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Foreword

Jacques Villaina

a Theory Group, Institut Laue Langevin, F-38054 Grenoble Cedex 9, France

E-mail: jvillain@infonie.fr

This issue brings together invited contributions, mainly from the winners of prizes of the
Academy of Sciences. Their purpose was to explain their research to non-specialists.

Most of these non-specialists are convinced of the equivalence of gravitational mass and
inertial mass, in other words it is the same mass m which intervenes in the expression of the
force f = mm′/r 2 between two masses m and m′ at distance r , and in the relation f = ma
between the force f and the acceleration a. Yet this is an important question in the very current
problem of the quantification of gravity and general relativity. Pierre Touboul, Manuel Rodrigues,
Gilles Métris and Yves André were able to demonstrate this equivalence experimentally with a
hitherto unattained precision of 10−14 and for this reason received the Servant prize in 2019. This
determination requires, as they explain in their article co-authored with Alain Robert, the use of
a satellite and a very precise analysis of the various forces involved.

Long before artificial satellites circled the earth, there were winds that did so too. Notably
stratospheric winds which, curiously, change direction about once a year (more precisely the
period is about 28 months). This phenomenon was reproduced by numerical simulations of
Michael LeBars, who was awarded the Leconte prize for this reason. In his article, with his co-
authors he explains the phenomenon, which is due to the interaction of the stratosphere with
the turbulent troposphere below. As they write, “the rapid small-scale turbulence excites waves
at intermediate scale, which propagate and interact non-linearly to generate large-scale circula-
tions.” The authors have also experimentally investigated in the laboratory some properties of
such two-layer stratified media.

Atmospheric waves (but also oceanic and even seismic) are also central to the article by Pierre
Delplace and Antoine Venaille. Their concern, however, is more mathematical; they show how
geometric concepts commonly used in condensed matter physics (Berry phase, Chern number)
can find application on the scale of the earth. The authors have not yet received a prize from the
Académie des Sciences, but Pierre Delplace had given a very nice invited talk at this Academy,
and we thought it would be useful to have a written version.

Maria Esteban’s article is devoted to solving the Dirac equation, for example for an electron
in an atom. She managed to circumvent one of the difficulties encountered in some methods,
namely phantom (or spurious, as she denotes them) solutions that lack physical significance. For
her work, the Jacques-Louis Lions Prize was awarded to Maria Esteban. It is a Mathematics award
and the winner is a mathematician. We are happy that mathematicians are interested in physics!

ISSN (electronic) : 1878-1535 https://comptes-rendus.academie-sciences.fr/physique/

https://doi.org/10.5802/crphys.26
mailto:jvillain@infonie.fr
https://comptes-rendus.academie-sciences.fr/physique/


136 Jacques Villain

Slava Rychkov’s article is devoted to critical exponents of three-dimensional Ising model.
Unlike those of the two-dimensional Ising model, they are not known exactly, but the author
(Mergier-Bourdeix Prize 2019) describes a method that allows them to be determined with better
precision than all the other methods. Older physicists will appreciate that Slava Rychkov gives, at
the beginning of his article, a current definition of the word “emerging”, which did not exist (to
my knowledge) 40 years ago, and which is now very fashionable.

The last article is also the work of a mathematician who is interested in physics: Yves Colin
de Verdière (Emile Picard medal 2018) briefly describes his collaborations with physicists; more
precisely a geophysicist specializing in earthquakes, and specialists in fluid mechanics.

We thank the authors for agreeing to contribute to this issue, and also for submitting their
contribution early. Other laureates sent their contribution later, or the referees’ reports were a bit
late, so their articles will appear in a later issue of C.R. Physique.

Avant-propos

Ce fascicule réunit principalement des contributions invitées des lauréats de prix de l’Académie
des Sciences.1 Leur tâche est d’expliquer leurs recherches à des non-spécialistes.

La plupart de ces non-spécialistes sont persuadés de l’équivalence de la masse gravita-
tionnelle et de la masse inertielle, autrement dit c’est la même masse m qui intervient dans
l’expression de la force f = mm′/r 2 entre deux masses m et m′ à distance r , et dans la relation
f = ma entre la force f et l’accélération a. C’est pourtant une question importante dans le prob-
lème très actuel de la quantification de la gravitation et de la relativité générale. Pierre Touboul,
Manuel Rodrigues, Gilles Métris et Yves André Pierre ont su démontrer expérimentalement cette
équivalence avec une précision de 10−14 jamais atteinte encore et ont reçu pour cette raison le
prix Servant 2019. Cette détermination nécessite, comme ils l’expliquent dans leur article dont
Alain Robert est coauteur, l’utilisation d’un satellite et une analyse très précise des diverses forces
qui interviennent.

Bien avant que des satellites artificiels tournent autour de la terre, il y avait des vents qui
tournent aussi. Notamment des vents stratosphériques qui ont la curieuse propriété de changer
de sens à peu près une fois par an (plus précisément la période est d’environ 28 mois). Ce
phénomène a été reproduit par des simulations numériques de Michael LeBars, auquel pour
cette raison le prix Leconte a été décerné. Avec ses coauteurs marseillais, dans son article
il explique le phénomène, qui est dû à l’interaction de la stratosphère avec la troposphère
turbulente qui se trouve au dessous. Comme ils l’écrivent, « la turbulence rapide à petite échelle
excite des ondes à moyenne échelle, qui se propagent et interagissent non linéairement pour
générer des circulations à grande échelle ». Les auteurs ont également étudié expérimentalement
en laboratoire certaines propriétés de tels milieux stratifiés à deux couches.

Les ondes atmosphériques (mais aussi océaniques et même sismiques) sont aussi au centre
de l’article de Pierre Delplace and Antoine Venaille. Leur préoccupation est cependant plus
mathématique ; ils montrent comment des concepts géométriques habituellement utilisés en
physique de la matière condensée (phase de Berry, nombre de Chern) peuvent trouver leur
application à l’échelle de la terre. Les auteurs n’ont pas encore reçu de prix de l’Académie des
Sciences, mais Pierre Delplace avait fait un très beau séminaire invité devant cette Académie, et
nous avons pensé qu’il serait utile d’en avoir une version écrite.

L’article de Maria Esteban est consacré à la résolution de l’équation de Dirac, par exemple pour
un électron dans un atome. L’une des difficultés, qu’elle parvient à éviter, est la présence dans

1https://www.academie-sciences.fr/fr/Ceremonies/premiere-remise-prix-2019.html
https://www.academie-sciences.fr/fr/Laureats/laureats-2019-des-prix-thematiques-premiere-ceremonie.html
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certaines méthodes de résolution, de solutions fantômes sans existence physique (que l’autrice
appelle spurieuses). Pour ses travaux, le prix Jacques-Louis Lions a été décerné à Maria Esteban.
C’est un prix de Mathématiques et la lauréate est une mathématicienne. Réjouissons-nous que
les mathématicien-ne-s s’intéressent à la physique !

L’article de Slava Rychkov est consacré aux exposants critiques du modèle d’Ising tridimen-
sionnel. Contrairement à ceux du modèle d’Ising bidimensionnel ils ne sont pas connus exacte-
ment, mais l’auteur (prix Mergier-Bourdeix 2019) décrit une méthode qui permet de les déter-
miner avec une précision meilleure que toutes les autres méthodes. Les vieux physiciens ap-
précieront que Slava Rychkov donne, au début de son article, une définition du mot « émergent »,
qui dans le sens qu’il donne n’existait pas (à ma connaissance) il y a 40 ans, et qui est actuellement
très à la mode.

Le dernier article est encore l’œuvre d’un mathématicien qui s’intéresse à la physique : Yves
Colin de Verdière (médaille Emile Picard 2018) y décrit brièvement ses collaborations avec des
physicien-ne-s ; plus précisément un géophysicien spécialiste des tremblements de terre, et des
spécialistes de mécanique des fluides.

Nous remercions les auteurs d’avoir accepté de contribuer à ce numéro, et aussi d’avoir envoyé
leur contribution tôt. D’autres lauréats nous ont envoyé une contribution plus tardive, ou les
expertises ont un peu tardé, de sorte que leurs articles paraîtront dans un numéro ultérieur des
C.R. Physique.

Jacques Villain
Editor-in-Chief
France
jvillain@infonie.fr
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The MICROSCOPE space mission to test the

Equivalence Principle

La mission spatiale MICROSCOPE pour le test du

Principe d’Equivalence

Pierre Touboula, Gilles Métris∗, b, Manuel Rodriguesa, Yves Andréc
and Alain Robertd

a ONERA, Université Paris Saclay, Chemin de la Hunière, BP 80100, F-91123 Palaiseau
Cedex, France

b Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoazur, 250
avenue Albert Einstein, F-06560 Valbonne, France

c CNES, 18 avenue Edouard Belin, F-31401 Toulouse, France

E-mails: pierre.touboul@onera.fr (P. Touboul), gilles.metris@oca.eu (G. Métris),
manuel.rodrigues@onera.fr (M. Rodrigues), yves.andre@cnes.fr (Y. André),
AlainJM.Robert@cnes.fr (A. Robert)

Abstract. The MICROSCOPE space experiment aimed to test the Equivalence Principle with a much better
accuracy than ever before. Its principle is to compare the free fall of concentric test masses embedded in
a space accelerometer onboard a satellite orbiting the Earth. The effect of non-gravitational forces on the
motion of the satellite is strongly reduced thanks to the so-called drag-free system. MICROSCOPE ran from
April 2017 until October 2019. The analysis of the first series of measurements leads to an improvement of
about an order of magnitude on the accuracy of the test of the Equivalence Principle. No violation has been
detected for the pair of masses in platinum and titanium at the level of 10−14.

MICROSCOPE, proposed by ONERA and OCA as science leaders and developed by CNES as project
manager, is the first European space mission dedicated to fundamental physics on low Earth orbit. ZARM,
PTB and ESA are the main European contributors.

Résumé. La mission spatiale MICROSCOPE avait pour objectif de tester le Principe d’équivalence (PE) avec
une précision bien meilleure que ce qui avait été fait jusqu’alors. Ce type de test a un enjeu important car,
tandis que le PE est un pilier de la relativité générale, il n’est pas imposé par la plupart des théories alternatives
visant à étendre la gravitation pour l’unifier avec les autres interactions de la physique. Fondamentalement
l’expérience consiste à comparer les chutes libres de différentes masses. Pour des raisons de mise en œuvre, le
mouvement des masses n’est pas libre mais contrôlé par un accéléromètre (la charge utile du satellite) et c’est
la force électrostatique nécessaire à maintenir les masses au repos qui constitue la mesure. Plus précisément,
on compare les forces par unité de masse exercées sur des masses concentriques et on recherche dans leur
différence la signature d’une différence de comportement vis-à-vis de la gravité terrestre. L’avantage d’un

∗Corresponding author.
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test dans l’espace est de permettre une chute quasi-infinie et de minimiser de nombreuses perturbations
environnementales. Le satellite est équipé de micro-propulseurs dont les poussées sont asservies pour d’une
part contrebalancer les forces non-gravitationnelles et d’autre part maintenir une loi d’attitude très stable.

Le satellite MICROSCOPE a été lancé en avril 2016 et a fonctionné avec succès jusqu’en octobre 2018, date
à laquelle sa passivation a été réalisée. De nombreuses sessions de mesures ont été réalisées, non seulement
pour faire le test du PE dans différentes conditions mais aussi pour caractériser l’expérience et étalonner les
instruments. Les analyses de l’ensemble des données est en cours de finalisation, mais les résultats obtenus
à partir des toutes premières sessions de mesure apportent déjà un progrès important par rapport à l’état de
l’art : une seule session de mesure a permis d’améliorer la précision du test d’un ordre de grandeur, concluant
à l’absence de violation du PE pour le couple de matériaux platine-titane, au niveau de 10−14. Une autre
session de mesure comparant 2 masses de mêmes compositions (platine) a permis de vérifier l’absence de
systématismes importants dans l’expérience puisque : aucune violation supérieure à 10−14 n’a été détectée.

Keywords. Equivalence principle, Space experiment, Satellite, Accelerometers, Drag free, Inertial mass, Grav-
itationnal mass.

Mots-clés. Principe d’équivalence, Expérience spatiale, Satellite, Accéléromètres, Compensation de trainée,
Masse inertielle, Masse gravitationnelle.

2020 Mathematics Subject Classification. 83B05.

1. Introduction

At the beginning of the 17th century, as part of his work on falling bodies based on the observation
of the descent of different balls on inclined planes, Galileo noted that these movements were
identical regardless of the size and material composition of these bodies [1]. This result, in
apparent contradiction with daily experience, was obtained thanks to the virtual elimination of
the main non-gravitational disturbance constituted by dragging by the atmosphere and which
affects bodies differently according to their cross section and their mass. Half a century later,
Newton confirmed this universality of free fall by comparing the beatings of pendulums with
various test masses and presented this universality as a consequence of the law of gravitation
and Newton’s second law [2]: the first states that the force of gravity which attracts bodies to each
other is proportional to their mass (called gravitational in this case) mG ; the second also asserts
that the resistance of a body to a modification of its movement (acceleration) by a given force is
proportional to its inertial mass mi . Therefore the acceleration resulting from the gravitational
attraction is proportional to the ratio mG /mI :

F =G
MG mG

r 2 and a = F

mI
=⇒ a = GMG

r 2

mG

mI
. (1)

Newton was well aware that these two concepts of mass were very different but the experimental
verification of the universality of free fall led to the conclusion that the ratio mG /mI is the
same for all bodies: the gravitational and inertial masses are proportional or equivalent. This
equivalence is generally quantified by the Eötvös parameter:

η(A,B) =
mG ,A
mI ,A

− mG ,B
mI ,B

1
2

(
mG ,A
mI ,A

+ mG ,B
mI ,B

) = aA −aB
1
2 (aA +aB )

. (2)

The equivalence was checked more and more precisely in the following centuries to reach 10−9

at the turn of the 20th century, thanks to Eötvös’ experiments using a torsion balance [3]. An ex-
periment with much more efficient technology is currently running at Washington University in
Seattle; it recorded the most precise determination, before MICROSCOPE, of the Eötvös param-
eter for laboratory bodies: they demonstrated that the value of this parameter was compatible
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with 0 for the couples (Beryllium, Titanium) and (Beryllium, Aluminium) with order of accuracy
of 2×10−13 [4]. Another type of experiment consists in comparing the movements (very close to
free falls) of different celestial bodies. The most precise experiment of this type consists in com-
paring the movement of the Moon and the Earth in the gravitational field of the Sun, thanks to
the very precise measurement of the Earth–Moon distance by means of laser telemetry [5]. For
such massive bodies, another focus, in addition to a possible violation due to different compo-
sitions of the bodies, is the search for a violation related to the self-gravitational energy of the
bodies (Nordvedt effect) [6]. The best result was obtained by [7]. The two types of experience are
therefore highly complementary.

In 1907 Albert Einstein defined the Equivalence Principle (EP) [8] which is one of the pillars
of his theory of gravitation, General Relativity (GR) [9]. The equivalence of the gravitational and
inertial masses as well as the universality of free fall are consequences of the EP. GR has led to
many new predictions which have all been verified since, such as for example the existence of
black holes and gravitational waves confirmed in 2016 [10]. It remains, however, to unify the
theory of gravitation, relevant to large scales, with quantum mechanics relevant to small scales.
There are several theories seeking to fulfil this objective and, unlike GR, they most often allow a
violation of the EP [11]. Thus, experiments that are able to detect whether or not the EP has been
violated with a greater degree of precision, bring important landmarks for these theories.

Ground based experiments as cited above are limited by the disturbing environment or by
the duration of the experiment. In space far from Earth vibrations and day/night temperature
variations, and with much more measurement time, it is possible to compensate for the external
disturbing forces and torques in order to provide the best environment ever in a low Earth orbit.

The first idea of an EP test in space was first proposed in the 1970’s [12] and studied at the end
of the 20th century at Stanford University [13] with the STEP mission. STEP comprised cylindrical
accelerometers with electrostatic control for the start-up and SQUID detectors for the fine test-
mass position measurement. STEP was a complex cryogenic mission proposal with an expected
accuracy of 10−18 on the EP test. Taking advantage of the Myriade line of CNES micro-satellite,
MICROSCOPE appeared at the beginning of the 21st century to be a simpler and quicker mission
with an objective of testing the EP at the level of 10−15 [14,15], already a breakthrough with respect
to current results.

In this paper we present the first space experiment which aims at testing the EP. The principle
of the mission is described in Section 2 while brief descriptions of the satellite and of the
instrument are presented in Sections 3 and 4. The very first results of the mission are summarised
in Section 5.

2. The MICROSCOPE mission

MICROSCOPE aimed to test the Equivalence Principle with an unprecedented precision of 10−15.
The T-SAGE (Twin Space Accelerometers for Gravitation Experiment) scientific payload, provided
by ONERA, was integrated within a CNES micro-satellite. It was launched and injected into a
710 km altitude, circular orbit, by a Soyouz launcher from Kourou on April 25, 2016. The orbit
is sun-synchronous, dawn-dusk (i.e. the ascending node stays at 18h mean solar time) in order
to have long eclipse-free periods (eclipses are defined as periods within the Earth’s shadow and
happen only between May and July).

In the spirit, the experiment aims to compare the free fall of several test masses orbiting the
Earth. But, for practical reasons, the implementation is slightly more sophisticated and relies on
two nested control loops.

The first loop is inside the payload T-SAGE constituted by 4 test masses grouped by pairs in two
differential accelerometers. Each test mass is placed between pairs of electrodes and its motion

C. R. Physique, 2020, 21, n 2, 139-150
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Figure 1. Configuration of the experiment: the most sensitive axis x (along the axis of the
cylinders) of the accelerometers is maintained parallel to the orbital plane and rotates
around the axis normal to the orbit.

with respect to its cage fixed to the satellite is monitored by capacitive sensors. This motion can
then be controlled at rest by applying the appropriate electrostatic force calculated by a PID
(Proportional Integral Derivative). This means that this electrostatic force compensates for all
other forces. In that way, knowledge of the applied electrostatic potential allows us to measure
the acceleration which would affect the test mass with respect to the satellite in the absence
of the electrostatic force. That is why, in the following, we will use the terminology “measured
acceleration” even if the masses are motionless with respect to the satellite.

The other major control loop in the MICROSCOPE experiment is included in the Drag-Free
and Attitude Control System (DFACS) which applies accelerations on the satellite in order to
cancel (or at least to considerably reduce), the level of the common mode measured acceleration.
This is achieved by means of cold gas thrusters. This system also ensures a very accurate control
of the pointing as well as the angular velocity and acceleration based on the measurements of
angular position delivered by the stellar sensors and of the angular acceleration delivered by T-
SAGE.

Even if T-SAGE measures the linear acceleration along the 3 axes, the measurement along
the x-axis, which is also the axis of the cylindrical test masses, is the most accurate. This axis
is controlled, thanks to the DFACS, parallel to the orbital plane and rotates with a frequency fspin

around the y-axis orthogonal to the orbital plane (Figure 1). In these conditions the component
gx of the Earth’ gravity, and then the searched EP signal ηgx , varies with a very stable frequency
fEP = forb + fspin where forb is the mean orbital frequency.

At first view, the main perturbation comes from the Earth’s gravity gradient, due to the fact
that, despite our best efforts in terms of manufacturing, the centres of mass of the test masses
are not located in exactly the same place, but are separated by an off-centering ~∆ of a few tens
of micrometers. At the altitude of MICROSCOPE this leads to a differential acceleration of a few
10−11 m·s−2, much larger than the accuracy of 10−15 × (7.9 m·s−2) = 7.9×10−15 m·s−2 targeted for
the EP signal. But thanks to the careful design of the experiment (orbit close to circular, sensitive
axis maintained in the orbital plane) this gravity gradient signal is mainly concentrated at DC and
2 fEP frequencies and well decorralated from the EP signal. Moreover, the component ∆y has a
fully negligible impact whereas the components ∆x and ∆z can be accurately estimated in flight
and the corresponding terms of the gradient can be corrected [16].

Up to negligible correcting terms, the model of the measured acceleration takes the simple
form:

Γ(d)
x,corr = b(d)

x +δx gx +∆x Sxx +∆z Sxz +k(d)
x Γ(c)

x +θ(d)
z Γ(c)

y +θ(d)
y Γ(c)

z +n(d)
x , (3)

C. R. Physique, 2020, 21, n 2, 139-150



Pierre Touboul et al. 143

where

• Γ(d)
x,corr is the difference of the accelerations measured for the two quasi-concentric test

masses along the x-axis,
• b(d)

x is the differential bias, mainly constant but also potentially including low frequency
thermal effects,

• δx is very close to the Eötvös parameter η,
• gx is the gravity acceleration projected along the x-axis,
• ∆x and ∆z are the components along x and z respectively, of the vector separating the

two test masses,
• Sxx and Sxz are components of the gradient of acceleration along x due to differences of

position along x and z respectively: Sxx = Txx +Ω2
y +Ω2

z and Sxz = Txz −ΩxΩz where [T ]
is the gravity gradient tensor (the space derivative of the gravity acceleration) and ~Ω is
the angular velocity of the satellite,

• ~Γ(c) is the common mode applied acceleration residue when the DFACS is operating,
• k(d)

x is the difference of scale factor related to the measurement process for the two test
masses,

• θy and θz are the test mass relative misalignment around y and z,
• n(d)

x is the differential noise.

gx , Sxx and Sxz can be computed very accurately from the known position and attitude (i.e. the
orientation in space) of the satellite, whereas b(d)

x , δx ,∆x and∆z are parameters estimated during
the data analysis process [17]. The common mode acceleration effect is also corrected thanks to
calibration sessions which allow us to estimate k(d)

x , θy and θz .

3. The satellite and the acceleration and attitude control system

3.1. Satellite design

The MICROSCOPE satellite was designed and developed by CNES as a space laboratory devoted
to test the Equivalence Principle. The satellite points the instrument accurately along 3 direc-
tions, protects it against non-gravitational forces, and ensures an ultra-stable thermal and grav-
itational environment, with a very low level of microphonic or micro-acceleration disturbances.
It is in close interaction with its payload, the science instrument developed by ONERA described
in Section 4.

The satellite was derived from the Myriade micro-satellite product line and its architecture
was based on DEMETER [18] and PARASOL, the first satellites of the Myriade family [19]. But the
design of MICROSCOPE was extensively adapted for this mission (Figure 2).

The first design driver was the reduction of the mean level of applied accelerations on the
instrument introducing a new function: the acceleration control (currently named drag-free
control) [20]. This function uses the payload as an inertial sensor to measure the external forces.

The acceleration control is performed by the cold gas micro propulsion system (provided by
ESA), which allows us to counteract the perturbations (atmospheric drag, radiation pressure,
electromagnetic forces) at a very small level of tens of µN. The combination of the six degrees
of freedom (angular and linear acceleration) enables the control of torques and forces in a single
subsystem, called DFACS.

The thermal and mechanical architecture design was driven by the need to centre the instru-
ment as close as possible to the satellite centre of mass and by the high thermal stability require-
ment around fEP : better than 1 mK at the sensor unit interface and 10 mK at the associated
analog electronics interface. Therefore, these most thermally sensitive payload units have been
integrated in a specific cocoon at the core of the satellite structure: the BCU, the payload box.
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Figure 2. (© AIT-CNES Y. Le Deuff). The MICROSCOPE satellite being integrated. This
is a space laboratory of about 300 kg. Once closed, the shape is of a cube measuring
1.4 m×1 m×1.5 m. We distinguish in particular the payload T-SAGE (at the centre, under
the silver coating), and the micro-propulsion 2 × 3 tanks (on the left and right walls),
carrying 16 kg of gas under a pressure of 400 bar at the beginning of life.

For the other Myriade satellites, the payload was located on top of the platform and the tank of
the propulsion system was at the centre. The need to ensure an ultra-stable thermal and gravi-
tational environment, with a very low level of microphonic or micro-acceleration disturbances,
imposed a lot of constraints in terms of conception, component selection, manufacturing and
integration.

3.2. The attitude and acceleration control subsystem

The diagram of the DFACS operation principle is shown in Figure 3. The satellite must protect
the payload and thus the test masses from all non-gravitational forces perturbing the EP test
experiment and so an active control of the acceleration and of the attitude of the satellite has been
implemented. The performance of the overall mission was evaluated taking into consideration all
subsystems. To specify the DFACS and the payload in close link was a real challenge.

The DFACS in orbit performance exceeded expectations. Some results are summarised here.
The common acceleration of the spacecraft was reduced to much better than the specified
10−12 m·s−2 around the EP test frequency fEP, see Figure 4. Around twice this frequency, the
specification is relaxed by a factor 3 to 10, sufficient to estimate the Earth’s gravity gradient effect
and thus to calibrate the off-centring of the pair of concentric test masses. This control had to
deal with non-gravitational accelerations (atmospheric braking and radiation pressure) leading
to a mean common mode acceleration signal greater than 10−8 m·s−2.

At fEP, the angular pointing is controlled to less than 7 µrad with an angular velocity stability
better than 10−9 rad·s−1 and the angular acceleration better than 10−11 rad·s−2. This function
needs a very sensitive 6-axis sensor and very fine actuators. For this reason, the accelerometers,
which are also able to measure angular accelerations, are used as the main sensor of the DFACS
control loop with a priori onboard correction of the scale factor to better than 5% and of the biases
to better than a few percent. Scale factors matching is better estimated to an accuracy of a few
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Figure 3. DFACS control loop schematic diagram.

Figure 4. Discrete Fourier Transform of the measured acceleration on the drag-free sensor
along X axis.

10−5 in dedicated calibration sessions to correct the measurements in the scientific data process:
indeed the onboard DFACS needs only rough estimations. The choice of the test mass reference
in the drag-free loop was defined by the scientific needs at each session. Estimated attitude is
the result of the hybridisation between the attitude measurements provided by the Star Trackers
and the angular accelerations measured by T-SAGE. The control laws for the acceleration and the
attitude servo-loops define the total forces Fcom and torques Tcom (Figure 3) to be applied on the
satellite to compensate for the external perturbations. The commanded forces and torques are
transformed into 8 thrust orders sent to the Cold Gas Propulsion System (CGPS).

4. The science instrument

The satellite comprises only one payload: T-SAGE (Twin-Space Accelerometers for Gravity Ex-
periment). T-SAGE was designed on the legacy of more than 40 years’ experience of developing
electrostatic accelerometers [21] which provided the best means of mapping the Earth’s gravity
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Figure 5. Diagram of T-SAGE. Left: cross-section of one SU with the pair of concentric test
masses surrounded by a set of 4 cylinders carrying the electrodes. Right: the two SUs, the
two FEEUs and the two ICUs stacked into one unit called ICUME.

field: GRACE [22], GOCE [23,24]. The payload is composed of two sensor units (SU), see Figure 5,
each one associated with very accurate analog electronics (Front End Electronic Unit, FEEU) and
a digital electronic unit for the test-mass servo-loop and communication with the satellite (In-
terface Control Unit, ICU). It operates at room temperature and is based on full electrostatic ac-
celerometers.

Two concentric and cylindrical test masses in each SU define the accelerometer core. The
SU using two test masses made of two different materials, platinum–rhodium alloy for one and
titanium alloy for the other, is called SUEP and is used to test the WEP. The other SU with both
test masses made of platinum–rhodium alloy serves as a reference to check the whole experiment
and gives more weight to the SUEP results. Each test mass is surrounded by a set of electrodes
(Figure 5) that provides a 100 kHz capacitive detection of its motion which is converted in the
FEEU into a DC voltage proportional to the displacement at first order. The detection signal is
entered at the input of a 40-bit digital controller in the ICU, based on a PID (Proportional Integral
Derivative) servo-loop. The output of the PID is representative of the test mass degrees of freedom
acceleration and transmitted to the spacecraft onboard computer (OBC).

The stability of the accelerometric measurement [17] is mainly obtained thanks to the very
accurate reference voltage applied to the test-mass through a thin gold wire of 7 µm. This DC
voltage, Vp (in Figure 6), determines at first order the scale factor of the instrument when opposite
voltages are applied to opposite electrodes of one degree of freedom. However, the gold wire
damping introduces a Nyquist noise [25], which constitutes the performance limit for this type
of accelerometer.

In order to perform the EP test in the best accelerometric environment conditions, the OBC
picks up the outer test mass measurements and calculates the necessary thrusts to be applied on
each thruster to nullify the accelerometer outputs. The disturbing forces (air drag and solar pres-
sure) and torques (magnetic and gravitational) felt by the satellite are thus taken into account and
counteracted. The scientific data process calculates the difference of the measured acceleration
in order to extract the Eötvös parameter. After a few months of operation, the differential accel-
eration noise was established to be quite stable and evaluated to less than 2×10−11 m·s−2·Hz−1/2

at fEP = 0.9×10−3 Hz for the SUREF and to less than 5×10−11 m·s−2·Hz−1/2 at fEP = 3×10−3 Hz
for the SUEP.

5. First results

The MICROSCOPE mission is divided into different measurement sessions. Sessions represent a
time span during which the satellite and the instrument keep the same configuration (spin, drag-
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Figure 6. Schematic of one degree of freedom servo-loop control.

Figure 7. Differences in the accelerations measured along the X -axis, between the two test
masses of the SUREF instrument. Raw data (black) and after a running average over 240
points (yellow). The zoom on the averaged data (right panel) highlights the periodic signal
due to the gravity gradient.

free control law etc.). Some of these sessions are directly devoted to the EP test while others are
used to calibrate or characterise the experiment. EP sessions are the longest, most of them lasting
120 orbital periods (about 8 days), while calibration sessions typically last a few orbits. Figures 7
and 8 show the differential acceleration measured during 2 EP sessions that were among some of
the first to take place at the end of the commissioning phase: one session using the instrument
SUEP and one session using the instrument SUREF.

The SUREF session had a total duration of 82 orbits, but the precise attitude is available only
for the last 62 orbits which limits the analysis to this period. For this session, the spin frequency
of the satellite was fspin2 = 7.568×10−4 Hz leading to an EP frequency (the frequency at which the
Earth apparently rotates with respect to a frame fixed to the satellite) fEP = 9.249×10−4 Hz. The
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Figure 8. Differences in the accelerations measured along the X -axis, between the two test
masses of the SUEP instrument. Raw data (black) and after a running average over 240
points (yellow). The zoom on the averaged data (right panel) highlights the periodic signal
due to the gravity gradient.

estimated values of the parameters are [17, 26]:

δ = (4±4)×10−15,

∆x = (−35.39±0.02) µm,

∆z = (5.55±0.02) µm.

(4)

Note that the above errors are only statistical errors at 1 sigma. A very preliminary and conserva-
tive assessment has been conducted for the Eötvös parameter. This leads to [17]

δ(Pt,Pt) = [+4±4(stat)±8(syst)]×10−15 (1σ statistical uncertainty). (5)

The SUEP session lasts 120 orbits and the associated spin frequency is fspin3 = 2.943×10−3 Hz
leading to the EP frequency fEP = 3.111×10−3 Hz. The estimated parameters are

δ = (−1±9)×10−15,

∆x = (20.14±0.05) µm,

∆z = (−5.55±0.05) µm.

(6)

Including the systematic errors we get

δ(Ti,Pt) = [−1±9(stat)±9(syst)]×10−15 (1σ statistical uncertainty). (7)

6. Conclusion and prospects

Using only one session representing slightly more than eight days of measurement, we have
already obtained an accuracy about ten times better that the state of the art before MICROSCOPE.
The results are fully compatible with the Equivalence Principle: the free fall of the test masses
in platinum and titanium are identical at the 10−14 level. Confidence in our results has been
strengthened by a double check: first, a very conservative evaluation of the systematic errors
leads to an assessment better than 10−14 and second, the same experiment conducted with
identical test masses in platinum provides a null result with an accuracy better than 10−14 [17].
A by-product of this experiment, which is not fundamental but gives a good idea of its level of
sensitivity, is the estimation of the distance between the test masses with a precision of a few
hundredths of µm using the induced gravity gradient.

Since then, ten times more sessions have been acquired, both to test the EP and to characterise
the whole experiment. This will allow us to improve the statistical error and also the assessment
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of systematic errors (articles in preparation). The MICROSCOPE satellite was deactivated in Oc-
tober 2018 and is slowly desorbiting as predicted with the two wings deployed to increase the air
braking.
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Abstract. Numerous fluid systems organise into a turbulent layer adjacent to a stably stratified one, for
instance, planetary atmospheres and stellar interiors. Capturing the coupled dynamics of such systems
and understanding the exchanges of energy and momentum at the interface between the two layers are
challenging, because of the large range of involved time- and length-scales: indeed, the rapid small-scale
turbulence excites waves at intermediate scale, which propagate and interact non-linearly to generate large-
scale circulations, whose most famous example is the quasi-biennial oscillation of the Earth’s atmosphere. We
review here some recent progress on the wave characterisation and on the non-linear mean flow generation,
based on the combined experimental and numerical study of a model laboratory system. Applications in
climate and stellar modelling are also briefly discussed.

Résumé. De nombreux systèmes fluides s’organisent en une couche turbulente adjacente à une couche stra-
tifiée stable, comme par exemple les atmosphères planétaires et les intérieurs stellaires. La compréhension
des échanges d’énergie et de quantité de mouvement à l’interface entre ces deux couches, et l’appréhension
de leur dynamique couplée sont difficiles, en raison de la grande gamme d’échelles de temps et de longueur
impliquées : en effet, la turbulence rapide à petite échelle excite des ondes à moyenne échelle, qui se pro-
pagent et interagissent non linéairement pour générer des circulations à grande échelle, dont le plus célèbre
exemple est l’oscillation quasibiennale de l’atmosphère terrestre. Dans cet article, nous passons en revue
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quelques progrès récents sur la caractérisation des ondes et sur la génération non-linéaire d’un écoulement
moyen, obtenus par l’étude combinée, expérimentale et numérique, d’une configuration modèle au labo-
ratoire. Les conséquences possibles de nos résultats pour la modélisation climatique et stellaire sont aussi
brièvement discutées.

Keywords. Internal gravity waves, Convection, Wave—mean flow interactions, Quasi-biennial oscillation
(QBO), Atmospheric and stellar dynamics.

Mots-clés. Ondes internes de gravité, Convection, Interactions ondes — écoulemement moyen, Oscillation
quasi-biennale, Dynamique atmosphérique et stellaire.
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1. Introduction

Numerous natural systems exhibit a specific organisation with a turbulent convective layer
adjacent to a stably stratified one: examples include planetary atmospheres with their tropo-
sphere/stratosphere, and stellar interiors with their convective/radiative zones. The dynamics
of such coupled, two-layer systems are quite complex and scatter over large ranges of time-
scales and length-scales. Indeed, motions in the convective layer excite internal gravity waves
(IGWs) which propagate from the interface into the stratified region, sustained by gravity and
the progressive decrease of the ambient density profile (for a full description of IGWs and their
properties, see [1]). IGWs carry momentum and energy, and are thus to be accounted for clos-
ing the energy budget of such coupled systems, in order to make e.g. relevant mid- and long-
term climate prediction. Waves are also of direct interest in e.g. asteroseismology to probe oth-
erwise inaccessible stellar interiors [2]. Besides, waves can non-linearly generate large scale
horizontal flows with global, long-term, dynamical consequences. Such a mechanism has for
instance been invoked to explain the apparent misalignment of some exoplanets around hot
stars [3]. But its most striking evidence is the quasi-biennial oscillation (QBO) of the Earth’s at-
mosphere at altitudes ranging from about 16 to 50 km, corresponding to a nearly periodic re-
versal of the equatorial stratospheric winds between easterlies and westerlies with a mean pe-
riod of 28 to 29 months [4]. Similar oscillations have also been reported in Jupiter’s and Saturn’s
atmospheres [5, 6].

The QBO is classically explained by the specific “anti-diffusive” nature of IGWs (e.g. [7]): IGWs
are more prone to lose momentum when they propagate in the same direction as the ambient
flow, which in turn is reinforced by the deposition of wave momentum. The mechanism for en-
ergy dissipation and wave damping can be due to different phenomena such as radiation, wave
breaking and interaction with critical levels in atmospheres and stars, viscous dissipation in ex-
periments. . . In all cases, as illustrated in Figure 1 (left), starting from e.g. an eastward wind (hor-
izontal mean flow ū) plus two IGWs emitted at the interface with the same frequency and ampli-
tude but with opposite directions, the eastward-propagating wave rapidly deposits its energy and
locally increases the ambient wind, while the westward-propagating wave rises higher up and fi-
nally damps while generating a westward wind at larger altitude. This appealing mechanism was
theorised in [7–9] in a one-dimensionsional (1D) model solving only for the mean flow equation
in the linearly stratified domain: there, the time derivative of the mean flow equals its viscous dis-
sipation plus a source term coming from the momentum flux from damped fluctuations (i.e. the
vertical gradient of their associated Reynolds stress, corresponding to the horizontal average of
the product of the horizontal and vertical velocity fluctuations); it was evaluated analytically by
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Figure 1. Sketch of the classical QBO model of Lindzen–Holton–Plumb [7–9] (left) and
time evolution of the horizontal mean flow ū as a function of depth computed from the
associated 1D model, solving for the mean flow in the presence of a monochromatic, linear
wave source in the WBK limit (right). On the left, the dashed line shows the initial mean
flow profile and the solid line the profile at t = 20510, shown as a vertical dotted lined on the
right. Time is adimensionalised by the buoyancy frequency N and lengths by the domain
height H .

considering the weakly damped, Doppler shifted, linear internal gravity waves in the WKB limit
(i.e. assuming scale separation between the waves and the mean flow) (see details in e.g. [10]).
An example of obtained QBO is shown in Figure 1 (right). The monochromatic QBO mechanism
was also demonstrated experimentally in the famous study by Plumb and McEwan [11], recently
extended by Semin et al. [12]: they used oscillating membranes at the boundary of a linearly-
stratified salty-water layer in order to force a standing wave pattern in a cylindrical shell con-
tainer, mimicking the equatorial stratospheric band. However, in this classical model of the QBO
and in its experimental realisation, the wave forcing remains steady and monochromatic, as op-
posed to the atmospheric configuration where it is due to turbulent tropospheric motions [4].
Besides, the excitation is driven by forced interface displacements and only the stratified layer is
modelled, neglecting any coupling with the turbulent source. In Global Climate Models (GCMs)
capable of spontaneously exhibiting a QBO, part of the waves responsible for its generation, in-
cluding non-orographic IGWs excited by moist convection [13], are not resolved: they have to
be parameterized, and the chosen parameterization scheme significantly affects the obtained re-
sults [14, 15]. It thus remains a challenge to observe and understand if/how/when a large-scale,
reversing flow spontaneously emerges from a wide range of naturally excited IGWs, in a self-
organising coupled two-layer system. And even before doing so, deciphering the mechanism of
wave excitation in such a coupled convective/stably stratified system, as well as predicting the
spectral characteristics of the associated wave field, are still debated. These are the tasks we have
started to tackle over the last few years combining experiments and numerical simulations. This
paper presents a rapid review of our recent contributions [16–21] and of some of the remaining
open questions.
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Figure 2. Density variation as a function of temperature for water around 4 ◦C (left) and for
the generalised equation of state used in our numerical simulations (right).

2. Experimental and numerical investigation tools

2.1. A self-consistent two-layer system in the laboratory: convection in water around 4 ◦C

Previous studies of wave excitation by convection have used either a forced plume [22] or a tran-
sient Rayleigh–Bénard system, starting from a thermally stratified configuration and suddenly
reversing the buoyancy profile from a boundary [23, 24]. But as first realized by Townsend [25],
a self-organising, stationary, two-layer convective/stably stratified system can be relatively read-
ily obtained in the laboratory using water, thanks to its specific property of having its maximum
density at 4 ◦C with a nearly parabolic equation of state around it: as sketched in Figure 2 (left),
in a simple reverse Rayleigh–Bénard configuration with cooling from below at 0 ◦C and heating
from above at e.g. 35 ◦C, a two-layer system spontaneously emerges, with a turbulent convec-
tive layer below a stably-stratified one. Cold buoyant plumes rise from the bottom plate at 0 ◦C,
cross the 4 ◦C isotherm, and theoretically equilibrate around the 8 ◦C isotherm, when neglecting
diffusive effects; reciprocally, dense plumes at 4 ◦C detach from the maximum density interface
and sink into the cooler, convective layer. IGWs propagate in the stably stratified layer above 8 ◦C.
Note that because of the dissymetry between rising and sinking convective structures, the region
between 4 ◦C and 8 ◦C is very specific: it is called the buffer layer [26].

Figure 3 shows our experimental realisation of this system [21], following an earlier, less
evolved version of the set-up [16]. The tank is made of 2 cm thick acrylic sides, a temperature
controlled bottom copper plate, and a transparent, temperature controlled, electric heater as a
top boundary. Inner dimensions are 32×32 cm2 in horizontal and H = 20 cm in height. A cylinder
of outer diameter 29 cm and thickness 0.4 cm might be centred inside this tank to obtain an
axisymmetric geometry prone to the development of large-scale horizontal flows, as shown by
the historical work of Plumb and McEwan [11]. Velocity measurements are performed in a vertical
central plane using Particle Imaging Velocimetry (PIV), to characterize both convective motions
and propagating IGWs (Figure 3 bottom left). Additionally, wave dynamics and the possible
presence of large-scale horizontal flows are assessed by performing horizontal PIV (Figure 3
bottom right) and scanning over the whole depth of the tank. Further details on the experimental
set-up can be found in [21].

C. R. Physique, 2020, 21, n 2, 151-164



Michael Le Bars et al. 155

Figure 3. Picture of the experimental set-up (top) and illustration of velocity measure-
ments in a vertical plane (bottom left) and in an horizontal plane (bottom right). The ver-
tical cross-section shows a streak pattern obtained by superimposing 15 images (i.e. dura-
tion of 7.5 s) from the PIV acquisition movie. The horizontal cross-section shows an instan-
taneous PIV field in the stratified domain, at a distance ∼1 cm above the interface with the
convective zone.

This experimental system is fully characterised by 3 dimensionless parameters, defined as

• the Prandtl number Pr = ν/κ, equal to the ratio of kinematic viscosity ν to thermal
diffusivity κ averaged over the whole domain,

• the Rayleigh number Ra based on the convection-driving density difference ∆ρ =
ρ(4 ◦C )−ρ(0 ◦C ), Ra = g∆ρH 3/ρ0κν, where g is the gravity and ρ0 the mean density,

• the top temperature anomaly relative to the “inversion” 4 ◦C temperature, non-
dimensionalised by the convection-driving temperature difference (0 ◦C to 4 ◦C here),
named Tt .

We also define the mean buoyancy frequency N from the total density contrast over the stratified
layer depth. In our experiment, Pr = 7, Ra = 7×106, Tt =−7.75, and N = 0.135 Hz. As illustrated
in Figure 3, the flow in the convective region is chaotic, with turbulent plumes advected by
large-scale circulation and typical velocities around 1 mm/s. The buffer layer is clearly apparent,
subject to a strong horizontal shear discussed in details in [21]. The stratified domain sustains
IGWs with typical velocities around 10 µm/s: they appear in the horizontal cross-section as
concentric rings, similar to waves propagating from an impact point at the surface of a lake.

2.2. Generalisation in direct numerical simulations

While convection in water around 4 ◦C allows a nice experimental realisation of a self-consistent,
two-layer configuration, it is also intrinsically limited in terms of parameter space exploration. In-
deed, considering a fixed total domain size, we have two adjusting parameters: the top and bot-
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tom temperatures. We aim at maximising the Rayleigh number to reach a chaotic state: we thus
use the maximum possible driving temperature contrast, hence a bottom temperature of 0 ◦C.
Adjusting the top temperature anomaly allows changing the relative depth of the two layers. How-
ever, at steady-state, heat flux conservation between the convective and the stratified domains in-
trinsically fixes the value of the buoyancy frequency: indeed, according to the Howard’s historical
scaling law [27], the convective heat flux does not depend on the convective layer depth, but only
on its driving temperature difference, which is here fixed at 4 ◦C; this fixes the temperature gra-
dient in the diffusive, stratified layer, which determines the buoyancy frequency. Besides, we aim
for a deep enough stratified layer to allow for wave propagation, and lateral heat losses render the
system highly non-linear (see e.g. discussion in [17]): this significantly limits any change in the
temperature anomaly. Finally, using water also fixes the value of the Prandtl number to 7, which
is limiting since as we show in the following, Pr has a tremendous influence on the long-term dy-
namics. Hence, to further explore the dynamics of our self-organising two-layer system, we have
also used numerical simulations, expanding upon the experimental model.

We have first solved the non-Oberbeck Boussinesq Navier–Stokes and temperature equations
using the approximate parabolic equation of state for water, hence closely reproducing the ex-
periments. To do so, we have used either the open spectral solver Dedalus [28] in two dimen-
sion (2D), with periodic horizontal boundary conditions [17], or the open spectral element solver
NEK5000 [29] in three dimension (3D), with perfectly insulating, rigid vertical boundaries [21]. As
will be detailed in the following, this has allowed us to investigate the mechanism of wave excita-
tion [17], to assess the experimental uncertainties issued from e.g. non-perfect thermal boundary
conditions, and to explore the influence of the Prandtl number on the dynamics [21].

Then, to provide a more systematic exploration of a larger parameter space, we have also
considered an equation of state with a constant thermal expansion coefficient in each layer, but
changing sign and value around a chosen inversion temperature (Figure 2 right). Non-Oberbeck
Boussinesq Navier–Stokes and temperature equations are then solved using the open spectral
solver Dedalus [28] with periodic boundary conditions in the horizontal direction, both in 2D
[18, 19] and in 3D (see [20] and Figure 4 left). The ratio S of the thermal expansion coefficients
in the stratified vs. convective layers determines the stiffness of the interface, and reveals three
different regimes (see Figure 4 right and [18]): a whole-layer convective regime at small stiffness,
where the interface is destroyed by rising plumes; a two-layer regime at large stiffness, where
the interface remains flat but gravity internal modes are excited by Reynolds stress fluctuations
from the convective layer; and an intermediate regime in between, with a deformable interface
and propagating IGWs, actually corresponding to the experimental, water configuration. In the
following, we will focus on this last case only.

3. Wave properties

3.1. Mechanism for wave excitation

A good knowledge of the physical mechanism for wave excitation is fundamental for correct IGW
parameterization in climate models and valid interpretation of asteroseismology observations
(see e.g. [30]): as reviewed for instance in [22], it is thus the subject of a long-standing debate,
with two main possible models sketched in Figure 5. In the mechanical oscillator model, con-
vective updrafts rise up and deflect the interface with the stratified zone, hence locally initiating
propagating IGWs. On the contrary, the deep forcing model assumes excitation all over the con-
vective domain from the Reynolds stress associated with turbulent fluctuations: generated IGWs
are first evanescent in the convective domain where no global stratification exists, and turn into
propagating IGWs if/when they reach the interface and the stratified domain.
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Figure 4. Snapshots from numerical simulations at thermal equilibrium using a piecewise
linear equation of state. Left: vertical velocity in a 3D simulation for Ra = 2×108, Pr = 1,
Tt = −52 and S = 400, with red corresponding to upward motions and blue to downward
motions. Note that the color scale is adjusted in each zone separately for better visual-
ization. Right: 2D simulations for a given Ra = 8 × 107, Pr = 1, Tt = −20, and 3 differ-
ent stiffnesses S representative of the 3 different regimes of the system’s dynamics, repro-
duced from [18]. Colors show the density anomaly in the convection zone below the neutral
buoyancy height noted ZNB, and the vorticity in the stratified zone above it (except for the
smaller value of S where ZNB is outside of the domain). We also show the mean temperature
and mean density profiles as dashed and solid lines.

To quantitatively assess which model is the most relevant for our configuration, we use a 2D
full simulation of the water experiment, together with 2 models of the simulation where we only
solve for the linear wave equation in terms of vertical displacement, together with an adhoc
source of excitation. The flexibility of the Dedalus solver [28] is especially suited for this type of
approach. The first model of the simulation corresponds to the deep forcing, where we follow the
approach of Lighthill [31], adapted to our configuration: we first compute from the full simula-
tion the Reynolds stress all over the convective domain, and we then use it as the excitation term
in the wave equation, with a buoyancy frequency equal to zero in the convective domain and to
its horizontal and temporal average in the stratified domain. The second model of the simulation
corresponds to the mechanical oscillator mechanism: we calculate from the full simulation the
position of a chosen isotherm as a function of time. We then use these position fluctuations as
the bottom boundary condition for the wave displacement in the model, solving wave propaga-
tion in the stratified domain above this isotherm only. We have considered 2 different isotherms
encompassing the effective interface location: the 5 ◦C which is very close to the density max-
imum, and the 8 ◦C which corresponds to the maximum height of rising plumes at 0 ◦C in the
absence of dissipation (since the equation of state is parabolic with a maximum at 4 ◦C).
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Figure 5. Sketch of the two possible mechanisms for IGW excitation from convection.

Comparison between the full simulation and the 2 models is shown in Figure 6, considering
the power spectrum density of the vertical velocity as a function of depth in the stratified region.
The deep forcing model agrees remarkably well with the full simulation, while the mechanical os-
cillator model exhibits high frequency IGWs with overestimated amplitude. The interface forcing
considers plumes hammering on the interface, hence produces impulsive excitations that trans-
late into high-frequency waves; it does not correctly account for the regularisation/smoothing of
the complete flow, like e.g. the sweeping motions along the interface of the thermal uplifts ad-
vected by the large-scale convective motions shown in Figure 3. Comparing Figures 6(c) and (d),
it is clear that the forcing by the 8 ◦C isotherm fluctuations does a much better job, as one would
expect from the fact that by then, wave amplitudes are small and the dynamics is much more lin-
ear. Neverthless, the high-frequency signature in the spectrum is still very apparent, contrary to
both the full simulation and the bulk forcing model. In conclusion, and even if in visualizations
we clearly see strong, but intermittent evidences of the mechanical oscillator in the form of wave
clusters emerging from impinging rising plumes (see e.g. Figure 4(left)), the wave energy distri-
bution is clearly dominated by the Reynolds stress coupling with the convective layer. It is thus
better described by a deep forcing model, at least in the explored range of parameters.

3.2. Wave flux

Acknowledging that deep forcing by Reynolds stress is the predominant source of IGWs, it is
possible to compute the full temporal and spatial spectrum of linear waves in the stratified
region from an adhoc modelling of the turbulent region [32]. For instance, Lecoanet and Quataert
[33] describe the flow in the convective region as a Kolmogorov turbulent cascade from an
injection scale corresponding to the large-scale circulation. They then predict that for weakly
damped waves, the energy flux spectrum scales like k4

⊥ f −13/2, where k⊥ and f are the wave
horizontal wavenumber and frequency, respectively; the total wave flux decreases as a power
law of the distance from the interface, with an exponent −13/8. Despite the simplicity of the
underlying mechanistic model, this analytical prediction shows remarkable agreement with our
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Figure 6. Spectrograms of the vertical velocity squared in the full simulation of the 4 ◦C
experiment (a), in the deep forcing model (b) and in the mechanical oscillator model using
the 5 ◦C (c) and the 8 ◦C (d) isotherms. The black line shows the horizontally and temporally
averaged buoyancy frequency profile. Reproduced from [17].

3D simulations, as shown in [20] and illustrated in Figure 7. These scalings can thus be used to
assess possible wave signatures revealed by asteroseismology. For instance, Bowman et al. [34]
recently reported low-frequency photometric variability in a large number of hot massive stars,
which they interpret as the surface signature of IGWs excited by the deep convective core [35].
If it was so, the analysis of those waves would provide a unique probe inside the otherwise
inaccessible depths of those mysterious objects. However, the observed spectral signature does
not match with our validated model, and we rather interpret it as the trace of some subsurface
convection [30]. This issue is currently debated [36].

4. Mean flow generation and reversals in the stratified layer

4.1. Influence of the Prandtl number

Beyond IGWs characterization, we have also assessed the generation of a mean flow in the
stratified region of our 4 ◦C experiment by systematically measuring the azimuthal mean of the
azimuthal velocity as a function of depth and time: results are shown in Figure 8 (left). While
the experimental velocity field exhibits reversals on a typical time much longer than the wave
periods (7.4–250 s typically), the observed signal cannot be related to a QBO process, because the
phase propagation of reversals goes slightly upward, as opposed to the clear downward signature
observed both in atmospheric data [4] and in the ideal, 1D, monochromatic QBO model (Figure 1
right). By reproducing our experiment using 3D numerical simulation, we have checked that this
signal is not due to any improper boundary condition, like e.g. lateral heat losses which could
have induced unwanted natural convection [21]. Actually, an estimate of the viscous propagation
of a velocity perturbation from the interface shows a quantative agreement with the experimental
signal (see dotted lines in Figure 8 left): the stratified layer is viscously coupled to the interface
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Figure 7. Total flux carried by IGWs in the stratified domain (normalised by its theoretical
evaluation, see details in [20]), as a function of height above the interface located at z = 1.
Triangles, circles and stars show results from our 3D simulations for Ra = 4×107,2×108,109,
and the dashed line the theoretical scaling (z−1)−13/8. Color shows the stiffness S, Pr = 1 in
all cases, and Tt is adjusted so as to conserve the same stratified layer depth. Deviations at
small z are due to non-wave flows present around the interface region. Departure at large z
comes from imposed boundary conditions in the simulations. Note that the simulations
with S = 10 (i.e. blue color) were performed in a deeper computational domain, hence
depart close to z −1 = 2 instead of z −1 = 1. Reproduced from [20].

region. In water, viscosity is indeed the dominant diffusive effect, as quantified by its Prandtl
number Pr = 7. Reproducing the same two-layer configuration in a numerical simulation with
Pr = 0.1 actually shows the vanishing of this viscous coupling as well as some tenuous signature
of a QBO-like pattern [21].

The Prandtl number thus has a fundamental influence on the generated mean flow that we
want to address systematically. However, such a study is extremely costly from a numerical
point of view: it requires numerous and long computations with an highly performant solver,
and remains barely feasible today in 3D. We have thus started this systematic study using
our 2D Dedalus model with periodic boundary conditions and a piecewise linear equation
of state [19]. Three illustrative results are shown in Figure 8 (right). At Pr = 0.3, a QBO is
clearly observed; at Pr = 1, a QBO is obtained but is barely visible; and at Pr = 3, the QBO
signature completely disappears and the mean flow has an upward phase suggestive of a viscous
coupling with the convective region. The thresholds between these different regimes deserve a
more detailled, dedicated study, and surely depend on the level of turbulence in the convective
domain. Nevertheless, our first results here highlight that in numerical modelling of the longterm
dynamics of an atmosphere (Pr = 0.7) or a star (Pr = 10−5), the Prandtl number based on
molecular viscosity and thermal diffusivity should not be fixed at 1 for numerical convenience,
as commonly done.

4.2. Parameterisation of IGWs and the resulting QBO

Actually, computing the full dynamics of a two-layer system, including all the time- and length-
scales of convection, of waves, and of their non-linear long-term interactions, remains limited
to idealised or local configurations. In Global Climate Models (GCMs) for instance, physical vari-
ables are typically evaluated every ten minutes on a grid with 100 km resolution in the horizon-
tal and a few hundred meters in the vertical (e.g. [37]); phenomena at smaller scales—like non-
orographic IGWs—are not resolved but appear as parameterizations. Some GCMs are capable of
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Figure 8. Evolution as a function of time and height of the azimuthal average of the az-
imuthal velocity in our 4 ◦C experiment where Pr = 7 (left), and of the horizontal average
of the horizontal velocity for three 2D simulations with the piecewise linear equation of
state considering Pr = 0.3,1,3 respectively (right). In numerical simulations, Tt =−43 and
the other parameters are slightly adjusted to maintain the same depth and buoyancy fre-
quency in the stratified region, i.e. Ra = 8×107,5.6×107,4.4×107 and S = 0.33,0.14,0.06,
respectively. Adapted from [21] and [19]. Note that the experimental results show the strat-
ified domain only. The dotted lines show the typical viscous propagation of a perturbation
from the interface.

Figure 9. QBO-like flows produced in the stratified domain of a full 2D simulation of
the coupled system (M1, same parameters as Figure 8 top right); in a 2D model of the
stratified layer only, using as bottom boundary conditions the forcing extracted from the
full simulation at the depth of neutral buoyancy (M2); and in a 1D Lindzen–Holton–
Plumb-like model sustained with the energy spectrum measured at the interface of the full
simulation (M3). Reproduced from [19].

producing realistic QBO (see e.g. [15] and references therein), whose signature provides a reliable
test for proving the validity of the model [38]. However, different parameterization schemes lead
to different predictions. In addition to very interesting, recent initiatives in assessing QBO mod-
elling uncertainties by performing coordinated numerical benchmarks with GCMs [14, 15], our
simplified model could offer an unique opportunity to assess the minimum necessary ingredi-
ents for a relevant treatment of IGWs and QBO.

Figure 9 (top) shows again the mean flow in the stratified layer from the full simulation at
Pr = 0.3 introduced in Figure 8 (top right). The QBO signature is clearly visible. We then consider
2 models of the simulation. In M2 (Figure 9 middle), we solve the full Boussinesq Navier–Stokes
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equations in the stratified layer only, using as bottom boundary conditions the forcing in velocity
and temperature measured in the full simulation at the interface (i.e. depth of neutral buoyancy).
Finally, bottom Figure (M3) shows results from a 1D Lindzen–Holton–Plumb-like model (i.e.
solving only the mean flow equation with a forcing term computed from the weakly damped,
Doppler shifted, linear internal gravity waves in the WKB limit), using as a forcing term the linear
superimposition (with no cross-correlation) of a large range of wave contributions, each wave
being excited with an amplitude given by the energy spectrum measured at the interface of the
full simulation. Comparing M2 and M3 shows that the 1D Lindzen–Holton–Plumb-like model
actually does a decent job in reasonably reproducing, at much lower numerical cost, the signal
obtained from a given energy input at the interface, despite all underlying approximations (WKB,
weakly damped IGWs, etc.). However, both models fail in predicting the relevant period and
amplitude of flow reversals in the full simulation shown in M1, which reinforces the conclusion
already raised in Section 3.1 on the source of IGWs: considering wave excited by interface
fluctuations only is not sufficient for producing the relevant wave spectrum over the whole
stratified domain, hence for correctly modelling their long-term non-linear effects. One must
actually consider the whole Reynolds stress generated in the convective region. This is clearly not
feasible for GCMs parameterization. But one should at least consider, beyond energy spectrum,
higher order statistical description of the wave interface fluctuations, in order to better account
for the properties of the convective turbulent source, including in particular intermittency and
wave packet production: this is done for instance by [13].

5. Conclusion and open questions

In conclusion, by combining laboratory experiments and numerical simulations, we have suc-
cessfully characterised the mechanism and characteristics of IGWs excitation in a self-organising
two-layer convective/stably stratified system. Our model has also demonstrated that beyond the
historical 1D, monochromatic model of Lindzen, Holton and Plumb [7–9], and in complement to
GCMs where part of the relevant waves still have to be parameterized [15], slowly reversing mean
flows may spontaneously emerge from a stochastic convective excitation, provided the Prandtl
number is low enough. Various challenges now remain to be tackled. First from an experimental
point of view, main challenges are: (i) to produce QBO-like reversals in a set-up with a stochas-
tic excitation, and (ii) to explain why the only successful experimental QBO up-to-now has been
obtained in salty water, i.e. with an equivalent Prandtl number of 700, which seems at odds with
our previous conclusion. Then from a numerical point of view, main challenges are: (i) to ob-
tain QBO-like reversals in 3D direct numerical simulations of the full coupled system, and (ii) to
extend our results on wave excitation and propagation to more realistic configurations, includ-
ing in particular compressibility and rotation effects [39], as well as a spherical geometry. Finally,
beyond atmospheric and stellar applications, it would be of great interest to evaluate the conse-
quences of waves in other natural two-layer systems, like e.g. the Earth’s iron core, where the pres-
ence of a convective domain is the prevalent model for explaining the generation of the Earth’s
magnetic field, but where the presence of a stratified layer has recently been proposed [40]: as in
stars and atmospheres, no doubt that excited waves and associated mean flow in this stratified
layer would have a strong signature, here imprinted in the magnetic field [41].
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1. The renewal of topological waves

As recalled by Michael Berry [1], the investigation of the topological properties of waves started
during the “miraculous 1830s” with the discovery of their singularities: the singularity of the in-
tensity explaining the emergence rainbows; the singularity of the phase, as amphidromic points1

discovered at that time in the North sea; and the singularity of the polarization whose theoret-
ical prediction led to the observation of the conical refraction in optics. Topology of waves was
enriched in the late seventies, for instance with the discovery of wavefront dislocations of wa-
ter waves that emerge when scattered by a vortex, thus providing a classical analog to the quan-
tum Aharonov–Bohm effect [2]. This example anticipates how topological properties of quan-
tum wave functions may inspire the search for novel topological properties of classical waves.
Indeed, for the last ten years, it was realized that topological properties similar to that of the in-
teger quantum Hall effect and of the recently discovered topological insulators could be engi-
neered in metamaterials with classical waves of various kinds, from optics [3] to mechanics [4, 5]
and acoustics [6, 7]. These topological properties are related to phase singularities of the com-
plex eigenstates of the system in a parameter (or reciprocal) space, and translate in real space
as the existence of trapped boundary modes that can be used to guide energy, through the cele-
brated bulk-boundary correspondence [8]. These confined states are often referred to as topolog-
ical modes.

Coincidentally, it was during this same “miraculous” 1830 decade that Gaspard-Gustave Cori-
olis formalised the celebrated inertial force that nowadays bears his name. A spectacular mani-
festation of this force is revealed by the slow deviation of the Foucault pendulum, an effect that
can precisely be apprehended with a geometrical approach [9]. As we shall see below, the Cori-
olis force is also involved in a singularity of geophysical fluid waves, associated to the twisting
of eigenmodes around degeneracy points in their dispersion relation. This topological property
is closely related to the geometric interpretation of the Foucault pendulum. It manifests itself
through the existence of peculiar equatorially trapped eastward oceanic and atmospheric waves,
which bear strong formal similarities with boundary states of a topological material. It was shown
over the last few years that topological waves are indeed ubiquitous in natural systems, with ap-
plication to equatorial dynamics [10], astroseismology [11], plasma [12], or active matter [13, 14].

We review here the recent input of topological tools inherited from topological insulators
to these geophysical and astrophysical waves. We put emphasis on equatorial waves, which
highlight the crucial role of Earth rotation and curvature. We propose to use the Foucault
pendulum as a starting point to introduce key notions of geometrical properties induced by a
rotating planet, and then use these tools to address the topology of equatorial waves.

2. Coriolis force-induced geometrical effects

2.1. Coriolis force on Earth

Coriolis force is an inertial force perceived by an object of velocity v in a rotating frame of
reference. Its effect is to deviate the object’s trajectory in a direction perpendicular to both v and
the rotation vector Ω, i.e. it reads Fc = 2Mv×Ω where M is the mass of the object. Owing to
its rotation, Earth naturally induces a Coriolis force for an observer at the surface of the planet.
However, its effect is clearly negligible at the scale of a human being: to experience the Coriolis
force of only 1% amplitude of our weight, we should run at about 2500 km/h.2 This is due to

1Amphidromic points are phase singularity where tidal amplitude must vanish.
22vΩ/g = 10−2 with g = 10 m·s−2 andΩ= 2π/(24×60×60) s−1.
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the small value of the angular velocity of our planet. One can experience this force in inertial
carousels where the visitors are invited to pass each others a ball; they fail because of the strong
deviation induced by the fast rotation of the carousel.

The Coriolis force cannot be neglected anymore when the motion occurs over a time scale
T comparable to the period of rotation, i.e. when 1/(ΩT ) is of order one or smaller. This is well
illustrated by the celebrated Foucault pendulum, whose vertical oscillation plane significantly
deviates from its initial orientation when oscillating long enough. Similarly, slow motion of
typical velocity U in ocean currents and atmospheric winds are strongly affected by the Coriolis
force at the scale L of a planet, that is again when U /(ΩL) is of order one or smaller. In the
case U /(ΩL) ¿ 1, a striking manifestation of Earth rotation is that currents or winds blow
along pressure lines, as horizontal momentum equations are dominated by a balance between
Coriolis and pressure forces. This property is used to draw midlatitude weather maps, where
cyclones and anticyclones are visualized by using isobars. The long time behavior of the Foucault
pendulum and the slow motion of winds or oceanic currents at the scale of a planet thus both
reveal the influence of Earth rotation. As we explain below, geometrical tools are also in both
cases particularly useful to understand central aspects of their dynamics. It is necessary for that
purpose to introduce a second key ingredient: Earth’s curvature.

Because of Earth’s roundness, the effect of the Coriolis force depends on the latitude. Dynam-
ics at the poles is very much like in the carousel picture, since the plane tangent to the sphere is
in that case perpendicular to the angular rotation vectorΩ. The situation is quite different at the
Equator, as the local tangent planes contain the planet rotation vectorΩ. Standard descriptions
of the Foucault pendulum and planetary waves rely on two assumptions: the motion it nearly hor-
izontal, and in-plane component of the angular rotationΩ are neglected. In the Foucault pendu-
lum case, both assumptions are justified in a small amplitude limit. In the geophysical case, this
can be justified by considering the limit of vanishing aspect ratio between the vertical fluid layer
thickness and horizontal scale of motion [15]. In both cases, only the horizontal components of
the Coriolis force matters, and the effect of planet rotation is encoded into the Coriolis parameter

f = 2Ωsinθ, (1)

with θ the latitude. This parameter is twice the projection of the planet rotation vector on the
local vertical axis (2Ω · n̂). The Coriolis parameter increases from the South pole (θ = −π/2) to
the North pole (θ = π/2), and vanishes at the Equator (θ = 0). The latitudinal variations of the
Coriolis parameter f is the second key ingredient to understand important aspects of Foucault
pendulum dynamics and geophysical flows at planetary scale. In fact, it plays a central role in the
geometrical arguments exposed in the following sections.

2.2. A geometrical look at the Foucault pendulum

In January 1851, Léon Foucault observes in his basement the slow but “irresistible” clockwise
deviation of the oscillation plane of a two meter long pendulum hung from the ceiling, thus
subtly revealing Earth’s rotation [16]. Its demonstration was reproduced a month later at the
Observatoire de Paris and the next month at the Pantheon in Paris, this time with a steel wire
of 67 m and a globe of 28 kg, in order to make visible the Earth’s rotation to everyone [17].

This slow deviation of the oscillatory plane can be directly inferred from a standard procedure,
when taking into account the Coriolis force acting on the pendulum. In the small amplitude
limit, one can safely neglect the vertical velocity of the pendulum, and the horizontal trajectory
can then be written in the compact form z(t ) = x(t )+ iy(t ). Integrating the Newton equations
in the limit where the Coriolis parameter is small compared to the pulsation of the pendulum
( f ¿ ω) then leads to z(t ) = e−i f /2t (αe−iωt +βeiωt ), where the constants α and β depend on the
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initial conditions, which implies a slow clockwise deviation of the vertical oscillation plane of the
pendulum in the Northern hemisphere ( f > 0).

The deviation of the Foucault pendulum can also be apprehended from elegant geometrical
considerations in an inertial frame of reference [9]. This approach does not require any knowl-
edge of the Coriolis force, and is motivated by the slow motion of Earth rotation relative to that
of the pendulum oscillations. This scale separation is referred to as the adiabatic3 limit. Locally,
the pendulum trajectory is described in a tangent plane to Earth, as sketched in Figure 1(a). The
pendulum inertia tends to simply translate the pendulum trajectory parallel to itself in space. Of
course, the pendulum is retained on Earth because of its weight and of the tension of the wire it is
attached to. Those constraints guarantee that the pendulum trajectory always remains in a plane
tangent to Earth. After one period of pendulum oscillation, Earth has adiabatically rotated: the
pendulum trajectory has barely changed, but it does not belong any longer to the same tangent
plane to the sphere in the inertial frame of reference.

We are then left with the question of how its projected trajectory, that we shall represent
with a tangent vector to Earth’s surface, can remain as constant as possible when continuously
moved from a tangent plane to another, that are arranged along a curve on the surface of Earth,
more specifically at fixed latitude? This question is known in Mathematics as the one of parallel
transport of vectors, and was in particular worked through by Tullio Levi-Civita at the beginning
of the XXth century in parallel to Einstein’s general relativity.

In the pendulum case, parallel transport gives a procedure to displace a vector in R3 from a
tangent plane Tx S2 to the sphere S2 at a point x to another tangent plane Tx+dx S2. This procedure
tells that, when parallel transporting a vector along a curve, the rate of change of this vector must
be normal to the surface, as it is so in the Euclidian planar geometry. For instance, the blue vector
in the tangent plane to the North pole in Figure 1(a) is parallel transported along a red curve
(black vector) so that their difference (green vector) is normal to the surface.

Vector fields of parallel transported tangent vectors are illustrated in Figure 1 along different
curves. These are intuitively obtained when the curve corresponds to a geodesics, e.g. along
the Equator or along a Meridian (see Figure 1(a)). Perhaps less intuitively, a vector parallel-
transported along an arbitrary cycle generally does not return identical to itself, but makes an
angle with the initial vector.

As for the Foucault pendulum, we only care about parallel transport of vectors along a longi-
tude. The particular case of the Equator (θ = 0), that is a geodesic, follows from the discussion
above: in that case, a local observer contemplating the pendulum in the tangent planes does not
see any deviation of its oscillations. It is thus worth stressing that the deviation of the Foucault
pendulum is a consequence of the interplay between Earth rotation and Earth local curvature:
for instance, there would not be any deflection on a rotating cylinder. The deflection angle φF

that the pendulum makes between its initial and final orientations after one day depends on the
latitude θ. It can be easily obtained geometrically, by noting that the collection of planes tangent
to the sphere along a longitude are also tangent to a cone (see Figure 1(b)). By unfolding and flat-
tening this cone, the parallel transport of vectors reverts to the usual and intuitive one of Euclid-
ian geometry. Crucially, this operation requires to cut the cone, and we choose the cut position to
coincide with the initial and final position of the pendulum (blue line in Figure 1(b)). It becomes
clear that, to be parallel transported along a longitude, a tangent vector in the Northern Hemi-
sphere has to rotate clockwise, as observed by Foucault. Moreover, it follows from an elementary
geometrical analysis that it acquires an angle 2πsinθ after a full cycle. After one day of oscilla-
tions, the pendulum thus makes a deflection angle φF = 2π(1− sinθ) with its initial orientation.

3This adiabatic limit is not related to heat transfers in the system.
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Figure 1. (a) Parallel transport of a tangent vector along geodesics. After a close path, the
transported vector (red) differs from the initial one (blue) by an angle. Inset: Foucault
pendulum; its trajectory (dashed), defines the black arrow once projected onto the tangent
plane. (b) Parallel transport of a tangent vector along a close path (red) at fixed latitude θ,
that continuously rotates in its tangent plane. Inset: unfold and flattened red cone.

To summarize, the mismatch angleφF of the Foucault pendulum follows from two ingredients:
(1) parallel transport along a longitude, that is due to the adiabatic rotation of Earth, and (2) the
curvature of the surface. More generally, such a phase mismatch of a parallel transported vector
over a loop on a surface reads

φF =
∫

Σ
κdS (2)

where κ is the gaussian curvature of the surface and Σ is the surface enclosed by the loop.
Considering Earth as a perfect sphere of radius R, this curvature is simply κ = 1/R2, and one
recovers the result aforementioned which is nothing but the solid angle delimited by the close
path along a circle of latitude.

It has been found that the polarization of seismic shear waves travelling over the Earth slowly
rotates similarly to the Foucault pendulum [18]. In the following we present another consequence
of Earth rotation and sphericity on planetary waves that is related to a topological number.

2.3. From geometrical phases to topological numbers for waves

The phase accumulated by a system over a cycle is a generic property of vector bundles, called
holonomy. A vector bundle can be seen as a continuous collection of vector spaces parametrized
over a close manifold. In Foucault pendulum case, the collection of vector space are tangent
planes R2, and the base space is the sphere S2. Vector bundles are mathematical objects that
appear in physics for instance when a gauge freedom is involved. In quantum mechanics, the lo-
cal choice of the phase of the wavefunction is an important example of gauge freedom that gives
rise to U (1)-vector bundles. There, quantum eigenstates can acquire a geometrical phase, known
as the Berry phase [19, 20], when a periodic modulation of the system is performed adiabatically.
There is thus a conceptual common root between the quantum holonomy, and that of the Fou-
cault pendulum. However, the nature of the fiber bundle involved is different, and the curvatures
used to describe local geometrical properties of these bundles are also different. In the Foucault
pendulum case, the Gaussian curvature was used in (2). In the quantum case, a different (two-
form) curvature F (n)(λ) is employed, called Berry curvature, which is a property of parametrized
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eigenstates ψn(λ) withλ= (λ1,λ2, . . .) a point in parameter space. The Berry curvature is a phys-
ical observable that was measured in of quantum [21] and classical [22] systems. In particular, it
appears in the semiclassical equations of motion of electronic wavepackets by yielding a correc-
tion to the group velocity to that predicted from the dispersion relation alone. A similar effect is
currently investigated in geophysical ray tracing [23].

Similarly to the phase mismatch (2), the Berry phase results from the integration of Berry
curvature, which formally reads

φ(n)
B =

∫

Σ
F (n) F (n) =

∑
i , j

i

(
∂ψ†

n

∂λi

∂ψn

∂λ j
− ∂ψ†

n

∂λ j

∂ψn

∂λi

)
dλi ∧dλ j . (3)

A pedagogical model introduced by Berry to illustrate this geometrical phase consists of a
quantum spin Ŝ coupled to a slowly varying classical magnetic field B [19]. The dynamics is
encoded in the Hamiltonian Ĥ = µB · Ŝ where µ is a constant involving the gyromagnetic ratio.
Spin eigenstates are denoted by |m〉, with m = {−S,−S + 1, . . . ,S}. When the orientation of B is
varied adiabatically along a close path, a spin eigenstate |m〉 acquires a Berry phaseφ(m)

B =−mΩs

where Ωs is the solid angle drawn by B, by analogy with the deflection angle of the Foucault
pendulum in Figure 1(b).

When Σ consists in the entire close manifold base space, the holonomy along its boundary is
meaningless. Still, the integration of the Berry curvature is meaningful, and is actually an integer-
valued topological index that counts the number of singularities of the U (1)-vector bundle. For
instance, in (2), the integration of the Gaussian curvature over an orientable close surface Σ is
the Euler–Poincaré integer number (1/2π)

∫
ΣκdS = 2(1− g ) that only depends on the genus g of

the surface. For the sphere (g = 0), the value 2 then obtained is the number of vortices where any
tangent vector field necessarily vanishes. The integration of the Berry curvature over the base
space has a quite similar meaning; it corresponds to the number of phase singularities of the
complex eigenstate. This topological number, called the (first) Chern number, was introduced in
physics in 1982 to explain the unexpected remarkable quantization of the transverse conductivity
of the quantum Hall effect [24] and was later found to predict the number of unidirectional modes
propagating without dissipation along the edge of the sample [8].

Although the topological quantization of the conductivity is a specific property of quantum
electronic wavefunctions, the existence of topologically protected unidirectional edge modes
was later realized to be an ubiquitous property of wave dynamics across all fields of physics,
provided that time-reversal symmetry is broken. This requirement is satisfied by the presence
of a perpendicular magnetic field in the Hall effect. It must be engineered differently when
dealing with classical neutral waves. The formal similarity between Lorentz and Coriolis forces
fruitfully suggests that rotating the system is a natural alternative. A nice illustration of the effect
of rotation on mechanical waves was realized with a lattice of gyroscopes coupled by springs [4].
A regime of couplings can be found such that when a gyroscope is excited at the edge of the
lattice, it generates a wave that propagates clockwise along the boundary, without spreading into
the bulk, despite the abruptness of the irregular edge (Figure 2). Another possibility is to rotate
the entire system itself rather than its constituants. In the case of a thin fluid layer in a rotating
tank, this leads to the emergence of unidirectional trapped modes that propagate along the tank’s
wall (Figure 2). Such waves are nothing but a lab implementation of coastal Kelvin waves, that
propagate along natural coats of lakes and continents due to the Coriolis force induced by Earth’s
rotation [15]. Note that contrary to the case of gyroscopes, and to other macroscopic experiments
designed to exhibit mechanical or fluid topological waves [5, 7], there is no underlying lattice in
the rotating fluid case, which is not without causing important conceptual issues concerning the
topological nature of these boundary waves [25–27].
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Figure 2. Left: clockwise mechanical edge mode propagating in an array of coupled gyro-
scopes, reproduced from [4]. Colors encode the phase of the gyroscopes. Right: laboratory
realization of a coastal Kelvin wave in a rotating tank, reproduced from [28]. Colors encodes
variations in the fluid layer thickness. Snapshots are taken at two successive times to visu-
alize wave propatation.

2.4. Topological equatorial waves

Equatorial atmospheric and oceanic waves are another emblematic example of unidirectional
trapped modes in geophysics. The Equator around which these waves are trapped plays a role
analogous to that of a coast for the Kelvin waves, except that the Equator is not a boundary
of the fluid. Nevertheless, it can somehow be interpreted as a kind of interface between two
Hemispheres where the Coriolis parameter f defined in (1) has opposite sign. Because time-
reversal symmetry is broken by the Coriolis parameter f , one may expect peculiar topological
waves at the interface. Indeed, he problem of a continuous system with such a smooth interface
turns out to be a convenient framework to show the topological origin of confined unidirectional
waves, in the sense that their number is precisely given by the Chern invariant.

Equatorial waves at planetary scale are well described by the linearized shallow water model
(see Figure 3(a)). This textbook model describes an incompressible fluid whose thickness is much
smaller than the horizontal length scale of motion. In this limit, hydrostatic balance holds in the
vertical direction, and the horizontal velocity field v(r) is depth independent. The dynamics then
follows from mass and horizontal momentum conservation. Shallow water waves are solutions
of this model linearized around a state of rest. In the case where the dynamics takes place on a
flat surface, it can be written as the following Hermitian eigenvalue problem, quite similarly to a
quantum mechanical problem




0 −i f (y) kx

i f (y) 0 i∂y

kx i∂y 0







ṽx

ṽy

η̃


= ω̃(kx )




ṽx

ṽy

η̃


 . (4)

The two horizontal velocity components (ṽx , ṽy ) are coupled to the free surface elevation η̃. Time
unit has been chosen so that the intrinsic celerity c = √

g H has been set to unity, with g the
standard gravity and H the averaged layer thickness (see Figure 3(a)). In (4), kx is the eastward
wave vector component while y refers to the direction pointing to the North pole. The function
f (y) accounts for the variations with latitude of the Coriolis parameter.

Eigenmodes of (4) are tricky to derive analytically for an arbitrary profile f (y), and becomes
even more complicated when curvature effects are taken into account. A useful and standard
simplification called the β-plane approximation consists in linearizing the Coriolis parameter
around the Equator, i.e. f (y) = βy . This approximation was fruitfully used by Taroh Matsuno in
1966 to derive the frequency spectrum shown in Figure 3(b) [29]. This spectrum, besides being
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Figure 3. (a) Shallow water model. Thickness H is much smaller than horizontal length
scale L. (b) Upper panel: variation of the Coriolis parameter with latitude on the sphere.
Lower panel: dispersion relation of shallow water waves computed by T. Matsuno in 1966
under the beta plane approximation f = βy . Notice the presence of two unidirectional
modes filling the gap between low frequency Rossby waves and high frequency Poincaré
waves. Those are the equatorial Kelvin and Yanai waves. (c) Dispersion relation of shallow
water waves with constant f , for different tangent planes to the rotating sphere. The gap
vanishes when f = 0. In that case, a degeneracy point occurs at the origin in (kx ,ky ) plane.
The right panel is a schematic representation of the eigenmode bundles in parameter space
(kx ,ky , f ). The base space in a sphere surrounding the degeneracy point. The topological
charge of this degeneracy point explains the emergence of equatorial Kelvin and Yanai
waves.

discrete, shows that the modes gather in two groups separated by a gap of amplitude
√
βc: the

low frequency Rossby waves and the high frequency Poincaré waves. Negative eigenvalues are
also shown, for reasons that will become clear in the topological analysis below. These modes are
simply related to the positive ones by a symmetry ω̃(kx ) → −ω̃(−kx ) which is analogous to the
particle-hole symmetry in quantum mechanics.

In addition to Rossby and Poincaré wave modes, Matsuno found two additional waves whose
dispersions connect the two previous branches by continuously bridging the frequency gap.
These two modes, called equatorial Kelvin and Yanai waves, share the remarkable property to
have a positive group velocity at any wave vector, so that they always propagate energy eastward,
in contrast to Rossby and Poincaré waves. Moreover, there is a finite range of frequency in
which these modes are the only one to be excited. This phenomenology is precisely that of the
edge modes of a two-dimensional topological material where time-reversal symmetry is broken.
In topological insulators, the topological properties emerge in the bulk, that is in a simplified
edgeless problem where translation symmetry is restored. The situation is a bit different here,
since the equatorial problem is already edgeless. However, a “bulk Hamiltonian” can also be
assigned to the situation where translation symmetry would be restored in the y direction, by
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considering the Coriolis function varying with latitude as a (constant) parameter f , and then
Fourier transform with respect to the y coordinate. This leads to the distinct parametrized
eigenvalue problem




0 −i f kx

i f 0 ky

kx ky 0







vx

vy

η


=ω(kx ,ky , f )




vx

vy

η


 (5)

where the eigenfrequencies simply consist in three bands ω± =±
√

k2
x +k2

y + f 2 and ω0 = 0. Dis-
persion relations are shown for different values of f in Figure 3(c). The modesω± are separated to
the flat oneω0 by a frequency gap of amplitude | f |. In other words, at fixed f , the system behaves
as a two-dimensional insulator with broken time-reversal symmetry. In a condensed matter con-
text, the standard next move would be to compute the Chern number of each of the bands, by in-
tegrating the Berry curvature—obtained from the eigenstates of (5)—over the close manifold pa-
rameter space, in that case, the two-dimensional Brillouin zone span by kx and ky , that is equiv-
alent to a torus. However, for geophysical waves, and more generally for waves in continuous
media, the absence of a Brillouin zone makes this procedure inappropriate. Instead of consider-
ing the waves for a single fixed value of f , one can look on the continuous family of solutions in
parameter space (kx ,ky , f ).

Three eigenfrequencies and their corresponding eigenvectors, that we shall note Ψ± and
Ψ0, are assigned to each point of the parameter space. Once normalized, the eigenstates do
not depend on their distance from the origin in parameter space, but only on the orientation.
In other words, they live on a sphere that surrounds the origin. Note that the origin is a very
particular point of the problem, since there the three bands touch. Bands touching points are
known to be a source of Berry curvature which, once integrated over the sphere that surrounds it,
yields a quantized Chern number C = (1/2π)

∫
S2 F ∈Z. Surprisingly, this shallow water problem

is formally analog to that of the quantum spin coupled to a classical magnetic field briefly
introduced in Section 2.3. Indeed, the Hermitian matrix in (5) playing the role of the quantum
Hamiltonian takes the form B · Ŝ where B = (kx ,ky , f ) and Ŝ is a spin-1 operator. The Chern
numbers can then be inferred directly from the Berry phase when the solid angle is that of the
entire sphere, i.e. Cm = (1/2π)(−m)4π that gives (2,0,−2) for the three bands [10].

Importantly, these Chern numbers are directly related to a spectral property of the equatorial
frequency spectrum ω̃(kx ): a band n of this spectrum gains −Cn modes when increasing kx ,
as emphasized in Figure 3(b). It follows that modes have to transit from band to band; this is
referred to as a spectral flow. The set of Chern numbers found in the parameterized problem (5)
thus imposes that two modes of positive group velocity have to fill the gap, hence the topological
origin of the Kelvin and the Yanai waves [30]. This topological information does not depend on
the shape of the Coriolis function f (y), which can be continuously modified without changing
the spectral flow. The existence of these two unidirectional modes is thus guaranteed beyond the
β plane approximation.

First observations of equatorial Kelvin and Yanai waves in Earth atmosphere and oceans came
almost simultaneously to their theoretical predictions, in the late sixties and the seventies. Their
discovery has been central to our modern understanding of tropical dynamics. Indeed, they are
involved in the most important internal modes of climate variability in the equatorial area. For
instance, equatorial Kelvin waves travelling across the Pacific ocean are precursors of El Niño
events, atmospheric equatorial Kelvin waves are often invoked in the explanation for superrota-
tion phenomenon reported in other planets, including exoplanets, and the Quasi-Biennial Oscil-
lations of stratospheric winds are partly driven by atmospheric Yanai and equatorial Kelvin waves
in the middle atmosphere, see e.g. [15].
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3. Conclusion and prospects

Unidirectional equatorial waves can be predicted from topological considerations without solv-
ing the rotating shallow water model on the sphere, just as the deviation of the Foucault pen-
dulum could be inferred from geometrical considerations only, without deriving the equations
of motion. Besides, it highlights the important role of broken symmetries in a system at hand,
and of interfaces induced by the symmetry breaking parameter. This topological approach is not
restricted to the shallow water model, nor to systems subject to the Coriolis force. Similar argu-
ments can be used to predict in a simple way the existence of remarkable waves in various com-
plicated continuous systems such as astrophysical and geophysical flows. The strategy consists
in searching for band crossing points in dispersion relations, identifying the three-dimensional
parameter space in which these degeneracies occur, and computing the topological charge de-
scribing eigenmodes twisting around these degeneracy points in parameter space. It is then pos-
sible to use these information to predict the emergence of trapped modes along an interface in
physical space. Beyond the equatorial case, this method has already been used to predict the
emergence of Lamb-like waves in compressible-stratified fluids [11], with possible applications
in astroseismology, or to peculiar plasma waves [12], with possible experimental realizations.The
discovery of other topological waves in seismology, astrophysics, and geophysical fluid dynamics
is at hand.
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Version française abrégée

Depuis 1997, en collaborant avec un groupe de chercheurs (J. Dolbeault, M. Lewin, M. Loss, E.
Séré and M. Vanbreugel), nous nous sommes intéressés à l’étude des propriétés et des valeurs du
spectre ponctuel d’opérateurs à gaps, et en particulier, d’opérateurs de Dirac. Nous cherchions
également à proposer un algorithme de calcul libre des problèmes liés à la pollution spectrale.
En effet, il est bien connu que selon le choix des bases de calcul et selon les méthodes utilisées,
des états spurieux peuvent apparaître dans les calculs. Pour des références dans la littérature
physique et chimique voir par exemple [1–7]. Des analyses et propositions intéressantes peuvent
être trouvées dans [8–15].

Après avoir analysé le problème de manière abstraite, nous avons obtenu des applications
particulièrement intéressantes pour l’opérateur de Dirac perturbé par un potentiel extérieur
électromagnétique. Utilisant une décomposition de l’espace des spineurs proposée par Talman
[16], l’application du théorème abstrait nous a permis de trouver un algorithme qui est très
performant pour le calcul des valeurs propres d’opérateurs de Dirac, et ceci sans avoir à faire
face à l’apparition de valeurs spurieuses. De nombreux résultats dans la littérature proposent des
choix de bases finies particulières pour éviter la pollution spectrale. Dans un des derniers travaux
présentés dans cette Note, nous montrons que dans notre approche il y a une énorme liberté
dans le choix des bases finies, et que dans tous les cas, il n’y aura pas de valeur spurieuse, et
que l’algorithme convergera vers les valeurs propres. Des résultats récents s’intéressant à l’étude
détaillée des domaines des opérateurs nous ont donc permis de donner une base solide à cet
algorithme pas seulement pour les calculs impliquant des atomes légers, mais aussi, et surtout,
dans le cas des atomes lourds, qui sont les plus intéressants dans une théorie relativiste.

1. Introduction

In 1928 [17] Paul Dirac derived an operator for quantum electrodynamics, starting from the usual
classical expression of the energy of a free relativistic particle of momentum p ∈R3 and mass m,

E 2 = c2|p|2 +m2c4. (1)

His aim was to propose a local differential operator of first order with respect to p =−iħ∇:

Dm,c,ħ =−icħα ·∇+mc2β=−icħ
3∑

k=1
αk∂k +mc2β, (2)

where α1, α2, α3 and β are Hermitian matrices which have to satisfy the following anticommuta-
tion relations: 



αkα`+α`αk = 2δk`I4,
αkβ+βαk = 0,
β2 = I4.

(3)

It can be proved [18] that the smallest dimension in which (3) can take place is 4 (i.e. α1, α2, α3

and β should be 4×4 Hermitian matrices), meaning that Dc has to act on L2(R3,C4). The usual
representation in 2×2 blocks is given by

β=
(

I2 0
0 −I2

)
, αk =

(
0 σk

σk 0

)
(k = 1,2,3),

where the Pauli matrices are defined as

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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In which follows we will always work in the framework of atomic units, where we can assume
that the constants ħ,c and m are equal to 1. For this particular choice of units, the unperturbed
Dirac operator will be denoted by H0:

H0 :=−iα ·∇+β.

It is well known that the Dirac operator is essentially self-adjoint and that its spectrum is all
continuous spectrum and equal to

(−∞,−1]∪ [1,+∞).

Of course the main interesting situation for atomic or molecular physics is to consider the Dirac
operator perturbed by an external electromagnetic potential, corresponding to the interaction
of the electron(s) with other charged particles and its evolution under the action of an external
magnetic field. Without magnetic field, one is thus interested in looking at operators of the form
H0+V , and with magnetic field, one has to replace the usual gradient operator ∇ by the magnetic
gradient ∇A = ∇+ iA, where A is a potential related to the magnetic field B by B = curl A. In this
case, the magnetic Dirac operator is denoted by HA:

HA :=−iα ·∇A +β.

If now we consider the perturbed operator HA+V and the potential V is for instance Coulomb-
like, eigenvalues of HA +V appear in the gap of the essential spectrum and those eigenvalues
correspond to discrete electronic states in the atom or the molecule. Computing eigenvalues
of operators in gaps is notoriously difficult. For instance, the ground state, or better said, the
minimal electronic eigenvalue, cannot be found by a simple minimization procedure.

Another serious issue is that depending on the choice of the approximating basis sets and on
the computing algorithm, spurious eigenvalues not converging towards exact eigenvalues can
appear. For examples and discussions on this issue see for instance [1–7] in the Physics and
Chemistry literature. Interesting analysis and propositions to deal with this issue can be found
in [8–15].

In [19–22], under adequate assumptions, variational min–max formulas were provided for the
eigenvalues in gaps of self-adjoint operators A. These formulas are based on a decomposition
H =Λ+H ⊕Λ−H given by two orthogonal projectors Λ± of the ambient Hilbert space H , and
take the general form

λ(k) = inf
W ⊂F+

dim(W )=k

sup
ψ∈W ⊕F−

〈ψ, Aψ〉
‖ψ‖2 . (4)

Here, F± = Λ±F , with F a dense subspace of the domain of H , such that the quadratic form
〈ψ, Aψ〉 is well-defined on F+⊕F−. See also the recent articles [23–25]. Based on a simple and
very useful orthogonal decomposition proposed by Talman [16], it was proved by Dolbeault,
Esteban and Séré in [22] for the case without magnetic field, and later in [26, 27] by Dolbeault,
Esteban and Loss for the case of an external constant magnetic field, that the above abstract result
implies that for electrostatic potentials having at worst singularities of the Coulomb type, −ν/|x|,
with 0 < ν≤ 1, the eigenvalues of the operator HA +V can be found by the following simple and
computable procedure: for functions ϕ ∈ L2(R3,C2), consider the quadratic form

QA,V ,λ(ϕ) :=
∫

R3

( |σ ·∇Aϕ|2 dx

1+λ−V
+ (1−λ+V )|ϕ|2

)
dx

which is decreasing in λ. If the electrostatic potential is not very large, and in particular, if the
singularities of V are not worse than −ν/|x|, with 0 < ν≤ 1, condition which is necessary to prove
that the operator HA +V can be defined as a self-adjoint operator in a physically meaningful
manner (see Esteban–Loss [26, 28]), then, the quadratic form QA,V ,λ is positive for λ in some
interval [−∞,b), b ∈ (−1,1). Moreover the first (smallest) eigenvalue of HA+V will be the smallest
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λ for which there is a function ϕ satisfying QA,V ,λ(ϕ) = 0. More concretely, and equivalently, let
T (λ) be the operator defined via the quadratic form which acts on 2-spinors:

(ϕ,T (λ)ϕ) :=
∫

R3

( |σ ·∇Aϕ|2
λ+1−V

+ (1−λ+V )|ϕ|2
)

dx

and consider its first eigenvalue, µ1(λ). Since T (λ) is monotone decreasing with respect to λ,
there exists a unique λ1 such that µ1(λ1) = 0. Then λ1 is the smallest eigenvalue of HA +V in
the gap (−1,1). Furthermore, for every positive integer k, if λk is the unique root of the equation
µk (λ) = 0, then λk is the k-th eigenvalue of HA+V in the gap (−1,1), counted with multiplicity. All
these results were proved in [22] in all cases where the operator HA +V is self-adjoint and when
A corresponds to a constant magnetic field and when V is not too large (the concrete conditions
are stated in the theorems contained in [22]).

It is quite simple to propose now an algorithm to compute the eigenvalues of HA +V . For
that purpose let us choose an n-dimensional space of functions from R3 to C2 and generated by
{ϕ1,ϕ2, . . . ,ϕn}. Let Tn(λ) be the n ×n matrix whose elements are given by

T i , j
n (λ) =

∫

R3

(
(σ ·∇Aϕi ,σ ·∇Aϕ j )

λ+1−V
+ (1−λ+V )(ϕi ,ϕ j )

)
dx.

Let µn
1 (λ) the smallest eigenvalue of An(λ). Then, the unique zero of the map λ 7→µn

1 (λ), λn
1 , is

an approximation of the first eigenvalue of HA +V in the gap (−1,1) if the set {ϕ1,ϕ2, . . . ,ϕn , . . .}
generates a space F like the one present in the above abstract theorem about eigenvalues in gaps.
Or more generally, if the set {ϕ1,ϕ2, . . . ,ϕn , . . .} generates the domain of the operator HA+V . Using
this algorithm, in [29], in collaboration with Dolbeault, Séré and Vanbreugel, we computed the
ground state and the ground state energy for an electron in the electrostatic field created by light
and heavy nuclei (H, He+, Cr23+ and Th89+). The algorithm converged beautifully, without the
presence of spurious eigenvalues that are often present in Dirac eigenvalues computations. In
this case we chose the functions ϕn as Hermite polynomials. In [30], with Dolbeault and Séré
we performed the same kind of computations for a diatomic configuration, with both light and
heavy atoms in two separate locations (H+

2 and Th179+
2 ). These computations were done choosing

B-spline functions for the functions ϕn and in cylindrical coordinates. Again the computations
ran perfectly, and the values obtained in these computations fitted perfectly experimental data
and data obtained by using other algorithms. In [27], with Dolbeault and Loss we also made
computations for the magnetic case, again for light and heavy nuclei, and once again the results
fitted extremely well existing results obtained by other means. In particular we were able to
produce new eigenvalue approximations for heavy atoms in cases that had not been dealt with
before.

But, even if the above computations were excellent and the algorithm was robust and very
efficient, there was a deep problem behind them. Indeed, for electrostatic potentials involving
Coulomb-like singularities −ν/|x|, with 0 < ν<

p
3/2, the domain of the Dirac–Coulomb operator

H0 − ν/|x| is equal to the Sobolev space H 1(R3,C4) defined as the 4-spinors which are square
integrable and such that all their first derivatives are also square integrable. But when ν >

p
3/2

it is known that the domain is contained in H 1/2(R3,C4) and contains H 1(R3,C4), but it is not
equal to any of these two spaces. In the concrete case of Coulomb potentials, the domain could
be computed explicitly, but not for other potentials having the same singularities, but not being
exactly Coulomb-like. It was therefore delicate to use the above abstract theorem to derive the
algorithm and use it with basis sets that maybe were not generating the domain of the operator.
This is why recently in [31–33]), with Lewin and Séré we have addressed this issue, describing in
full detail the domains of the Dirac–Coulomb-like operators for large ν, that is, for

p
3/2 ≤ ν ≤ 1

and trying to see which properties are necessary for the basis sets for the above algorithm to
converge to the eigenvalues, and not to some numbers above them.
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In [31] we described the domains of Dirac–Coulomb-like operators for 0 < ν ≤ 1. In various
papers written in the 70’s and 80’s we can find proposals of physically meaningful definitions of
Dirac–Coulomb operators as self-adjoint operators for 0 < ν< 1 and in all cases the domain was
shown to be a strict subspace of H 1/2(R3,C4). In the end, all those proposals were shown to be
equivalent, of course. For full details on all those developments see [18, 34–42]. The limit case
ν = 1 is harder, and this was dealt with by Esteban and Loss in [28] by using a novel method
to prove self-adjointness for operators with gaps. This was later extended by Arrizabalaga et al.
in [43, 44]. In the case ν = 1 the domain is not a subspace of H 1/2(R3,C4) anymore. This full
description of the domain of Dirac–Coulomb-like operators was the first step towards the full
understanding of how to interpret the results of the numerical computations done by the above
algorithm. In [31] we found an additional result proving that the space C∞

c (R3 \{0},C2) (compactly
supported functions which are infinitely derivable in all points except at the origin) is dense in the
space of the upper components (2-spinors) of the elements of the domain. This density argument
is key in the proof of our main result which states that in the min–max characterization of the
eigenvalues (4) of the operator H0−ν/|x], 0 < ν≤ 1, the space F can be any among those satisfying

C∞
c (R3 \ {0},C4) ⊂ F ⊂ H 1/2(R3,C4)

The immediate consequence of this result is that when running the above algorithm we can
take basis sets that span any space between C∞

c (R3 \ {0},C4) and H 1/2(R3,C4)! This creates an
impressive flexibility in the choice of the basis sets, ensuring that whichever basis set we take in
this class, will lead towards the eigenvalues of H0 −ν/|x].

Of course, the above results would not be very useful if they were only applicable to Dirac–
Coulomb operators. In [31] we describe the class of electrostatic potentials V to which the above
results also apply, the main condition being that they are not too positive, so that they are mainly
attractive, and also that if they are singular at some point, the singularity cannot exceed −ν/|x]
for 0 < ν≤ 1.

The above recent results settle the question of when and how we can run the above algorithm
with guarantee that what we will find in the end will be good approximations of the eigenvalues
of perturbed Dirac operators.

More recently, with Lewin and Séré we have gone further and consider the case of several
singularities, case that is important in molecular computations. In [32,33], we have extended the
results of [31] to this case. And not only to this case, but to the much more general case of Dirac
operators perturbed by general singular measures. In this case, which goes beyond Coulomb
singularities, more technically refined arguments are needed to describe the domains and prove
the validity of the min–max arguments used to find the corresponding eigenvalues. In the above
papers, we have also considered other interesting questions that we have not been able to answer
completely concerning, for instance, the dependence of the eigenvalues on the geometric shape
of the nuclear distribution. A very simple question is: if we consider two identical nuclei of charge
ν ∈ (0,1/2), at a distance R > 0, would the energy of an electron be above the energy of an electron
in the electrostatic field created by a single nucleus of charge 2ν? In the non-relativistic case the
answer is yes. And not only that, actually the ground state energy grows with the distance R. For
Dirac operators such results do not exist. Only numerical results have been obtained for instance
by Artemyev et al. [45] showing that the dependence of the ground state energy with respect to
the distance between the two nuclei follows the same pattern in the relativistic and in the non-
relativistic cases.
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Abstract. We explain how the axioms of Conformal Field Theory are used to make predictions about critical
exponents of continuous phase transitions in three dimensions, via a procedure called the conformal boot-
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tween correlation functions of different orders. Numerical analysis shows that these conditions are incom-
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1. Introduction

Physics has many emergent laws, which follow in a non-obvious way from more fundamental
microscopic laws. Whenever this happens, we have two separate goals: to understand how the
emergent law arises, and to explore its consequences.
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One example is the Gibbs distribution of equilibrium statistical mechanics: the probabil-
ity for the system in thermal equilibrium at temperature T to be found in a state n of en-
ergy En is proportional to exp(−En/T ). One may be interested in deriving this emergent
law from microscopic models of thermalization, or in exploring the myriad of its physical
consequences.

This text, based on a recent talk for an audience of mathematical physicists, is about the “con-
formal field theory” (CFT), a set of emergent laws governing critical phenomena in equilibrium
statistical mechanics (such as the liquid–vapor critical point or the Curie point of ferromagnets).
CFT makes certain assumptions about the state of the system at a critical point. These assump-
tions can be given reasonable physical explanations, but for the purposes of this talk we will view
them as axioms.

CFT is an “emergent law of second degree” with respect to the Gibbs distribution, by itself
emergent. It sidesteps the Gibbs distribution similarly to how the Gibbs distribution sidesteps
a thermalization model. Future work should derive the CFT axioms with mathematical rigor
from the Gibbs distribution. Our goal here will be to explain the axioms and how they lead
to concrete predictions for observable quantities through a procedure called the “conformal
bootstrap”.

CFT/bootstrap approach to critical phenomena is an alternative to the better-known Wilson’s
renormalization group (RG) theory. The RG is more directly related to the Gibbs distribution than
CFT, although it too is not fully mathematically justified. The RG will not be treated here except
for a few comments.

We will not give many references, which can be found in the recent review [1]. See also lecture
notes [2–4]. An excellent set of recorded lectures is [5].

2. The first two CFT axioms

We will describe the axioms of Conformal Field Theory (CFT) on Rd , d > 3. These axioms are well
established in the physics literature. We will present them in a form hopefully more accessible to
mathematicians. In particular, we will try to avoid (or at least explain) excessive physics jargon.
Similar axioms, with additional bells and whistles, hold in d = 2 dimensions [6].1

Suppose we are given a collection of real-valued functions

T = {Gi1,...,in (x1, . . . , xn)}, (1)

defined for xp ∈ Rd , xp 6= xq (p, q = 1, . . . ,n), where n > 1 and the indices ip are non-negative
integers.

Functions (1) are called “n-point correlators of fields Ai1 , . . . , Ain ” and are also denoted by

〈Ai1 (x1)Ai2 (x2) · · · Ain (xn)〉. (2)

The collection T is called a CFT if it satisfies certain axioms stated below. Different CFT’s are just
different collections of correlators satisfying those axioms.2

Note that the “field” Ai is just a label, a name, and (2) is just a notation for Gi1,...,in (x1, . . . , xn).
The statistical average operation suggested by this notation does not have a direct meaning in the
CFT axioms. It will be handy in the interpretation of the axioms (Section 4).

1Our axioms should be viewed as a sketch of future complete axiomatics, which has not yet been written up in the
mathematics literature. A different approach to axiomatize CFTs in d > 3 (akin to Segal’s 2d CFT axiom) is in [7], but it
makes the connection to concrete calculations less explicit. A nicer starting point is the recent mathematics paper [8]
which develops 2d CFT from the conformal bootstrap perspective. It would be interesting to generalize it to d > 3.

2One also uses the term “Conformal Field Theory” in a meta-sense, as the study of all possible CFTs.
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Axiom 1 (Simple properties). Correlators have the following properties:

(a) They are invariant under permutation of any two fields:3

〈Ai1 (x)Ai2 (y) · · · 〉 = 〈Ai2 (y)Ai1 (x) · · · 〉,etc. (3)

(b) Index i = 0 is associated with the “unit field”, replaced by 1 under the correlator sign:

〈A0(x)×anything〉 = 〈anything〉. (4)

(c) The 1-point (1pt) correlators are given by

〈A0(x)〉 ≡ 1, 〈Ai (x)〉 ≡ 0 (i > 1). (5)

(d) The 2pt correlators are given by

〈Ai (x)A j (y)〉 = δi j

|x − y |2∆i
(x, y ∈Rd ). (6)

where δi j is the Kronecker symbol, and ∆i > ((d −2)/2) (i > 1) is a real number called
“scaling dimension of field Ai ”. For the unit field we have ∆0 = 0.

(e) The set of scaling dimensions {∆i } is called the “spectrum”. It is a discrete set without
accumulation points (i.e. there are finitely many scaling dimensions below any ∆∗ <∞).

Axiom 2 (Conformal invariance). Correlators are conformally invariant, in the sense that they
satisfy the constraint

Gi1,...,in (x1, . . . , xn) =
(

n∏
p=1

λ(xp )∆ip

)
Gi1,...,in ( f (x1), . . . , f (xn)), (7)

or equivalently, using notation (2),

〈Ai1 (x1) · · · Ain (xn)〉 =
(

n∏
p=1

λ(xp )∆ip

)
〈Ai1 ( f (x1)) · · · Ain ( f (xn))〉, (8)

where f (x) is an arbitrary conformal transformation of Rd and λ(x) = |∂ f /∂x|1/d is its scale factor.

Recall that conformal transformations satisfy the constraint ∂ f µ/∂xν = λ(x)Rµ
ν(x) where

Rµ
ν(x) ∈ SO(d). For d > 3, these transformations form a group SO(d +1,1).

Remark 1. Conformal transformations of Rd may send points to infinity, and should be thought
more properly as acting onRd ∪{∞}, the d-dimensional analogue of the Riemann sphere. To treat
the point at infinity on equal footing with the other points, one can put Rd ∪ {∞} in one-to-one
correspondence with the d-dimensional unit sphere Sd via the stereographic projection. This
subtlety will be glossed over here.

2.1. Basic consequences of conformal invariance

We will state without proof a few basic consequences of the above axioms. One can check that
the 2pt correlators given in Axiom 1(d) are consistent with Axiom 2. Note that the same scaling
dimension ∆i has to appear in all n-point correlators involving the field Ai . The 3pt correlators
are fixed by Axiom 2 up to an overall factor:

〈Ai (x1)A j (x2)Ak (x3)〉 =
ci j k

x
∆i+∆ j −∆k

12 x
∆i+∆k−∆ j

13 x
∆ j +∆k−∆i

23

, (9)

3One can also consider CFTs with fields having fermionic statistics, whose correlators change sign under permuta-
tions. Such CFTs are important e.g. for describing quantum critical points of many-electron systems. Here we only con-
sider commuting fields for simplicity.
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where ci j k is totally symmetric by Axiom 1(a), and we denoted xi j = |xi − x j |. For 4pt correlators
Axiom 2 implies the following functional form:

〈Ai (x1)A j (x2)Ak (x3)Al (x4)〉 =
(

x24

x14

)∆i−∆ j
(

x14

x13

)∆k−∆l gi j kl (u, v)

x
∆i+∆ j

12 x∆k+∆l
34

, (10)

where gi j kl (u, v) is a function of conformally invariant cross-ratios:

u = x2
12x2

34

x2
13 x2

24

, v = u|1↔3 =
x2

23x2
14

x2
13 x2

24

. (11)

By Axiom 1(a) functions gi j kl with permuted indices are all related, e.g. permutation 1 ↔ 3
generates the constraint:

u− ∆i +∆ j
2 gi j kl (u, v) = v− ∆k+∆ j

2 gk j i l (v,u),etc. (12)

2.2. Primaries and descendants

Group-theoretically, the transformation

A(x) →λ(x)∆A( f (x)) (13)

is an irreducible representation π∆ of the conformal group on scalar functions A : Rd → R.
Equation (7) means that the correlators Gi1,...,in belong to the invariant subspace of the tensor
product representation ⊗n

p=1π∆ip
(so they can be called “invariant tensors”).

We formulated Axioms 1, 2, 3 for the fields transforming as (13), called “scalar fields”. These
axioms can and should be extended to allow for fields with tensor indices. First of all, we have
to add fields ∂αAi (x) which are partial derivatives (of arbitrary order) of the fields Ai . Their
correlators are defined as derivatives of the original ones:

〈∂αAi (x) · · · 〉 := ∂αx 〈Ai (x) · · · 〉. (14)

This is, in a sense, just a convenient notation. The basic fields Ai (x) whose correlators transform
as (13) are called “primaries”, while their derivatives “descendants”. Transformation rules for
correlators of descendants can be obtained by differentiating (13).

The second extension is a bit less trivial. We should generalize (13), allowing for fields with
values in a finite-dimensional vector space V , dimV > 1, transforming under the conformal
group via

A(x) →λ(x)∆ρ(R(x))A( f (x)), (15)

where ρ is an irreducible representation of SO(d) acting in V . Such fields are called “primary
spinning fields”. One example is V = {symmetric traceless rank-l tensors}. Correlators of spin-
ning fields then take values in the tensor product ⊗n

p=1Vip and satisfy a conformal invariance
constraint similar to (7) but with factors of ρip (R(xp )) in the l.h.s. (Derivatives of spinning fields
are then also added as in (14).) Adding spinning fields would complicate the notation a bit. We
will neglect them here, although practical conformal bootstrap computations always allow for
their presence.

3. The OPE axiom

The last “OPE axiom” will relate different correlators, and in particular correlators with different
n. This is unlike the previous axioms which involved one n-point correlator at a time.4

4Except the rather trivial Axiom 1(b).
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Figure 1. The OPE expansion applies when all points xp (p > 3) lie further from x1 than x2.

Suppose we are given two collections of real numbers

{λi j k }, {s(r )
i j k ,r > 1}, (16)

where i , j ,k run over the field indices (non-negative integers). With these numbers as coeffi-
cients, “Operator Product Expansion” (OPE) is constructed as a set of formal equalities (one for
each pair of fields Ai and A j ):

Ai (x)A j (y) =
∞∑

k=0

λi j k

|u|∆i+∆ j −∆k

× [Ak (x)+ s(1)
i j k uµ∂

µ
x Ak (x)+ (s(2)

i j k uµuν+ s(3)
i j k u2δµν)∂µx∂

ν
x Ak (x)+·· · ], (17)

where u = y − x. Using the OPE for the first pair of fields inside the n-point correlator (2) with
n > 2, we get a set of candidate identities among correlators:

〈Ai (x)A j (y)Π〉 =
∞∑

k=0

λi j k

|u|∆i+∆ j −∆k
[〈Ak (x)Π〉+ s(1)

i j k uµ∂
µ
x 〈Ak (x)Π〉+ · · · ], (18)

where we denoted i1 = i , i2 = j , x1 = x, x2 = y , and Π = Πn
p=3 Aip (xp ) is the product of all other

fields in the correlator. In the l.h.s. we have an n-point correlator, while in the r.h.s. we have an
infinite series of (n −1)-point correlators and derivatives thereof.

The OPE axiom gives a condition for when the candidate identity (18) is a true identity.

Axiom 3 (OPE). There exists a set of coefficients (16), such that (18) holds as a true relation between
correlators (the series in the r.h.s. converges absolutely to the l.h.s.) as long as |xp − x| > |u| for all
p > 3 (see Figure 1).

What can be said about coefficients (16) which make this axiom work? To see this, let us
apply (18) to a 3pt correlator. Because the 2pt correlators vanish for non-identical fields (δi j in
Axiom 1(d)), the sum in the r.h.s. collapses to the single k value, and we get:

〈Ai (x)A j (y)Ak (x3)〉 =
λi j k

|u|∆i+∆ j −∆k

[
1

|x −x3|2∆k
+ s(1)

i j k uµ∂
µ
x

1

|x −x3|2∆k
+·· ·

]
, (19)

where we used that 〈Ak (x)Ak (x3)〉 = 1/|x − x3|2∆k . On the other hand, we already know that the
3pt correlator in the l.h.s. has form (9) by Axiom 2. Let us then expand (9) for small y and match
with (19). From the leading term we find λi j k = ci j k .5 Relative to this overall normalization, the
subleading terms on the l.h.s. are fixed, and this allows to determine s(r )

i j k uniquely as rational
functions of ∆i , ∆ j , ∆k and d . We conclude that all coefficients (16) can be uniquely determined
by demanding that the OPE axiom works for the 3pt correlators. Furthermore, the axiom says that
the same set of coefficients should then also work for any n-point correlators.

5In particular we learn that λi j k has to be symmetric, just as ci j k . Note also that by putting Ak = A0 = 1 in (9) and by

using Axiom 1(d), we get λi j 0 = ci j 0 = δi j .
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Definition 1. A conformal field theory (CFT) T in d > 3 dimensions is a collection of correlators
(1) satisfying Axioms 1–3.

Remark 2. We included in our axioms the conditions ∆i > (d −2)/2 for i > 1 in Axiom 1(d), and
λi j k ∈R in (16). By this, we are restricting our discussion to a subclass of conformal field theories
called reflection positive (or unitary). Many statistical physics systems at criticality (such as the
Ising model or O(N ) models) are known to be described by unitary CFTs.

3.1. CFT data

The spectrum ∆i and the OPE coefficients λi j k comprise the “dataset” of a CFT T :

Data(T ) = {∆i ,λi j k }. (20)

As discussed, Data(T ) is in one-to-one correspondence with the 2pt and 3pt correlators of T .
Moreover, knowing Data(T ) we can reconstruct all n-point correlators, for an arbitrarily high
n. Indeed, from Data(T ) we can construct the OPE (the coefficients s(r )

i j k are not included in
Data(T ) since they are uniquely determined by ∆’s and d). Then, we can recursively reduce any
n-point correlator to lower-point ones, until we get to the known 2pt and 3pt correlators.6

We thus see that the dataset Data(T ) encodes full information about the CFT T . Below we
will describe a program of classifying CFTs by classifying their data sets. But first let us discuss
the interpretation of the CFT axioms.

4. Interpretation

Notation 〈Ai1 (x1)Ai2 (x2) · · · Ain (xn)〉 for Gi1,...,in (x1, . . . , xn) acquires a meaning in the interpreta-
tion of the CFT axioms, as correlation functions of statistical systems at their critical points. CFT
calculations are then interpreted as predictions for the critical exponents of statistical physics
models. Although the CFT calculations based on the axioms are completely rigorous, the inter-
pretation step is at present non-rigorous. Hopefully it will be justified in the future.

Let us discuss how this works for the 3d Ising model: a lattice model with the Hamiltonian H =
−∑

〈x y〉 Sx Sy where Sx =±1 are spins on a cubic lattice, with the nearest-neighbor ferromagnetic
interaction.

The “3d Ising CFT” is a CFT in d = 3 describing the critical point of this model, and of any
other model in the same universality class. Just as the lattice Ising model, this CFT has a globalZ2

invariance with all fields divided into Z2-even and Z2-odd.7 It contains a Z2-odd scalar primary
field denoted σ(x), whose correlators

〈σ(x1)σ(x2) · · ·σ(xn)〉 (21)

are interpreted as the 3d Ising model spin correlation functions

〈Sx1 Sx2 · · ·Sxn 〉 (22)

6We should take care that the OPE is used for a pair of fields at positions x1, x2 verifying conditions of Axiom 3, so
that it converges. This is the case if x2 is the unique position with the minimal distance from x1. There are degenerate
configurations when such a pair cannot be found, because each point has two or more nearest neighbors at equal distance
(e.g. the vertices of a regular polygon). It is then always possible to apply a small conformal transformation which moves
points to a non-degenerate configuration. In the new configuration the OPE converges and we can compute the value of
the correlator. We then conformal-transform back to the original configuration. This way we can compute correlators in
any configuration of non-coincident points.

7We have not included the notion of global symmetry in the CFT axioms, but this extension is straightforward. It just
means that all fields transform in finite-dimensional irreducible representations of a compact global symmetry group G ,
forming a direct product with the conformal group. All correlators are invariant tensors of G , and the OPE respects this
additional symmetry.
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computed at the critical temperature T = Tc , at distances |xp − xq | much larger than the lattice
spacing. While 〈· · · 〉 in (21) is just a notation, in (22) it is a true average with respect to the Gibbs
distribution, in the thermodynamic limit. By Axiom 2, correlator (21) is conformally invariant,
and thus in particular scale invariant, scale transformations being a part of the conformal group.
This means (∆σ is the scaling dimension of σ):

〈σ(λx1)σ(λx2) · · ·σ(λxn)〉 =λ−n∆σ〈σ(x1)σ(x2) · · ·σ(xn)〉. (23)

On the other hand, Equation (22) clearly does not have such an exact scale invariance, already
because it is defined on a lattice. The precise statement of agreement at large distances is8

lim
|xp−xq |→∞

〈Sx1 Sx2 · · ·Sxn 〉
〈σ(x1)σ(x2) · · ·σ(xn)〉 =C n , (24)

where C is some constant, which is n-independent but non-universal (e.g. it would change if
we add next-to-nearest interactions to the lattice model, which does not change the universality
class).

Other 3d Ising CFT fields will correspond to other lattice-scale operators. E.g. we can consider
the product of two nearby spins (separated in an arbitrary direction)

Ex = Sx Sx+1 −〈Sx Sx+1〉, (25)

where 〈Sx Sx+1〉 is subtracted so that 〈Ex〉 = 0. The 3d Ising CFT contains aZ2-even scalar primary
ε(x) whose correlators describe long-distance limits of the Ex correlators, similarly to (24).

More generally, we expect to have a CFT associated with every universality class of continuous
phase transitions. This CFT will share global symmetry (Z2, O(N ), etc) with the universality class,
and its scaling dimensions will determine the critical exponents. It has not been proven yet,
starting from the lattice models or in any other way, that all these CFTs actually exist. This is
the non-rigorous part of the CFT game.

CFT fields Ai and their scaling dimensions ∆i also have counterparts in the RG approach to
critical phenomena [9].9 Namely, they correspond to the eigenvectors and the eigenvalues of RG
transformation linearized near a fixed point describing a continuous phase transition. Fields of
scaling dimension ∆i < d (∆i > d) correspond to the relevant (irrelevant) deformations of the
fixed point. This dictionary is not needed for the actual CFT calculations, but only for interpreting
the results.

We expect that the above-mentioned fields σ and ε are the only two relevant fields of the 3d
Ising CFT. This follows from the experimental fact that the critical point of the 3d Ising model is
in the same universality class as the liquid–vapor critical point, which is reached by tuning two
parameters (pressure and temperature).

5. Conformal bootstrap program

5.1. Consistency

Conformal bootstrap program attempts to classify CFTs by classifying their datasets. That this
may be possible was first suggested by Polyakov [10].

8Equivalently, one can consider a sequence of lattice models with a smaller and smaller lattice spacing a, and take the
limit a → 0 while keeping xa fixed.

9On the other hand, the OPE coefficients λi j k do not feature prominently in the RG approach.
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Figure 2. The 4pt correlator for this configuration of points can be reduced to 3pt correla-
tors using the OPE (18) with (x, y) being one of the following pairs: (x1, x2), (x2, x3), (x3, x2),
(x4, x3).

We call a dataset D = {∆i ,λi j k } “consistent” if it is a dataset of some CFT: D = Data(T ). Ideally,
we would like to have a list of all consistent data sets:10

{Data(T1),Data(T2), . . .}, (26)

but it is not currently known how to generate such a list. The following question is less ambitious
but still very interesting:

Q1: Given a trial dataset D, decide if it is inconsistent. (27)

It turns out that this has an algorithmic answer. This will allow progress on classification by ruling
out inconsistent data sets (rather than by constructing consistent ones).

The idea is straightforward: given a trial dataset D = {∆i ,λi j k }, we will try to construct all
correlators, looking for some inconsistency with the axioms.

The first step is to construct the 2pt and 3pt correlators. These are simply given by explicit
formulas from Axiom 1(d) and (9) with ci j k =λi j k . So far no room for inconsistency.

Then we proceed to construct the 4pt correlators. For this we consider the OPE series reducing
them to the 3pt correlators. All information needed to write down these series is contained in ∆i

and λi j k . But now we need to check a couple of things. First, do these series converge where
Axiom 3 says they should? For this, the trial OPE coefficients λi j k should not grow too fast as a
function of k for fixed i , j . The required growth condition can be shown to take a relatively simple
form:

∞∑
k=0

(4ρ)∆kλ2
i j k <∞ ∀ρ < 1. (28)

Second, there are several ways to reduce a 4pt correlator to 3pt correlators via the OPE, and they
all should agree in the overlapping regions of convergence. See Figure 2 for an example. This
condition is called “crossing”, and it is not automatically satisfied.11 Assuming that it also holds,
we can define the 4pt correlators as the sum of OPE series.

We then proceed to higher n-point correlators. Similarly to n = 4, they are reduced to (n −1)-
point correlators via the OPE, and we need to check convergence and crossing. It turns out that
crossing for n > 5 is automatically satisfied once we impose crossing for all 4pt correlators. On the
other hand, the general convergence condition is stronger than (28), and it can be expressed as
follows. Consider an infinite matrix consisting of OPE coefficientsλi j k with a fixed j and arbitrary
i ,k:

(M ( j ))i k =λi j k . (29)

10We are not giving full details necessary to make this statement precise. One important subclass of CFTs are “local
CFTs”, which roughly correspond to critical points of lattice models with finite-range interactions. It is expected that most
local CFTs are isolated. One exception are CFTs with “exactly marginal” fields of dimension ∆ = d , which form finite-
dimensional continuous families. A folk conjecture says that exactly marginal fields in d > 3 require supersymmetry,
which makes this exception non-generic.

114pt crossing constraints were first discussed in Refs. [10, 11]. The word “crossing” comes from an analogy with
relativistic Quantum Field Theory. There, the 2 → 2 scattering amplitude M (p1, p2 → p3, p4) is invariant under “crossing
transformations", when one incoming particle is moved (“crosses”) into the group of outgoing particles, while one
outgoing particle crosses in the opposite direction.
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Then any such M ( j ), viewed as an operator from i -indexed sequences to k-indexed sequences,
should be bounded with respect to a certain weighted `2 norm (with ∆-depending weights).12

Equation (28) follows from this general condition when we apply the operator to a sequence
consisting of a single nonzero element, and demand that the result have a finite norm.

To summarize, consistent datasets are those which satisfy the general convergence and the
4pt crossing conditions. The convergence condition is the less interesting of the two. Below we
will focus on the 4pt crossing, which will allow us to put constraints on the fields of low scaling
dimension.

5.2. Conformal blocks and 4pt crossing

Here we will describe how to put 4pt crossing constraint into a more explicit form, by expanding
4pt correlators in a basis of special functions called conformal blocks.

Recall that conformally invariant 4pt correlators have form (10). When we compute the 4pt
correlator in the r.h.s. of (10) using the OPE, we should get something consistent with this
formula. Let us see how this happens. Applying the OPE to the first pair of fields, we get an
expression of the form:

〈Ai (x1)A j (x2)Ak (x3)Al (x4)〉 =
∑
m

λi j m

x
∆i+∆ j −∆m

12

[〈Am(x1)Ak (x3)Al (x4)〉+ · · · ], (30)

where . . . denotes terms proportional to s(r )
i j m times derivatives acting on the 3pt correlator

〈Am Ak Al 〉, which is in turn given by λmkl times an x-dependent function which can be read
off from (9). It can be shown that by doing all derivatives and infinite sums over r , the r.h.s. of (30)
takes the form:

(
x24

x14

)∆i−∆ j
(

x14

x13

)∆k−∆l 1

x
∆i+∆ j

12 x∆k+∆l
34

∑
m
λi j mλmkl G∆m (u, v). (31)

The functions G∆m (u, v) appearing here are called “conformal block”. These functions are fixed by
conformal symmetry. They depends on the exchanged scaling dimension ∆m , and on the space
dimension d .13 Notably, they do not depend on the OPE coefficients λi j k whose product appears
as a prefactor in (31).

Theory of conformal blocks is huge and it’s not possible to do it justice in this text. It has con-
nections to representation theory, orthogonal polynomials, and integrable quantum mechanics.
There are no fully general closed form expressions of conformal blocks in terms of the classical
special functions. Fortunately, they admit rapidly convergent power series expansions which al-
low efficient numerical evaluation. This is what is used in practical applications.

The conformal block is simple only for the exchanged unit field: Am = A0 = 1, when we have:

G0(u, v) = 1, λi j 0 = δi j , λ0kl = δkl , (32)

where we also gave the OPE coefficients for this case (see footnote 5).
Comparing (31) with (10) we see that they are consistent if we identify:

gi j kl (u, v) =
∑
m
λi j mλmkl G∆m (u, v). (33)

12This is related to something called “radial quantization”, which we do not describe in this text. This convergence
condition for higher n-point corelators has not been discussed in detail in the literature.

13They also depend on the external dimension differences∆i −∆ j ,∆k −∆l but we will omit this from the notation. In

a full treatment involving spinning fields, the conformal blocks also depend on the spin of the fields.
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This gives a compact formula to compute the 4pt correlators in terms of the CFT data. We can
also obtain a compact expression for the 4pt crossing constraints, by substituting (33) into (12):

u− ∆i +∆ j
2

∑
m
λi j mλmkl G∆m (u, v) = v− ∆k+∆ j

2
∑
m
λk j mλmi l G∆m (v,u). (34)

As (12), this corresponds to the permutation x1 ↔ x3. Constraints corresponding to other permu-
tations take a rather similar form. They should also be considered, although we will not discuss
them here explicitly.

Now, we can test a trial dataset D for consistency, by checking (34) for all possible choices of
i , j ,k, l , in the region of overlapping convergence. This region is not empty. E.g., let us fix points
x1,3,4 so that x4 is far away from x1,3. Then the l.h.s. should converge within the set {x2 : x12 < x13},
and the r.h.s. in {x2 : x23 < x13}. These two balls have a nontrivial overlap.

5.3. Partially specified datasets

In Sections 5.1 and 5.2, we gave an answer to the consistency question (27). Unfortunately, the
described procedure is not by itself practically useful, since it assumes that the trial dataset D

is fully specified, which includes infinitely many parameters (all scaling dimensions and OPE
coefficients). To correct for this, let us define the notion of a “partially specified trial dataset”,
which is a list L of finitely many assumptions on scaling dimensions and OPE coefficients.
We say that L is consistent if there is at least one CFT T whose dataset Data(T ) satisfies the
assumptions. The following is then a more practical version of question (27):

Q2: Given a partially specified trial dataset L , decide if it is inconsistent. (35)

Although this looks like a much harder question than (27), it turns out that this question can also
be answered, based on (34), using numerical algorithms. This was first shown by Rattazzi, Tonni,
Vichi and the author [12] and led to the rapid development of the numerical conformal bootstrap
in the last 10 years. We will explain how this work on an example in the next section.

6. Example: constraining the 3d Ising CFT

Let us fix two real numbers ∆1,∆2 in the interval [1/2,3], and consider the following list of
assumptions L =L (∆1,∆2) about a 3d CFT:

• Z2 global symmetry;
• there is one field which is Z2-odd, one which is Z2-even, and they have scaling dimen-

sions ∆1 and ∆2;
• all other fields have scaling dimensions ∆i > 3 i.e. are irrelevant.

As discussed in Section 4, the 3d Ising CFT satisfies L (∆σ,∆ε). Our strategy will be to exclude a
large part of the (∆1,∆2)-plane by showing that L (∆1,∆2) is inconsistent there. This will imply
that the scaling dimensions of the 3d Ising CFT must belong to the remaining part of the plane.

6.1. One crossing constraint

Consider first the 4pt crossing for 〈A1 A1 A1 A1〉. Putting i = j = k = l = 1 in (34), we obtain:

u−∆1
∑
m

pmG∆m (u, v) = v−∆1
∑
m

pmG∆m (v,u), pm =λ2
11m > 0. (36)

We know that p0 =G0 = 1 (see (32)), so isolating those terms we write this as

h(u, v) ≡ v−∆1 −u−∆1 =
∞∑

m=2
pmF∆m

(u, v), (37)

F∆(u, v) := u−∆1G∆ (u, v)− v−∆1G∆ (v,u).

Note that F∆ also depends on ∆1. The sum starts from m = 2 because λ111 = 0 for the Z2-odd A1.
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Geometrically, Equation (37) means that h, viewed as a vector in a space of two-variable
functions, belongs to a convex cone C generated by vectors F∆2

and F∆ with∆> 3. We include all
F∆ with∆> 3 as generators of the cone since we don’t know the exact values of∆m for m > 3, but
only that ∆m > 3. Denote by C ∗ the dual convex cone, which is the set of all linear functionals α
which are positive on all vectors generating the cone:

α[F∆2 ]> 0, α[F∆]> 0 ∀∆> 3. (38)

Suppose that there exists a functional α0 ∈C ∗ such that

α0[h] < 0. (39)

Then by acting with α0 on (37) we get a contradiction. So, this equation cannot be satisfied for
any nonnegative pm . This is how one shows that the assumption L (∆1,∆2) is inconsistent: by
exhibiting a functional α0 which satisfies (38) and (39).

Numerically, one works with a finite dimensional space of functionals A (Λ) which are finite
sums of partial derivatives at a particular point:

α[ f ] =
∑

m+n6Λ
αm,n∂

m
u ∂

n
v f (u0, v0), (40)

whereΛ is a parameter, to be taken as large as possible to have the maximal constraining powers
(within the available computer resources). One then minimizes α[h] over all α ∈ C ∗ ∩A (Λ),
looking for a functional satisfying (39). This is a convex optimization problem (continuous
linear programming), which can be solved by efficient numerical algorithms. If the minimum is
negative, then we ruled out L (∆1,∆2). If it is positive, and cannot be made negative by increasing
Λ, this would mean that L (∆1,∆2) is consistent with crossing for 〈A1 A1 A1 A1〉.

With this procedure, Ref. [13] showed that the constraint L (∆1,∆2) is inconsistent in a sig-
nificant portion of parameter space. Invoking an extra and so far unproven assumption, that the
3d Ising CFT lies at a singular boundary point of the consistent region (the so called “kink”),
Refs. [13, 14] gave the first conformal bootstrap determination of ∆σ,∆ε. Subsequent work
has shown that the kink assumption is unnecessary, provided that one includes crossing con-
straints for the 4pt correlators 〈A1 A1 A2 A2〉, 〈A2 A2 A2 A2〉. We will now explain briefly how this
was done.

6.2. Several crossing constraints

To increase the constraining power, a natural idea is to include crossing constraints for the other
4pt correlators of fields A1 and A2. While 〈A2 A2 A2 A2〉 is completely analogous to 〈A1 A1 A1 A1〉,
one encounters a crucial difference when analyzing 〈A1 A1 A2 A2〉. Namely, its conformal block
expansion involves products of two different OPE coefficients λ11mλ22m . These products are
not necessarily positive, because λi j k may have either sign. On the other hand, positivity of the
coefficients pm = λ2

11m played a crucial role in making the minimization problem of Section 6.1
convex. To overcome this obstacle, one analyzes all three correlators together, and considers the
matrix

Pm =
(

λ2
11m λ11mλ22m

λ11mλ22m λ2
22m

)
. (41)

Crucially, this matrix is positive semidefinite: Pm < 0. This condition is convex, and provides a
good substitute for the simple positivity in the bootstrap problems involving multiple correla-
tors. The resulting problem is that of continuous semidefinite programming, and it can still be at-
tacked by efficient numerical algorithms. This was realized and carried out in Refs. [15–17] which
found a consistent “island” near ∆1 ≈ 0.5181489(10), ∆2 ≈ 1.412625(10). The 3d Ising CFT point
(∆σ,∆ε) must live somewhere in this tiny island (Figure 3).
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Figure 3. The bootstrap island to which the 3d Ising CFT must belong [17]. Also shown is a
Monte Carlo result [18] for the same scaling dimensions. This plot usedΛ= 43 in (40).

The scaling dimensions ∆σ,∆ε determine the main critical exponents of the 3d Ising model
α,β,γ,δ,η,ν. In what follows we will focus on η and ν, given by

η = 2∆σ−1, (42)

ν = 1/(d −∆ε). (43)

Equation (43) deserves a comment, because it expresses an off-critical quantity (the exponent
ν describing behavior of the correlation length close to the critical point) via a critical theory
parameter ∆ε. This is an example of how CFT can make predictions about small deviations
from the critical theory, which arise at short distances from relevant perturbations, and at large
distances from the irrelevant ones. Such predictions are done via a technique called “conformal
perturbation theory,” which we have not explained. Equation (44) below is another simple
example.

Another important quantity is the “correction to scaling” exponent ω. It appears in the rate
∼ 1/rω at which the limit in (24) is achieved, assuming that all distances |xp − xq | ∼ r are
of the same order. It also appears in the subleading singularities of all quantities exhibiting
powerlaw behavior near the critical point (e.g. the specific heat). While describing deviations
from criticality, ω like ν can be expressed in terms of a purely critical parameter:

ω=∆3 −d , (44)

where ∆3 is the scaling dimension of the leading irrelevant Z2-even scalar operator. The confor-
mal bootstrap determines∆3 (and henceω) by scanning the island in Figure 3 and reconstructing
the spectrum which provides a solution to the 4pt crossing [19].

In Table 1 we report the values of the critical exponents ν, η, ω according to the conformal
bootstrap, Monte Carlo simulations and RG calculations. We also include some experimental
measurements of ν and η.14 The conformal bootstrap predictions are the most precise, and
they are in a good agreement with the Monte Carlo and RG. There is also reasonable agreement
between the theory and the experiment, although the experimental accuracy is not amazing.

14Since ω parametrizes subleading powers, it is harder to measure, and we are not aware of any published result.
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Table 1. Some representative theoretical and experimental determinations of the 3d Ising
critical exponents. See [20], Section 3.2, for more references

Ref Year Method/Experiment ν η ω

[17, 19] 2016 Conformal bootstrap 0.629971(4) 0.036298(2) 0.82968(23)
[18] 2010 Monte Carlo 0.63002(10) 0.03627(10) 0.832(6)
[21] 1998 RG 0.6304(13) 0.0335(25) 0.799(11)

[22] 1989 Binary fluid 0.628(8) 0.0300(15)
[23] 2009 Binary fluid 0.629(3) 0.032(13)
[24] 1994 Binary mixture 0.623(13) 0.039(4)
[25] 2000 Liquid–vapor 0.62(3)
[26] 1998 Liquid–vapor 0.042(6)
[27] 1987 Uniaxial antiferromagnet 0.64(1)

7. Conclusions

Conformal bootstrap calculations provide predictions for observable physical quantities from the
CFT axioms. Agreement of these predictions with alternative theoretical determinations and the
experiment increase our belief in the validity of the axioms.

Feynman [28] called the Gibbs distribution the “summit of statistical mechanics”, the entire
subject being either the “climb-up” to derive it, or the “slide-down” when it is applied. Echoing
Feynman, we may call the CFT a summit of the theory of critical phenomena, the conformal
bootstrap being the way to slide down. To climb up would be to prove the validity of the
interpretation of the CFT axioms described in Section 4. Unfortunately, relatively little rigorous
work has been done in the way of climbing up.15 One should also not forget a second major peak
in the same mountain range: the Renormalization Group.
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Depuis longtemps, les mathématiciens trouvent dans la physique de nombreuses sources
d’inspiration. Dans cette petite note, je voudrais raconter deux expériences personnelles de cette
interaction : l’utilisation du bruit sismique en imagerie découverte par mon collègue grenoblois
Michel Campillo et la nature mathématique précise des attracteurs pour les ondes internes
observés dans l’équipe de Thierry Dauxois à l’ENS de Lyon.

1. Bruit sismique et imagerie avec Michel Campillo (2003–2010)

Un beau jour de 2003, mon collègue physicien Bart van Tiggelen me dit à peu près ceci : « Tu
sais, Michel Campillo fait de l’imagerie à partir du bruit sismique ». Je suis évidemment très
intrigué, car tout le monde sait que le bruit est plutôt nuisible dans les expériences de physique.
En tout cas, je n’en ai jamais entendu parler comme une source d’information. Me voilà donc
parti rendre visite à Michel dont le laboratoire ISterre (Institut des sciences de la terre) est à deux
pas de l’Institut Fourier. Michel m’explique entre autres que le grand géophysicien japonais Keiiti
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Aki a posé depuis longtemps la question d’utiliser la coda sismique1 dans l’imagerie. Il écrit une
première publication (avec Anne Paul) [1] sur ce sujet avant de réaliser qu’on peut tirer parti du
bruit enregistré en permanence par les sismomètres. Son idée est de considérer la corrélation
temporelle donnée par

C A,B (t ) := lim
T→+∞

1

T

∫ T

0
〈u(A,τ)|u(B , t −τ)〉dτ

où u(x, t ) est le champ de vitesse, i.e. le bruit au point x enregistré par un sismomètre. L’obser-
vation cruciale de Michel Campillo est que la corrélation C A,B (t ) est très semblable au signal qui
arrive en B s’il y a un tremblement de terre ou une explosion au point A. Cette remarquable idée
ouvre la porte à de nouvelles possibilités d’imagerie sismique qui ont au moins deux avantages
essentiels : la possibilité d’étudier des régions non sismiques et la possibilité de suivre les défor-
mations au cours du temps, par exemple celle des cônes volcaniques.

Un enjeu est alors de concevoir des modèles mathématiques reflétant cette similitude. C’est
ce que nous avons fait. Il y a deux difficultés principales :

1. Utiliser des sources de bruits localisées et non un bruit blanc, car on s’attend à ce que, par
exemple, l’interaction de l’océan avec la croûte terrestre2 soit une telle source localisée.

2. Décrire la propagation des ondes élastiques au sens de l’optique géométrique.

Il se trouve que ces deux difficultés trouvent leurs solutions, dans un contexte largement
idéalisé, grâce à la boîte à outils développée depuis les années 70 par les mathématiciens
pour étudier les équations aux dérivées partielles, soit les opérateurs pseudo-différentiels et les
opérateurs intégraux de Fourier.

Nous avons alors décidé de démarrer un petit groupe de travail avec Michel et son équipe.
Cette expérience m’a beaucoup marqué. Nous avons eu du mal à nous comprendre au début.
Ensuite, à mon avis, le plus intéressant fut que nous avons réussi à échanger sur nos représen-
tations mentales de ces phénomènes et cela fut source de progrès pour les deux parties. Je me
souviens en particulier de leur avoir expliqué que la théorie de la diffusion n’est pas seulement
une théorie de la propagation des ondes en présence d’un obstacle, mais qu’elle donne aussi une
décomposition spectrale de l’Hamiltonien. Ce qui a contribué dans [2] à rendre très général un
calcul compliqué fait sur un exemple « intégrable ».

Pour le lecteur intéressé, ma contribution mathématique est expliquée dans les articles [3–6],
alors que la physique est expliquée dans [7].

2. Attracteurs pour les ondes internes observés par l’équipe de Thierry Dauxois
(2016–?)

Il s’agit de travaux récents et en cours avec la mathématicienne Laure Saint-Raymond. Lors de
son arrivée en 2016 à l’ENS de Lyon, Laure est allée voir les physiciens locaux et en particulier les
expériences menées par Thierry Dauxois et ses élèves sur les ondes internes, voir par exemple la
thèse de Christophe Brouzet [8]. Il s’agit d’une très belle expérience : dans un « aquarium », essen-
tiellement bi-dimensionnel, dont les dimensions sont de l’ordre du mètre, de forme trapézoïdale,
rempli d’eau salée stratifiée, on observe les ondes forcées par un oscillateur périodique. Pour un
choix générique de la fréquence du forçage et de la géométrie du trapèze, l’onde se concentre
sur une courbe fermée, sorte de trajectoire de billard. Comme j’avais jadis travaillé sur les fonc-
tions propres du laplacien et leur éventuelle localisation sur les trajectoires périodiques du billard

1La coda sismique est la fin du signal sismique que l’on voit après les signaux nets dont on peut interprêter la nature
géométrique.

2C’est ainsi que les géophysiciens Strasbourgeois voyaient la venue d’une tempête atlantique sur leurs sismomètres.
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associé (les géodésiques périodiques), Laure eut l’idée de me proposer de collaborer en vue de
comprendre la nature de ces attracteurs. Sous des hypothèses très simplifiées, nous avons décrit
de tels attracteurs. L’équation d’onde forcée à laquelle on arrive est de la forme simplifiée

du

dt
+Hu −ν∆u = f eiωt , u(t = 0) = 0

où

• ∆ est le laplacien, ici en dimension 2,
• u(t ) représente le champ de vitesse du fluide au temps t et donc u est aussi une fonction

de la position x,
• H est un opérateur antisymétrique, non local et borné, qui résulte de l’élimination de la

pression dans l’équation de Navier–Stokes. L’antisymmétrie provient de la conservation
de l’énergie pour l’équation non forcée et à viscosité nulle,

• le membre de droite, où f est donnée, représente le forçage périodique.

On s’intéresse dans un premier temps, dans le cas où la viscosité ν est nulle, au comportement
asymptotique de la solution u(t ) quand t → +∞. Ce que nous avons montré est que, pour
un milieu générique, u(t ) converge, quand t → +∞, vers une distribution de Schwartz dont le
support singulier est formé d’une (ou plusieurs) courbe(s) fermée(s). C’est cette courbe qui est
l’attracteur. Ici l’opérateur H est borné dans l’espace de Hilbert naturel et son spectre près de
la fréquence de forçage est absolument continu. On est donc en présence d’un spectre continu
dans un domaine borné, ce qui n’a rien à voir avec le spectre discret d’un laplacien dans un tel
domaine. La théorie spectrale de tels opérateurs n’avait jamais été étudiée faute de motivation
et même le phénomène de résonance en présence de spectre continu n’avait pas été décrit. Nos
travaux font appel à des concepts de géométrie différentielle (théorie des feuilletages génériques
sur les surfaces : les feuilletages de Morse-Smale) et d’analyse (théorie de Mourre, opérateurs
pseudo-différentiels) et font l’objet des publications [9, 10].

Le contexte de notre étude est un peu différent de celui des expériences : nous regardons ce qui
se passe en l’absence de frontière, sur une surface fermée comme un tore. Les mêmes méthodes
s’appliquent aussi aux ondes inertielles qui sont des solutions des équations de Navier–Stokes en
présence de la force de Coriolis induite par la rotation. Ce comportement étrange (observé à la
fois pour des fluides stratifiés ou en rotation) est lié à une brisure d’isotropie dans la propagation
des ondes. Notre modèle montre que c’est alors un comportement générique de développer
des attracteurs. Ces premiers travaux ouvrent un grand chantier : traiter le cas à bord, le cas de
viscosité petite, la nature du spectre dans le complémentaire du spectre continu que nous avons
décrit. Toutes ces questions donnent lieu à des échanges très constructifs avec la communauté
des physiciens, et en particulier avec Michel Rieutord, astrophysicien de Toulouse qui s’intéresse
au spectre des étoiles, voir [11].

3. Conclusions

Quitte à simplifier drastiquement la réalité physique très complexe, il est souvent possible
d’en obtenir une description mathématique reproduisant bien, même si ce n’est que de façon
qualitative, la phénoménologie physique. Ces descriptions ne sont finalement pas beaucoup plus
éloignées de la nature que les expériences de laboratoire. Elles peuvent aider à une meilleure
compréhension de la physique sous-jacente et donc à de futurs progrès. En tout cas, ces travaux
permettent de prendre conscience de la grande unité de la science, au-delà de notre séparation
moderne en des myriades de sous-disciplines. J’ajouterai que c’est un grand plaisir de travailler
avec des chercheurs, mathématiciens ou physiciens, ayant une culture très différente de la
sienne, surtout si l’on arrive à faire progresser ainsi les connaissances.
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