relation

Zn = u
Zn−1 − tanθ

1+Zn−1 tanθ
. (5)

The rigorous expression of Zn as a function of Z0 (which corresponds, in (B), to the perfect
polarization of the light incident on L1) requires to solve a homographic sequence [32]. This is
the object of the Appendix A.

3.2. Transmittance in the usual configuration

With a basic fan Šolc filter, the axis direction of its analyser A being given by β= (ux,n), and when
the linear polarization delivered by its polarizer is characterized by Z0 = tanα, the transmittance
T is obtained using the expression (A13) for Z —with n = N —and the expression (2) where
we express ZA using the same basis as for ZN , so the basis (BN ); then ZA = tan(β− Nθ). In
Appendix B, with the variable

χ := arccos(cosγcosθ) (6)

we show that this method gives the classical expression [16, 31]

T =
[

tanθ

tanχ
sin(Nχ)

]2

, (7)

in the usual configuration whereα= θ/2 =β and Nθ =π/2+mπ (m ∈Z); in this case Z0 = tanθ/2,
and ZA = tan(θ/2−π/2−mπ) =−cotθ/2.

When γ tends to pπ (p ∈ Z), (tanθ/tanχ)2 tends to 1, and [sin(Nχ)]2 tends to sin2(Nθ) =
sin2(π/2 + mπ) = 1: that corresponds to the transmission peaks of the filter—for γ = pπ, the

C. R. Physique — 2021, 22, n 1, 89-97
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plates do not change the light polarization, and T = 1 because α = β. Their width is inversely
proportional to N for N À 1. There is indeed an analogy between the fan Šolc filters and the
twisted nematic displays. In such displays, the optical axis of the nematic liquid crystal turns
regularly along the thickness of this medium, and when the incident light is linearly polarized
parallel to the optical axis on the nematic input face, its polarization turns with the optical axis
throughout the crystal. That situation, as soon as γ (mod π) is of the order of θ or more, is the
infinite N limit of a fan Šolc filter, where α= θ/2 =β tends to zero because Nθ is fixed; then, with
Nθ =π/2+mπ, the emerging polarization is crossed with the analyser.

4. Basic folded Šolc filter with an even number of plates

In this filter model, the angle (defined only modulo π) from Ox towards the slow axis of the
retardation plate number n is θn = (−1)n−1θ/2. Orientations of the successive plates are therefore
alternating, as they are successively symmetrical with respect to Ox (Figure 2), hence the name
“folded Šolc filter”.

Let us characterize the polarization incident on L1 by the number Z0 defined with the com-
ponents of E in (B2), and not in (B) as in Section 3. This gives here Z0 = tan(α+θ/2). To find
the polarization of the light emerging from L2Q , let us iterate Q times the following sequence of
calculations:

• transform Z by the change of basis from (B2) to (B1), and multiply by u (in order to
know in (B1) the characteristics of the polarization of the light emerging from a plate of
odd number), which gives Z ′;

• transform Z ′ by the change of basis from (B1) to (B2), and multiply by u (in order to
know in (B2) the characteristics of the polarization of the light emerging from the next
plate), which gives Z ′′.

In (B2), the characteristics of the polarization of the light emerging from the last plate of the
stack are therefore given by ZQ deduced from a recurrence homographic relation.

For the usual configuration α= 0 and β = π/2, therefore Z0 = tanθ/2, and, still with the basis
(B2), ZA =−cotθ/2. When N = 2Q and Nθ =π/2+mπ, the result for T corresponds (by changing
γ into γ+π/2 and χ into χ+π/2) [31] to the result (7) obtained for the fan filter:

T =
[

tanθ

cotκ
sin(Nκ)

]2

, (8)

with

κ := arcsin(sinγcosθ). (9)

When γ tends to π/2+mπ, (tanθ/cotκ)2 tends to 1, and [sin(Nκ)]2 tends to sin2[N (π/2−θ)] =
sin2(Qπ−Nθ) = sin2(Nθ) = sin2(π/2+mπ) = 1: it corresponds to the transmission peaks of the
filter, whose width is inversely proportional to N for N À 1. But these peaks are just on the
middle of the interval between two consecutive peaks of the fan filter [31]. Their interpretation
is straightforward: in the particular case when γ = π/2 (mod π), each plate is half-wave and
therefore changes the incident polarization into its symmetric with respect to the plate axes, and
because the angle between the corresponding axes of two consecutive plates is θ, each pair of
these plates induces a rotation of −2θ for the polarization; the effect of the plate stack is a rotation
of Q ×−2θ = −Nθ for the polarization of the light propagating through it. Then T = 1 because
α= 0, β=π/2 and Nθ =π/2+mπ.

C. R. Physique — 2021, 22, n 1, 89-97
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Figure 2. Orientations of the slow axes Ln of the N plates of the folded filter, of the axes of
the polarizer P and of the analyser A.

5. Conclusion

A useful mathematical approach to Šolc filters is offered by the representation of polarization in
the complex plane. It has already been used by Azzam and Bashara [28] to derive the fundamental
equation of the nulling scheme ellipsometry in an elegant way, while other ellipsometry treatises
which present this formula give a much more cumbersome derivation using matrix calculus. To
study basic Šolc filters, that technique opens a new way that avoids the heavy matrix calculus.
Other applications of the technique may appear. In particular, work is underways [33] to shed
new light on the important question of the apodisation of the Šolc filters [34–36].
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Appendix A.

In order to study the homographic sequence given by (5), one begins by looking for its fixed
points, i.e. the numbers z such that (for sequence Zn)

z = e−i2γ z − tanθ

1+ z tanθ
. (A1)

This is equivalent to a second-degree equation

tanθ z2 + (1−e−i2γ)z +e−i2γ tanθ = 0 (A2)

whose discriminant reads

∆ = (1−e−i2γ)2 −4e−i2γ tan2θ = [(eiγ−e−iγ)2 −4tan2θ]e−i2γ

= −4(sin2γ+ tan2θ)e−i2γ (A3)

hence the two fixed points are:

z1,2 =
−(1−e−i2γ)±2i

√
sin2γ+ tan2θe−iγ

2tanθ
= i

−sinγ±
√

sin2γ+ tan2θ

eiγ tanθ
. (A4)

C. R. Physique — 2021, 22, n 1, 89-97
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We can simplify their expression a little by using χ—defined by (6)—because, by multiplying their
numerator and denominator by cosθ, it comes

z1,2 = i
−sinγcosθ±

√
(1−cos2γ)cos2θ+ sin2θ

eiγ sinθ
= i

−sinγcosθ± sinχ

eiγ sinθ
. (A5)

For the Poincaré sphere (Σ), the rotation of axes considered in Section 3.1, followed by the passage
of the light through of a retardation plate, is described by the composition of two rotations of
(Σ) onto itself, which leaves invariant two diametrically opposite points, associated with two
orthogonal polarizations that are generally elliptical [26]. We verify that this is the case for the
polarizations represented by the roots of (A2), because

z1z∗
2 = −sinγcosθ+ sinχ

eiγ sinθ

−sinγcosθ− sinχ

e−iγ sinθ

= (1−cos2γ)cos2θ− (1−cos2χ)

sin2θ
= cos2θ−1

sin2θ
=−1. (A6)

As ∆ 6= 0, Zn is given by the classical relationship [32]
Zn − z1

Zn − z2
= sn Z0 − z1

Z0 − z2
(A7)

with s given by the following expressions, where the use of the variable χ is very fruitful:

s = e−i2γ− z1 tanθ

e−i2γ− z2 tanθ
= e−iγ cosθ− z1eiγ sinθ

e−iγ cosθ− z2eiγ sinθ

= e−iγ cosθ− i(−sinγcosθ+ sinχ)

e−iγ cosθ− i(−sinγcosθ− sinχ)
= cosχ− isinχ

cosχ+ isinχ
= e−i2χ. (A8)

Then

Zn = z1(Z0 − z2)einχ− z2(Z0 − z1)e−inχ

(Z0 − z2)einχ− (Z0 − z1)e−inχ
= Z0(z1einχ− z2e−inχ)− z1z22isin(nχ)

(z1e−inχ− z2einχ)+Z02isin(nχ)
(A9)

but

z1einχ− z2e−inχ = i
−sinγcosθ+ sinχ

eiγ sinθ
einχ− i

−sinγcosθ− sinχ

eiγ sinθ
e−inχ

= 2i
sinχcos(nχ)− (sinγcosθ)isin(nχ)

eiγ sinθ
(A10)

z1e−inχ− z2einχ = i
−sinγcosθ+ sinχ

eiγ sinθ
e−inχ− i

−sinγcosθ− sinχ

eiγ sinθ
einχ

= 2i
sinχcos(nχ)+ (sinγcosθ)isin(nχ)

eiγ sinθ
(A11)

and the product of the roots of (A2) is
z1z2 = e−i2γ (A12)

so finally

Zn = Z0
[
sinχcos(nχ)− (sinγcosθ)isin(nχ)

]− sin(nχ)e−iγ sinθ[
sinχcos(nχ)+ (sinγcosθ)isin(nχ)

]+Z0 sin(nχ)eiγ sinθ
. (A13)

Appendix B.

In order to obtain T by our method, we have to consider ZN , given by the expression (A13) for the
fan filter. In the usual configuration, we have Z0 = tanθ/2 =−1/ZA ; this yields

ZN = sinχcos(Nχ)− (sinγcosθ)isin(Nχ)−2sin(Nχ)e−iγ cos2 θ
2[

sinχcos(Nχ)+ (sinγcosθ)isin(Nχ)
]+ sin(Nχ)eiγ sinθ tan θ

2

tan
θ

2

= sinχcos(Nχ)− sin(Nχ)cosγ(1+cosθ)+ isinγsin(Nχ)

sinχcos(Nχ)+ sin(Nχ)cosγ(1−cosθ)+ isinγsin(Nχ)
tan

θ

2
. (B1)

C. R. Physique — 2021, 22, n 1, 89-97
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With
a := sin2χcos2(Nχ)+ sin2(Nχ)(1+cos2χ)− sinχsin(2Nχ)cosγcosθ (B2)

and
b := 2sin2(Nχ)cos2γcosθ− sinχsin(2Nχ)cosγ, (B3)

we deduce

|ZN |2 = (sin2χ)cos2(Nχ)+ sin2(Nχ)[1+cos2γcosθ(cosθ+2)]− (sinχ)sin(2Nχ)cosγ(1+cosθ)

(sin2χ)cos2(Nχ)+ sin2(Nχ)[1+cos2γcosθ(cosθ−2)]+ (sinχ)sin(2Nχ)cosγ(1−cosθ)
tan2 θ

2

= a +b

a −b
tan2 θ

2
(B4)

and

(a −b)(1+|ZN |2) = a

(
1+ tan2 θ

2

)
−b

(
1− tan2 θ

2

)
=

a −b
(
cos2 θ

2 − sin2 θ
2

)
cos2 θ

2

= sin2χcos2(Nχ)+ sin2(Nχ)(1+cos2χ)− sinχsin(2Nχ)cosγcosθ

cos2 θ
2

−2sin2(Nχ)cos2γcosθ− sinχsin(2Nχ)cosγ

cos2 θ
2

cosθ

= sin2χcos2(Nχ)+ sin2(Nχ)(1−cos2χ)

cos2 θ
2

= 2sin2χ

1+cosθ
(B5)

and also

1+ZN Z∗
A = 2sin(Nχ)cosγ

sinχcos(Nχ)+ sin(Nχ)cosγ(1−cosθ)+ isinγsin(Nχ)
. (B6)

Always in the usual configuration,

1+|ZA |2 = 1/sin2 θ

2
= 2

1−cosθ
. (B7)

Finally

T = |1+ZN Z∗
A |2

(1+|ZN |2)(1+|ZA |2)

= [2sin(Nχ)cosγ]2

a −b

(a −b)(1+cosθ)

2sin2χ

1−cosθ

2

= sin2(Nχ)cos2γsin2θ

sin2χ
= sin2(Nχ)cos2χ tan2θ

sin2χ
(B8)

and we get the classic result given by (7).
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