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Foreword

Boris Gralak∗, a and Sébastien Guenneaub

a CNRS, Aix Marseille Univ, Centrale Marseille, Institut Fresnel, Marseille, France

b UMI 2004 Abraham de Moivre-CNRS, Imperial College London, London SW7 2AZ, UK

E-mails: boris.gralak@fresnel.fr (B. Gralak), s.guenneau@imperial.ac.uk (S. Guenneau)

Metamaterial is a word that seems both familiar and mysterious to the layman: on the one
hand, this research area born twenty years ago at the interface between physical and engineering
sciences requires a high level of expertise to be investigated with advanced theoretical and
experimental methods; and on the other hand electromagnetic paradigms such as negative
refraction, super lenses and invisibility cloaks have attracted attention of mass media.

Even the origin and meaning of the word metamaterial (formed of the Greek prefix µετά

meaning beyond or self and the Latin suffix materia, meaning material) remains elusive. It seems
that most researchers assume metamaterials is a term that refers to composites whose properties
go beyond that found in ordinary materials, since it is well-known that the prefix “meta” appears
in words like metaphysics and metaphysical. According to Martin Wegener at the Karlsruhe
Institute of Technology, who played a pivotal role in the development of metamaterials, a good
definition would be that « metamaterials are rationally designed composites allowing for effective
medium composites that go qualitatively or quantitatively beyond those of the bulk ingredients ».
However, some researchers might argue that this definition does not encompass the case of
metamaterials that gain their unique properties from their structured interface, which is the case
for instance of metasurfaces. Also, the emerging topic of space-time metamaterials, which in
general are complex media with some periodic modulation of their properties both in space and
time, can be homogeneous media just modulated in time, and thus actually not encompassed
by the definition proposed by M. Wegener: indeed, a piece of glass could acquire extraordinary
properties thanks to time modulations, even though it is not a composite. Therefore, looking at
the existing literature and the variety of proposed definitions for what a metamaterial should be,
it seems fair to say that there is not yet a “universal” definition of a metamaterial. This is especially
so, because the term metamaterials is now in use across many fields of physical and engineering
sciences, and it has even some applications in life and medical sciences.

Moreover, it is maybe less well-known amongst researchers working in the field of metamate-
rials that the prefix meta was also used in connection with mathematical logic one hundred years
ago by the German mathematician David Hilbert in a research project entitled « metamathemat-
ics ». Hilbert implied that this was a project not only beyond ordinary mathematics, but also with
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self-referencing aspects (think for instance of « This sentence contains thirty-six letters », which
is an example of sentence referencing itself). One can therefore argue that there is also some idea
of multiple scales, and some interplay between them, in a metamaterial. Even if the first proto-
types of electromagnetic metamaterials that appeared at the turn of this century, mostly consist
of two scales (the scale of an elementary cell, made of resonant circuits, which is periodically ar-
ranged in space, and the scale of the overall composite consisting of hundreds of cells), the past
few years have seen the emergence of hierarchical composites with multiple scales. However, it is
not straightforward to identify the effective properties of hierarchical metamaterials, especially
if the different scales are not well separated. And since their effective properties remain elusive,
this might be another class of metamaterials, akin to Russian dolls (or Matrioshka), that is not
covered by the definition of M. Wegener.

So, in these two special double volumes of the Comptes Rendus Physique, we assume a
pragmatic approach, and we simply opt for the definition of metamaterials being some « complex
media with rationally designed unusual properties » (but we do not claim they can be modelled
as effective composites, and note that a time-modulated piece of glass is compatible with our
definition). Now that we have made this word of caution, we would like to point out some
important work that predates the birth of metamaterials: this field was not created ex nihilo, and
as Sir Isaac Newton used to tell his mathematics students, we believe physics is like standing on
the shoulder of giants to see the future. Thus, let us start by a prominent physicist and polymath.

John William Strutt, 3rd Baron Rayleigh (1842–1919) is most famous amongst the optics com-
munity for Rayleigh scattering (this explains why the sky is blue). However, Rayleigh waves that
are, with Love waves, responsible for many of the earthquake disasters in human infrastructures,
also bear the name of Rayleigh, who also contributed to light scattering, sound and hydrody-
namic theories, color vision, elasticity theory and thermodynamics of gazes. Rayleigh’s textbook,
[The Theory of Sound, MacMillan and co., London, 1877], which appeared in two volumes, has
been together with Augustus Edward Hough Love’s monograph [Some Problems of Geodynam-
ics, Cambridge University Press, Cambridge, 1911], an invaluable source of inspiration for gen-
erations of physicists, engineers, and mathematicians. He is viewed by many researchers in the
theory of composites, as a precursor of homogenization theory, which is a branch of mathemat-
ics devoted to the analysis of partial differential equations with fast oscillating space-periodic
coefficients. Lord Rayleigh, who became the second Cavendish Professor of Physics at the Uni-
versity of Cambridge in 1879 (following the death of James Clerk Maxwell), was awarded a No-
bel Prize in Physics in 1904 for his « investigations of the densities of the most important gases
and for his discovery of argon in connection with these studies », had three sons, the eldest of
whom was to become Professor of Physics at Imperial College of Science and Technology in
London.

Victor Veselago (1929–2018) is at the origin of the electromagnetic paradigm of negative refrac-
tion. He was a Russian physicist born in Crimea, who dedicated his life to electromagnetic waves,
starting as a radio amateur during his teenage. The concept of negative refraction in isotropic
media with simultaneaously negative permittivity and permeability, touched upon in the book
by Sir Arthur Schuster [An Introduction to the Theory of Optics, London: Edward Arnold and Co.,
1904], that mentions the possibility to have a Poynting vector opposite to the wave vector, was
first put forward in a seminal paper by Veselago [Sov. Phys. Usp. 10, 509, 1968]. However, the tech-
nological breakthrough came with the discovery of Sir John Pendry and his colleagues that split
ring resonators combined with thin straight wires would enable effective negative permittivity
and permeability at certain microwave frequencies [Phys. Rev. Lett. 76, 4773–4776, 1996; IEEE
transactions on microwave theory and techniques 47 (11), 2075–2084, 1999]. More precisely, in
this seminal article Veselago showed that a plane-parallel plate of a negatively refracting medium
would be an optical instrument capable of transmitting images without distortions. Maybe less

C. R. Physique, 2020, 21, n 4-5, 311-341



Boris Gralak and Sébastien Guenneau 313

well known is Veselago’s claim that under light absorption in a negatively refracting medium the
light pressure changes by light attraction. In parallel to his scientific work on so-called magnetic
semi-conductors, Veselago engaged an extensive pedagogical work. From 1961, he taught at the
Moscow Institute of Physics and Technology (MIPT) and he delivered there the original course
of the faculty cycle « The Basic Elements of Vibration Physics » and simultaneously conducted
seminars and laboratory work at the Chair of General Physics. Veselago was one of the pioneers
of the distribution of scientific information about the Internet in Russia: back in 1992, he already
organized the mailing of the contents of scientific journals through the Internet. He invented the
“Informag” system, which was useful to the Russian scientific community because of the disas-
trous situation with university libraries in the 90’s. In 1998, Veselago organized the first review-
able electronic journal in Russia. He received a number of Russian and foreign awards for his sci-
entific merits such as the 1976 State Prize of the former Soviet Union and in 2004 the Fock’s Prize
of the Russian Academy of Sciences. In 2009, Veselago received the medal of the American Op-
tical Society for his work, which goes far beyond electrodynamics and optics. Indeed, Veselago’s
ideas have had tremendous significance in many fields of physics, and we shall present some of
these in these two special double volumes of the Comptes Rendus Physique. Let us now present
another physicist who has made landmark contributions to the field of metamaterials, which is
further popularized well beyond the photonics community.

John Pendry worked as a young researcher on Low-energy electron diffraction at the
Cavendish laboratory in Cambridge and after a postdoc on photoelectron spectroscopy at the
Bell Labs, then in USA, in 1972–1973. He was then appointed head of the theory group at Dares-
bury laboratory of the Science and Engineering Research Council of the UK and then a Profes-
sor of Physics at Imperial College London in 1981. While in the Bell Labs, Pendry developed the
first quantitative theory of so-called extended X-ray absorption fine structure for which he was
awarded the Dirac Prize in 1996 and, as head of the theory group in Dalesbury, he published his
theory of angle-resolved photoemission spectroscopy, which remains a standard model for prob-
ing the structure of the electrons in 1D and 2D crystalline structures, to this date. When he moved
to Imperial College in 1981, he maintained a strong activity in his usual research area in surface
science, but he also started to study the behavior of electrons in disordered media, and his scatter-
ing theory and computational methods for 1D and higher dimensional disordered media found
some application in biology, relevant to conductivity of bio-molecules. All this former work led 25
years ago to his first seminal paper on photonic band structures, accompanied by the freeware
he designed with his colleagues at Imperial College and the Universidad Autonoma de Madrid
[Computer Physics Communications 85, 306–322, 1995] that made it possible to unveil extremely
low plasmon polaritons in dilute metallic arrays of fibers [Phys. Rev. Lett. 76, 4773–4776, 1996],
which together with the famous split ring resonators he proposed for artificial magnetism at the
turn of the century [IEEE Transactions on Microwave Theory and Techniques 47, 2075, 1999], can
be considered as the cornerstone of metamaterials for negative refraction. As we shall recall next,
the physics of negative refraction—wherein light rays are refracted at an interface according to
the Snell-Descartes laws in which the sign of one refractive index has been flipped—was intro-
duced by the Russian physicist Veselago 30 years before Pendry proposed a route towards com-
plex media that would make it possible. However, Pendry not only made negative refraction pos-
sible, but also negative index for evanescent waves and he further proposed that the convergent
flat lens envisioned by Veselago has a theoretically unlimited resolution. As a twist to history, the
so-called Rayleigh criterion (named after John William Strutt Rayleigh), which states that « two
images are just resolvable when the center of the diffraction pattern of one is directly over the first
minimum of the diffraction pattern of the other », could be overcome thanks to negative index,
according to Pendry [Phys. Rev. Lett. 85, 3966–3969, 2000]. Pendry’s article led to a scientific con-
troversy, which has been resolved after a few years of heated debates, thanks to both experimental
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and theoretical works, of physicists and mathematicians alike. Six years after his seminal paper
on the perfect lens, Pendry proposed a route to invisibility via the concept of transformation op-
tics, together with his colleagues David Schurig and David Smith at Duke University in Durham,
USA [Science 312, 1780–1782, 2006]. This route known as « transformation optics » amounts to
applying some geometric transformation to the Maxwell’s equations, which can fortunately be
written in a covariant form that avoids numerous technical difficulties that would arise for in-
stance in the Navier equations for elasticity. However, even if Maxwell’s equations behave well
under a geometric transform, the invisibility cloak which results from a disc being mapped onto
a ring (with the hole inside the ring being concealed to electromagnetic waves), requires the use
of an anisotropic heterogeneous shell surrounding the object to cloak, and is different from the
proposal of conformal optics put forward by Ulf Leohnardt at Saint-Andrews University in Scot-
land [Science 312, 1777–1780, 2006], which requires only some spatially varying refractive index,
but at the cost of working in 2D geometries (conformal maps requiring a complex plane) and in
the ray optics limit.

The research on metamaterials also benefited from important contributions by eminent
researchers in physics and electrical engineering. We provide here a (non-exhaustive) list of some
of them:

Sergei Tretyakov started his career as a research engineer at the Radiophysics Department
of Peter the Great St. Petersburg Polytechnic University (formerly the Leningrad Polytechnic
Institute in 1980). In the nineties, Tretyakov held an adjunct position at the Electromagnetics
Laboratory of Helsinki University of Technology where he worked with Ismo Lindell, Ari Sihvola
and Ari Viitanen with whom he published the influential book [Electromagnetic waves in chiral
and bi-isotropic media, Artech House Antenna Library, Norwood, MA, USA, 1994] that presents
a clear exposure of optical activity and chirality in electromagnetic media akin to metamaterials.
During these years, he made important contributions to the theory of spatially dispersive media
with Konstantin Simovski at the St. Petersburg Polytechnic University, where he got promoted full
professor in 1996. In 2000, he moved to the Helsinki University of Technology as full professor of
Radio Engineering, and was soon followed by Konstantin Simovski who holds the same position
there. Tretyakov and Simovski have contributed to the career of a young generation of extremely
talented research scientists, such as Pavel Belov (the present dean of the faculty of Physics
at the ITMO University, formerly the Leningrad Institute of Fine Mechanics and Optics), and
Mario Silveirinha (currently a professor of electrical engineering at the University of Lisbon),
notably on strong spatial dispersion of wire media in the homogenization limit [Phys. Rev. B 67,
113103, 2003].

Nader Engheta received a BS degree in electrical engineering from the University of Tehran
in Iran in 1978, the MS degree in electrical engineering and the Ph.D. degree in electrical en-
gineering and physics from the California Institute of Technology (Caltech), Pasadena, Califor-
nia. After spending one year as a Postdoctoral Research Fellow at Caltech and four years as a
Senior Research Scientist at Kaman Sciences Corporation’s Dikewood Division in Santa Monica,
California, he joined the faculty of the University of Pennsylvania, where he rose through the
ranks and is currently H. Nedwill Ramsey Professor. He was the graduate group chair of electri-
cal engineering from 1993 to 1997. He has made seminal contributions to the field of metamate-
rials, notably on epsilon-near-zero (ENZ) metamaterials that exhibit unique properties in light-
matter interaction such as novel Purcell effects, plasmonic cloaking and optical nano circuitry.
The plasmonic cloaking route he proposed with Andrea Alù [Phys. Rev. E 72, 016623, 2005] has led
to new methods in stealth physics. He and his group have developed several areas and concepts
in the fields of metamaterials and plasmonic optics, including, “extreme-parameter” metamate-
rials and ENZ metamaterials [Phys. Rev. B 75 (15), 155410, 2007]; He contributed to the emerg-
ing the field of graphene with the field of metamaterials and plasmonic optics in infrared regime,
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providing the roadmaps for one-atom-thick optical devices and one-atom-thick information pro-
cessing; microwave artificial chirality; « signal-processing » metamaterials, « digital » metamate-
rials and « meta-machine ». He is currently the H. Nedwill Ramsey Professor at the University
of Pennsylvania, Philadelphia, Pennsylvania, USA, affiliated with the departments of Electrical
and Systems Engineering, Bioengineering, materials science and engineering, and Physics and
Astronomy. He is a Fellow of many international scientific and technical societies. His current
research activities span a broad range of areas including nanophotonics, metamaterials, plas-
monics, nano-scale optics, graphene optics, imaging and sensing inspired by eyes of certain an-
imal species, optical nanoengineering, time-reversal symmetry breaking and non-reciprocity,
microwave and optical antennas, mathematics of fractional operators, and physics and engi-
neering of fields and waves. He has made pioneering contributions to the fields of electromag-
netism and microwaves, metamaterials, transformation optics, plasmonic optics, nanophoton-
ics, graphene photonics, nano-materials, nanoscale optics, nano-antennas and miniaturized an-
tennas, physics and reverse-engineering of polarization vision in nature, bio-inspired optical
imaging and fractional paradigm in electrodynamics.

Martin Wegener completed his PhD in physics in 1987 at Johann Wolfgang Goethe-Universität
Frankfurt (Germany), he spent two years as a postdoc at AT&T Bell Laboratories in Holmdel
(U.S.A.). From 1990–1995 he was professor at Universität Dortmund (Germany) and, since 1995,
he has been professor at the Institute of Applied Physics of Karlsruhe Institute of Technology
(KIT). Since 2001, he has held a joint appointment as department head at Institute of Nanotech-
nology of KIT. From 2001–2014 he was the coordinator of the DFG-Center for Functional Nanos-
tructures (CFN) at KIT. Since 2019, he has been a co-speaker at the 3D Matter Made to Order
center of excellence. His research interests comprise ultrafast optics, (extreme) nonlinear optics,
near-field optics, optical laser lithography, photonic crystals, optical, mechanical, and thermody-
namic metamaterials, as well as transformation physics. This research has led to various awards
and honors, among which are the SPIE Prism Award 2014 for the start-up company Nanoscribe
GmbH. In the past fifteen years, his research group has been particularly active in electromag-
netic [Science 306, 1351–1353, 2004; Science 328, 337–339, 2010], mechanical [Applied Physics
Letters 100, 191901, 2012; Phys. Rev. Lett. 108, 014301, 2012; Phys. Rev. Lett. 108, 014301, 2014;
Proceedings of the National Academy of Sciences 112, 4930–4934, 2015; Science 358, 1072–1074,
2017] and thermal [Phys. Rev. Lett. 110, 195901, 2013] metamaterials. Muamer Kadic (currently
assistant professor of physics at the University of Franche-Comté) has been involved in much
of Wegener’s work on mechanical and thermal metamaterials. Moreover, Wegener received the
2005 Descartes Prize together with Sir John Pendry, David Smith (who contributed essential arti-
cles such as the first experimental evidence of negative refraction [Phys. Rev. Lett. 84, 4184, 2000]
and microwave cloaking [Science 314, 977–980, 2006]), Ekmel Ozbay and Kostas Soukoulis (who
made important contributions to so-called all-angle negative refraction with photonic crystals
[Nature 423 (6940), 604–605, 2004], which is a research area in photonics initiated by a theoretical
paper coauthored by one of us [J. Opt. Soc. Am. A 17, 1012–1020, 2000]).

The 2005 Descartes Prize for EU research was awarded for the development of artificial struc-
tures with entirely new optical properties. Indeed, the European Union acknowledged that the
research teams of these prominent researchers created and developed a novel class of artificial
metamaterials, at that time called « left-handed materials », as the usual rule of thumb used to
describe the triplet (E, H, k) should be performed with the left hand instead of the right hand
as is conventional. Indeed, in ordinary isotropic media with simultaneously positive permittiv-
ity and permeability (hence a positive refractive index), the triplet (E, H, k) is right-handed and
the wavevector k points parallel to the Poynting vector S, which is defined as the cross product
of E and H. Whereas for simultaneously negative permittivity and permeability (hence a nega-
tive refractive index according to Veselago’s seminal paper [Sov. Phys. Usp. 10, 509, 1968]), the
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wavevector k changes direction and the triplet becomes left-handed (and k and S become anti-
parallel, hence the phase and group velocities point in opposite directions). Left-handed me-
dia are now known as « negative index materials » (NIMs), and their fascinating properties in-
clude negative refraction, inverse Doppler and Cerenkov effects and vacuum impedance match-
ing possibility (so transparency) as discovered by Veselago more than 50 years ago [Sov. Phys.
Usp. 10, 509, 1968]. But possibilities offered by NIMs include imaging not constrained by the
diffraction limit as further pointed out by Pendry 20 years ago [Phys. Rev. Lett. 85, 3966–3969,
2000]. Fabrication of NIMs has opened up the possibility of novel applications and devices in-
cluding sub-diffraction limited imaging and other subwavelength devices, as well as miniature
antennas and waveguides, and artificial magnetic and bianisotropic materials. However, the 2005
Descartes prize did not foresee that electromagnetic metamaterials would find tremendous ap-
plications in other fields of physics. For instance, it was pointed out by Alexander Movchan and
one of us in [Phys. Rev. B 70, 125116, 2004] that split ring resonators can be used to create low
frequency stop bands in acoustics due to the fact that they behave like locally resonant struc-
tures that can be modelled by springs and masses, and thus can form the basis of negatively re-
fracting index media in acoustics [New Journal of Physics 9, 399, 2007]. A similar claim was made
by Jensen Li and Che Ting Chan around the same time [Phys. Rev. E 70, 055602, 2004]. How-
ever, it is the group of Ping Sheng which first unveiled the true potential of locally resonant sonic
materials in a landmark article [Science 289, 1734–1736, 2000]. The group of Martin Wegener
pushed the analogy drawn between optics and mechanics by introducing the concept of chiral
mechanical metamaterials [Science 358, 1072–1074, 2017]. The latter could be the cornerstone
for an elastodynamic cloak built from a Cossérat medium, as proposed by the applied mathemat-
ics group of Alexander Movchan at Liverpool University over a decade ago [Appl. Phys. Lett. 94,
061903, 2009]. Another possibility might be to approximate so-called Milton–Briane–Willis media
[New Journal of Physics, 8 (10), 248, 2006] with chiral mechanical metamaterials [Phys. Rev. B 99,
214101, 2019].

Following the rise of graphene, carbon nanotubes and other two-dimensional new mate-
rials, researchers in metamaterials paid a special interest to composites similar to these two-
dimensional materials. It is interesting here to note some connections with the work of Thomas
Ebbessen who is a professor of physical chemistry at the University of Strasbourg in France.
Ebbessen is known for his pioneering work in nanoscience. He received the 2014 Kavli Prize in
Nanoscience for transformative contributions to the field of nano-optics that have broken long-
held beliefs about the limitations of the resolution limits of optical microscopy and imaging,
together with Stefan Hell (2014 Nobel prize in chemistry), and John Pendry. In 2019, Ebbessen
was awarded the CNRS Gold medal in France. While working at the company NEC in the late
eighties, Ebbesen discovered that it was possible to transmit light through subwavelength holes
milled in opaque metal films under certain resonant conditions. The phenomenon, known as
extraordinary optical transmission, involves surface plasmons. Surface plasmons remain a very
active research area, with prominent researchers such as Stefan Maier [Plasmonics: fundamen-
tals and applications Springer Science & Business Media, 2007], who started his carreer working
with Harry Atwatter at the California Institute of Technology, notably publishing a landmark pa-
per on Local detection of electromagnetic energy transport below the diffraction limit in metal
nanoparticle plasmon waveguides [Nature Materials 2, 229–232, 2003] and who currently holds
a professorship position at Imperial College London and at the Ludwig-Maximilian Universität
München. We note that Stefan Maier has published numerous papers with John Pendry and
Paloma Huidobro (a young and extremely talented researcher who has recently joined the group
of Mario Silveirinha in Lisbon) on the control of surface plasmon polaritons using tools of trans-
formation optics as well as optics of graphene.

Federico Capasso is another major contributor to the field of metasurfaces. He received the
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doctor of Physics degree from the University of Rome in 1973 for his research on fiber op-
tics, and he joined the Bell Labs in 1976. In 1984, he was made a Distinguished Member of
Technical Staff and in 1997 a Bell Labs Fellow. He joined Harvard University as a professor
in applied physics in 2003. Capasso and his collaborators made many wide-ranging contribu-
tions to semiconductor devices, pioneering the design technique known as band-structure en-
gineering. He applied it to novel low noise quantum well avalanche photodiodes, heterojunc-
tion transistors, memory devices and lasers. Capasso and his collaborators invented and demon-
strated the quantum cascade laser (QCL) [Science 264, 553–556, 1994]. Capasso’s group showed
that suitably designed plasmonic interfaces consisting of optically thin arrays of optical nano-
antennas lead to a powerful generalization of the centuries-old laws of reflection and refrac-
tion. They form the basis of flat optics based on metasurfaces, which Capasso has popularized
[Science, 334, 333–337, 2011; Nature Materials 13, 139–150, 2014] well beyond the photonics
community.

Philippe Lalanne who is a Director of Research at CNRS at Institut d’Optique d’Aquitaine, can
be certainly included in the pioneering researchers on metasurfaces with his seminal work on
effective medium theory of sub-wavelength periodic structures [Journal of Modern Optics 43,
2063–2085, 1996] and on blazed binary subwavelength gratings [Optics Letters 23, 1081–1083,
1998]. Lalanne also brought essential contributions to electromagnetic numerical modelling with
the highly improved convergence of the Fourier decomposition for periodic structures [J. Opt.
Soc. Am. A 13, 779–784, 1996] and to photonics with the theory of the extraordinary optical trans-
mission [Nature 452, 728–731, 2008]. He has been involved in computational electrodynamics
and in applications of subwavelength optical structures for diffractive optics, plasmonics, pho-
tonic crystals, integrated optics and microcavities.

However, metamaterials are not only media designed with some space heterogeneity. One can
also engineer properties of media by working on the time variable. Here, we would like to cite one
researcher whose name is associated with time-reversal mirrors.

Mathias Fink received the Doctorat es-Sciences degree from Paris University in the area of ul-
trasonic focusing for real-time medical imaging under the supervision direction of Pierre Alais in
1978. In 1981, he was appointed Professor at the University of Strasbourg. After a stay as a visit-
ing professor at the University of Irvine in the radiology department, he returned to France to be-
come professor at the Paris Diderot University (Paris 7). In 1990 he founded the Waves and Acous-
tics Laboratory at Ecole Supérieure Physique Chimie Industrielle (ESPCI) in Paris, which became
the Institut Langevin in 2009. In 2005, he was appointed professor at ESPCI, where he now is pro-
fessor emeritus and holds the Georges Charpak chair (named after the Polish-born French physi-
cist, who held the Joliot-Curie Chair at ESPCI and was the awarded the Nobel prize in Physics in
1992 for his invention and development of particle detectors). Fink pioneered the development
of time-reversal mirrors and Time Reversal Signal Processing [Europhysics Journal Physics 15,
81, 1994; Wave Motion 20, 151, 1994; Phys. Rev. Lett. 79, 3170, 1997]. He developed many appli-
cations of this concept from ultrasound therapy, medical imaging, non-destructive testing, un-
derwater acoustics, seismic imaging, tactile objects, to electromagnetic telecommunications. He
also pioneered innovative medical imaging methods: transient elastography, supersonic shear
imaging and multi-wave imaging that are now implemented by several companies. Six compa-
nies with around 400 staff have been created from his research: Echosens, Sensitive Object, Su-
personic Imagine (which he cofounded notably with Charpak), Time Reversal Communications,
Cardiawave, and GreenerWave. We note that Philippe Roux, a director of research at CNRS who is
currently the head of Institut des Sciences de la Terre ISTERRE in Grenoble, has made important
contributions to seismic metamaterials [Scientific Reports 6, 19238, 2016; Geophysical Journal
International 220, 1330–1339, 2020] and is a former PhD student of Fink. Metamaterials is a small
world ranging from ultrasonics to geophysics.
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Another important contributor to the field of seismic metamaterials is Stéphane Brûlé, a
researcher in seismic risk assesment, soil-structure interaction, who is also a senior geotechnical
engineer, holder of a master’s degree research from Ecole Normale Supérieure de Paris and
Pierre and Marie Curie University and an engineering diploma in geotechnics of Grenoble-Alpes
University in the field of soil mechanics, ground improvement and deep foundations. Brûlé is
the leading author of the foundation paper for the field of seismic metamaterials [Phys. Rev.
Lett. 112, 133901, 2014] that he coauthored with Emmanuel Javelaud (who was back in 2012 an
engineer and researcher in Brûlés research group at Ménard), Stefan Enoch (director of research
at CNRS) and one of us. He also led the first experiment on lensing of surface Rayleigh waves
via negative refraction [Scientific Reports 7, 18066, 2017]. He is a member of the International
Technical Committee 203 « Geotechnical Earthquake Engineering and Associated Problems »,
is also an active board-member of the French committee of soil mechanics (CFMS) and of the
French earthquake engineering association (AFPS).

Finally, in the tracks of Lord Rayleigh, some eminent researchers working in applied math-
ematics and theoretical mechanics have contributed to the development of metamaterials. We
have already cited many famous researchers (some of whom will appear in what follows as they
are contributors to the two special double volumes). Nonetheless, we are well aware that many
great scientists do not appear in our preface, and we would like to apologize for that. But trying
to be more exhaustive, would lead us far beyond the scope of this preface. So let us just mention
Alain Bensoussan, Jacques-Louis Lions and Georges Papanicolaou for their landmark book on
homogenization theory [Asymptotic Analysis for periodic structures, North-Holland, 1978], and
Habib Ammari, Allan Greenleaf, Robert Kohn, Michael Vogelius and Michael Weinstein for their
seminal contribution to the mathematical theory of cloaking, and of the members of the math-
ematics laboratory POEMS of Anne-Sophie Bonnet Ben-Dhia at ENSTA in Palaiseau, which is a
leading laboratory for the research on corners consisting of a frequency dispersive medium that
share some features with the physics of black-holes. Our list is obviously far from being exhaustive
and we would like to apologize for missing other eminent researchers. Let us however, pay a spe-
cial attention to the work of two mathematicians, since the latest developments of spatially and
temporally modulated metamaterials point towards their seminal work. Konstantin Lurie gradu-
ated with a Master of Science from the Leningrad Polytechnic Institute in 1959 and a PhD from
the Physical-Technical Institute five years afterwards. He obtained the equivalent of the French
« Doctorat d’Etat » from the same institute in 1972. His research has been devoted since the sixties
to optimal material design. The journal papers and books he published have laid the mathemat-
ical foundation of this discipline, as we know it today. The need for optimal design comes from
various technological requirements such as devices, which are produced with a better quality, less
weight, at a lower cost and with faster fabrication. As explained by Lurie, there are strong ties be-
tween optimal design and physics, mechanics, biology, and natural science in general. Optimality
embraces many fields such as communication systems and nanostructural design, or traffic con-
trol. We note that Andrej Cherkaev, another key player in the theory of composites, contributed a
few influential works with Konstantin Lurie, and there is even a landmark work these researchers
published with Graeme Milton and Marco Avellaneda on the conductivity of polycrystals and
a phase-interchange inequality [Physica A: Statistical Mechanics and its Applications 157, 148–
153, 1989] Lurie extrapolated these principles to material dynamics by introducing a novel con-
cept of dynamic materials [An Introduction to the Mathematical Theory of Dynamic Materials,
Springer, 2007], and in this way he has laid the mathematical foundations for metamaterials with
properties variable in space and time. Space-time metamaterials has become a fast-developing
area of metamaterials.

John Willis is Emeritus Professor of Theoretical Solid Mechanics in the University of Cam-
bridge. He graduated from the Department of Mathematics at Imperial College London where
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he was an Assistant Lecturer in 1962–1964, before working as a Research Associate at the Courant
Institute in New-York during one year. From 1965 to 1972, he was a Director of Research at the
Department of Applied Mathematics and Theoretical Physics (DAMTP) of Cambridge University,
and then a Professor of Applied Mathematics in Bath University until 1994. He was back as a Pro-
fessor of Theoretical Solid Mechanics at DAMTP from 1994 to 2007, as well as being Professor of
Mechanics at Ecole Polytechnique from 1998 to 2004. He was Editor of the Journal of Mechanics
and Physics of Solids for a quarter of a century (from 1982 to 2006). Major research interests of
Willis have included static and dynamic problems for anisotropic media, problems of irradiation
damage of materials, structural integrity, effective properties of composite materials (both static
and dynamic), mechanics of nonlinear composites, stability of strained-layer semiconductor de-
vices. Recent work has been on strain-gradient plasticity and the dynamics of composites (as ap-
plied to acoustic metamaterials). He was elected a Fellow of the Royal Society in 1992, a Foreign
Member of the US National Academy of Engineering (2004) and a membre Associé Etranger of the
French Académie des Sciences (2009). So-called Willis media, named after his seminal paper on
variational and related methods for the overall properties of composites that led to new governing
equations for elastodynamics waves propagating within heterogeneous media [Advances in Ap-
plied Mechanics, 21, 1–78, 1981], are an area of elastic metamaterials with very intense research
activity. Besides from these groundbreaking articles, Willis published some important work on
the dynamical interpretation of flutter instability in a continuous medium, [J. Mech. Phys. Solids
54, 2391–2417, 2006], as well as some landmark paper on modifications of Newton’s second law
and linear continuum elastodynamics, which he coauthored with Graeme Milton, another emi-
nent mathematician [Proc. Roy. Soc. A 463, (2007), 855–880, 2007].

As we suggested with the « metamathematics » of David Hilbert, metamaterials is a subject at
the interface between physics and mathematics (notwithstanding the importance of engineer-
ing sciences that will come next in the preface). We are honoured to have the polymath Graeme
Milton as a contributor of the two special double volumes, who is a Distinguished Professor at
the University of Utah and also a Full Professor at Courant Institute of Mathematical Sciences in
New-York. When a Master student at Sydney University he published a seminal paper on Bounds
on the complex dielectric constant of a composite material [Appl. Phys. Lett. 37, 300–302 (1980)],
that lays the foundations of the so-called Bergmann–Milton theory of bounds. Milton’s under-
graduate honors’ thesis was on « Theoretical studies of the transport properties of inhomoge-
neous media », under the direction of Ross McPhedran who introduced him to the field of com-
posite materials, resulting in the aforementioned publication that received according to Milton
more reprint requests than any of his subsequent papers. He did his Ph.D thesis on Some Exotic
Models in Statistical Physics at Cornell University Physics Department with Michael Fisher, then
a postdoc with Michael Cross at Caltech as a Weingart Fellow, and George Papanicolaou (who
coauthored with Alain Bensoussan and Jacques-Louis Lions the classical book on homogeniza-
tion theory [Asymptotic Analysis of Periodic Structures, North-Holland, New-York, 1978]) sug-
gested he apply for an assistant professorship at the Courant Institute, where he got tenure and
was promoted to Associate Professor after two years, and later to Full Professor. Twenty five years
ago, he published with his colleague Andrej Cherkaev a breakthrough article entitled « Which
elasticity tensors are realizable? » [Journal of Eng. Mat. and Technology 117, 483–493, 1995], that
introduced a whole new class of composites with unprecedented elastic properties. So-called
Pentamode media have been made a reality five years ago thanks to the group of Martin Wegener
[Phys. Rev. Appl. 2, 054007, 2014]. In 1999, he became Distinguished Professor of the University of
Utah Mathematics Department, and served as department chair from 2002–2005. He published
another classical book [The Theory of composites, Cambridge University Press, Cambridge, 2002]
that echoes that of Bensoussan, Lions and Papanicolaou. These two books will still serve as an in-
spiration for physicists and mathematicians working in the field of metamaterials for the years to
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come.
The paradigm shifts of negative refraction and cloaking have fueled the interest in metama-

terials. Thus far, we have presented prominent researchers in this field, whose works are cited
in the 14 articles of these two special double volumes. However, as guest editors of the Comptes
Rendus Physique, we have the great pleasure to gather in these double volumes’ contributions by
other highly distinguished, and extremely gifted, chemists, physicists and mathematicians who
have also made landmark contributions to the field of metamaterials.

By alphabetical order, we start with Andrea Alù who graduated with a PhD from the University
of Roma Tre in 2007. After spending one year as a postdoctoral research fellow working with Prof.
Nader Engheta at the University of Pennsylvania, Philadelphia, in 2009 he joined the faculty of
the University of Texas at Austin where he is currently a Senior Research Scientist and an Adjunct
Professor. He joined the City University New-York in 2018 as a Professor and the founding director
of the Photonics Initiative for its Advanced Science Research Center. He remains affiliated with
the Applied Research Laboratories at the University of Texas at Austin, where he is involved in
research projects on electromagnetics and acoustics. His current research interests span over
a broad range of areas, including metamaterials and plasmonics, electromagnetics, optics and
photonics, scattering, cloaking and transparency [Phys. Rev. E 72, 016623, 2005], nanocircuits and
nanostructures modeling, miniaturized antennas and nanoantennas, radio frequency antennas
and circuits, acoustic and mechanical devices and metamaterials. Alù is currently the President
of the Metamorphose Virtual Institute for Artificial Electromagnetic Materials and Metamaterials,
and a member of the Administrative Committee of the IEEE Antennas and Propagation Society.
Since 2014, Alù has been also serving as Chief Technology Officer of Silicon Audio RF Circulator,
a company that holds the exclusive license of a few inventions stemming from Alù’s lab around
magnetic-free technology for non-reciprocal devices.

Yuri Kivshar studied at the Kharkiv school founded by the Nobel prize laureate Lev Lan-
dau. In 1984, he received Doctor of Philosophy degree and in 1989 aged 30 he became the
youngest research fellow of Verkin Institute for Low Temperature Physics and Engineering.
From 1991 he worked as a scientist in USA, Finland, Spain, Germany and in 1993 was in-
vited to the Optical Sciences Centre of Australia and later founded his own laboratory Non-
linear Physics Centre of Autralian National University. Starting from 2000 Yuri Kivshar worked
in different fields of nonlinear optics and carried out research of solitons and metamaterials,
nonlinear photonic crystal and composite materials theories. He made fundamental impact
into self-focusing effect, metamaterials, dielectric nanoantennas, topological insulators, optic
signal processing and optical communications. He also discovered series of solitons and de-
scribed their dynamic properties in nearly integrable systems. In 2010, Yuri Kivshar was in-
vited to St. Petersburg thanks to the government Megagrant program. He became a scien-
tific leader of the International Research Centre for Nanophotonics and Metamaterials of the
ITMO University (Saint-Petersburg, Russia). Throughout his exceptionally prolific career, Yuri
Kivshar has made landmark contributions to many fields of physics and he also contributed
to the dissemination of ideas of non-linear optics in photonic crystals and metamaterials, no-
tably with the classical book he coauthored with Govind Agrawal [Optical solitons: from fibers
to photonic crystals, Academic press, New-York, 2003]. Last, but not least, the work of Yuri
Kivshar has received over 80,000 citations according to Google Scholar (with an h-index of 130)
which suggests the profound impact his work has in the field of photonics. Besides from that,
he has developed an amazing number of collaborations with research groupings worldwide.
His extraordinary scientific life is thus reminiscent to that of the mathematician Paul Erdôs who
published work with more than 500 collaborators, which prompted the creation of the Erdôs
number, the number of steps in the shortest path between a mathematician and Erdős in terms
of co-authorships.
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Ross McPhedran completed his undergraduate studies and PhD at the University of Tasmania,
before moving to Sydney in 1975 as a Queen Elizabeth II Fellow. He was appointed a Senior Lec-
turer in the School of Physics at Sydney University in 1984, and was promoted to a Personal Chair
in 1994. His interests range over many aspects of wave theory, photonics, microstructured fibres,
elastodynamics, composite science, mathematical methods and numerical algorithms. McPhe-
dran has made seminal contributions to the field of wave science, its techniques and applica-
tions. These have provided methods of unprecedented accuracy and insights which have enabled
major developments in the performance of microstructured optical fibres, composite materials,
diffraction gratings, photonic and platonic crystals (the latter are crystal plates coined platon-
ics by McPhedran perhaps in reference to Plato, the Athenian philosopher of Ancient Greece).
The multipole formulation has been developed as a major tool for solving scattering problems
involving electromagnetic and elastic waves with both periodic and finite systems for applica-
tions like spectroscopy and photovoltaic and photothermal energy conversion. The associated
tools of lattice sums, density of state functions, mode and defect analysis have advanced under-
standing and methodologies of wave science. Ross McPhedran has played a pivotal role in the
career of many research scientists, including one of us. He has attacked during his exceptional
career problems ranging from applied physics [Physics World 26, 32, 2013] to pure mathematics
[https://arxiv.org/pdf/2003.14241.pdf].

We have presented some of the prominent scientists in the physical, mathematical and engi-
neering sciences, who in our opinion have shaped the field of metamaterials and the theory of
composites in general. We do not claim to be exhaustive as the list of prominent scientists who
contributed to metamaterials is vast: this list only reflects the opinion of the guest editors. How-
ever, as often in sciences, research advances are the work of many individuals and groups who
contribute to the dissemination and improvement of great ideas of a happy few. Let us remind
another point of history that in the late 1940s, Winston Kock from AT&T Bell Laboratories devel-
oped materials that had similar characteristics to metamaterials. In the 1950s and 1960s, artificial
dielectrics were studied for lightweight microwave antennas. Then, microwave radar absorbers
were researched in the 1980s and 1990s as applications for artificial chiral media. These devices
can be considered as complex media with rationally designed unusual properties, so are encom-
passed by our definition of metamaterials (and also that of Wegener).

Since 1999, researchers who have contributed to this field of metamaterials, include pure and
applied mathematicians, theoretical and applied physicists, but also chemists, biologists, me-
chanical engineers and also geophysicists. Therefore, electromagnetic metamaterials are just one
side of the coin. Indeed, correspondences between the governing equations for electromagnetic
waves and acoustic, elastodynamic and hydrodynamic waves have allowed to translate unusual
phenomena first discovered in electromagnetism to other fields and find exciting applications.
For instance, the invisibility cloak proposed by Pendry and his colleagues [Science 312, 1780–
1782, 2006] to show the true potential of electromagnetic field control by metamaterials, has been
then designed for pressure waves and it might improve the acoustics of concert halls by acousti-
cally concealing columns. One of us has even proposed that seismic metamaterials might provide
protection from earthquakes by rerouting or diverting seismic waves with a gigantic invisibility
cloak akin to Pendry’s cloak for electromagnetic waves. Allied to designing or creating devices,
many interesting conceptual questions naturally arise, for instance one recurring question is the
reciprocity principle: If light cannot reach a fictional character covered by an invisibility cloak,
can he or she see the outer world? In fact, he or she would be in complete darkness if the cloak
would have no eyeholes; these two defects in the cloak could then be perceived by an outer ob-
server. Similarly, in other wave systems, one has to think of the consequences of such cloaking
or devices, for instance, the invisibility region should act as a quiet zone if one were to design a
cloak for acoustic or seismic waves.
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Thus far, the physics of negative refraction and cloaking (i.e. of invisibility cloaks) seem
dissociated topics, but they reunite in the theory of external cloaking proposed by Graeme Milton
and Nicolae Nicorovici [Proc. Roy. Soc. A: Mathematical, Physical and Engineering 462, 3027–
3059, 2006]. In this approach, the invisibility cloak consists of a negatively refracting shell, and
what’s more, the object to conceal lies outside the cloak! The design of an external cloak is
radically different to Pendry’s cloak, since the latter is based on anisotropic features of the shell (or
cloak) surrounding the object to hide. It defies the above arguments of reciprocity principle since
the fictional character is no longer surrounded by the cloak, but it lives somewhat in a space-
folded region, known as a Riemann sheet, that is not sensed by light illuminating the external
cloak and the fictional character. Other counterintuitive physics is that of topological insulators,
which are complex media that support a host of symmetry-protected surface states, and are also
encompassed by our definition of metamaterials.

The present two special double volumes of the Comptes Rendus Physique aim to draw an
overview of the topic of metamaterials. This collection of fourteen articles, carried out with the
cooperation of leading international experts in the field of metamaterials, includes original re-
search as well as more review-oriented contributions. The articles cover the topics of electro-
magnetic, acoustic, elastic, and seismic metamaterials and are organized in two sets gathering
on one side, articles more-oriented on concepts and models and on the other side, articles re-
porting results more related to promising potential applications. The two double volumes thus
cover theoretical as well as experimental and fundamental as well as applied aspects in different
areas of metamaterials from nanoscale (electrodynamics and plasmonics) to meter-scale (geo-
physics) media.

In the first of the two double volumes, the first set of seven articles starts by a survey of the
physics of negative index materials at the frontier of macroscopic electromagnetism, by one of
us. In this contribution, the new phenomena and questions brought by the negative refraction,
negative index, perfect flat lens and corner structures are discussed within the frame of macro-
scopic electromagnetism. As a continuation, an analog of « black hole » phenomenon is high-
lighted in simple corner structures filled with frequency dispersive permittivity and arguments
are provided to support that, in passive media, the imaginary part of the magnetic permeability
can take positive and negative values.

It is followed by an article on first principle homogenization with application to wire me-
dia by Mario Silveirinha et al., which presents an overview of a homogenization theory for
periodic metamaterials. This ab initio general approach can be considered as an extension
to periodic metamaterials of the frame developed in order to derive the phenomenologi-
cal equations of macroscopic electromagnetism and represents a remarkable counterpart to
the usual homogenization theories established in applied mathematics. The proposed ap-
proach is applied to various cases of two-dimensional and three-dimensional electromag-
netic wire media allowing to highlight a variety of exotic phenomena and the effect of spatial
dispersion.

The next article on transformation optics for plasmonics, by Paloma Huidobro and Antonio
Fernandez-Dominguez, reviews the latest theoretical advances in the application of transforma-
tion optics for the theoretical description of sub-wavelength plasmonics structures. This arti-
cle starts with an introduction to the technique of transformation optics. The technique is no-
tably applied to the design of metasurfaces with singular geometries, obtained by mapping an
infinite extended volume to a plasmonic nanoparticle, which enable broadband absorption and
provide platform for investigation of spatial dispersion. The technique is also exploited to deter-
mine analytically the coupling of a quantum emitter with plasmonic nano-particles.

The article by Graeme Milton and Ross McPhedran is a review of anomalous resonance, the
associated cloaking, and superlensing. The authors adopt an original and interesting viewpoint
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on the history of external cloaking and the superlensing, alternative to the ones generally found in
the literature, based on the discoveries of ghost sources and anomalous resonances back in 1994.
This theoretical article brings a nice introduction to cloaking due to complementary media for
quasistatics and fine analyses of anomalous resonances, cloaking and superlensing in the limit
as the absorption goes to zero.

The next article on all-dielectric Mie-resonant metaphotonics by Nicolas Bonod and Yuri
Kivshar draws the advantages of all-dielectric subwavelength structures when compared with
their plasmonic counterparts. This article starts with a review on the electric and magnetic
resonances with low multipolar order leading, without metals, to artificial optical magnetism
and negative effective permeability. Then is shown how these resonances can be used to achieve
the Kerker effect and the Kerker conditions from dielectric particles, and to design all-dielectric
nanoantenna for the enhancement of the excitation strength of quantum emitters. This concept
of dielectric resonances is applied to the design of all-dielectric metasurfaces for bound states in
the continuum and for generating colors and holograms.

Philippe Barois et al. contributed a review article on bottom-up nanocolloidal metamaterials
at optical frequencies. This article, mainly experimental, reports the design and the fabrication,
from nanocolloidal meta-atoms assemblies, of three-dimensional metamaterials in the visible
range. The metamaterials are in addition characterized in terms of effective permittivity and
permeability. Both kinds of metamaterials involving plasmonic or Mie resonances are addressed,
showing for each the powerfulness and drawbacks. Metasurfaces for flat optics and perfect
absorbers applications are also addressed.

The last contribution of the first set of articles, by Romain Fleury, Andrea Alù and Farzad
Zangeneh-Nejad, addresses the emerging topic of topological wave insulators. This review article
starts with the simple one-dimensional example of the Su–Schrieffer–Heeger (SSH) model and
then turns to two-dimensional situations, discussing classical wave analogues of Chern, quan-
tum Hall, spin-Hall, Valley-Hall, and Floquet topological insulators. The most recent develop-
ments are also reviewed. This article draws a remarkable interdisciplinary research topic with the
transposition of concepts, originally discovered in condensed matter systems, to classical wave
physics: photonics, microwaves, phononics, acoustics and mechanics.

In the second double volume, the second set of seven articles, where promising applications
are reported, is opened with a contribution on tunable metasurface-based waveplates by Nader
Engheta and Nasim Estakhri. The authors propose an innovative type of waveplate, for full
control on phase retardation and light polarization, consisting of two symmetric metasurfaces
separated by a varying distance. The metastructures are designed by inverse design topology
optimization. Several numerical examples are shown, including metastructures designed from
a genetic algorithm and compatible with currently available fabrication techniques in the visible
range.

The following article is a survey in the visible range of dispersion and efficiency engineering
of metasurfaces by Benfeng Bai et al. Metasufaces allow the manipulation of electromagnetic
waves from the strong resonant behaviors of varied meta-atoms arranged in a subwavelength
lattice. After introducing metasurfaces, their advantages and drawbacks, the authors review the
recent endeavors in solving the limitations of metasurfaces due to their dispersion and low
efficiency. The dispersion and efficiency of metasurfaces are engineered according to the specific
applications: ultra-highly sensitive sensing, field modulation, nonlinear interactions, full-color
imaging, holographic display. . .

Metasurfaces are again considered in the article on metasurfaces for thin antenna applications
by Massimiliano Casaletti et al. In this contribution, metasurfaces are considered for microwaves,
where standard circuit technologies can be used for easy fabrication and integration. The authors
review the latest progress in metasurface antenna design, where metasurfaces are exploited to

C. R. Physique, 2020, 21, n 4-5, 311-341



324 Boris Gralak and Sébastien Guenneau

miniaturize the profile, increase the bandwidth, and control the radiation pattern in the near-
and far-field regions.

The next article, by S. Anantha Ramakrishna et al., focuses on the properties of waveguides
filled with anisotropic metamaterials. The authors show how metamaterials based waveguides
offer a whole new range of novel features exploiting anisotropic permittivity and permeability
that can have vanishing or even sign-shifting eigenvalues. Zero-index and hyperbolic waveguides
lead to modes with fractional and even imaginary orders. They may have potential applications
in near-field optical microscopy, Laser amplification, harmonic generation, or self-phase modu-
lation that can occur over short lengths of the waveguide.

The article by Vicent Romero-Garcia et al. initiates the series of contributions on classical
waves other than electromagnetic with a survey on the design of acoustic metamaterials made
of Helmholtz resonators for perfect absorption. The authors first report a robust technique for
the design of acoustic metamaterials based on the analysis of the zeros and poles of the eigen-
values of the scattering matrix in the plane of complex frequencies. Then several examples of
perfectly absorbing one-dimensional structures and membranes are reviewed. In particular, the
possibility to obtain perfect absorption by some defined critical coupling conditions is discussed
in detail.

That article on acoustic metamaterials is followed by the review article on the theory and de-
sign of metamaterials in mechanics by the metamaterial group of Muamer Kadic at FEMTO-ST.
In this article, the authors present the general procedure of designing elastic metamaterials based
on masses and springs. It is shown that using this simple approach, any set of effective properties
can be designed, including linear elastic metamaterials—defined by bulk modulus, shear modu-
lus, mass density—and nonlinear metamaterials—with instabilities or programmable parts. The
designs and the corresponding numerical calculations to illustrate different constitutive behav-
iors are presented.

The last article of the second special double volume by Stéphane Brûlé at DGI-Ménard Inc and
one of us is on the role of seismic metamaterials on soil dynamics. The article actually focuses its
attention on control of soils structured by an array of boreholes (that are more akin to photonic
crystals than metamaterials, as they essentially work in the Bragg regime), that have been shown
to allow for shielding and focusing effects. Some previously unpublished experimental results
show the potential for energy harvesting of ambient seismic noise of the array of boreholes. The
authors further proposed to bridge the field of time-modulated media and seismic metamaterials
in order to generate some new effects leading notably to a concept of analogue seismic computer
and some internet of things using seismic ambient noise on a geophysics scale.

In conclusion, these two special double volumes of the Comptes Rendus Physique touch
upon many topical subjects in the physics of acoustic, elastic, electromagnetic metamateri-
als, which were discovered less than a quarter of a century ago. These two double volumes
cover theoretical as well as experimental aspects in these different areas from nanoscale (op-
tics and plasmonics) to meter-scale (civil engineering in seismics) passing through microwaves,
acoustics and mechanics. Emerging topics like topological insulators and numerous promis-
ing applications from metasurfaces have been addressed. The fourteen articles constituting
these two double volumes give a comprehensive survey of recent advances in this mature
field. Much remains to be discovered and doubtless the future will be exciting, we hope that
the present collection of articles will help foster theoretical and experimental efforts in meta-
materials. We stress that all these contributions promise to revolutionize ways of controlling
the propagation of sound, light, and any particular form of waves at macroscopic and mi-
croscopic scales. Indeed, potential applications range from subwavelength lensing and optical
waveguides, to biosensors and full control of light ellipticity, to enhanced excitation strength
of quantum emitter and nonlinear interactions, to flat optics and holographic display, to
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perfect absorption in acoustics and metasurface antenna, to underwater camouflaging and
electromagnetic invisibility, to manipulation of visible light and protection from harmful physical
waves (e.g., tsunamis and earthquakes).

We would like to convey our warmest thanks to all authors, who are the principal architects
of this special volume of the Comptes Rendus Physique published by the French Academy of
Sciences, for their excellent scientific contribution and their willingness to share their knowledge
of the mathematics and physics of metamaterials. The assistance and professionalism of the
teams of the Centre Mersenne and the Comptes Rendus of the Académie of Sciences is also
greatly acknowledged. Last, but not least, we are deeply indebted to Denis Gratias, for his keen
interest in the topic of metamaterials and his constant encouragements through the preparation
of this volume, especially during the final stage which occurred during the covid-19 pandemic in
Europe. We hope that you will enjoy reading these articles and find them as inspirational as we
did.

Préface

Le mot « métamatériau » semble à la fois familier et mystérieux au profane : d’une part, ce
domaine de recherche né il y a vingt ans à l’interface entre sciences physiques et sciences
de l’ingénieur nécessite un haut niveau d’expertise pour être approfondi avec des méthodes
théoriques et expérimentales avancées ; et d’autre part, les paradigmes électromagnétiques tels
que la réfraction négative, les super lentilles et les capes d’invisibilité ont attiré l’attention des
médias de masse.

Il s’avère que même l’origine et la signification du mot métamatériau (formé du préfixe grec
µετά signifiant au-delà ou soi et du suffixe latin materia, signifiant matériel) restent insaisiss-
ables. Il nous semble que la plupart des chercheurs supposent que les métamatériaux sont une
notion qui fait référence aux composites dont les propriétés vont au-delà de celles trouvées dans
les matériaux ordinaires, car il est bien connu que le préfixe « méta » apparaît dans des mots
comme métaphysique. Selon Martin Wegener du Karlsruhe Institute of Technology, qui a joué
un rôle central dans le développement des métamatériaux, une définition appropriée serait que
« les métamatériaux sont des composites rationnellement conçus permettant des propriétés ef-
fectives qui vont qualitativement ou quantitativement au-delà de ceux du mélange des ingré-
dients les constituant ». Cependant, certains chercheurs pourraient argumenter que cette défi-
nition n’englobe pas le cas des métamatériaux qui tirent leurs propriétés uniques de leur inter-
face structurée, ce qui est le cas par exemple des métasurfaces. De plus, le sujet émergent des
métamatériaux spatio-temporels, qui sont en général des milieux complexes avec une certaine
modulation périodique de leurs propriétés à la fois dans l’espace et dans le temps, peuvent être
des mlieux homogènes simplement modulés dans le temps, et donc en fait non couverts par
la définition proposée par Wegener : en effet, un morceau de verre pourrait acquérir des pro-
priétés extraordinaires grâce aux modulations temporelles, même s’il ne s’agit pas d’un compos-
ite. Par conséquent, en regardant la littérature existante et la variété des définitions proposées
pour ce qu’un métamatériau devrait être, il semble juste de dire qu’il n’y a pas encore de défini-
tion « universelle » d’un métamatériau. Ceci est particulièrement vrai, car le terme métamatéri-
aux est maintenant utilisé dans de nombreux domaines des sciences physiques et de l’ingénierie,
et il a même des applications dans les sciences de la vie et les sciences médicales.

Par ailleurs, il est peut-être moins connu parmi les chercheurs travaillant dans le domaine
des métamatériaux que le préfixe « méta » a également été utilisé par le mathématicien alle-
mand David Hilbert en relation avec la logique mathématique il y a cent ans dans un projet
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de recherche intitulé « métamathématiques ». Hilbert a laissé entendre qu’il s’agissait d’un pro-
jet non seulement au-delà des mathématiques ordinaires, mais aussi avec des aspects d’auto-
référencement (pensez par exemple à « Cette phrase contient trente-six lettres », qui est un ex-
emple d’auto-référence de phrase). On peut donc affirmer qu’il y a aussi une idée d’échelles mul-
tiples, et une certaine interaction entre elles, dans un métamatériau. Même si les premiers pro-
totypes de métamatériaux électromagnétiques apparus au tournant de ce siècle se composent
majoritairement de deux échelles (l’échelle d’une cellule élémentaire, constituée de circuits ré-
sonants, qui est périodiquement disposée dans l’espace, et l’échelle du composite global con-
stitué de centaines de cellules), ces dernières années ont vu l’émergence de composites hiérar-
chiques à échelles multiples. Cependant, il n’est pas simple d’identifier les propriétés effectives
des métamatériaux hiérarchiques, surtout si les différentes échelles ne sont pas bien séparées.
Et comme leurs propriétés effectives restent insaisissables, cela pourrait être une autre classe de
métamatériaux, semblable aux poupées russes (ou Matrioshka), qui n’est pas couverte par la déf-
inition de M. Wegener.

Ainsi, dans ces deux doubles volumes spéciaux des Comptes Rendus Physique, nous sup-
posons une approche pragmatique, et nous optons simplement pour la définition des méta-
matériaux comme étant des « milieux complexes aux propriétés inhabituelles rationnellement
conçues » (mais nous ne prétendons pas qu’ils peuvent être modélisés comme des composites
aux propriétés effectives, et notez qu’un morceau de verre modulé dans le temps est compatible
avec notre définition). Maintenant que nous avons fait cette précision, nous tenons à souligner
certains travaux importants antérieurs à la naissance des métamatériaux : ce domaine n’a pas été
créé ex nihilo, et comme Sir Isaac Newton avait l’habitude de le dire à ses étudiants en mathéma-
tiques, nous pensons que faire de la physique revient à se tenir sur l’épaule de géants pour voir
l’avenir. Ainsi, commençons par un physicien et un polymathe de premier plan.

John William Strutt, 3ème baron Rayleigh (1842–1919) est célèbre dans la communauté de
l’optique pour la diffusion Rayleigh (ce phénomène explique pourquoi le ciel est bleu). Cepen-
dant, les ondes de Rayleigh qui sont, avec les ondes de Love, responsables de nombreuses catas-
trophes sismiques dans les infrastructures humaines, portent également le nom de Rayleigh, qui
a également contribué à la diffusion de la lumière, aux théories sonores et hydrodynamiques, à
la vision des couleurs, à la théorie de l’élasticité et à la thermodynamique des gaz. Le livre de
Rayleigh, [The Theory of Sound, MacMillan and co., London, 1877], paru en deux volumes, a été
accompagné de la monographie d’Augustus Edward Hough Love [Some Problems of Geodynam-
ics, Cambridge University Press, Cambridge, 1911], une source d’inspiration inestimable pour des
générations de physiciens, d’ingénieurs et de mathématiciens. Il est considéré par de nombreux
chercheurs en théorie des composites comme un précurseur de la théorie de l’homogénéisation,
qui est une branche des mathématiques consacrée à l’analyse d’équations aux dérivées partielles
avec des coefficients périodiques spatialement et oscillant rapidement. Lord Rayleigh, qui est de-
venu le deuxième professeur Cavendish de physique à l’Université de Cambridge en 1879 (suite à
la mort de James Clerk Maxwell), a reçu un prix Nobel de physique en 1904 pour ses « recherches
sur les densités des gaz les plus importants et pour sa découverte de l’argon en relation avec ces
études » et a eu trois fils, dont l’aîné deviendra professeur de physique à l’Imperial College of
Science and Technology de Londres.

Victor Veselago (1929–2018) est à l’origine du paradigme électromagnétique de la réfraction
négative. Il était un physicien russe né en Crimée, qui a consacré sa vie aux ondes électro-
magnétiques, en commençant comme radioamateur pendant son adolescence. Le concept de
réfraction négative dans les milieux isotropes avec permittivité et perméabilité simultanément
négatives, abordé dans le livre de Sir Arthur Schuster [An Introduction to the Theory of Optics,
London: Edward Arnold and Co., 1904], qui mentionne la possibilité d’avoir un vecteur de Poynt-
ing opposé au vecteur d’onde, a été proposé pour la première fois dans un article fondateur de
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Veselago [Sov. Phys. Usp. 10, 509, 1968]. Cependant, comme mentionné ci-dessus, la percée tech-
nologique est venue avec la découverte de Sir John Pendry et de ses collègues que des résonateurs
à anneaux fendus combinés à des fils droits et minces permettraient une permittivité et une per-
méabilité effectives négatives à certaines fréquences micro-ondes [Phys. Rev. Lett. 76, 4773–4776,
1996 ; IEEE transactions on microwave theory and techniques 47 (11), 2075–2084, 1999]. Plus pré-
cisément, dans l’article fondateur de 1968, Veselago a montré qu’une simple lame à faces paral-
lèles d’un milieu d’indice de réfraction négatif serait un instrument optique capable de trans-
mettre des images sans distorsions. Une affirmation de Veselago peut-être moins connue est
selon laquelle sous absorption de lumière dans un milieu à réfraction négative, la pression lu-
mineuse change par attraction lumineuse. Parallèlement à ses travaux scientifiques sur les semi-
conducteurs dits magnétiques, Veselago a engagé un vaste travail pédagogique. À partir de 1961, il
enseigne à l’Institut de physique et de technologie de Moscou (MIPT) et y donne le cours original
du cycle universitaire « Les éléments de base de la physique des vibrations » et dirige simultané-
ment des séminaires et des travaux de laboratoire à la Chaire de physique générale. Veselago a été
l’un des pionniers de la diffusion d’informations scientifiques sur Internet en Russie : en 1992, il
organisait déjà l’envoi par Internet du contenu des revues scientifiques. Il a inventé le système
« Informag », qui a été utile à la communauté scientifique russe en raison de la situation désas-
treuse des bibliothèques universitaires dans les années 90. En 1998, Veselago a organisé la pre-
mière revue électronique à comité de lecture en Russie. Il a reçu un certain nombre de prix russes
et étrangers pour ses recherches scientifiques tels que le prix d’État 1976 de l’ex-Union soviétique
et en 2004 le prix Fock de l’Académie des sciences de Russie. En 2009, Veselago a reçu la médaille
de l’American Optical Society pour son travail, qui va bien au-delà de l’électrodynamique et de
l’optique. En effet, les idées de Veselago ont eu une importance considérable dans de nombreux
domaines de la physique, et nous en présenterons quelques-unes ces deux doubles volumes spé-
ciaux des Comptes Rendus Physique. Nous présentons maintenant un autre physicien qui a ap-
porté des contributions majeures dans le domaine des métamatériaux, qui est encore popularisé
bien au-delà de la communauté photonique.

John Pendry a travaillé comme jeune chercheur sur la diffraction d’électrons à basse énergie au
laboratoire Cavendish de Cambridge et après un post-doctorat en spectroscopie photoélectron-
ique aux Bell Labs aux USA, en 1972–1973. Il a ensuite été nommé directeur du groupe de théorie
au laboratoire de Daresbury du Science and Engineering Research Council du Royaume-Uni, puis
professeur de physique à l’Imperial College de Londres en 1981. Alors qu’il travaillait aux Bell
Labs, Pendry a développé la première théorie quantitative de la structure fine d’absorption des
rayons X étendue pour laquelle il a reçu le prix Dirac en 1996 et, en tant que chef du groupe de
théorie à Dalesbury, il a publié sa théorie de la spectroscopie de photoémission résolue en angle,
qui reste à ce jour un modèle standard pour sonder la structure des électrons dans les structures
cristallines 1D et 2D. Lorsqu’il a pris son poste actuel de professeur à l’Imperial College en 1981,
il a maintenu une forte activité dans son domaine de recherche familier en science des surfaces,
mais il a également commencé à étudier le comportement des électrons dans des milieux désor-
donnés, et a développé sa théorie de la diffusion et ses méthodes de calcul pour des structures
désordonnées en 1D et en dimension supérieure. Ces milieux ont trouvé une application en bi-
ologie relevant de la conductivité des biomolécules. Tous ces travaux antérieurs ont conduit il y
a 25 ans à son premier article fondateur sur les structures de bandes photoniques, accompagné
du logiciel gratuit qu’il a conçu avec ses collègues de l’Imperial College et de l’Universidad Au-
tonoma de Madrid [Computer Physics Communications 85, 306–322, 1995] qui a rendu possible
de dévoiler des plasmons polaritons à des fréquences extrêmement faibles dans des réseaux de
fibres métalliques diluées [Phys. Rev. Lett. 76, 4773–4776, 1996], qui, avec les célèbres résonateurs
à anneau fendu, qu’il a proposés pour le magnétisme artificiel au tournant du siècle [IEEE Trans-
actions on Microwave Theory and Techniques 47, 2075, 1999], peuvent être considérés comme la
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pierre angulaire des métamatériaux pour la réfraction négative. Comme nous le rappellerons en-
suite, la physique de la réfraction négative — dans laquelle les rayons lumineux sont réfractés à
une interface selon la loi de Snell-Descartes dans laquelle le signe d’un indice de réfraction a été
inversé — a été introduite par le physicien russe Veselago 30 ans avant que Pendry propose une
voie vers des milieux complexes qui la rendraient possible. Cependant, Pendry a non seulement
rendu possible la réfraction négative, mais aussi un indice négatif pour les ondes évanescentes et
il a en outre proposé que la lentille plate convergente envisagée par Veselago ait une résolution
théoriquement illimitée. Comme un pied de nez à l’histoire, le célèbre critère de Rayleigh (d’après
John William Strutt Rayleigh), qui stipule que « deux images sont simplement résolubles lorsque
le centre du diagramme de diffraction de l’une est directement sur le premier minimum du dia-
gramme de diffraction de l’autre », pourrait être dépassé grâce à un indice négatif, selon Pendry
[Phys. Rev. Lett. 85, 3966–3969, 2000]. L’article de Pendry a conduit à une controverse scientifique,
qui s’est résolue après quelques années de débats houleux, grâce à des travaux expérimentaux et
théoriques, de physiciens comme de mathématiciens. Six ans après son article fondateur sur la
lentille parfaite, Pendry a proposé une voie vers l’invisibilité via le concept de l’optique de trans-
formation, avec ses collègues David Schurig et David Smith de l’Université Duke à Durham, USA
[Science 312, 1780–1782, 2006]. Cette technique dite de l’« optique de transformation » revient
à appliquer une certaine transformation géométrique aux équations de Maxwell, qui peuvent
s’écrire sous une forme covariante évitant de nombreuses difficultés techniques qui se poseraient
par exemple dans les équations de Navier pour l’élasticité. Cependant, même si les équations de
Maxwell sont invariantes après une transformation géométrique, la cape d’invisibilité qui résulte
de la transformation d’un disque en un anneau (le trou à l’intérieur de l’anneau étant dissimulé
aux ondes électromagnétiques), nécessite l’utilisation d’une coque hétérogène anisotrope en-
tourant l’objet à masquer. Une classe différente de capes d’invisibilité, basée sur l’optique con-
forme, a été proposée par Ulf Leohnardt à l’Université de Saint-Andrews au Royaume-Uni [Sci-
ence 312, 1777–1780, 2006]. Cette deuxième solution ne nécessite que quelques indices de réfrac-
tion spatialement variables, mais au prix de travailler en géométrie 2D (les transformations con-
formes nécessitant un plan complexe) et dans la limite de l’optique des rayons.

La recherche sur les métamatériaux a également bénéficié d’importantes contributions
d’éminents chercheurs en physique et en génie électrique. Nous fournissons ici une liste (non
exhaustive) de certains d’entre eux.

Sergei Tretyakov a commencé sa carrière comme ingénieur de recherche au Département
de radiophysique de l’Université polytechnique Pierre le Grand de Saint-Pétersbourg (ancien-
nement Institut polytechnique de Leningrad en 1980). Dans les années 90, Tretyakov a occupé
un poste auxiliaire au laboratoire d’électromagnétique de l’Université de technologie d’Helsinki
où il a travaillé avec Ismo Lindell, Ari Sihvola et Ari Viitanen avec qui il a publié l’influent ouvrage
[Ondes électromagnétiques dans les milieux chiraux et bi-isotropes, Artech House Antenna Li-
brary, Norwood, MA, USA, 1994] qui expose une présentation claire de l’activité optique et de
la chiralité dans des milieux électromagnétiques apparentés aux métamatériaux. Au cours de
ces années, il a apporté d’importantes contributions à la théorie des milieux spatialement dis-
persifs avec Konstantin Simovski à l’Université polytechnique de Saint-Pétersbourg, où il a été
promu professeur en 1996. En 2000, il a rejoint l’Université de technologie d’Helsinki en tant que
professeur de Radio Engineering, et fut rapidement suivi par Konstantin Simovski qui y occupe
également un poste de professeur. Tretyakov et Simovski ont contribué à la carrière d’une généra-
tion de jeunes chercheurs extrêmement talentueux, tels que Pavel Belov (le doyen de la faculté de
physique de l’Université ITMO) et Mario Silveirinha (actuellement professeur d’électrotechnique
à l’Université de Lisbonne), notamment reconnus pour leurs travaux sur la forte dispersion spa-
tiale des milieux filaires dans la limite d’homogénéisation [Phys. Rev. B 67, 113103, 2003].

Nader Engheta a été diplômé en génie électrique de l’Université de Téhéran en Iran en 1978,
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puis a obtenu une maîtrise en génie électrique et un doctorat en génie électrique et physique du
California Institute of Technology (Caltech), Pasadena, Californie. Après avoir passé un an en tant
que chercheur postdoctoral à Caltech et quatre ans en tant que chercheur principal à la division
Dikewood de Kaman Sciences Corporation à Santa Monica, en Californie, il a rejoint la faculté
de l’Université de Pennsylvanie, où il est actuellement Professeur H. Nedwill Ramsey et où il a été
président du groupe d’études supérieures en génie électrique de 1993 à 1997. Il a apporté des con-
tributions fondamentales au domaine des métamatériaux, notamment sur les métamatériaux à
indice proche de zéro (ou métamatériaux ENZ pour epsilon-near-zero en anglais) qui présentent
des propriétés uniques dans l’interaction lumière-matière, comme les nouveaux effets de Pur-
cell, le camouflage plasmonique et les nano-circuits optiques. L’exploitation de la plasmonique
pour rendre des objets « invisibles » ou « transparents », qu’il a proposée dès 2005 avec Andrea
Alù [Phys. Rev. E 72, 016623, 2005], a conduit à de nouvelles méthodes en physique furtive. Avec
son groupe, il a développé plusieurs domaines et concepts dans les domaines des métamatéri-
aux et de l’optique plasmonique, notamment les métamatériaux « à paramètres extrêmes » et
les métamatériaux ENZ [Phys. Rev. B 75 (15), 155410, 2007] ; il a contribué à l’émergence du do-
maine du graphène dans le domaine des métamatériaux et de l’optique plasmonique en régime
infrarouge, fournissant les feuilles de route pour les dispositifs optiques d’un atome d’épaisseur
et le traitement de l’information avec ces dispositifs ; il a joué un rôle déterminant dans les thé-
matiques de la chiralité artificielle par micro-ondes, des métamatériaux « traitement du signal »,
des métamatériaux « numériques » et des « méta-machines ». Il est actuellement professeur H.
Nedwill Ramsey à l’Université de Pennsylvanie, Philadelphie, Pennsylvanie, États-Unis, affilié aux
départements de génie électrique et des systèmes, de bio-ingénierie, de science et d’ingénierie
des matériaux, et de physique et d’astronomie. Il est membre de nombreuses sociétés scien-
tifiques et techniques internationales. Ses activités de recherche actuelles couvrent un large éven-
tail de domaines, notamment la nanophotonique, les métamatériaux, la plasmonique, l’optique
à l’échelle nanométrique, l’optique au graphène, l’imagerie et la détection inspirées par les yeux
de certaines espèces animales, la nano-ingénierie optique, la rupture de symétrie d’inversion de
temps et la non-réciprocité, les antennes optiques et micro-ondes, les mathématiques des opéra-
teurs fractionnaires, et la physique et l’ingénierie des champs et des ondes. Il a apporté des con-
tributions pionnières dans les domaines de l’électromagnétisme et des micro-ondes, des méta-
matériaux, de l’optique de transformation, de l’optique plasmonique, de la nanophotonique, de
la photonique du graphène, des nanomatériaux, de l’optique à l’échelle nanométrique, des nano-
antennes et des antennes miniaturisées, de la physique et de l’ingénierie inverse de la vision de
polarisation dans la nature, de l’imagerie optique bio-inspirée et du paradigme fractionnaire en
électrodynamique.

Martin Wegener a obtenu son doctorat en physique en 1987 à Johann Wolfgang Goethe-
Universität Frankfurt (Allemagne), puis il a passé deux ans en tant que chercheur au AT&T Bell
Laboratories à Holmdel (États-Unis). De 1990 à 1995, il était professeur à l’Universität Dortmund
(Allemagne) et, depuis 1995, il est professeur à l’Institut de physique appliquée de l’Institut de
technologie de Karlsruhe (KIT). Depuis 2001, il occupe un poste conjoint en tant que chef de
service à l’Institut de nanotechnologie du KIT. De 2001 à 2014, il était le coordinateur du DFG-
Center for Functional Nanostructures (CFN) au KIT. Depuis 2019, il est co-conférencier au cen-
tre d’excellence 3D Matter Made to Order. Ses intérêts de recherche comprennent l’optique ul-
trarapide, l’optique non-linéaire (extrême), l’optique en champ proche, la lithographie laser op-
tique, les cristaux photoniques, les métamatériaux optiques, mécaniques et thermodynamiques,
ainsi que la physique des transformations. Cette recherche a débouché sur différents prix et
distinctions, parmi lesquels le SPIE Prism Award 2014 pour la start-up Nanoscribe GmbH. Au
cours des quinze dernières années, son groupe de recherche a été particulièrement actif dans
les thématiques des métamatériaux électromagnétiques [Science 306, 1351–1353, 2004; Sci-
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ence 328, 337–339, 2010], mécaniques [Appl. Phys. Lett. 100, 191901, 2012; Phys. Rev. Lett. 108,
014301, 2012; Phys. Rev. Lett. 108, 014301, 2014; Proceedings of the National Academy of Sci-
ences 112, 4930–4934, 2015; Science 358, 1072–1074, 2017] et thermiques [Phys. Rev. Lett. 110,
195901, 2013]. Muamer Kadic (actuellement enseignant-chercheur en physique à l’Université
de Franche-Comté) a participé à de nombreux travaux de Wegener sur les métamatériaux mé-
caniques et thermiques. Wegener a de plus reçu le prix Descartes 2005 avec Sir John Pendry, David
Smith (qui a rédigé des articles essentiels tels que la première preuve expérimentale de la réfrac-
tion négative [Phys. Rev. Lett. 84, 4184, 2000] et du camouflage micro-ondes [Science 314, 977–
980, 2006]), Ekmel Ozbay et Kostas Soukoulis (qui ont apporté d’importantes contributions à la
réfraction négative dite à tous angles avec des cristaux photoniques [Nature 423 (6940), 604–605,
2004], qui est un domaine de recherche en photonique initiée par un article théorique co-écrit
par l’un de nous [J. Opt. Soc. Am. A 17, 1012–1020, 2000]).

Le prix Descartes 2005 de la recherche européenne a été décerné pour le développement
de structures artificielles aux propriétés optiques entièrement nouvelles. En effet, l’Union eu-
ropéenne a reconnu que les équipes de recherche de ces éminents chercheurs ont créé et
développé une nouvelle classe de métamatériaux artificiels, à l’époque appelés « matériaux
gauchers », étant donné que la règle de base habituelle utilisée pour décrire le triplet (E, H, k) doit
être effectuée avec la main gauche au lieu de la main droite comme c’est conventionnel. En ef-
fet, dans les milieux isotropes ordinaires à permittivité et perméabilité simultanément positives
(d’où un indice de réfraction positif), le triplet (E, H, k) est direct droitier et le vecteur d’onde
k est parallèle au vecteur de Poynting S, qui est défini comme le produit vectoriel de E et H.
Alors que pour une permittivité et une perméabilité simultanément négatives (d’où un indice de
réfraction négatif selon l’article fondateur de Veselago [Sov. Phys. Usp. 10, 509, 1968]), le vecteur
d’onde k change de direction et le triplet (E, H, k) devient indirect (et k et S deviennent anti-
parallèles, et donc les vitesses de phase et de groupe pointent dans des directions opposées).
Les milieux main-gauche sont maintenant généralement dénommés « matériaux à indice né-
gatif » (NIM pour negative index materials en anglais), et leurs propriétés fascinantes compren-
nent la réfraction négative, les effets Doppler et Cerenkov inverses et la possibilité d’adaptation
de l’impédance du vide (donc la transparence) comme l’a découvert Veselago il y a plus de 50
ans [Sov. Phys. Usp. 10, 509, 1968]. Mais les possibilités offertes par les NIM incluent également
l’imagerie non limitée par la limite de diffraction comme l’a souligné Pendry il y a 20 ans [Phys.
Rev. Lett. 85, 3966–3969, 2000]. La fabrication de NIM a ouvert la possibilité à de nouvelles ap-
plications et de nouveaux dispositifs, comme l’imagerie haute résolution et d’autres disposi-
tifs sous-longueur d’onde, ainsi que des antennes et guides d’ondes miniatures, et des matéri-
aux artificiels magnétiques et bianisotropes. Cependant, le prix Descartes 2005 ne mentionnait
pas que les métamatériaux trouveraient d’énormes applications dans d’autres domaines de la
physique. Par exemple, il a été souligné par Alexander Movchan et l’un de nous dans [Phys. Rev.
B 70, 125116, 2004] que les résonateurs à anneau fendu peuvent être utilisés pour créer des ban-
des interdites basse fréquence en acoustique en raison du fait qu’ils se comportent comme des
structures localement résonantes qui peuvent être modélisées par des ressorts et des masses, et
peuvent donc former la base de milieux d’indice de réfraction négatif en acoustique [New Jour-
nal of Physics 9, 399, 2007]. Une découverte similaire a été faite par Jensen Li et Che Ting Chan
à peu près au même moment [Phys. Rev. E 70, 055602, 2004]. Cependant, c’est le groupe de Ping
Sheng qui a dévoilé pour la première fois le véritable potentiel des matériaux sonores localement
résonants dans un article marquant [Science 289, 1734–1736, 2000]. Le groupe de Martin We-
gener a poussé l’analogie établie entre l’optique et la mécanique en introduisant le concept de
métamatériaux mécaniques chiraux [Science 358, 1072–1074, 2017]. Ce dernier pourrait être la
pierre angulaire d’une cape élastodynamique construite à partir d’un milieu Cossérat, comme
proposé par le groupe de mathématiques appliquées d’Alexander Movchan à l’Université de Liv-
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erpool il y a plus de dix ans [Appl. Phys. Lett. 94, 061903, 2009]. Une autre possibilité pourrait être
d’approcher les milieux dits Milton–Briane–Willis [New Journal of Physics, 8 (10), 248, 2006] avec
des métamatériaux mécaniques chiraux [Phys. Rev. B 99, 214101, 2019].

Suite à l’essor du graphène, des nanotubes de carbone et autres nouveaux matériaux bidi-
mensionnels, les chercheurs en métamatériaux ont porté un intérêt particulier à des compos-
ites qui s’apparentaient à ces matériaux bidimensionnels. Il est intéressant de noter ici quelques
liens avec les travaux de Thomas Ebbessen qui est professeur de chimie physique à l’Université
de Strasbourg en France. Ebbessen est connu pour ses travaux pionniers dans le domaine des
nanosciences. Il a reçu le prix Kavli 2014 en nanosciences pour ses contributions transformatrices
au domaine de la nano-optique qui ont brisé des certitudes de longue date sur les limites de réso-
lution de la microscopie optique et de l’imagerie, avec Stefan Hell (prix Nobel de chimie 2014), et
John Pendry. En 2019, Ebbessen a reçu la médaille d’or du CNRS en France. Alors qu’il travaillait
pour la société NEC à la fin des années quatre-vingt, Ebbesen a découvert qu’il était possible, dans
certaines conditions de résonance, de transmettre la lumière à travers des trous de dimension
sous-longueur d’onde fraisés dans des films métalliques opaques. Le phénomène, connu sous
le nom de transmission optique extraordinaire, implique des plasmons de surface. Les plasmons
de surface restent un domaine de recherche très actif, avec d’éminents chercheurs comme Stefan
Maier [Plasmonics: fundamentals and applications Springer Science & Business Media, 2007], qui
a commencé sa carrière en travaillant avec Harry Atwatter au California Institute of Technology,
publiant notamment un article qui fait date sur la détection locale du transport d’énergie élec-
tromagnétique sous la limite de diffraction dans les guides d’ondes plasmoniques à nanopartic-
ules métalliques [Nature Materials 2, 229–232, 2003] et qui occupe actuellement un poste de pro-
fesseur à l’Imperial College de Londres et à la Ludwig-Maximilian Universität München. Notons
que Stefan Maier a publié de nombreux articles avec John Pendry et Paloma Huidobro (une jeune
chercheuse extrêmement talentueuse qui a récemment rejoint le groupe de Mario Silveirinha à
Lisbonne) sur le contrôle des polaritons de plasmon de surface à l’aide d’outils de transformation
optique ainsi que sur l’optique de graphène.

Federico Capasso est un contributeur majeur dans le domaine des métasurfaces. Il a reçu
le doctorat en physique de l’Université de Rome en 1973 pour ses recherches sur la fibre op-
tique, et il a rejoint les Bell Labs en 1976. En 1984, il a été nommé membre distingué du per-
sonnel technique et, en 1997, Bell Labs Fellow. Il a rejoint l’Université de Harvard en tant que
professeur de physique appliquée en 2003. Capasso et ses collaborateurs ont apporté de nom-
breuses contributions de grande envergure aux dispositifs à semi-conducteurs, avec des travaux
pionniers sur la technique de conception connue sous le nom d’« ingénierie de structure de
bande ». Il l’a appliqué à de nouvelles photodiodes à cascade quantique à faible bruit, à des
transistors à hétérojonction, à des dispositifs de mémoire et à des lasers. Capasso et ses col-
laborateurs ont inventé et démontré le laser à cascade quantique (QCL) [Science 264, 553–556,
1994]. Le groupe de Capasso a montré que des interfaces plasmoniques, astucieusement conçues
et constituées de réseaux optiquement minces de nano-antennes optiques, conduisaient à une
puissante généralisation des lois séculaires de la réflexion et de la réfraction. Ces structures sont
au fondement de l’optique planaire basée sur les métasurfaces, que Capasso a popularisé [Sci-
ence, 334, 333–337, 2011 ; Nature Materials 13, 139–150, 2014] bien au-delà de la communauté
photonique.

Philippe Lalanne, qui est Directeur de Recherche CNRS à l’Institut d’Optique d’Aquitaine,
peut certainement être inclus dans les chercheurs pionniers sur les métasurfaces avec
ses travaux qui font date sur la théorie des milieux effectifs des structures périodiques
sous-longueur d’onde, 1996] et sur des réseaux binaires blazés sous-longueur d’onde [Op-
tics Letters 23, 1081–1083, 1998]. Lalanne a également apporté des contributions essentielles à la
modélisation numérique électromagnétique en améliorant la convergence de la décomposition
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de Fourier pour les structures périodiques [J. Opt. Soc. Am. A 13, 779–784, 1996] et à la pho-
tonique avec la théorie de la transmission optique extraordinaire [Nature 452, 728–731, 2008]. Il
a été impliqué dans l’électrodynamique computationnelle et dans les applications de structures
optiques sous-longueur d’onde pour l’optique diffractive, la plasmonique, les cristaux pho-
toniques, l’optique intégrée et les microcavités.

Comme déjà mentionné, les métamatériaux ne peuvent se résumer à des composites ra-
tionnellement conçus avec une certaine hétérogénéité spatiale. On peut également concevoir
les propriétés des matériaux en exploitant la variable de temps. Ici, nous voudrions citer un
chercheur dont le nom est associé aux miroirs à inversion temporelle.

Mathias Fink a obtenu en 1978 le Doctorat en Sciences de l’Université de Paris dans le domaine
de la focalisation ultrasonore pour l’imagerie médicale en temps réel sous la direction de Pierre
Alais. En 1981, il est nommé professeur à l’Université de Strasbourg. Après un séjour en tant que
professeur invité à l’Université d’Irvine dans le département de radiologie, il revient en France
pour devenir professeur à l’Université Paris Diderot (Paris 7). En 1990, il fonde le Laboratoire On-
des et Acoustique de l’Ecole Supérieure Physique Chimie Industrielle (ESPCI) à Paris, laboratoire
qui composera l’Institut Langevin en 2009. En 2005, il est nommé professeur à l’ESPCI, où il est
aujourd’hui professeur émérite et titulaire de la chaire Georges Charpak (du nom du physicien
français d’origine polonaise, qui a occupé la chaire Joliot-Curie à l’ESPCI et a reçu le prix Nobel
de physique en 1992 pour son invention et le développement de détecteurs de particules). Fink
a été le pionnier du développement de miroirs à inversion temporelle et du traitement du signal
par inversion temporelle [Europhysics Journal Physics 15, 81, 1994 ; Wave Motion 20, 151, 1994 ;
Phys. Rev. Lett. 79, 3170, 1997]. Il a développé de nombreuses applications de ce concept, de la
thérapie par ultrasons, l’imagerie médicale, les tests non destructifs, l’acoustique sous-marine,
l’imagerie sismique, les objets tactiles, jusqu’aux télécommunications électromagnétiques. Il a
également été le pionnier des méthodes d’imagerie médicale innovantes : élastographie transi-
toire, imagerie par cisaillement supersonique et imagerie multi-ondes qui sont maintenant mises
en œuvre par plusieurs entreprises. Six entreprises comptant environ 400 employés ont été créées
à partir de ses recherches : Echosens, Sensitive Object, Supersonic Imagine (qu’il a cofondée no-
tamment avec Charpak), Time Reversal Communications, Cardiawave et GreenerWave. Notons
que Philippe Roux, directeur de recherche au CNRS et actuellement directeur de l’Institut des Sci-
ences de la Terre ISTERRE à Grenoble, a apporté d’importantes contributions aux métamatériaux
sismiques [Rapports Scientifiques 6, 19238, 2016 ; Geophysical Journal International 220, 1330–
1339, 2020] et est un ancien doctorant de Fink. Les métamatériaux sont un petit monde allant de
l’ultrasonique à la géophysique.

Un autre contributeur important dans le domaine des métamatériaux sismiques est Stéphane
Brûlé, chercheur en évaluation du risque sismique, interaction sol-structure, qui est également
ingénieur géotechnique en chef, titulaire d’un master recherche de l’Ecole Normale Supérieure
de Paris et de l’Université Pierre et Marie Curie et diplômé ingénieur en géotechnique de
l’Université Grenoble-Alpes dans le domaine de la mécanique des sols, de l’amélioration des sols
et des fondations profondes. Brûlé est l’auteur principal de l’article fondateur pour le domaine
des métamatériaux sismiques [Physical Review Letters 112, 133901, 2014] qu’il a co-écrit avec
Emmanuel Javelaud (qui était en 2012 ingénieur et chercheur dans le groupe de recherche de
Brûlé chez Ménard), Stefan Enoch (directeur de recherche au CNRS) et l’un de nous. Il a égale-
ment dirigé la première expérience de focalisation des ondes de Rayleigh de surface par réfrac-
tion négative [Scientific Reports 7, 18066, 2017]. Il est membre du Comité technique interna-
tional 203 « Génie géotechnique sismique et problèmes associés », est également membre du
Comité français de mécanique des sols (CFMS) et de l’Association française du génie parasis-
mique (AFPS).

Enfin, dans les traces de Lord Rayleigh, d’éminents chercheurs travaillant en mathématiques
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appliquées et en mécanique théorique ont contribué au développement des métamatériaux.
Nous avons déjà cité de nombreux chercheurs célèbres (dont certains apparaîtront dans la suite
car ils sont contributeurs de ces deux doubles volumes spéciaux). Néanmoins, nous sommes bien
conscients que de nombreux grands scientifiques n’apparaissent pas dans notre préface, et nous
tenons à nous en excuser. Mais essayer d’être plus exhaustif nous conduirait bien au-delà de la
portée de cette préface. Mentionnons donc simplement Alain Bensoussan, Jacques-Louis Lions
et Georges Papanicolaou pour leur livre historique sur la théorie de l’homogénéisation [Analyse
asymptotique pour les structures périodiques, Hollande du Nord, 1978], et Habib Ammari,
Allan Greenleaf, Robert Kohn, Michael Vogelius et Michael Weinstein pour leur contribution
fondamentale à la théorie mathématique du camouflage, et des membres du laboratoire de
mathématiques POEMS d’Anne-Sophie Bonnet Ben-Dhia à l’ENSTA à Palaiseau, laboratoire
de référence pour les travaux de recherche sur les coins constitués d’un matériau dispersif
en fréquence qui partagent certaines caractéristiques avec la physique des trous noirs. Notre
liste est évidemment loin d’être exhaustive et nous tenons à nous excuser d’avoir manqué
d’autres chercheurs éminents. Portons cependant une attention particulière au travail de deux
mathématiciens, car les derniers développements des métamatériaux modulés spatialement et
temporellement pointent vers leur travail fondateur. Konstantin Lurie a obtenu une maîtrise en
sciences de l’Institut polytechnique de Leningrad en 1959 et un doctorat de l’Institut physico-
technique cinq ans plus tard. Il a obtenu l’équivalent du « Doctorat d’Etat » du même institut en
1972. Ses recherches se consacrent depuis les années 60 à la conception optimale des matériaux.
Les journaux et livres qu’il a publiés ont jeté les bases mathématiques de cette discipline telle
que nous la connaissons aujourd’hui. Le besoin d’une conception optimale provient de diverses
exigences technologiques telles que des dispositifs, qui sont produits avec une meilleure qualité,
moins de poids, à moindre coût et avec une fabrication plus rapide. Comme l’explique Lurie,
il existe des liens étroits entre la conception optimale et la physique, la mécanique, la biologie
et les sciences naturelles en général. L’optimalité englobe de nombreux domaines tels que les
systèmes de communication et la conception nanostructurale ou le contrôle du trafic. On note
qu’Andrej Cherkaev, autre acteur clé de la théorie des composites, a contribué à quelques travaux
avec Konstantin Lurie, y compris un travail historique que ces chercheurs ont publié avec Graeme
Milton et Marco Avellaneda sur la conductivité des polycristaux et une inégalité d’échange de
phase [Physica A: Statistical Mechanics and its Applications 157, 148–153, 1989]. Lurie a extrapolé
ces principes à la dynamique des matériaux en introduisant un nouveau concept de matériaux
dynamiques [An Introduction to the Mathematical Theory of Dynamic Materials, Springer, 2007],
et de cette manière il a jeté les bases mathématiques de métamatériaux aux propriétés variables
dans l’espace et le temps. Les métamatériaux spatio-temporels sont devenus un domaine en
développement rapide des métamatériaux.

John Willis est professeur émérite de mécanique théorique des solides à l’Université de Cam-
bridge. Il est diplômé du département de mathématiques de l’Imperial College de Londres où il
a été assistant-conférencier en 1962–1964, avant de travailler en tant qu’associé de recherche au
Courant Institute de New-York pendant un an. De 1965 à 1972, il a été directeur de recherche au
Département de mathématiques appliquées et de physique théorique (DAMTP) de l’Université
de Cambridge, puis professeur de mathématiques appliquées à l’Université de Bath jusqu’en
1994. Il était de retour en tant que professeur de mécanique théorique des solides à la DAMTP
de 1994 à 2007, ainsi que professeur de mécanique à l’Ecole Polytechnique de 1998 à 2004. Il a
été rédacteur en chef du Journal of Mechanics and Physics of Solids pendant un quart de siè-
cle (de 1982 à 2006). Les principaux intérêts de recherche de Willis ont inclus les problèmes
statiques et dynamiques pour les milieux anisotropes, les problèmes de dommages par
irradiation des matériaux, l’intégrité structurelle, les propriétés efficaces des matéri-
aux composites (à la fois statiques et dynamiques), la mécanique des composites non
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linéaires, la stabilité des dispositifs semi-conducteurs à couche contrainte. Des travaux ré-
cents ont porté sur la plasticité du gradient de déformation et la dynamique des com-
posites (appliquée aux métamatériaux acoustiques). Il a été élu Fellow de la Royal So-
ciety en 1992, membre étranger de la US National Academy of Engineering (2004) et
membre Associé Etranger de l’Académie des Sciences (2009). Les milieux dits de Willis,
du nom de son article fondateur sur les méthodes variationnelles et connexes pour les
propriétés globales des composites qui ont conduit à de nouvelles équations de gouvernance
pour les ondes élastodynamiques se propageant dans des milieux hétérogènes [Advances in
Applied Mechanics, 21, 1–78, 1981], sont un domaine des métamatériaux élastiques avec une
activité de recherche très intense. Willis a publié des travaux importants sur l’interprétation
dynamique de l’instabilité du flottement (flutter) dans un milieu continu, [J. Mech. Phys. Solids
54, 2391–2417, 2006], ainsi qu’un article de référence sur les modifications de la deuxième loi de
Newton et de l’élastodynamique continue linéaire, qu’il a co-écrit avec Graeme Milton, un autre
mathématicien éminent [Proc. Roy. Soc. A 463, (2007), 855–880, 2007].

Comme nous l’avons suggéré avec les « métamathématiques » de David Hilbert, les mé-
tamatériaux sont un sujet à l’interface entre la physique et les mathématiques (nonobstant
l’importance des sciences de l’ingénieur qui sera montrée ensuite dans la préface). Nous sommes
honorés d’avoir le polymathe Graeme Milton comme contributeur de ce volume spécial, actuelle-
ment professeur émérite à l’Université de l’Utah et également professeur au Courant Institute of
Mathematical Sciences à New-York. Lorsqu’il était étudiant en Master à l’Université de Sydney, il
a publié un article fondateur sur les limites sur la constante diélectrique complexe d’un matériau
composite [Appl. Phys. Lett. 37, 300–302 (1980)], qui jette les bases de la théorie des limites dite de
Bergmann-Milton. La thèse de Milton portait sur « Les études théoriques des propriétés de trans-
port des supports inhomogènes », sous la direction de Ross McPhedran qui l’introduisit dans
le domaine des matériaux composites, aboutissant à la publication susmentionnée qui a reçu
selon Milton plus de demandes de réimpression que tout autre de ses articles ultérieurs. Il a fait
sa thèse de doctorat sur certains modèles exotiques en physique statistique au département de
physique de l’Université Cornell avec Michael Fisher, puis un post-doctorat avec Michael Cross
à Caltech en tant que Weingart Fellow, et George Papanicolaou (qui a co-écrit avec Alain Ben-
soussan et Jacques-Louis Lions le livre classique sur la théorie de l’homogénéisation [Asymptotic
Analysis of Periodic Structures, North-Holland, New-York, 1978]) lui a suggéré de postuler pour
un poste de professeur adjoint au Courant Institute, où il a obtenu son poste et a été promu pro-
fesseur associé après deux ans, puis professeur. Il y a 25 ans, il publiait avec son collègue Andrej
Cherkaev un article de rupture intitulé « Quels tenseurs d’élasticité sont réalisables ? » [Journal
of Eng. Mat. and Technology 117, 483–493, 1995], qui a introduit une toute nouvelle classe de
composites aux propriétés élastiques sans précédent. Les médias dits « Pentamode » sont de-
venus réalité il y a six ans grâce au groupe de Martin Wegener [Phys. Rev. Appl. 2, 054007, 2014].
En 1999, il est devenu professeur émérite du département de mathématiques de l’Université de
l’Utah et a été directeur de ce département de 2002 à 2005. Il a publié un ouvrage qui est devenu
un classique [The Theory of composites, Cambridge University Press, Cambridge, 2002] qui fait
écho à celui de Bensoussan, Lions et Papanicolaou. Ces deux livres serviront encore d’inspiration
aux physiciens et mathématiciens travaillant dans le domaine des métamatériaux pour les
années à venir.

Les changements de paradigmes de la réfraction négative et du camouflage ont alimenté
l’intérêt pour les métamatériaux. Jusqu’à présent, nous avons présenté d’éminents chercheurs
dans ce domaine, dont les travaux sont cités dans les 14 articles de ces deux doubles volumes
spéciaux. Cependant, en tant que rédacteurs invités des Comptes Rendus Physique, nous avons
le grand plaisir de réunir dans ce volume spécial les contributions d’autres chimistes, physiciens
et mathématiciens distingués et extrêmement talentueux qui ont également apporté des contri-
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butions majeures au domaine des métamatériaux.
Par ordre alphabétique, nous commençons par Andrea Alù qui a obtenu un doctorat de

l’Université de Roma Tre en 2007. Après avoir passé un an en tant que chercheur postdoc-
toral à travailler avec le professeur Nader Engheta à l’Université de Pennsylvanie, Philadel-
phie, en 2009, il a rejoint la faculté de l’Université du Texas à Austin où il est actuellement
chercheur principal et professeur associé. Il a rejoint la City University New-York en 2018 en
tant que professeur et directeur fondateur de la Photonics Initiative pour l’Advanced Science
Research Center. Il reste affilié au Laboratoire de recherche appliquée de l’Université du Texas à
Austin, où il est impliqué dans des projets de recherche sur l’électromagnétisme et l’acoustique.
Ses sujets actuels de recherche couvrent un large éventail de domaines, y compris les méta-
matériaux et la plasmonique, l’électromagnétique, l’optique et la photonique, la diffusion, le
camouflage et la transparence [Phys. Rev. E 72, 016623, 2005], la modélisation des nanocir-
cuits et des nanostructures, les antennes miniaturisées et les nanoantennes, les antennes cir-
cuits en radio-fréquence, les dispositifs acoustiques et mécaniques en métamatériaux. Alù est
l’actuel président de l’Institut virtuel européen METAMORPHOSE pour « Les matériaux élec-
tromagnétiques artificiels et les métamatériaux », et membre du comité administratif de l’IEEE
Antennas and Propagation Society. Depuis 2014, Alù est également directeur de la technologie
chez Silicon Audio RF Circulator, une société qui détient la licence exclusive de quelques inven-
tions issues du laboratoire d’Alù autour de la technologie non-magnétique pour les dispositifs
non réciproques.

Yuri Kivshar a étudié à l’école de Kharkiv fondée par le lauréat du prix Nobel Lev Landau.
En 1984, il a obtenu un doctorat en sciences et en 1989, à 30 ans, il est devenu le plus jeune
chercheur du Verkin Institute for Low Temperature Physics and Engineering. À partir de 1991, il a
travaillé comme scientifique aux États-Unis, en Finlande, en Espagne, en Allemagne et en 1993,
il a été invité à l’Optical Sciences Center of Australia et a ensuite fondé son propre laboratoire
Nonlinear Physics Center de l’Australian National University. À partir de 2000, Yuri Kivshar a
travaillé dans différents domaines de l’optique non linéaire et a mené des recherches sur les
solitons et les métamatériaux, les cristaux photoniques non linéaires et les théories des matériaux
composites. Ses recherches ont eu un impact fondamental sur l’effet d’auto-focalisation, les
métamatériaux, les nano-antennes diélectriques, les isolateurs topologiques, le traitement du
signal optique et les communications optiques. Il a également découvert des séries de solitons
et décrit leurs propriétés dynamiques dans des systèmes presque intégrables. En 2010, Yuri
Kivshar a été invité à Saint-Pétersbourg grâce au programme gouvernemental Megagrant. Il est
devenu un responsable scientifique du Centre international de recherche en nanophotonique
et métamatériaux de l’Université ITMO (Saint-Pétersbourg, Russie). Tout au long de sa carrière
exceptionnellement prolifique, Yuri Kivshar a apporté des contributions majeures à de nombreux
domaines de la physique et il a également contribué à la diffusion d’idées d’optique non linéaire
dans les cristaux photoniques et les métamatériaux, notamment à travers l’ouvrage devenu
un classique qu’il a co-écrit avec Govind Agrawal [Solitons optiques : des fibres aux cristaux
photoniques, Academic press, New-York, 2003]. Enfin, le travail de Yuri Kivshar a reçu plus de
80 000 citations selon Google Scholar (avec un h-index de 130), ce qui suggère le profond impact
de son travail dans le domaine de la photonique. Par ailleurs, il a développé un nombre incroyable
de collaborations avec des groupes de recherche dans le monde entier. Son extraordinaire vie
scientifique rappelle ainsi celle du mathématicien Paul Erdôs qui a publié des travaux avec plus
de 500 collaborateurs, ce qui a suscité la création du nombre d’Erdôs, le nombre d’étapes du
chemin le plus court entre un mathématicien et Erdős en termes de co-paternités.

Ross McPhedran a terminé ses études de premier cycle et son doctorat à l’Université de
Tasmanie, avant de déménager à Sydney en 1975 en tant que boursier de la reine Elizabeth
II. Il a été nommé professeur assistant à la School of Physics (École de physique) de Sydney

C. R. Physique, 2020, 21, n 4-5, 311-341



336 Boris Gralak and Sébastien Guenneau

University en 1984 et a été promu à une chaire personnelle en 1994. Ses intérêts couvrent
de nombreux aspects de la théorie des ondes, de la photonique, des fibres microstructurées,
de l’élastodynamique, de la science des composites, des méthodes mathématiques et des al-
gorithmes numériques. McPhedran a apporté des contributions fondamentales au domaine
de la science des ondes, ses techniques et ses applications. Ses travaux ont fourni des méth-
odes d’une précision et d’une compréhension sans précédent qui ont permis des développe-
ments majeurs dans les performances des fibres optiques microstructurées, des matériaux
composites, des réseaux de diffraction, des cristaux photoniques et platoniques (ces derniers
sont des plaques minces périodiques baptisées platoniques par McPhedran peut-être en
référence à Platon, le philosophe athénien de la Grèce antique). La formulation multipolaire a été
développée comme un outil majeur pour résoudre les problèmes de diffraction impliquant des
ondes électromagnétiques et élastiques avec des systèmes périodiques infinis et finis pour des
applications telles que la spectroscopie et la conversion d’énergie photovoltaïque et photother-
mique. Les outils associés des « lattice sums », de la densité des fonctions d’état, de l’analyse des
modes et des défauts ont une compréhension et des méthodologies avancées de la science des
ondes. Ross McPhedran a joué un rôle central dans la carrière de nombreux chercheurs scien-
tifiques, dont l’un d’entre nous. Il s’est attaqué au cours de sa carrière exceptionnelle à des prob-
lèmes allant de la physique appliquée [Physics World 26, 32, 2013] aux mathématiques pures
[https://arxiv.org/pdf/2003.14241.pdf].

Nous avons présenté quelques-uns des scientifiques éminents des sciences physiques, math-
ématiques et de l’ingénierie, qui à notre avis ont façonné le domaine des métamatériaux et
la théorie des composites en général. Nous ne prétendons pas être exhaustifs car la liste des
scientifiques éminents qui ont contribué aux métamatériaux est vaste : cette liste ne reflète
que l’opinion des éditeurs invités. Cependant, comme souvent en sciences, les avancées de
la recherche sont l’œuvre de nombreux individus et groupes qui contribuent à la diffusion
et à l’amélioration des grandes idées de quelques heureux élus. Rappelons un autre point de
l’histoire : à la fin des années 1940, Winston Kock d’AT&T Bell Laboratories a développé des
matériaux qui avaient des caractéristiques similaires aux métamatériaux. Dans les années 1950
et 1960, des diélectriques artificiels ont été étudiés pour des antennes micro-ondes légères. Par la
suite, les absorbeurs de radar à micro-ondes ont été étudiés dans les années 1980 et 1990 comme
applications pour les milieux chiraux artificiels. Ces dispositifs peuvent être considérés comme
des milieux complexes avec des propriétés inhabituelles rationnellement conçues, ils sont donc
englobés par notre définition des métamatériaux (et aussi celle de Wegener).

Depuis 1999, les chercheurs qui ont contribué à ce domaine des métamatériaux compren-
nent des mathématiciens purs et appliqués, des physiciens théoriques et appliqués, mais aussi
des chimistes, des biologistes, des ingénieurs en mécanique et aussi des géophysiciens. Par con-
séquent, les métamatériaux électromagnétiques ne sont qu’un côté de la médaille. En effet,
les correspondances entre les équations régissant les ondes électromagnétiques et les ondes
acoustiques, élastodynamiques et hydrodynamiques ont permis de traduire des phénomènes
inhabituels découverts en électromagnétisme vers d’autres domaines et de trouver des ap-
plications passionnantes. Par exemple, la cape d’invisibilité proposée par Pendry et ses col-
lègues [Science 312, 1780–1782, 2006] pour montrer le véritable potentiel du contrôle du champ
électromagnétique par les métamatériaux, a ensuite été conçue pour les ondes de pression
et pourrait améliorer l’acoustique des salles de concert par des colonnes acoustiquement dis-
simulées. L’un de nous a même proposé que les métamatériaux sismiques puissent fournir
une protection contre les tremblements de terre en détournant les ondes sismiques avec une
gigantesque cape d’invisibilité semblable à la cape proposée par Pendry pour les ondes élec-
tromagnétiques. Associées à la conception ou à la création de dispositifs, de nombreuses ques-
tions conceptuelles intéressantes se posent naturellement, par exemple la question récurrente
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du principe de réciprocité : si la lumière ne peut atteindre un personnage fictif couvert par une
cape d’invisibilité, peut-il voir le monde extérieur ? En fait, il ou elle serait dans l’obscurité totale
si la cape n’avait pas de trous pour les yeux ; ces deux défauts de la cape pourraient alors être
perçus par un observateur extérieur. De même dans d’autres systèmes d’ondes, il faut penser
aux conséquences de tels capes ou dispositifs, par exemple, la région d’invisibilité devrait agir
comme une zone de calme si l’on devait concevoir une cape pour les ondes acoustiques ou
sismiques.

Jusqu’à présent, les physiques de la réfraction négative et du camouflage (c’est-à-dire des
capes d’invisibilité) semblent dissociées, mais elle se retrouvent dans la théorie du camouflage
externe proposée par Graeme Milton et Nicolae Nicorovici [Proc. Roy. Soc. A : Mathematical,
Physical and Engineering 462, 3027–3059, 2006]. Dans cette approche, la cape d’invisibilité con-
siste en une coquille à réfraction négative et, de plus, l’objet à dissimuler se trouve à l’extérieur
du manteau ! La conception d’une cape externe est radicalement différente de celle proposée par
Pendry, puisque cette dernière est basée sur les caractéristiques anisotropes de la coquille (ou
cape) entourant l’objet à cacher. Elle défie les arguments du principe de réciprocité mentionnés
ci-dessus, puisque le personnage fictif n’est plus entouré par la cape, mais il vit pour ainsi dire
dans une région repliée dans l’espace, appelée feuille de Riemann, qui n’est pas détectée par la
lumière qui éclaire la cape externe et le personnage fictif. Une autre physique contre-intuitive est
celle des isolants topologiques, qui sont des milieux complexes qui supportent une foule d’états
de surface protégés grâce à des propriétés topologiques, et qui sont également englobés par notre
définition des métamatériaux.

Ces deux doubles volumes spéciaux des Comptes Rendus Physique ont pour but de faire un
tour d’horizon de la thématique des métamatériaux. Cet ensemble de quatorze articles, réalisé
avec la coopération d’experts internationaux de premier plan dans le domaine des métamatéri-
aux, comprend des recherches originales ainsi que des contributions plus orientées vers des re-
vues de l’état de l’art. Les articles couvrent les sujets des métamatériaux électromagnétiques,
acoustiques, élastiques et sismiques et sont organisés en deux ensembles rassemblant d’une
part, des articles plus orientés sur les concepts et les modèles et, d’autre part, des articles rappor-
tant des résultats plus liés à des applications potentielles prometteuses. Ces deux volumes dou-
bles couvrent donc les aspects théoriques aussi bien qu’expérimentaux, et fondamentaux aussi
bien qu’appliqués, dans différents domaines des métamatériaux, depuis les milieux à l’échelle
nanométrique (électrodynamique et plasmonique) jusqu’aux milieux à l’échelle du mètre (géo-
physique).

Dans le premier des deux volumes doubles, la première série de sept articles com-
mence par une présentation de la physique des matériaux à indice négatif à la frontière de
l’électromagnétisme macroscopique, par l’un de nous. Dans cette contribution, les nouveaux
phénomènes et questions apportés par la réfraction négative, les indices négatifs, la lentille
plate parfaite et les structures en coin sont discutés dans le cadre de l’électromagnétisme macro-
scopique. Dans le prolongement, un analogue du phénomène de « trou noir » est mis en évidence
dans de simples structures en coin remplies d’un matériau de permittivité avec dispersion en
fréquence et des arguments sont fournis pour soutenir que, dans les milieux passifs, la partie
imaginaire de la perméabilité magnétique peut prendre des valeurs positives et négatives.

Il est suivi d’un article sur l’homogénéisation avec une application aux milieux filaires par
Mario Silveirinha et al., qui présente un aperçu d’une théorie d’homogénéisation pour les mé-
tamatériaux périodiques. Cette approche générale ab initio peut être considérée comme une
extension aux métamatériaux périodiques du cadre développé pour établir les équations de
l’électromagnétisme macroscopique et représente une approche physique remarquable aux
théories d’homogénéisation habituelles établies en mathématiques appliquées. L’approche pro-
posée est appliquée à divers cas de milieux filaires électromagnétiques, bidimensionnels et tridi-
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mensionnels, permettant de mettre en évidence une variété de phénomènes exotiques et notam-
ment l’effet de la dispersion spatiale.

L’article suivant sur l’optique de transformation pour la plasmonique, par Paloma Huido-
bro et Antonio Fernandez-Dominguez, passe en revue les dernières avancées théoriques dans
l’application de l’optique de transformation pour la description théorique des structures plas-
moniques sous-longueur d’onde. Cet article commence par une introduction à la technique de
l’optique de transformation. La technique est notamment appliquée à la conception de mé-
tasurfaces à géométries singulières, obtenues en cartographiant un volume infini étendu sur
une nanoparticule plasmonique, qui permettent une absorption large bande et fournissent une
plateforme pour l’étude de la dispersion spatiale. La technique est également exploitée pour
déterminer analytiquement le couplage d’un émetteur quantique avec des nanoparticules plas-
moniques.

L’article de Graeme Milton et Ross McPhedran est un état de l’art de la résonance anormale,
du camouflage associé et de la super focalisation. Les auteurs adoptent un point de vue original
et intéressant sur l’histoire du camouflage externe et de la super focalisation, alternatif à ceux
que l’on trouve généralement dans la littérature, basé sur la découverte en 1994 des notions de
sources fantômes et de résonances anormales. Cet article théorique apporte une belle introduc-
tion au camouflage dû à des milieux complémentaires en régime quasi-statique avec des anal-
yses fines des résonances anormales, du camouflage et de la super focalisation dans la limite
lorsque l’absorption tend vers zéro.

L’article suivant sur la métaphotonique tout diélectrique à base de résonances de Mie, par
Nicolas Bonod et Yuri Kivshar, tire les avantages des structures sous-longueur d’onde tout diélec-
trique par rapport à leurs homologues plasmoniques. Cet article commence par une revue des
résonances électriques et magnétiques à faible ordre multipolaire conduisant, sans métaux, à
un magnétisme optique artificiel et à une perméabilité effective négative. Ensuite, il est mon-
tré comment ces résonances peuvent être utilisées pour obtenir l’effet Kerker et les conditions
de Kerker à partir de particules diélectriques, ou concevoir une nanoantenne tout diélectrique
pour l’amélioration de la force d’excitation des émetteurs quantiques. Ce concept de résonances
diélectriques est appliqué à la conception de métasurfaces tout diélectriques pour « les états liés
dans le continuum » (bound states in the continuum en anglais) et pour générer des couleurs et
des hologrammes.

Philippe Barois et al. apportent une contribution sous forme d’un article de synthèse sur les
métamatériaux nanocolloïdaux « ascendants » (bottom-up en anglais) aux fréquences optiques.
Cet article, principalement expérimental, rend compte de la conception et de la fabrication, à
partir d’assemblages de méta-atomes nanocolloïdaux, de métamatériaux tridimensionnels dans
le domaine du visible. Les métamatériaux sont en outre caractérisés en termes de permittivité
et de perméabilité effectives. Les deux types de métamatériaux impliquant des résonances plas-
moniques ou de Mie sont abordés, montrant pour chacun leurs avantages et leurs inconvénients.
Les métasurfaces pour les optiques plates et les applications d’absorbeurs parfaits sont égale-
ment abordées.

La dernière contribution de cette première série d’articles, par Romain Fleury, Andrea
Alù et Farzad Zangeneh-Nejad, aborde le sujet émergent des isolants topologiques. Cet ar-
ticle de synthèse commence par l’exemple canonique, monodimensionnel, du modèle Su–
Schrieffer–Heeger (SSH), avant d’aborder des situations bidimensionnelles, en présentant des
analogues d’ondes classiques des isolants topologiques de Chern, de Hall quantique, de spin-
Hall, de Valley-Hall et de Floquet. Les développements les plus récents sont également passés
en revue. Cet article dessine un sujet de recherche interdisciplinaire remarquable avec la
transposition de concepts, découverts à l’origine dans les systèmes de matière condensée,
à la physique des ondes classiques en photonique, micro-ondes, phononique, acoustique et
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mécanique.
Dans le second volume double, la deuxième série de sept articles, où des applications promet-

teuses sont présentées, commence avec une contribution sur les lames d’onde accordables
basées sur des métasurfaces, par Nader Engheta et Nasim Estakhri. Les auteurs proposent une
classe de lames d’onde innovantes, pour un contrôle total du retard de phase et de la polarisation
de la lumière, constituées de deux métasurfaces symétriques séparées par une distance variable.
Les métastructures sont conçues par des méthodes inverses de type optimisation de topologie.
Plusieurs exemples numériques sont présentés, dont des métastructures conçues à partir d’un al-
gorithme génétique et compatibles avec les techniques de fabrication actuellement disponibles
dans le domaine du visible.

L’article suivant est une étude dans le domaine visible de l’ingénierie de la dispersion et de
l’efficacité des métasurfaces, par Benfeng Bai et al. Les métasufaces permettent la manipulation
d’ondes électromagnétiques à partir du comportement fortement résonant de méta-atomes var-
iés disposés sur un réseau sous-longueur d’onde. Après une introduction sur les métasurfaces,
leurs avantages et leurs inconvénients, les auteurs passent en revue les efforts récents pour sur-
monter les limitations des métasurfaces en raison de leur dispersion et de leur faible efficacité.
La dispersion et l’efficacité des métasurfaces sont contrôlées et adaptées en fonction des applica-
tions spécifiques : détection ultra-très sensible, modulation de champ, interactions non linéaires,
image en couleur, affichage holographique . . .

Les métasurfaces sont à nouveau au cœur de l’article sur les métasurfaces pour les applica-
tions d’antennes de faible épaisseur, par Massimiliano Casaletti et al. Dans cette contribution,
les métasurfaces sont considérées pour les micro-ondes, où les technologies standard des cir-
cuits imprimés peuvent être utilisées pour une fabrication et une intégration faciles. Les auteurs
passent en revue les derniers progrès dans la conception d’antennes à métasurface, où les méta-
surfaces sont exploitées pour miniaturiser le profil, augmenter la bande passante et contrôler le
diagramme de rayonnement dans les régions de champ proche et lointain.

L’article suivant, par S. Anantha Ramakrishna et al., se concentre sur les propriétés des
guides d’ondes remplis de métamatériaux anisotropes. Les auteurs montrent comment les guides
d’ondes à base de métamatériaux offrent une toute nouvelle gamme de nouvelles fonctionnalités
exploitant la permittivité et la perméabilité anisotropes qui peuvent avoir des valeurs propres de
proches de zéro ou même avec changement de signe. Les guides d’ondes à indice proche de zéro
et hyperboliques conduisent à des modes avec des ordres fractionnaires et même imaginaires.
Ils peuvent avoir des applications potentielles dans la microscopie optique en champ proche,
l’amplification laser, la génération d’harmoniques ou l’auto-modulation de phase qui peuvent se
produire sur de courtes longueurs du guide d’ondes.

L’article de Vicent Romero-Garcia et al. est la première contribution sur les ondes classiques
autres qu’électromagnétiques avec une étude sur la conception de métamatériaux acoustiques
constitués de résonateurs de Helmholtz pour une absorption parfaite. Les auteurs présentent
tout d’abord une technique robuste pour la conception de métamatériaux acoustiques basée sur
l’analyse, dans le plan des fréquences complexes, des zéros et des pôles des valeurs propres de
la matrice de diffraction. Ensuite, plusieurs exemples de structures et de membranes unidimen-
sionnelles parfaitement absorbantes sont passés en revue. En particulier, la possibilité d’obtenir
une absorption parfaite sous certaines conditions de couplage critiques spécifiques est discutée
en détail.

Cet article sur les métamatériaux acoustiques est suivi de l’article de revue sur la théorie et
la conception des métamatériaux en mécanique, par le groupe de recherche en métamatériaux
de Muamer Kadic. Dans cet article, les auteurs présentent la procédure générale de conception
de métamatériaux élastiques à partir de masses et de ressorts. Il est montré qu’en utilisant
cette approche simple, tout un ensemble de propriétés effectives peut être conçu, y compris les
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métamatériaux élastiques linéaires — définis par le module de masse, le module de cisaillement
et la densité de masse — et les métamatériaux non linéaires — avec des instabilités ou des
éléments programmables. Les designs et les calculs numériques correspondants pour illustrer
différents comportements constitutifs sont présentés.

Le dernier article du second double volume spécial, par Stéphane Brûlé de la société Ménard
et l’un de nous, porte sur le rôle des métamatériaux sismiques sur la dynamique des sols. L’article
porte sur le contrôle des sols structurés par un réseau de trous de forage (qui s’apparentent plus
à des cristaux photoniques qu’à des métamatériaux, car ils fonctionnent essentiellement dans le
régime de Bragg), dont il a été démontré qu’ils permettent des effets de miroirs réfléchissants et
de focalisation. Certains résultats expérimentaux inédits montrent le potentiel de récupération
d’énergie du bruit sismique ambiant du réseau de forages. Les auteurs ont en outre proposé
de jeter un pont entre le domaine des milieux modulés dans le temps et des métamatériaux
sismiques afin de générer de nouveaux effets conduisant notamment à un concept d’ordinateur
sismique analogique et d’Internet des objets utilisant le bruit sismique ambiant à l’échelle
géophysique.

En conclusion, ces deux doubles volumes spéciaux des Comptes Rendus Physique abordent
de nombreux sujets d’actualité en physique des métamatériaux acoustiques, élastiques et élec-
tromagnétiques, découverts il y a moins d’un quart de siècle. Ce volume couvre aussi bien les
aspects théoriques qu’expérimentaux dans ces différents domaines de l’échelle nanométrique
(optique et plasmonique) à l’échelle du mètre (génie civil en sismique) en passant par les micro-
ondes, l’acoustique et la mécanique. Des sujets émergents tels que les isolants topologiques et
de nombreuses applications prometteuses des métasurfaces ont été abordés. Les quatorze ar-
ticles constituant ces deux volumes doubles donnent un aperçu complet des progrès récents
dans ce domaine mature. Il reste encore beaucoup à découvrir et l’avenir sera sans aucun doute
passionnant. Nous espérons que cette collection d’articles contribuera à stimuler les efforts
théoriques et expérimentaux en métamatériaux. Nous soulignons que toutes ces contributions
promettent de révolutionner les moyens de contrôler la propagation du son, de la lumière et
de toute forme particulière d’ondes à des échelles macroscopiques et microscopiques. En ef-
fet, les applications potentielles vont de la lentille sous-longueur d’onde et des guides d’ondes
optiques, aux biocapteurs et au contrôle total de l’ellipticité de la lumière, à l’exaltation des
émetteurs quantiques et aux interactions non linéaires, à l’optique planaire et à l’affichage holo-
graphique, à l’absorption parfaite en acoustique et aux antennes de métasurface, au camouflage
sous-marin et à l’invisibilité électromagnétique, à la manipulation de la lumière visible et à la
protection contre les ondes physiques délétères (par exemple, les tsunamis et les tremblements
de terre).

Nous remercions chaleureusement tous les auteurs, qui sont les principaux architectes de
ce volume spécial des Comptes Rendus Physique publié par l’Académie des Sciences, pour
leurs excellentes contributions scientifiques et leur volonté de partager leurs connaissances des
mathématiques et de la physique des métamatériaux. L’assistance et le professionnalisme des
équipes du Centre Mersenne et des Comptes Rendus de l’Académie des Sciences sont également
vivement remerciés. Enfin, nous sommes profondément redevables à Denis Gratias, pour son vif
intérêt pour le sujet des métamatériaux et ses encouragements constants à travers la préparation
de ce volume, en particulier lors de la dernière étape qui a eu lieu lors de la pandémie de covid-19
en Europe. Nous espérons que vous apprécierez la lecture de ces articles et que vous les trouverez
aussi inspirants que nous.
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Abstract. The notions of negative refraction and negative index, introduced by V. Veselago more than 50
years ago, have appeared beyond the frontiers of macroscopic electromagnetism and purely formal during
30 years, until the work of J. Pendry in the late 1990s. Since then, the negative index materials and the
metamaterials displayed extraordinary properties and spectacular effects which have tested the domain of
validity of macroscopic electromagnetism. In this article, several of these properties and phenomena are
reviewed. First, mechanisms underlying the negative index and negative refraction are briefly presented.
Then, it is shown that the frame of the time-harmonic Maxwell’s equations cannot describe the behavior
of electromagnetic waves in the situations of the perfect flat lens and corner reflector due to the presence of
essential spectrum at the perfect −1 index frequency. More generally, it is shown that simple corner structures
filled with frequency dispersive permittivity have a whole interval of essential spectrum associated with an
analog of “black hole” phenomenon. Finally, arguments are provided to support that, in passive media, the
imaginary part of the magnetic permeability can take positive and negative values. These arguments are
notably based on the exact expression, for all frequency and wave vector, of the spatially-dispersive effective
permittivity tensor of a multilayered structure.

Résumé. Les notions de réfraction négative et d’indice négatif, imaginées par V. Veselago il y a plus de 50 ans,
ont semblé au-delà des frontières de l’électromagnétisme macroscopique et sont restées purement formelles
pendant 30 ans, jusqu’aux travaux de J. Pendry à la fin des années 1990. Depuis lors, les matériaux à indice
négatif et les métamatériaux ont montré des propriétés extraordinaires et des effets spectaculaires qui ont
mis à l’épreuve le domaine de validité de l’électromagnétisme macroscopique. Dans cet article, plusieurs de
ces propriétés et phénomènes sont passés en revue. Tout d’abord, les mécanismes sous-jacents aux indices
négatifs et à la réfraction négative sont brièvement présentés. Ensuite, il est montré que le cadre des équations
de Maxwell harmoniques en temps ne peut pas décrire le comportement des ondes électromagnétiques dans
les situations de la lentille plate et du réflecteur en coin parfaits en raison de la présence de spectre essentiel
à la fréquence où l’indice prend la valeur −1. Plus généralement, il est montré que de simples structures en
coin remplies d’une permittivité dispersive en fréquence ont un intervalle entier de spectre essentiel associé
à un analogue du phénomène de « trou noir ». Enfin, des arguments sont fournis pour soutenir que, dans
les milieux passifs, la partie imaginaire de la perméabilité magnétique peut prendre des valeurs positives et
négatives. Ces arguments reposent notamment sur l’expression exacte, pour toutes les fréquences et tous les
vecteurs d’onde, du tenseur de permittivité effective avec dispersion spatiale d’une structure multicouche.
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1. Introduction

The notion of negative index of refraction has been introduced more than 50 years ago by V.
Veselago [1]. The refraction at an interface separating two media with positive and negative
refractive indices is subject to the usual Snell–Descartes law:

n1 sinφ1 = n2 sinφ2. (1)

Consequently, if the refractive indices n1 and n2 of the two media have opposite sign, e.g. n1 > 0
and n2 < 0, then the refraction angles φ1 and φ2 have also opposite sign, so that the ray is
negatively refracted at the interface (see Figure 1). In macroscopic electromagnetism, media with
negative refractive index can be modelled by magnetodielectric materials with simultenously
negative values of the dielectric permittivity ε and magnetic permeability µ [1]. In such media,
the wave vector k has opposite direction from the Poynting vector S = E × H , and the triplet
formed by the electric field E , the induction field H and the wave vector k is left-handed. Thus V.
Veselago also coined a medium with negative refractive index a “left-handed material” [1].

Since no material can be found in nature with simultaneously negative values of the permit-
tivity ε and permeability µ, the notion of negative refractive index has appeared beyond the fron-
tiers of macroscopic electromagnetism and thus remained purely formal for thirty years, until the
work of J. Pendry in 1999. In [2], J. Pendry et al. showed that “microstructures built from nonmag-
netic conducting sheets exhibit an effective magnetic permeability µeff, which can be tuned to val-
ues not accessible in naturally occurring materials”, paving the way towards artificial magnetism,
negative index materials and, more generally, metamaterials with extraordinary properties. Since
then, the notion of negative index material has opened a vast range of possibilities and has tested
the domain of validity of macroscopic electromagnetism.

In this paper, a brief overview of the electromagnetic negative index materials is presented
through the mechanisms underlying the negative index of refraction, the negative index and the
proposal of the perfect −1 index lens. The fundamental role of frequency dispersion in negative
index materials and metamaterials is shown. Then, the spectral properties of corner structures
with frequency dispersive permittivity are analyzed and an analog of “black hole” phenomenon
is discussed. Finally, the key role of spatial dispersion (or non-locality) in effective permeability
and metamaterials is highlighted. In particular the question on the sign of the imaginary part of
the permeability in passive media is addressed. The new phenomena and questions brought by
these topics within the frame of the macroscopic electromagnetism will be discussed.

2. Mechanisms underlying negative index materials

Media with negative refractive index have appeared unavailable since no natural medium may
have simultaneously permittivity ε and permeability µ with real part taking negative values. In-
deed, negative values of the permittivity occur in metals at frequencies around the visible range
while, in the same range, the values of the permeability must be restricted around that of vac-
cum permeability [3]. The range of possible macroscopic electromagnetic responses has been
first extended with the works on the so-called bounds on the effective parameters of composite
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Figure 1. Refraction at an interface separating two media with positive refractive indices
(left) and with positive and negative refractive indices (right).

materials, for instance on the effective permeability [4] and permittivity [5–8]. For given permit-
tivity constants and volume fractions of the components constituting a composite, such bounds
characterize the set of possible macroscopic responses and identify the microstructure produc-
ing the extreme effective parameters in this set, see the book of G. Milton [9] for an extensive pre-
sentation of the bounds of composites. These works on bounds offered new possibilities in terms
of achievable values of permittivity and anisotropy. These works have been however restricted to
the quasistatic regime in the frame of classical homogenization [10], where the effective param-
eters result from an averaging process. In this frame, the range of frequencies with negative val-
ues of permittivity cannot be significantly extended and, moreover, the effective permeability re-
mains equal to the vacuum permeability as soon as the components constituting the composite
are non-magnetic, leaving the negative refractive index unachievable in theory and in practice.

The fundamental steps that led to the negative indices have been completed thanks to the
works of J. Pendry and his colleagues. Back in 1996, they proposed three-dimensional network
structures made of thin metallic wires and showed theoretically, numerically and experimentally
that such structures exhibit metallic behavior with low plasma frequency in the range of GHz
[11, 12]. In such structures, the plasma frequency of the original metal ωp , which is proportional
to the ratio

√
N /meff of the electron density N and the electron effective mass meff, is made

lower using two mechanisms: (i) the electron density N is reduced since the fraction of metal
in the wires network is lower than in the bulk metal and (ii) the electron effective mass meff

is enhanced by confining the electrons in the thin wires. With these mechanisms, the effective
plasma frequency is strongly reduced and the metallic behavior encountered in the visible range
is extended to the Ghz range, which allows effective permittivity with negative values in a new
range of frequencies. Then, in 1999, these physicists proposed structures made of the so-called
split rings that exhibit resonant effective magnetic permeability in the GHz range [2]. Here,
the magnetic response is induced by loops of current in the rings. In addition, this magnetic
response is enhanced by introducing a thin split which makes the split ring equivalent to a LC
resonator, the capacitance C resulting from the thin split and the inductance L resulting from
the ring. The resonance is essential since it enhances the effective magnetic response and thus
offers the possibility to address negative values of the effective permeability. Finally, combining
these conducting non-magnetic split ring resonators with thin wires, D. Smith et al. proposed a
composite medium with simultaneously negative permittivity and permeability in the GHz range
[13]: this work enabled the experimental demonstration in the Ghz range of a negative refractive
index [14], the extraordinary electromagnetic property imagined by V. Veselago in 1968 [1].

It is stressed that, in this new kind of metallic composites proposed by J. Pendry and his col-
leagues, the microstructure induces resonances in the effective electric and magnetic responses,
which makes the nature of the underlying mechanism different from the one encountered so far
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in classical homogenization and in the bounds of composites. Hence this new kind of composites
offering extraordinary properties has been coined metamaterials in 2001 [15].

The implementation of metallic resonant composites operating at frequencies higher than
Ghz appeared difficult and remains challenging, notably in the visible range, because of the
requirements on the dimensions of the nanostructures and the presence of absorption in metals.
However, in the visible and the near-infrared, purely dielectric periodic strutures, or photonic
crystals [16, 17], have been exploited to obtain negative refraction at in interface separating such
a structure and a homogeneous medium [18, 19]. In that case the resonance is not produced
by the solely resonator itself (e.g. a split ring) but by the interaction between the dielectric
particles periodically arranged. This resonant interaction requires that the distance between
the particles be comparable to the wavelength, which results in severe limitations to consider
a photonic crystal as an effectif homogeneous medium. Nevertheless, their ability to induce
negative refraction in the visible range may have important consequences.

The mechanism leading to negative refraction with photonic crystals exploits the richness, in
such periodic structures, of the dispersion law, i.e. the relationship ω(k) between the frequency
ω and the Bloch wave vector k . Indeed, the propagation of electromagnetic waves is governed by
the group velocity v g [20–22] defined as the gradient of the dispersion law: v g = ∂kω(k). At an
interface separating a homogeneous medium from a photonic crystal, the tangential component
k∥ of the (Bloch) wave vector k , parallel to the interface, is conserved according to the invariance
of the periodic structure under the discrete set of lattice translations {±a,±2a,±3a, . . .}. There-
fore, if the group velocity v g has opposite direction from the wave vector k , then this invariance
of the tangential component k∥ of the wave vector results in the sign change of the tangential
component v∥

g at the interface. Such a situation, where the group velocity v g and the Bloch wave
vector k have opposite signs, can be realized thanks to the folding of the dispersion law in pho-
tonic crystals, as represented on Figure 2. Detailed analyses and numerical demonstrations of
negative refraction of electromagnetic waves in photonic crystals can be found in [18,19,21], and
experimental verification in [23].

The discovery of metamaterials and of their extraordinary properties stimulated the devel-
opment of new homogenization techniques and effective medium theories, beyond the classi-
cal homogenization operating in the quasistatic limit, i.e. where the size of the microstructure
tends to zero [10]. Indeed, classical homogenization results in an averaging process which can-
not report properties like artificial magnetism and negative refractive index from purely dielec-
tric constituents. For instance, the analysis of metamaterials with negative permittivity and per-
meability [24] has shown that the effective parameters of such structures are not quasistatic.
Hence, in addition to the seminal works of J. Pendry [2,11,12], several new techniques have been
proposed in applied mathematics and theoretical physics, extending the notion and validity of
homogenization and of effective medium theory to new situations, see reference [25] for a re-
view in 2009. The classical two-scale homogenization technique [26] has been extended to high-
contrast inclusions [27] and led to the prediction of effective permeability. The retrieval method,
based on the extraction of constitutive parameters from Fresnel reflexion and transmission co-
efficients, has been investigated for layered metamaterials [28, 29]. The classical quasistatic limit
as been also overcome in the case of periodic metamaterials made of dielectric meta-atoms, by
an approach relating the macroscopic fields to the microscopic fields averaged over the Floquet
unit cell [30–32], which can be considered as an extension to periodic arrays of meta-atoms of the
classical derivation of macroscopic Maxwell’s equations [33]. Also, perturbative expansions with
respect to the frequency have been proposed: when starting from the quasistatic limit [34], it has
been shown that the first order in frequency reports magnetoelectric coupling while the second
order in frequency reports effective magnetism (the higher orders bringing refined corrections to
all these parameters), a mechanism similar to the expansion on the wave vector [3,35]; and when
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Figure 2. Effect of the folding of the dispersion law on group velocity. The red cone
represents the dispersion law in a homogeneous medium with positive index: the group
velocity v g and the wave vector k in abscissa point in the same direction. The blue curve
represents the dispersion law in a photonic crystals: if the dispersion law is unfolded
(dotted blue curve) then the group velocity ug and the wave vector k both point in the same
direction; if the dispersion law is folded (continuous blue curve) then the group velocity
v g and the wave vector k point in opposite directions. At the couple (ω,k) indicated by
the black circle, the folded dispersion law must be considered and the photonic crystal
generates negative refraction.

starting from higher bands, it has been shown [36, 37] that the structure can be homogenized
using the two-scale homogenization, leading to the notion of high frequency homogenization.

These non-asymptotic techniques revealed the importance of the effect of the physical bound-
aries of metamaterials and periodic structures [38–45]. They also highlighted the crucial role of
the non-locality or spatial dispersion [29–32, 35, 42, 46, 47] in metamaterials and negative refrac-
tive index structures. In general, the modelling of metamaterials and periodic composites with
techniques beyond the classical quasistatic limit, results unavoidably in the definition of effec-
tive parameters depending on (ω,k), the frequency (frequency dispersion) and the wave vector
(spatial dispersion). Frequency and spatial dispersions are inherent to metamaterials and neg-
ative refractive media, which generated numerous questions and investigations on the causal-
ity principle and passivity of effective parameters [48–53]. In the next sections, these questions
related to the dispersion are addressed.

3. The perfect lens and the spectral properties of frequency dispersive structures with
negative permittivity

The most spectacular devices based on metamaterials are probably the perfect lens [54] and
the invisibility cloak [55–57] proposed by J. Pendry. These propositions generated numerous
interesting discussions and investigations in the community of classical electrodynamics. For
the invisibility, the possibility to perfectly hide an obstacle implies that the solution to Maxwell’s
equations is strictly the same outside the invisibility cloak, independently of the obstacle inside
the cloak, to that one would have in the absence of scattering object and cloak (so in free space).
As a consequence, if the invisibility cloak is causal and passive, then the perfect invisibility can
occur only at isolated frequencies [58]. Indeed, let E (x ,ω) and E 0(x ,ω) be the time-harmonic
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electric fields oscillating at the frequency ω in the presence of the cloak, respectively with and
without the obstacle. For perfect invisibility, these two electric fields are equal for position vector
x outside the cloak: E (x ,ω) = E 0(x ,ω). As for causal and passive media these electric fields
are analytic functions of the frequency (as soon as ω has positive imaginary part) [59], they
must be equal either for isolated frequencies ω, or for all real frequencies. Perfect invisibility
is therefore only achieved at isolated frequencies and is impossible over a frequency interval.
These arguments show that a causal and passive invisibility cloak must be a frequency dispersive
structure.

Frequency dispersion is also an important dimension of negative index materials and the
perfect lens. In 1968, V. Veselago introduced the notion of negative index of refraction and showed
that a simple plate of such a medium with thickness d “can focus at a point the radiation
from a point source located at a distance l < d” [1]. In 2000, J. Pendry extended this flat lens
to negative index material including evanescent waves, and concluded that it makes a perfect
lens with infinite resolution [54], beyond the diffraction limit. This perfect lens and the many
potential applications have been debated in the literature with intense discussions about the
infinite resolution and the underlying arguments [60–63], the divergence of the field [64], the
causality principle [64, 65], and even about the existence of negative index [65, 66]. The difficulty
comes from the presence of a singularity in the Green’s function and the solution of the time-
harmonic Maxwell’s equations at the frequency ω1 of the perfect −1 index, where the relative
permittivity and permeability take simultaneously the value −1: ε(ω1) = −ε0 and µ(ω1) = −µ0,
where ε0 andµ0 are respectively the permittivity and the permeability in vacuum. This singularity
is unusual since, in mathematics, it appears at the frequency ω1 which is an eigenvalue with
infinite degeneracy of the operator associated to the Maxwell’s equations [67], i.e. at a frequency
in the essential spectrum of Maxwell’s equations. In physics, the strategy may be to consider the
low absorption limit: a small absorption is introduced, e.g. ε(γ) = −ε0 + iγ and µ(γ) = −µ0 + iγ
with γ > 0, so that the time-harmonic Maxwell’s equations are well posed for γ > 0 [63], and
then the limit γ ↓ 0 is taken. However, the solution of time-harmonic Maxwell’s equations does
not converge when the absorption γ tends to zero. Therefore the low absorption limit fails in
the situation of the flat lens at the frequency ω1 of the perfect −1 index. In other words, one
can conclude that the solution to the time-harmonic Maxwell’s equations does not exist at the
frequency ω1 in the case of the perfect lens. Such situations where the time-harmonic Maxwell’s
equations have no solutions have been also uncountered with active (or gain) media [68–70].

The absence of solutions to the time-harmonic Maxwell’s equations generated difficulties to
analyze the behavior of the perfect flat lens, to the point of even questioning the possibility
and the existence of perfect negative index media. The solution to all these difficulties lies in
rigorously taking into account the frequency dispersion.

It has been noticed by V. Veselago in his seminal article [1] that the permittivity and the per-
meability must depend on frequency in negative index media. This requirement, which is a
consequence of the causality principle and the passivity, can be established from the general-
ized expression of the Kramers–Kronig relations [59, 67, 71, 72] corresponding to the Herglotz–
Nevanlinna representation theorem [73]. For a complex frequencyωwith positive imaginary part,
Imω> 0, this generalized Kramers–Kronig expression of the permittivity is [67]

ε(x ,ω) = ε0 −
∫

R
dν

σ(x ,ν)

ω2 −ν2 , σ(x ,ν) = Im
νε(x ,ν)

π
≥ 0, (2)

where the relation σ(x ,ν) ≥ 0 is a consequence of the passivity [67]. Notice that the quantity
σ(x ,ν) is a generalized function of ν and may contain Dirac contributions (for instance in the
non-aborptive case [67, 73]). This passivity requirement for real frequency ν can be extended
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to complex frequencies ω with positive imaginary part, since the imaginary part of the integral
multiplied by ω in the expression above is positive:

Imωε(x ,ω) ≥ Imωε0. (3)

Let ω1 be a real frequency at which the imaginary part of the permittivity vanishes. Then
σ(x ,ω1) = 0 and the integral in the expression

ω1ε(x ,ω1) =ω1ε0 −
∫

R
dν

σ(x ,ν)

ω1 −ν
, (4)

is well-defined and real. Considering the derivative of this equation and using thatσ(x ,ν) ≥ 0, the
following well-known inequality [1, 3] is obtained: if Imε(x ,ω1) = 0, then

Re
∂ωε

∂ω
(x ,ω1) ≥ ε0 ⇐⇒ Reε(x ,ω1) ≥ ε0 −Re

∂ε

∂ω
(x ,ω1). (5)

This inequality means that, if the permittivity ε(x ,ω1) takes at the frequency ω1 a real value
less than the vacuum permittivity ε0, then the derivative of the permittivity with respect to the
frequency cannot vanish at the frequency ω1. This corresponds precisely to the case of negative
index materials and, more generally, to the situations offered by metamaterials for which the
effective permittivity (and possibly the effective permeability) takes negative values or values
below ε0. Therefore, the frequency dispersion must be considered in negative index media and in
metamaterials (for instance for effective refractive index below unity, also called ultra-refraction).
Otherwise, the absence of frequency dispersion introduces contradictions with the causality
principle or the passivity requirement.

A canonical approach for frequency dispersion has been established in 1998 by A. Tip with
the auxiliary field formalism [71]. This formalism has been originally introduced to define
a proper frame for macroscopic Maxwell’s equations in absorptive and frequency dispersive
dieletric media, for their quantized version [71, 74], and for the generalization of the density of
states and the description of the atomic decay in absorptive and frequency dispersive structures
[71, 75]. This formalism is based on the introduction of auxiliary fields so that macroscopic
Maxwell’s equations can be written equivalently as a unitary time evolution equation involving
both electromagnetic and auxiliary fields: the new augmented system satisfies an overall energy
conservation and the frequency dependence of the permittivity is transferred to the auxiliary
fields. In other words, this general technique transforms a time-dependent and non self-adjoint
dissipative operator into a time-independent and self-adjoint augmented operator. In 2005,
A. Figotin and J. Schenker have shown that this auxiliary field formalism introduced by A. Tip
is precisely the unique minimal self-adjoint extension of the dissipative Maxwell’s equations
[76]. This canonical formalism has been extended to magnetodielectric materials in order to
describe frequency dispersive negative index materials [67]. It has been shown that the time
evolution of a system comprising a perfect −1 index material, i.e. with a frequency ω1 at which
ε(x ,ω1) = −ε0 and µ(x ,ω1) = −µ0 (for x in the −1 index material), is well-defined since the
electromagnetic energy remains finite at all times as soon as this is the case at the initial
time: hence the compatibility of the existence of perfect negative index materials with causality
principle and passivity has been unambiguously established using the canonical extension of
Maxwell’s equations [67].

In the case of the flat lens with perfect −1 index at the frequency ω1, the Green’s function
has a pole at the frequency ω1 [67, 77, 78] and the time-harmonic Maxwell’s equations has no
solution at the oscillating frequency ω1: the time-harmonic frame fails in the case of the flat lens
with perfect −1 index (or perfect negative index). However, according to the canonical frame
of the auxiliary field formalism, the solution to (time-dependent) Maxwell’s equations is well-
defined at all time if it is the response to an external current source [67] as in Figure 3. The long-
time behavior of such a solution can be considered for a current source turned on at an initial
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Figure 3. An external current source J (x , t ) swithed on at the intial time t = 0 and then
oscillating at the frequency ω1. This source is located at the vicinity of a plane interface
separating the vacuum from a medium with perfect −1 index at the frequency ω1.

Figure 4. The reponse of the external current source swithed on at the intial time t = 0
and then oscillating at the frequency ω1. The amplitude of the evanescent waves at the
plane interface separating the vacuum from the perfect −1 index medium (see right panel)
is linearly increasing with time (see left panel).

time and then oscillating with the operating frequency ω1 [67, 77, 78]. In the case of a single
plane interface separating a perfect −1 index medium and vacuum (“single interface” case), it
has been shown that the evanescent components of this time-dependent solution have their
amplitude increasing linearly with time [77–79], see Figure 4. Consequently, this solution does
not converge for long times to the solution to the corresponding time-harmonic problem: the
limiting amplitude principle is not valid in this case [79]. The situation is similar in the case
of the perfect flat lens (two plane interfaces delimiting a −1 index layer from vacuum, or “two
interfaces” case), leading to the conclusion that the image of a point source by the perfect −1 flat
lens is not a point image [77,78]. An analyzis based on the calculation of the spectral projector [79]
provided the complete characterization of the spectral properties in the “single interface” case. In
particular the presence of essential spectrum in Maxwell’s equations has been highligthed at the
−1 frequency ω1 which is an eigenvalue with infinite degeneracy [67, 79].

It turns out that the extraordinary property of the perfect −1 index and the induced phenom-
ena in the perfect flat lens are related to the presence of essential spectrum in Maxwell’s equa-
tions. Thus the complete characterization of the spectral properties of frequency dispersive and
negative index structures appears to be an important issue. For instance, a perfect corner reflec-
tor made of two orthogonal planes delimiting positive and negative index media makes a cavity
that traps light and where the density of states appears to be infinite [80–83]. This infinite density
of states has been related to the existence of an infinite number of modes at the −1 index fre-
quency [80,83], i.e. the −1 index frequency is also included in the essential spectrum as an eigen-
value with infinite degeneracy in this case of the perfect corner reflector. Next, further investi-
gations have shown that two dimensional Maxwell’s systems with corners delimiting a medium
with positive permittivity (e.g. vacuum) from a medium with negative permittivity (and—or—a
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Figure 5. Left: a two-dimensional corner structure of angle α delimiting a frequency dis-
persive medium of permittivity εd (ω). Right: the 2π-periodic one-dimensional layered
structure obtained after the change of variable r 7−→ u = ln(r /r0) and the assumption con-
sidering that the modes are localized in the vicinity of the corner.

negative permeability) bring up essential spectrum for an interval of negative values of the per-
mittivity around −ε0 (or around the permittivity ratio −1) [84–87]: for example, in the case of a 90
degrees corner, there is essential spectrum for the permittivity interval [−3ε0,−ε0/3]. This essen-
tial spectrum is associated with an analog of “black hole” phenomenon occurring in the vicinity
of a corner which behaves like an unbouded domain. Such unusual effect and spectral proper-
ties, originally reported in the case of the negative index perfect corner reflectors, appears to be
omnipresent in Maxwell’s systems with corners delimiting a frequency dispersive medium [88].
Indeed, let the permittivity εd (ω) of the frequency dispersive medium be given by the Drude–
Lorentz model:

εd (ω) = ε0 −ε0
Ω2

ω2 + iγω−ν2 , (6)

where Ω, ν and γ are positive real constants. Then, there always exists a complex frequency
ω1 at which εd (ω1) = −ε0: ω1 = −iγ/2±

√
ν2 +Ω2/2−γ2/4. And, for example, in the case of a

90 degrees corner, the permittivity interval [−3ε0,−ε0/3] is spanned for the following range of
complex frequencies

[
− iγ/2±

√
ν2 +Ω2/4−γ2/4,−iγ/2±

√
ν2 +3Ω2/4−γ2/4

]
. (7)

If the permittivity is given by a more general expression, for instance a finite sum of Drude–
Lorentz contributions, then the number of segments in the complex plane of frequencies, gener-
ally curved, increases like the degree of the polynomials involved in the permittivity expression.
Hence the intervals of essential spectrum appear unavoidable in frequency dispersive systems
with corners.

The main arguments exhibiting the presence of essential spectrum can be the following [85]:
let α in ]0,2π[ be the angle of a two-dimensional corner filled with a dispersive mediumof
permittivity εd (ω) and x = (r,φ) the considered cylindrical coordinates (see Figure 5). The
permittivity of the system is independent of the radial variable r : ε(x ,ω) = ε(φ,ω), ε(φ,ω) = εd (ω)
for an azimuthal variableφ in [0,α] and ε(φ,ω) = ε0 forφ in [α,2π] . In the time-harmonic regime,
the magnetic field component H(r,φ,ω) of the transverse magnetic waves is the solution to the
Helmholtz equation

1

r

∂

∂r
r
∂H

∂r
+ ε

r 2

∂

∂φ

1

ε

∂H

∂φ
+ω2εµ0 H = 0, (8)
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where the dependence on (r,φ,ω) has been omitted. Then the change of variable r 7−→ u =
ln(r /r0) is performed in this Helmholtz equation (see Figure 5). The magnetic field component
H̃(u,φ,ω) = H(r0eu ,φ,ω) is now solution to

∂2H̃

∂2u
+ε ∂

∂φ

1

ε

∂H̃

∂φ
=−r 2

0 e2uω2εµ0 H̃ , (9)

where the dependence on (u,φ,ω) has been omitted. Assuming that the modes generated by the
corner are localized in the circle of radius r0, i.e. H̃(u,φ,ω) ≈ 0 for u positive, and choosing the
radius r0 small enough, then the right hand side in (9) can be neglected and set to zero. Next, a
Fourier decomposition H̃(u,φ,ω) 7−→ Ĥ(k,φ,ω) is applied, and the resulting equation is exactly
that for a periodic one-dimensional layered structure (see Figure 5):

ε
∂

∂φ

1

ε

∂Ĥ

∂φ
−k2Ĥ = 0. (10)

Hence, the existence of a mode 2π-periodic with respect to the azimuthal variable φ is subject to
the following condition [89]:

cosh[kα]cosh[k(2π−α)]+ 1

2

[
ε0

εd (ω)
+ εd (ω)

ε0

]
sinh[kα]sinh[k(2π−α)] = 1. (11)

For k = 0 the equality is achieved but the solution is trivial (constant) and yields vanishing electric
field. Hence the existence of a corner mode is subject to a solution for k 6= 0. The function on the
left hand side is made of two terms: the first term with the cosh functions starts from 1 at k = 0
and then is growing to +∞; thus the second term with the sinh functions must decrease towards
−∞, which requires a real negative value for εd (ω). Since the factor in front of the sinh functions
has absolute value greater than 1 (except in the case εd (ω) =−ε0 where it equals 1), the sum of the
two terms in the left hand side tends to −∞ for large values of k. Therefore, to obtain a solution
k 6= 0 to (11), it is enough that the second derivative at k = 0 of the function on the left hand side
be positive. This second derivative is

α(2π−α)

[
α

2π−α + 2π−α
α

+ ε0

εd (ω)
+ εd (ω)

ε0

]
, (12)

which is positive if and only if

εd (ω)

ε0
∈ [−Iα,−1/Iα], Iα = max

{
α

2π−α ,
2π−α
α

}
. (13)

Notice that, for α=π, i.e. when the corner becomes a plane interface, the number Iα = 1 and the
interval reduces to the point −1. In that case, one can check that the condition (11) is achieved
for all k if α=π and εd (ω) =−ε0. The radial dependence of the corner modes is given by

r 7−→ exp[ik lnr /r0] (14)

which is oscillating with spatial frequency tending to infinity when r −→ 0. As a result, the electric
field, deduced from the derivative, has a singularity like 1/r and then is not square integrable,
i.e. is not finite energy. This behavior, represented on Figure 6, is different from the previous
results reported in the textbooks [90] where only dielectric materials with positive permittivity
and conducting materials have been considered, leading to the strongest singularity in 1/

p
r and

to finite energy fields [90, Sections 5.2, 5.3 and 9.7.5]. In the present case of negative permittivity,
the corner modes have infinite energy and are then “generalized eigenvectors” associated with
the essential spectrum corresponding to the frequencies ω such that the ratio εd (ω)/ε0 is in the
interval [−Iα,−1/Iα] [88]. The radial dependence of these corner modes, with oscillations with
spatial period tending to zero, makes an analog of “black hole” phenomenon occuring at the
corner (see Figure 6). Indeed, the modes appear to propagate infinitely slowly and to accumulate
energy when approaching the corner as if they were trapped by the corner which would behave
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Figure 6. Left: the radial dependence of the electric field of a corner mode with amplitude
increasing like 1/r and spatial frequency tending to infinity like ln(1/r ) when r −→ 0. Right:
a representation of the electric field of a corner mode at the vicinity of the corner.

like a semi-infinite open space. Finally, notice that it can be shown that there is no essential
spectrum associated with the corner of angle α outside the interval [−Iα,−1/Iα] using a “T-
coercivity” argument [84–87].

This new and extraordinary behavior of corner modes exhibited in systems with negative
permittivity (and—or—negative permeability) raises numerous challenging questions in applied
mathematics (e.g. three-dimensional corners [81]), in physics with the analog of “black hole” phe-
nomenon and in numerical modelling. In particular, it is stressed that the presence of the essen-
tial spectrum implies difficulties in the computation of modes of dispersive structures, with the
lack of convergence in a frequency domain around the essential spectrum where the permittiv-
ity takes real negative values [91–93]. This unavoidable perturbation of numerical computation
represents a challenging task in the method of quasi-normal modes expansion [92,93]. The intro-
duction of perfectly matched layers at the corners [94] could be a promising way to address this
task.

The perfect flat lens [54] and its generalization such as the perfect corner reflector [80, 82, 83]
highlighted situations where, at the perfect −1 index frequency ω1, the frame of the time-
harmonic Maxwell’s equations has no solutions and thus appears inappropriate to describe
the behavior of electromagnetic waves. Such In addition, the presence of essential spectrum
has been identified at the perfect −1 index frequency ω1 which is an eigenvalue with infinite
degeneracy for the perfect flat lens and corner reflector. Recently, it has been shown that more
conventional structures like frequency dispersive corners also display essential spectrum [84–87]
for a whole interval of frequencies for which there is no solution to the time-harmonic Maxwell’s
equations. However, it has been shown that the auxiliary field formalism introduced by A. Tip
[71] provides a canonical approach for all these extraordinary situations with perfect negative
index [67], metamaterials and negative permittivity where the frequency dispersion plays a vital
role. In particular, it is stressed that this auxiliary field formalism offers the possibility to analyze
rigorously a negative permittivity corner which makes an analog of “black hole” phenomenon.

4. Spatial dispersion and the imaginary part of the effective permeability

The modelling of metamaterials and negative index materials highlighted the role of spatial
dispersion (or non-locality) [29–32, 35, 42, 46, 47] in composites displaying effective permeability.
It makes sense since, in usual bulk materials, the magnetic properties can be derived from the
electric permittivity tensor ε(k ,ω) depending on the frequencyω and the wave vector k [3,35,95].
Indeed, consider the Maxwell’s equations in a homogeneous and isotropic magnetodielectric
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medium with permittivity ε(ω) and permeability µ(ω). For monochromatic plane-waves with
space-time dependence in exp[i(k · x −ωt )] these equations become

k ×E =ωµ(ω)H , k ×H =−ωε(ω)E , (15)

and, after eliminating the field H ,

k × 1

ωµ(ω)
k ×E +ωε(ω)E = 0. (16)

This last equation can be written

k × 1

ωµ0
k ×E +k ×

[
1

ωµ(ω)
− 1

ωµ0

]
k ×E +ωε(ω)E = 0. (17)

Thus, defining the dielectric tensor

ωε(k ,ω) =ωε(ω)−
[

1

ωµ(ω)
− 1

ωµ0

](
k2 −kk

)
, (18)

where k2 = k · k and kk is the rank-two tensor acting as kk ·E = (k ·E )k , the Equation (16) is
equivalent to

k × 1

ωµ0
k ×E +ωε(k ,ω) ·E = 0 (19)

for isotropic permeability µ(ω). Hence a magnetodielectric medium can be described by only
the electric permittivity tensor ε(k ,ω). Conversely, the permeability µ(ω) can be derived from
the permittivity tensor. Let Plg and Ptr = 1−Plg be the orthogonal projections on the subspaces
parallel (or longitudinal) and perpendicular (or transverse) to the vector k :

Plg =
kk

k2 , Ptr = 1− kk

k2 . (20)

For isotropic permittivity ε(ω) and permeability µ(ω), the permittivity tensor (18) can be decom-
posed on these subspaces

ε(k ,ω) = εlg(k ,ω)Plg +εtr(k ,ω)Ptr, (21)

where εlg(k ,ω) = ε(ω) and εtr(k ,ω) = ε(ω)−[1/µ(ω)−1/µ0]k2/ω2 are the longitunal and transverse
components of the tensor. Hence, the permeability can be retrieved from the permittivity tensor
according to the well-known relation [3, 35]

1

ωµ(ω)
= 1

ωµ0
+ lim

k→0

ωεlg(k ,ω)−ωεtr(k ,ω)

k2 . (22)

Notice that this relation between the permeability and the permittivity tensor with spatial disper-
sion is established for bulk infinite media which are not delimited by boundaries.

Although the two descriptions of magnetodielectric media seem to be equivalent, the intro-
duction of spatial dispersion and the gathering, in the permittivity tensor, of all the magnetic
and dielectric properties of the materials, break the symmetry between the fields E and H in the
Maxwell’s equations. However, the symmetry between these fields and between the permittivity
and permeability is widely used in textbooks of classical electrodynamics [3, 33, 90]. In particu-
lar, the Kramers–Kronig relations and the passivity requirement for the permittivity are gener-
ally also considered as valid for the permeability: for instance, it is generally considered that the
imaginary of permittivity is positive [3, Section 80], Imµ(ω) ≥ 0, which becomes for all frequency
ω with positive imaginary part

Imωµ(ω) ≥ Imωµ0. (23)

Nevertheless, it turns out that the behaviors of the permittivity and the permeability are different
in the static regime [3, 33]: unlike the static permittivity ε(0) (i.e. ε(ω) at the limit ω→ 0), which
always takes real value greater than ε0, the static permeability µ(0) (i.e. µ(ω) at the limit ω→ 0)
can take real values either greater (paramagnetic media) or less (diamagnetic media) than µ0.
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This alternative for the static permeability seems in contradiction with the causality principle
and the passivity. Indeed, the generalized Kramers–Kronig relation (4) applied to the permeability
implies

µ(0) =µ0 +
2

π

∫ ∞

0
dν

Imµ(ν)

ν
, (24)

which requires for µ(0) to be greater than µ0 if Imµ(ω) ≥ 0 for all positive real frequencyω [48]. In
the textbook [3], this contradiction is explained by the frequency range where the macroscopic
magnetic permeability makes sense, which is limited to the relatively low frequencies. Conse-
quently, it is specified in [3, Section 82] that the Kramers–Kronig relations like (4) and (24) must
be modified for the magnetic permeability. Hence the requirement on the imaginary part of the
permeability, Imµ(ω) ≥ 0, has been confirmed in reference [3].

The introduction of metamaterials and negative index materials with effective permeability
led to revisit these statements. Indeed, it has been found that the effective parameters of meta-
materials present anomalous dispersion: in [96], “the resonant behavior of the effective magnetic
permeability is accompanied by an antiresonant behavior of the effective permittivity” and “the
imaginary parts of the effective permittivity and permeability are opposite in sign”. These numer-
ical results first generated some controversy [97, 98], but next the anomalous dispersion and the
possibility for negative imaginary part of the effective permeability have been confirmed by sev-
eral studies, which generated a series of investigations. For instance, fundamental questions on
the Poynting vector and the energy have been adressed [48,49], the validity of the Kramers–Kronig
relations for the magnetic permeability has been examined [51], the validity of the causality prin-
ciple and the physical meanining of the metamaterials constitutive parameters has been ana-
lyzed [50, 52].

Hereafter, the objective is to bring arguments supporting that the imaginary part of the
magnetic permeability µ(ω) in passive media can take both positive and negative values, i.e.
that the relation (23) is not valid. In contrast, these arguments support that the Kramers–Kronig
relations make sense for the permeability. Since these claims are in contradiction with the
electrodynamics based on the symmetry between, in one hand, the electric field E and the
permittivity ε(ω) and, in the other hand, the magnetic induction field H and the permeability
µ(ω), the description with the dielectric tensor ε(k ,ω) and spatial dispersion is considered.

First, a simple model with spatial dispersion is considered, the hydrodynamical model [99,
100], with the permittivity tensor expression

ε(k ,ω) = ε0 −ε0
Ω2

ω2 + iωγ−ω2
0 − v2k2

Plg −ε0
Ω2

ω2 + iωγ−ω2
0

Ptr. (25)

Using the relation (22), it is possible to define from this model the magnetic permeability

1

ωµ(ω)
= 1

ωµ0
−ωε0

Ω2v2

(ω2 + iωγ−ω2
0)2

, (26)

and to obtain for the imaginary part at real frequency

Im
1

ωµ(ω)
= ε0

2γΩ2v2ω2(ω2 −ω2
0)

[(ω2 −ω2
0)2 +ω2γ2]2

. (27)

This result clearly shows that the imaginary part of the obtained permeability can take both
positive and negative values, depending on ω2 is smaller or larger than ω2

0. In addition, from the
expression (26) of the permeability, the following identity, similar to the relation (24), is derived

∫ ∞

0
dν Im

1

νµ(ν)
= π

2

[
1

µ(0)
− 1

µ0

]
= 0, (28)

where it has been used that µ(0) = µ0 to obtain that the integral vanishes. This last identity
confirms that the imaginary part of the permeability must take positive and negative values.
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The same results can be obtained starting from a general permittivity tensor ε(k ,ω), provided
the asymptotic behavior at large complex frequencies with positive imaginary part,

ε(k ,ω) −→
|ω|→∞

ε0 −
Ω2

ω2 , (29)

is independent of the wave vector k [101]. In combination with the analytic properties of the per-
mittivity in the half plane of complex frequencies with positive imaginray parts, this asymptotic
behavior implies the identity, or sum rule,

∫ ∞

0
dν Imνε(k ,ν) = πΩ2

2
, (30)

also independent of the wave vector k [101, 102]. Since the permeability (22) is defined from the
term quadratic in k in the tensor ε(k ,ω), its imaginary part must be subject to [101, 102]

∫ ∞

0
dν Im

1

νµ(ν)
= 0. (31)

Thus, starting from a general permittivity tensor, it can be shown that the imaginary part of the
permeability must take positive and negative values. It is stressed that these last arguments,
implying that µ(0) = µ0, exclude the existence of media with magnetic properties in the static
regime, i.e. with µ(0) 6= µ0. This limitation can be however overtaken considering a permittivity
tensor ε(k ,ω) with an essential singularity at the point (k ,ω) = (0,0) [101]. A simple example is
the hydrodynamical Drude model, i.e. the expression (25) with ω0 set to 0, which leads to the
permeability

1

µ(ω)
= 1

µ0
−ε0

Ω2v2

(ω+ iγ)2 , (32)

corresponding to a diamagnetic medium with µ(0) < µ0. Notice that, in that case, the imaginary
part of ω 7−→ ωµ(ω) is negative for all real frequency ω, i.e. its sign does not change. A param-
agnetic medium could be obtained by inverting the (k ,ω)-dependence of the longitudinal and
transverse components of the permittivity tensor in the expression (25). In addition, it is stressed
that another possibility to overpass the limitation (31) may be to consider an asymptotic behavior
different from the one (29) considered in [101].

The possibility for the imaginary part of the permeability to take positive and negative values
is now investigated through the effective permeability of a composite medium. Here, a stack
of non-magnetic homogeneous layers is considered. Indeed, the simplicity of such a structure
makes it possible to define exactely, using the retrieval method, an effective permeability for all
frequencies and wave vectors. In addition, it has been shown that the effective parameters of a
multilayered structure present the suitable properties to ensure the causality principle and the
passivity requirement [53]. Hence, this composite medium is a good candidate to investigate the
sign of the imaginary part of the effective permeability.

A stack of non-magnetic homogeneous layers of total thickness h with a plane of symmetry at
mid-height is considered (see left panel in Figure 7). The space variable in the stacking direction
is denoted by x. The multilayered structure is located between the planes x = −h and x = 0
and is described by the frequency dispersive and isotropic permittivity ε(x,ω), the magnetic
permeability being set to the permeability of vacuum µ0. Outside the multilayered structure,
i.e. for x < −h and x > 0, the permittivity is set to ε0. In practice, ε(x,ω) is piecewise constant
with respect to z and, according to the symmetry of the structure, ε(−x,ω) = ε(x − h,ω). The
structure (and the permittivity) is invariant under translations in the plane parallel to the layers
and thus a two-dimensional Fourier decomposition is performed in these tangential directions:
the two-component wave vector resulting from this Fourier decomposition is denoted by k∥
and k∥ = √

k∥ ·k∥ is its norm. Then, the time-harmonic Maxwell’s equations become a set of
two independent scalar equations for the electric and magnetic fields components orthogonal
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Figure 7. Left: the considered multilayered structure with a plane of symmetry described
by the frequency dependent and isotropic permittivity ε(x,ω). Right: the equivalent effec-
tive medium described by the effective permittivity εeff(k∥,ω) and permeability µeff(k∥,ω).

to both k∥ and the stacking direction. Let U e (x,k∥,ω) and U m(x,k∥,ω) be these components of
the electric and magnetic fields: for w = e,m, the Maxwell’s equations take the form

∂

∂x

1

ξw (x,ω)

∂

∂x
U w (x,k∥,ω)+

ω2µ0ε(x,ω)−k2
∥

ξw (x,ω)
U w (x,k∥,ω) = 0, (33)

where ξe (x,ω) = µ0 and ξm(x,ω) = ε(x,ω). The solutions to these equations can be determined
from the 2×2 transfer matrices T e (k∥,ω) and T m(k∥,ω) relating the values of the fields’ tengential
components parallel to the layers at the planes x = 0 and x =−h [41,53]. For w = e,m, the general
expression of these transfer matrices is [53]

T w (k∥,ω) =
[

Aw (k∥,ω) B w (k∥,ω)
C w (k∥,ω) Aw (k∥,ω)

]
, (34)

where the coefficents are analytic functions in the half plane of complex frequencies ω with
positive imaginary part and are related by the identity

Aw (k∥,ω)2 −B w (k∥,ω)C w (k∥,ω) = 1. (35)

Each transfer matrix T e (k∥,ω) and T m(k∥,ω) is thus determined by two independent parameters.
In particular, defining, for w = e,m,

kw
⊥ (k∥,ω) = 1

ih
ln

[
Aw (k∥,ω)+ i

√
1− Aw (k∥,ω)2

]
,

X w (k∥,ω) =
√

B w (k∥,ω)

C w (k∥,ω)
,

(36)

the transfer matrices (34) can be equivalently expressed as

T w (k∥,ω) =
[

cos
[
kw
⊥ (k∥,ω)h

]
isin

[
kw
⊥ (k∥,ω)h

]
X w (k∥,ω)

isin
[
kw
⊥ (k∥,ω)h

]
/X w (k∥,ω) cos

[
kw
⊥ (k∥,ω)h

]
]

. (37)

It is stressed that the imaginary part of the parameter kw
⊥ (k∥,ω) cannot vanish for frequencies

ω with postive imaginary part [53], otherwise this would allow the existence of Bloch modes in
the one-dimensional system resulting from the periodic stacking of the multilayered structure
[53, 103]. The sign of the imaginary part of kw

⊥ (k∥,ω) can be chosen positive, i.e.

Imω> 0 =⇒ Imkw
⊥ (k∥,ω) > 0, (38)

which fix the sign of the square root in the definition (36) of the second parameter X w (k∥,ω).
This remarkable property (38) ensures that the definition (36) preserves in the domain Imω > 0
the analytic property of the parameters kw

⊥ (k∥,ω) and X w (k∥,ω) since Aw (k∥,ω) cannot take the
values ±1 and B w (k∥,ω) and C w (k∥,ω) cannot vanish.
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The transfer matrices and thus the four independent parameters kw
⊥ (k∥,ω) and X w (k∥,ω)

fully determine the solution to Maxwell’s equations outside the multilayered structure. For in-
stance, the fields reflected and transmitted by the multilayered structure can be expressed from
these four parameters. Thus, these parameters can be used to define an homogeneous effec-
tive medium that will lead to the same solutions to Maxwell’s equations outside the multilay-
ered structure. Notice that this procedure corresponds to the retrieval method [28, 29]. The ho-
mogeneous effective medium must be described by four effective parameters with the (k∥,ω)-
dependence. According to the symmetry of the structure, let εeff(k∥,ω) and µeff(k∥,ω) be the ef-
fective anisotropic permittivity and permeability defined by, for w = e,m,

ξw
eff(k∥,ω) =



ξw
∥ (k∥,ω) 0 0

0 ξw
∥ (k∥,ω) 0

0 0 ξw
⊥ (k∥,ω)


 , ξe =µ, ξm = ε, (39)

where ξw
∥ (k∥,ω) are the components in the plane parallel to the layers and ξw

⊥ (k∥,ω) are the
components in the stacking direction. In this effective medium, the Maxwell’s equations for the
components U e (x,k∥,ω) and U m(x,k∥,ω) of the electric and magnetic fields become

∂2

∂x2 U w (x,k∥,ω)+
[
ω2µ∥(k∥,ω)ε∥(k∥,ω)−k2

∥
ξw
∥ (k∥,ω)

ξw
⊥ (k∥,ω)

]
U w (x,k∥,ω) = 0, (40)

where ξe =µ and ξm = ε. The transfer matrices T e
eff(k∥,ω) and T m

eff(k∥,ω) corresponding to a layer
of the effective medium with thickness h are, for w = e,m,

T w
eff(k∥,ω) =

[
cos

[
kw

eff(k∥,ω)h
]

isin
[
kw

eff(k∥,ω)h
]

X w
eff(k∥,ω)

isin
[
kw

eff(k∥,ω)h
]
/X w

eff(k∥,ω) cos
[
kw

eff(k∥,ω)h
]
]

, (41)

where
kw

eff(k∥,ω) =
√
ω2µ∥(k∥,ω)ε∥(k∥,ω)−k2

∥ξ
w
∥ (k∥,ω)/ξw

⊥ (k∥,ω),

X w
eff(k∥,ω) =ωξw

∥ (k∥,ω)/kw
eff(k∥,ω).

(42)

As a final step, the identification of the transfer matrices of the multilayered structure with the
ones of the effective medium provides the four equations kw

eff(k∥,ω) = kw
⊥ (k∥,ω) and X w

eff(k∥,ω) =
X w (k∥,ω), with w = e,m. These four equations define the following components of the effective
permittivity and permeability:

ωε∥(k∥,ω) = km
⊥ (k∥,ω)X m(k∥,ω),

1

ωε⊥(k∥,ω)
=

ke
⊥(k∥,ω)X e (k∥,ω)−km

⊥ (k∥,ω)/X m(k∥,ω)

k2
∥

,

ωµ∥(k∥,ω) = ke
⊥(k∥,ω)X e (k∥,ω),

1

ωµ⊥(k∥,ω)
=

km
⊥ (k∥,ω)X m(k∥,ω)−ke

⊥(k∥,ω)/X e (k∥,ω)

k2
∥

.

(43)

The components µ∥(k∥,ω) and µ⊥(k∥,ω) of the effective permeability µeff(k∥,ω) have been de-
fined for a non vanishing parallel wave vector k∥ while the definition (22) is at the limit k −→ 0.
However, it is possible to define a permeability depending upon the wave vector as [101]

1

ωµ(k ,ω)
= 1

ωµ0
+
ωεlg(k ,ω)−ωεtr(k ,ω)

k2 , (44)

which preserves the equivalence of the descriptions of an isotropic medium by ε(ω) andµ(ω) and
by the permittivity tensor ε(k ,ω) with expression (18).

It is stressed that the four functions ε∥(k∥,ω), 1/ε⊥(k∥,ω), µ∥(k∥,ω) and 1/µ⊥(k∥,ω) defining
the effective parameters, are analytic with respect to the frequency ω in the upper half complex
plane of ω with positive imaginary part. This is a consequence of the analytic properties of the
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parameters kw
⊥ (k∥,ω) and X w (k∥,ω) which follow from the relation (38). Also, for the parameters

1/ε⊥(k∥,ω) and 1/µ⊥(k∥,ω) the numerators vanish when k∥ −→ 0 since in that case the solutions
of two equations for e and m waves are identical, which implies ke

⊥(0,ω) = km
⊥ (0,ω) and X e (0,ω) =

1/X m(0,ω). Hence the effective parameters have the analytic properties required by the causality
principle and the derivation of the Kramers–Kronig relations.

The consequences of the passivity on the effective parameters should be derived from the
relation Imωε(x,ω) ≥ Imωε0. Let the multilayered structure be periodically stacked so that it fills
all the semi-infinite space x < 0: ε(x,ω) = ε(x −h,ω) for x < 0 and ε(x,ω) = ε0 for x > 0. Let e⊥ be
the unit vector in the stacking direction x and ∇(k∥) the differential operator (ik∥+e⊥∂/∂x) after
the Fourier decomposition in the plane parallel to the layers. After the Fourier decomposition,
the Helmhotz operator H(ω) for the multilayered stack is

H(k∥,ω)E (x) =−∇(k∥)× 1

ωµ0
∇(k∥)×E (x)+ωε(x,ω)E (x), (45)

where the (k∥,ω)-dependence of the electric field has been omitted. Let Heff(k∥,ω) be the
Helmhotz operator of the effective structure which coincides with (45) except for the domain
x < 0 where ε(x,ω) and µ0 are replaced by εeff(k∥,ω) and µeff(k∥,ω). An electromagnetic source
J (x) outside the composite is considered, i.e. J (x) = 0 if x < 0. The electric field generated by this
source in presence of the multilayered structure is the solution to

H(k∥,ω)E (x) = J (x), (46)

and the electric field generated by this source in presence of the effective structure is the solution
to

Heff(k∥,ω)E eff(x) = J (x). (47)

The two electric fields are identical outside the multilayered structure: E (x) = E eff(x) if x > 0.
Thus, defining the inner product by

〈
E , J

〉=
∫

R
dx E (x) · J (x), (48)

the identity
〈

E eff, J
〉= 〈

E , J
〉

holds for all source J (x) vanishing for x < 0, and takes the form
〈

E eff, Heff(k∥,ω)E eff
〉= 〈

E , H(k∥,ω)E
〉

. (49)

Notice that the integrals are well-defined as soon as the imaginary part of the frequency is strictly
positive: Imω > 0. In order to take the limit Imω −→ 0, it is assumed that there is a material in
the multilayered stack with absorption, i.e. Imωε(x,ω) > 0 at some x < 0. Then, considering the
imaginary part, the identity (49) implies for real frequencies ω

Im
〈

E eff, Heff(k∥,ω)E eff
〉= 〈

E , Imωε(ω)E
〉> 0. (50)

Notice that the integrals over x in this relation (50) reduce to the domain x < 0. Let P e and
P m = 1−P e be the orthogonal projections on the electric and magnetic waves:

P e = 1− k∥k∥
k2
∥

−e⊥e⊥, P m = k∥k∥
k2
∥

+e⊥e⊥, (51)

where the rank-two tensors act as k∥k∥ ·E = (k∥ ·E )k∥ and e⊥e⊥ ·E = (e⊥ ·E )e⊥. For x < 0 the
electric field E eff(x) is the solution to Heff(k∥,ω)E eff(x) = 0 and thus, for w = e,m,

∇(k∥)×P w ·E eff(x) = ik w×E eff(x), k w = k∥−kw
⊥ (k∥,ω)e⊥, (52)

where the (k∥,ω)-dependence of the vectors k w (k∥,ω) is omitted. Notice that the minus sign in
front of the component along e⊥ has been chosen according to the condition (38) in order to
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ensure the exponential decrease of the transmitted field at the limit x −→−∞. Hence, for x < 0, it
is obtained

Heff(k∥,ω)E eff(x) = ωεeff(k∥,ω)E eff(x)

+ke× 1

ωµeff(k∥,ω)
ke×P e ·E eff(x)

+km× 1

ωµeff(k∥,ω)
km×P m ·E eff(x). (53)

Considering, for w = e,m, the operation k w× as a rank-two antisymmetric tensor, the relation
(50) implies that the rank-two tensor

ωεeff(k∥,ω)+ke× 1

ωµeff(k∥,ω)
ke×P e +km× 1

ωµeff(k∥,ω)
km×P m (54)

has positive imaginary part. Since P m ·km = km and P e ·km = 0, the contraction of the tensor
above by km and its complex conjugate k

m
provides the relation

Imωk
m ·εeff(k∥,ω) ·km = k2

∥ Imωε∥(k∥,ω)+|km
⊥ |2 Imωε⊥(k∥,ω) > 0. (55)

Thus a condition forcing the imaginary part of the effective permittivity components to be
positive is obtained. On the other hand, there is no condition on the imaginary part of the
effective permeability. Indeed, some arguments lead to the conclusion that the imaginary part
of the effective permeability ωµeff(k∥,ω) must take positive and negative values.

As pointed out when it has been defined (43), the inverse effective permeability 1/µeff(k∥,ω)
is an analytic function in the upper half plane of complex frequencies ω with positive imaginary
part (notice thatωµ∥(k∥,ω) cannot vanish as well as ke

⊥(k∥,ω) and X e (k∥,ω)). This follows from the
analytic properties of the permittivity ε(x,ω) of the multilayered structure and the contruction
of the effective parameters. In addition, since the permittivity ε(x,ω) tends to that of vacuum
ε0 when |ω| →∞, all the effective parameters tend as well to ε0 and µ0. Hence the relation (24)
deduced from the Kramers–Kronig relations is true for the inverse effective permeability at k∥ = 0:

1

µeff(0,0)
= 1

µ0
+ 2

π

∫ ∞

0
dν Im

1

νµeff(0,ν)
. (56)

And, more generally, the same relation is obtained when the wave vector k∥ is set to k2
∥ =

ω2ε0µ0u2
∥ with u2

∥ < 1, which corresponds to an excitation at a fixed angle. Next, it is used that the
quasistatic limit providesµeff(0,0) =µ0 since the starting multilayered structure is non-magnetic:
the relation (56) becomes ∫ ∞

0
dν Im

1

νµeff(0,ν)
= 0. (57)

Hence it can be concluded that the imaginary part of the effective permeability µeff(0,ν) must
take positive and negative values. Notice that, if the permittivity ε(x,ω) of the multilayered
structure is well-defined for all frequency ω, then the inverse effective permeability 1/µeff(k∥,ω)
is also exactely and well-defined for all frequency ω. Thus, in the present case, contrary to the
situation described in [3, Section 82], the Kramers–Kronig relations and the integrals (56) and
(57) make sense.

Finally, it can be checked that the Kramers–Kronig relations and the resulting sum rules
are consistent for the effective permittivity. According to the analytic properties of the inverse
effective permittivity, the relation (56) is true for εeff(k∥,ω):

1

εeff(0,0)
= 1

µ0
+ 2

π

∫ ∞

0
dν Im

1

νεeff(0,ν)
. (58)
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The value of the effective permittivity of the multilayered structure at the quasistatic limit is given
by [34]

ε∥(0,0) =
∫ 0

−h
dx ε(x,0),

1

ε⊥(0,0)
=

∫ 0

−h
dx

1

ε(x,0)
. (59)

Since the permittivity of the multilayered structure takes real values greater ε0 at the static limit
[3], then this is also the case for the effective permittivity: ε∥(0,0) > ε0 and ε⊥(0,0) > ε0. These
relations are consistent with the sum rule (59) and the condition (55) on the imaginary part of the
effective permittivity.

These arguments confirm the lack of symmetry between the permittivity ε(ω) and the perme-
ability µ(ω). In that case it is relevant to consider the Maxwell’s equations with spatial disper-
sion. In this article, the exact and explicit expression of the effective parameters of a multilay-
ered structure has been derived for all the frequencies ω and wave vector k∥. According to (53),
the expression of the corresponding effective permittivity tensor with spatial dispersion takes the
form

ωε
eff

(k ,ω) =ωEeff(k ,ω)+k ×
[

1

ωUeff(k ,ω)
− 1

ωµ0

]
k×, (60)

where the “permittivity part” Eeff(k ,ω) and the “permeability part” Ueff(k ,ω) should be expressed
from εeff(k∥,ω) and µeff(k∥,ω). The coefficients of the tensor ε

eff
(k ,ω) depending on (k ,ω) are

different from the effective parameters depending on (k∥,ω) in the rank-two tensor (54) because
they do not take into account the dispersion laws for w = e,m: k(ω) = k∥±kw

⊥ (k∥,ω)e⊥. Thus the
following functions are introduced for w = e,m:

K w (k,ω) =
√

k2 −kw
⊥ (k∥,ω)2, (61)

where the sign of the square root will not play a role since all the coefficients and parameters used
here depend on the square of k∥ (the starting equations (33) and (40) depend on k2

∥ ). Defining the
“permittivity part” as

Eeff(k ,ω) = εeff(K e (k,ω),ω)P e +εeff(K m(k,ω),ω)P m , (62)

it is obtained for w = e,m that K w (k,ω) equals k∥ and Eeff(k ,ω)P w equals εeff(k∥,ω)P w when
the dispersion law is complied at k(ω) = k∥ ± kw

⊥ (k∥,ω)e⊥. Similarly, using that the rank-two
antisymmetric tensor k× acting on P m gives P e acting on k×, the “permeability part” of the
tensor can be defined as

Ueff(k ,ω) =µeff(K e (k,ω),ω)P m +µeff(K m(k,ω),ω)P e . (63)

Notice that the projections P e and P m , defined by (51), depend on the vector k∥ and, conse-
quently, the “permittivity part” Eeff(k ,ω) and the “permeability part” Ueff(k ,ω) depend on the
vector k although the effective parameters only depend on the norm k∥. Finally, substituing the
expressions (62) and (63) in (60), the effective permittivity tensor is given by

ωε
eff

(k ,ω) =ωεe
eff

(k ,ω)P e +ωεm
eff

(k ,ω)P m , (64)

where, for w = e,m,

ωεw
eff

(k ,ω) =ωεeff(K w (k,ω),ω) +k ×
[

1

ωµeff(K w (k,ω),ω)
− 1

ωµ0

]
k × . (65)

Hence the effective permittivity tensor ε
eff

(k ,ω) has been constructed for all frequency ω

and wave vector k . This exact and explicit expression of an anisotropic permittivity tensor
with spatial dispersion could be the starting point of further investigations on spatial disper-
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sion in macroscopic electromagnetism. As a first result, it has been shown that the imaginary
part of the effective permeability of a passive multilayered structure must take positive and
negative values.

5. Conclusion

The advent of negative index materials opened questions that have tested the domain of valid-
ity of macroscopic electromagnetism. The existence of a negative index of refraction appeared as
unreachable during more than 30 years until the introduction of microstructured resonant media
and metamaterials. Then, considerable progress has been made in the engineering and the de-
sign of microstructured media reporting extraordinary properties. In this article, several mech-
anisms leading to negative index and negative refraction have been briefly reviewed: the origi-
nal ideas developed by J. Pendry and his colleagues with the design of microstructured metallic
media displaying electric and magnetic resonances; the exploitation of the richness of the dis-
persion law in dielectric photonic crystals to obtain negative refraction; and the development
of numerous non-asymptotic homogenization techniques and effective medium modellings for
composite media. All these advances over the last twenty years are now particularly exploited in
the design of metasurfaces [104, 105] and topological insulators [106, 107]. They have also been
extended to other classical waves equations in acoustics, mechanics and hydrodynamics [108].

Then, it has been seen how the extraordinary properties of negative index materials and
metamaterials must be associated with frequency dispersion and spatial dispersion. In addition,
it has been shown that the time-harmonic Maxwell’s equations cannot describe properly systems
like the perfect negative index flat lens or corner reflector. On the other hand, the introduction
of the auxiliary field formalism provides a canonical approach to describe frequency dispersive
negative index structures. It has been shown that the spectacular effects in the perfect flat
lens and corner reflector are associated to the presence, at the prefect −1 index frequency,
of essential spectrum in the Maxwell’s equations. More generally, the presence of intervals of
essential spectrum has been highligthed in corner structures at frequencies where frequency
dispersive permittivity takes negative values. This essential spectrum generated by the corner is
associated with an analog of “black hole” phenomenon, the corner behaving like an unbounded
domain. This raises challenging and fascinating questions in applied mathematics (e.g. in the
case of three-dimensional corners), in physics with the analog of “black hole” phenomenon and
in numerical modelling for the computation of modes of dispersive structure (e.g. in the quasi-
normal modes expansion). In particular, the canonical formalism for dissipative and frequency
dispersive Maxwell’s equations, the auxiliary fields formalism, offers the opportunity to analyze
rigorously an analog of “black hole” phenomenon.

In the last section, it has been shown how the effective permittivity, which has been intensively
analyzed for negative index materials and metamaterials, highlighted ambiguities in the passiv-
ity requirement and Kramers–Kronig relations for the permeability. In this article, several argu-
ments have been reported to support that, in a passive medium, the imaginary part of the per-
meability can take positive and negative values. This statement is in contradiction with the usual
presentation of macroscopic electromagnetism where the permittivity and the permeability are
introduced in a symmetric way, and thus in passive media both have positive imaginary part. The
approach considered here was to define the permeability from the permittivity with spatial dis-
persion, which breaks the symmetry between the permittivity and the permeability. The effective
permeability of a passive and non-magnetic multilayered structure has been derived exactly for
all frequency and wave vector: in that case, it has been shown that the effective permeability is
subject to the Kramers–Kronig relations and has imaginary part taking positive and negative val-
ues. In addition, the full effective anisotropic permittivity tensor with spatial dispersion has been
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derived explicitely for all frequency and wave vector and could be the starting point of further
investigations on spatial dispersion in macroscopic electromagnetism.
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1. Introduction

The interactions between waves and matter play a fundamental role in most physical processes.
It is usually rather challenging to characterize exactly the wave propagation in macroscopic sys-
tems formed by a large number of identical elements, e.g., in periodic or random composite
materials, due to the complexity of the wave phenomena at the microscopic level. Fortunately,
in many instances, the detailed microscopic behavior of a wave is of very limited practical in-
terest. Instead, one can resort to effective medium theories that provide a simplified descrip-
tion of the wave phenomena in terms of a limited set of parameters. Effective medium theo-
ries are particularly successful when the wavelength is large with respect to the characteristic
spatial period of the composite material. In this case, the material may be regarded as a contin-
uum, and the homogenization formalism gives a simplified and insightful picture of the wave
propagation.

Effective medium theories have a long history [1]. In the case of light waves, the concepts
of “permittivity” and “permeability” of a material are as old as the electromagnetism itself.
Similarly, in semiconductor theory the effects of a periodic electrostatic potential associated
with the ionic lattice can be modeled by an effective electron mass [2]. In the last two decades,
the interest in effective medium theories has been renewed by the emergence of the field of
metamaterials [3–28]. Metamaterials are composite media formed by properly shaped dielectric
or metallic inclusions embedded in a host medium, which are designed to exhibit extraordinary
behavior such as a negative index of refraction [29], subwavelength imaging [30, 31] or other
applications [32]. Usually, in metamaterials the radiation wavelength λ is only moderately larger
than the lattice constant a, typically 5–10 times. This contrasts with natural media where the
ratio, λ/a, is several orders of magnitude larger than that value, even at optical frequencies. This
property imposes restrictions on the application of classical homogenization theories to artificial
materials [5, 7, 18, 19] due to the emergence of spatial dispersion.

In a spatially dispersive material the electric displacement vector in a given point of space
cannot be written exclusively in terms of the macroscopic electric field at the same point,
but ultimately may depend on the distribution of the electric field in a neighborhood that
encompasses many unit cells [33]. This non-locality of the electromagnetic response has many
important and nontrivial repercussions on the physical properties of a material [34].

The objective of this review article is to present an up to date comprehensive description of a
general homogenization procedure first developed in the context of electromagnetic metamate-
rials [7] and later generalized to semiconductor superlattices [35]. The effective medium theory
is applicable to a wide range of periodic physical systems and takes into account both spatial and
frequency dispersion [10, 36]. We illustrate the application of the formalism to “wire media”. This
class of metamaterials is particularly interesting, not only because it allows for an analytic treat-
ment that describes almost exactly the actual microscopic response of the metamaterial, but also
because of the richness of the wave phenomena it enables.

The review article is organized as follows: in Section 2 we describe the general homogenization
scheme of Ref. [35] that uses as a starting point a time-domain perspective. In Section 3, we focus
our analysis on nonmagnetic and periodic electromagnetic metamaterials and explain how to
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find the effective response in the frequency domain. The homogenization approach is applied to
wire media in Section 4. The nonlocal effective models for different wire medium topologies are
presented in Section 4.1. In Section 4.2, it is shown that the nonlocality of wire metamaterials
emerges naturally from a quasi-static model with additional state variables that describe the
internal degrees of freedom of the metamaterial. Some subtleties arising from the nonlocality
of the electromagnetic response, such as the definition of the Poynting vector and the need
for Additional Boundary Conditions (ABCs) are discussed in Sections 4.3 and 4.4, respectively.
Finally, in Section 5 we describe some exotic wave phenomena due to the spatial dispersion in
two distinct wire medium configurations.

2. Effective medium theory

In this section, we present the fundamentals of the homogenization method originally developed
in Refs. [7, 35, 36]. We adopt the general perspective of Refs. [35, 36] where the effective medium
parameters are defined in such a way that they describe exactly the time-evolution of any
macroscopic (slowly-varying in space) initial wave packet.

2.1. Microscopic theory

We consider a generic periodic in space physical system whose dynamics is characterized by a
one-body Schrödinger-type equation of the form:

Ĥψ= iħ ∂

∂t
ψ. (1)

Here, Ĥ is the operator that determines the time evolution of the system and ψ is the state-
vector that describes the state of the system. In generalψ is a multi-component vector (a spinor).
Evidently, this type of formulation is suitable to characterize the propagation of electron waves in
a bulk semiconductor or in semiconductor or graphene superlattices, and in such a context Ĥ is
the system Hamiltonian, ψ is the wave function and ħ is the reduced Planck constant [35,37–39].

Importantly, the propagation of light can also be described using a similar formulation.
Indeed, the Maxwell’s equations can be written in a compact form as [35]

(
0 i∇×13×3

−i∇×13×3 0

)
· f = i

∂g

∂t
, (2)

where f = (e h)T is a six-element vector with components determined by the microscopic
electric and magnetic fields and g = (d b)T is a six-element vector with components determined
by the electric displacement and the magnetic induction fields. In electromagnetic metamaterials
the f and g fields are related by a space-dependent material matrix M = M(r) through the
constitutive relation g = M · f. In conventional isotropic media the material matrix is simply:

M =
(
ε13×3 0

0 µ13×3

)
, (3)

where ε and µ are the permittivity and permeability, respectively. Hence, by defining Ĥ as:

Ĥ =ħ
(

0 i∇×13×3

−i∇×13×3 0

)
·M−1 (4)

and identifying the state vector with the g field, ψ= g, the Maxwell’s equations can be expressed
as in (1). It should be noted that in the electromagnetic case Ĥ is unrelated to the energy of
the system, and should be simply regarded as an operator that describes the time evolution of
the classical electromagnetic field. Moreover, in the previous discussion it is implicit that the
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relevant materials are nondispersive, i.e., the permittivity ε and the permeability µ are frequency
independent. Yet, the formalism can be generalized to dispersive media, as it is always possible
to get rid of the material dispersion with additional variables [40–42]. For lossy media, the Ĥ
operator is non-Hermitian.

2.2. Spatial averaging and the envelope function

The envelope function is intuitively the slowly varying part, in space, of the state vector ψ. It is
defined here as:

Ψ(r, t ) ≡ {
ψ(r, t )

}
av, (5)

where { }av is a linear operator that performs a spatial averaging. The averaging operator is
completely determined by the response to plane waves, characterized by the function F (k) such
that

{
eik·r

}
av

= F (k)eik·r. (6)

Thus, the action of the averaging operator on a generic plane wave with wave vector k yields
another plane wave with the same wave vector, but with a different amplitude given by F (k).
Because of the linearity of the operator { }av, its action on a generic function is determined by
Fourier theory and is given by a spatial convolution. The envelope function can be explicitly
written as:

Ψ(r, t ) =
∫

dN r′ f (r′)ψ(r− r′, t ), (7)

where N is the space dimension (e.g., N = 3 for a three-dimensional metamaterial). The weight
function f is the inverse Fourier transform of F so that:

f (r) = 1

(2π)N

∫
dN kF (k)eik·r. (8)

Related ideas have been developed by Russakov in the context of macroscopic electromag-
netism [43]. It is assumed that the averaging operator corresponds to an ideal low pass spatial
filter such that:

F (k) =
{

1, k ∈ B.Z.

0, otherwise.
(9)

In this article the set B.Z. stands for the first Brillouin zone of the periodic lattice, but sometimes
other choices can be relevant [36]. The envelope function Ψ(r, t ) has no significant spatial
fluctuations on the scale of a unit cell, i.e., the microscopic fluctuations are filtered out by the
averaging operator. Hence, Ψ(r, t ) determines the macroscopic state vector. In general, we say
that a given state vector ψ is macroscopic when it stays invariant under the operation of spatial
averaging:

ψ(r) = {
ψ(r)

}
av , (macroscopic state vector). (10)

Importantly, a macroscopic state cannot be more localized in space than the characteristic period
of the material.
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Figure 1. Schematic relation between the time evolutions determined by the macroscopic
and microscopic Hamiltonians: for an initial macroscopic state the effective medium for-
mulation ensures thatΨ= {ψ}av for t > 0. Reprinted with permission [37].

2.3. The effective Hamiltonian

The effective Hamiltonian is the operator that describes the time evolution of the envelope
function. Specifically, suppose that the initial state vector is macroscopic, so that ψt=0 = Ψt=0.
In general, the time evolution of an initial macroscopic state does not yield a macroscopic state
at a later time instant, i.e., ψ(r, t ) 6=Ψ(r, t ) for t > 0. We define the effective Hamiltonian Ĥef such
thatΨ(r, t ) calculated using Ĥef is coincident with the spatially-averaged microscopic state vector
{ψ(r, t )}av, whereψ(r, t ) is determined by the microscopic Hamiltonian Ĥ [35,37]. These ideas are
illustrated in the diagram of Figure 1.

The time evolution of the macroscopic state vector is determined by a generalized Schrödinger
equation:

(
ĤefΨ

)
(r, t ) = iħ ∂

∂t
Ψ(r, t ). (11)

From the definition of the effective Hamiltonian it is clear that it must ensure that:
{

Ĥψ
}

av = ĤefΨ. (12)

Because of linearity, the action of the effective Hamiltonian on the wave function can be ex-
pressed as a convolution in space and in time [35]:

(
ĤefΨ

)
(r, t ) =

∫
dN r′

∫ t

0
dt ′ hef(r− r′, t − t ′) ·Ψ(r′, t ′). (13)

Note that the kernel hef is a function of r− r′. We shall see below that this is possible because the
spatial averaging operation essentially eliminates the spatial granularity of the system. In general,
the kernel hef(r, t ) is represented by a square matrix [hσ,σ′ ] because Ψ is a multi-component
vector. In the photonic case the dimension of hef is S = 6. Equation (13) shows that the effective
Hamiltonian depends on the past history (0 < t ′ < t ) and on the surroundings (r′ 6= r) of the
observation point, rather than just on the instantaneous and local value of Ψ. It is convenient
to introduce the Fourier transform of hef(r, t ) defined as:

Hef(k,ω) =
∫

dN r
∫ +∞

0
dt hef(r, t )eiωt e−ik·r. (14)

The Fourier transform is bilateral in space and unilateral in time. The unilateral Fourier transform
in time can also be regarded as a Laplace transform. In the Fourier domain, the action of the
effective Hamiltonian reduces to a simple multiplication:

(
ĤefΨ

)
(k,ω) =Hef(k,ω) ·Ψ(k,ω). (15)
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Here,Ψ(k,ω) is the Fourier transform of the macroscopic state vector,

Ψ(k,ω) =
∫

dN r
∫ +∞

0
dtΨ(r, t )eiωt e−ik·r, (16)

and (ĤefΨ)(k,ω) is defined similarly. The integral in r is over all space. Note that for now the
system is assumed to be periodic and unbounded, so that the effect of boundaries is disregarded.
The convergence of the unilateral Fourier transform is guaranteed in the upper-half frequency
plane, Im(ω) > 0.

The function Hef(k,ω) completely determines the effective Hamiltonian. Because of the
properties of the spatial averaging operator, it is possible to enforce that:

Hef(k,ω) = 0, when k ∉ B.Z. (17)

This property ensures that the effective Hamiltonian is a smoothened version of the microscopic
Hamiltonian. In the following subsections, it is explained how Hef(k,ω) can be calculated for
k ∈ B.Z.

2.3.1. Calculation of Hef(k,ω) with a time domain approach

Let us consider an initial macroscopic state of the form ψt=0 ∼ eik·rul where the wavevector
k can take any value in the B.Z. Here, (ul ) represents a basis of unit vectors that generates the
S-dimensional vector space wherein ψ is defined. Because of the periodicity of the system, the
microscopic time evolution of this initial state yields a state vectorψ(r, t ) with the Bloch property.
In fact,ψ(r, t )e−ik·r is a periodic function in space for any fixed t . For the same reason, Ĥψhas also
the Bloch property. Crucially, the operation of spatial averaging only retains spatial harmonics
with wave vector inside the B.Z., and hence it follows that the dependence of {ψ}av and {Ĥψ}av

on the spatial coordinates is of the form eik·r for any time instant. In other words, within the
effective medium approach the time evolution of a plane wave-type initial state yields another
plane wave-type state, such that the homogenized structure behaves as a continuum. Moreover,
for Bloch modes it is possible to write:

{
ψ

}
av (r, t ) =ψav(t ) ·eik·r, (18a)

{
Ĥψ

}
av (r, t ) = (

Ĥψ
)

av (t ) ·eik·r, (18b)

with

ψav(t ) = 1

Vcell

∫

Ω
dN rψ(r, t )e−ik·r, (19a)

(
Ĥψ

)
av (t ) = 1

Vcell

∫

Ω
dN r Ĥψ(r, t )e−ik·r, (19b)

whereΩ represents the unit cell and Vcell is the respective volume. Taking now into account that
Ψ = {ψ}av and ĤefΨ = {Ĥψ}av, and substituting (18) into (13), it is seen after straightforward
manipulations that:

(
Ĥψ

)
av (ω) =Hef(k,ω) ·ψav(ω). (20)

In the above, ψav(ω) and (Ĥψ)av(ω) stand for the unilateral Fourier (Laplace) transforms of the
functions in (19). Hence, if we denote ψ(l ), l = 1, . . . ,S as the microscopic state vector determined
by the time evolution of the initial state ψ(l )

t=0 = i/ħeik·rul (the proportionality constant was fixed
as i/ħ for convenience), it follows from the previous analysis that the effective Hamiltonian is
given by:

Hef(k,ω) = [(
Ĥψ(1))

av . . .
(
Ĥψ(S))

av

] · [ψ(1)
av . . .ψ(S)

av

]−1
. (21)

Here Hef and the two objects delimited by the square brackets are S×S matrices. Thus, Hef(k,ω)
can be written as the product of two matrices, whose columns are determined by the vectors
ψ(l )

av (ω) and (Ĥψ(l ))av(ω).
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In summary, for an arbitrary k ∈ B.Z. the effective Hamiltonian can be found by solving S mi-
croscopic time evolution problems associated with initial states of the formψ(l )

t=0 = i/ħei k·rul . The
effective Hamiltonian is written in terms of the Fourier transforms in time of the functions (19).

2.3.2. Calculation of Hef(k,ω) with a frequency domain approach

The effective Hamiltonian may also be determined based on frequency domain calculations.
To prove this we note that ψav(ω) and (Ĥψ)av(ω) can be written explicitly as:

ψav(ω) = 1

Vcell

∫

Ω
dN rψ(r,ω)e−ik·r, (22a)

(
Ĥψ

)
av (ω) = 1

Vcell

∫

Ω
dN r Ĥψ(r,ω)e−ik·r, (22b)

where ψ(r,ω) is the unilateral Fourier transform of ψ(r, t ). Applying the unilateral Fourier
(Laplace) transform to both members of the microscopic Schrödinger equation (1) and using
the property ∂tψ(r, t ) ↔−iωψ(r,ω)−ψt=0(r), it follows that:

[
Ĥ −ħω] ·ψ(r,ω) =−iħψt=0(r). (23)

Hence, ψ(l )(r,ω) can be directly found by solving the above equation for −iħψ(l )
t=0 = eik·rul , with

l = 1, . . . ,S. Once ψ(l )(r,ω) is known one can determine ψ(l )
av and (Ĥψ(l ))av using (22), and finally

obtain the effective Hamiltonian from (21).
It is interesting to note that for−iħψ(l )

t=0 = eik·rul equation (23) implies that (Ĥψ(l ))av−ħωψ(l )
av =

ul . Substituting this result into (21) one may also write the effective Hamiltonian as:

Hef(k,ω) =ħω+ [
ψ(1)

av . . .ψ(S)
av

]−1
. (24)

2.4. Stationary states

The spectrum of the effective Hamiltonian is exactly coincident with the spectrum of the micro-
scopic Hamiltonian [35] (here, for simplicity it is assumed that there are no “dark states”, for a
discussion see [35]). The energy spectrum of the macroscopic Hamiltonian is determined by the
nontrivial solutions of the stationary Schrödinger equation

[
Hef(k,ω)|ω=E/ħ−E

] ·Ψ= 0, (25)

where E stands for the energy of a certain stationary state. For example, in the electromagnetic
case the photonic band structure calculated with the effective Hamiltonian is coincident with
the exact band structure obtained using a microscopic theory [7]. The enunciated result follows
from the fact that in a time evolution problem (with no source excitation) the state vector can
be written as a superposition of eigenmodes. The eigenmodes have a time variation of the form
e−iωn t , being ωn = En/ħ the relevant eigenfrequencies. Importantly, since the macroscopic and
microscopic state vectors are related by the spatial-averaging operation (Ψ= {ψ}av), both Ψ and
ψ have the same-type of time oscillations. In other words, the averaging affects only the space
coordinates, while the time coordinate is not averaged in any manner. As a consequence, the
spectrum of the microscopic and macroscopic Hamiltonians must be the same. For a detailed
mathematical proof of this property the reader is referred to Appendix C of Ref. [35].

3. The electromagnetic case

The formalism of the previous section when applied to the electromagnetic case (2) yields a 6×6
effective Hamiltonian of the form [36]:

Hef(k,ω) =ħ
(

0 −k×13×3

k×13×3 0

)
·M−1

ef (k,ω), (26)
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where Mef(k,ω) is the effective material matrix that links the averaged fields {f}av and {g}av of
(2), [35,36]. For metamaterials made of non-magnetic particles the material matrix is of the form

Mef(k,ω) =
(
εef(k,ω) 0

0 µ013×3

)
. (27)

Thus, the homogenization problem reduces to the determination of the nonlocal effective per-
mittivity εef(k,ω). The permittivity can be found using the source-driven homogenization the-
ory developed for electromagnetic metamaterials [7]. As shown in [36] the effective response ob-
tained with this theory is exactly coincident with the one obtained with the general theory of
previous section. Below, we quickly review the main ideas of the source-driven homogenization,
highlighting that the homogenization problem can be reduced to an integral equation [7].

We consider a generic nonmagnetic periodic metamaterial described by the periodic permit-
tivity εr (r,ω) = εr (r+R,ω) with R a vector of the Bravais lattice. Assuming a time variation of the
form e−iωt , the microscopic Maxwell equations in this system are

∇×e = iωb (28a)

∇× b

µ0
= je −ε0εr iωe (28b)

where e,b are the microscopic electric and magnetic field, respectively and je is an applied
(macroscopic) electric current density that acts as a source of the electromagnetic fields. The
applied current density is assumed to have the Bloch property and enforces a desired spatial
variation within the unit cell. This means that the pair of parameters (ω,k) characterizing the
time and space variations of the fields are independent of each other and do not need to be
associated with an eigenmode. The applied current plays the same role as the initial stateψt=0 in
the formulation of last section.

By applying the averaging operator (18a) to the microscopic Maxwell equations (28), one
obtains the macroscopic Maxwell equations:

k×Eav =ωBav, (29a)

k× Bav

µ0
=−iJe,av −ωPg −ε0ωEav, (29b)

where Eav,Bav and Je,av are the averaged e,b and je , respectively, defined according to (22a). The
averaged induced polarization Pg is given by

Pg

ε0
= 1

Vcell

∫

Ω

(
εr (r)−1

)
e(r)e−ik·r d3r. (30)

For system containing perfectly electric conducting (PEC) surfaces, the integration over the unit
cell volume in the previous expression can be transformed into a surface integral, see [7, 10] for
more details.

The nonlocal effective permittivity is defined through the relation between the averaged
electric field and the averaged induced polarization:

εef(ω,k) ·Eav = ε0Eav +Pg. (31)

As shown in [7], for every pair (ω,k) the homogenization problem can be reduced to an
integral equation. The unknown of the integral equation is the microscopic vector field pind(r) =
(εr (r)−1)e(r) and the excitation is the averaged electric field Eav. A solution of the problem can
be formally constructed using the Method of Moments (MoM). The unknown pind is expanded as

pind =
∑
n

cn wn,k, (32)

where the set of expansion functions wn,k has the Bloch property and is assumed to be a complete
set in {r : εr (r)−1 6= 0}.
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For simplicity, next we focus on the case where the metamaterial inclusions can be mod-
eled as impedance boundaries, characterized by some surface impedance Zs [44]. The surface
impedance links the tangential electric field Etan at the boundary surface (∂D) with the current
surface density Js = ν̂×H, as Etan = Zs Js [45]. Here, ν̂ is the unit normal vector oriented toward
the exterior of the inclusion. A PEC inclusion is described by the surface impedance Zs = 0. It can
be shown that the effective permittivity is given by [7, 10]

εef

ε0
(ω,k) = I+ 1

Vcell

∑
m,n

χm,n
∫

∂D
wm,k(r)e−ik·r ds ⊗

∫

∂D
wn,−k(r)eik·r ds (33)

χm,n =
∫

∂D

∫

∂D
[∇s ·wm,−k(r)∇s′ ·wn,k(r′)− (ω/c)2wm,−k(r) ·wn,k(r′)]Φp0(r|r′;ω,k)ds ds′

− iωε0Zs

∫

∂D
wm,−k(r) ·wn,k(r)ds. (34)

In the above Φp0 is the Green’s function introduced in (35b) of [7], ∇s stands for the surface
divergence of a tangential vector field and the matrix [χm,n] is the inverse of [χm,n]. In the next
section, we illustrate the application of the above formulas to the case of wire metamaterials.

As shown in [7, 10], Equation (33) can be generalized to the case of volumetric dielectric
inclusions. The MoM formulation is particularly well suited to characterize the effective response
of metamaterials made of metallic structures. Due to this reason, for dielectrics it is typically
more practical to solve the homogenization problem with finite differences methods in the
frequency [11] or in the time domain [14].

4. Application to wire metamaterials

Next, we apply the homogenization method to periodic arrays of thin metallic wires. Wire
metamaterials are generically characterized by a strong spatial dispersion in the long wavelength
limit.

4.1. Nonlocal effective models

In the following subsections we obtain the effective medium responses of three different wire
metamaterials: the uniaxial wire medium, the double wire medium and the 3D connected wire
mesh. In all cases, it will be assumed that the metallic wires are thin, R ¿ a, where R is the
radius of the wires and a is the spatial period. The wires are modeled as impedance boundaries
characterized by the surface impedance Zs = 2i/(ωε0(εm −1)R) where εm is the metal relative
permittivity. The wires are embedded in a host medium of permittivity εh .

4.1.1. Uniaxial wire medium

The simplest example of a wire metamaterial is the so-called uniaxial wire medium. It consists
of a square lattice of parallel and infinitely long metallic wires oriented along a fixed direction,
here taken as the ẑ direction as represented in Figure 2(a).

The study of such systems has a long history (dating back to the 1950s) that was renewed at
the turn of this century after the discovery of negative index metamaterials [46–52].

As shown in [45], the application of the homogenization scheme of Section 3 to this wire
metamaterial is particularly simple. Indeed, the current density induced on the metallic wires
surface can be accurately modeled by a single expansion function:

w1,k(r) = eik·r

2πR
ẑ. (35)
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Figure 2. (a) Uniaxial wire medium formed by a square array (period a) of infinitely long
metallic rods oriented along the ẑ direction. (b) Double wire medium formed by two non-
connected arrays of parallel wires arranged in a cubic lattice with lattice constant a. The
two arrays of wires are oriented along û1 and û2 and the distance between adjacent wires is
a/2. (c) 3D wire mesh formed by a connected array of orthogonal metallic wires. In (a)–(c)
the wires radius is R and the metal relative permittivity is εm .

Note that the electric current density is proportional to pind. Using w1,k(r) in (33) and (34), it can
be shown that the nonlocal effective permittivity reduces to [10, 45, 53]

εef

ε0
(ω,k) = I+ 1

1
fV (εm−1) + 1

β2
p

(
k2

z − ω2

c2

) ẑ⊗ ẑ, (36)

where fV = πR2/a2 is the volume fraction of the wires and βp is the plasma wavenumber for an
array of parallel PEC wires. The parameter βp depends solely on the system geometry (see the
next subsection for the expression and Ref. [45] for further details).

As seen, the effective permittivity of the uniaxial wire medium depends on the z component
of the wavevector along the wires (kz ), which leads to a pole of the material response at low
frequencies (for good conductors εm → −∞ and the pole occurs for kz ≈ ω/c). Thereby, the
spatial dispersion effects are rather strong. This feature has several nontrivial consequences,
e.g., it implies that the medium may support two modes with the same polarization [50, 53, 54].
For a full discussion about the uniaxial wire medium modes the reader is referred to [53]. The
uniaxial wire medium has interesting applications in subwavelength imaging when operated in
the canalization regime [31, 55–64].

4.1.2. Double wire mesh

A more complex situation from the homogenization perspective occurs when a second array
of parallel wires with a different orientation is inserted in between the first set of wires (see
Figure 2(b)). Such structures are usually referred to as double wire meshes, and can have several
interesting applications and rather exotic physics [65–72]. While the expression of the nonlocal
effective permittivity of this metamaterial is well known [66], its direct derivation using the
homogenization formalism of Section 3 was not reported previously in the literature. Since we
believe that the proof is pedagogical we do so in the following.

The wire arrays are oriented along the generic directions û1 and û2. For simplicity we restrict
our analysis to PEC wires (Zs = 0), orthogonal to each other ûm · ûn = δm,n , with m,n = 1,2,
and consider a cubic lattice with period a. Similar to the case of the uniaxial wire medium,
one expansion function per wire (two in total) is sufficient to obtain an approximate analytical
expression for the effective permittivity. The expansion function that models the density of
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current induced in the nth wire oriented along ûn (here assumed parallel to one of the coordinate
axes) is taken as

wn,k(r) = eik·r

2πR
ûn , n = 1,2. (37)

Substituting the above formula into (33), one finds that the effective permittivity can be written
as:

εef

ε0
(ω,k) = I+ 1

a

∑
m,n

χm,n ûm ⊗ ûn . (38)

To obtain χm,n , we substitute (37) into (34) and use the regularized lattice Green’s function given
by [7]

Φp0(r|r′;ω,k) = 1

Vcell

∑
J6=0

eikJ·(r−r′)

kJ ·kJ − ω2

c2

≈ 1

Vcell

∑
J6=0

eikJ·(r−r′)

k0
J ·k0

J

, (39)

where kJ = k+k0
J with k0

J = j1b1+ j2b2+ j3b3 and the bi s are the reciprocal lattice primitive vectors.
The second identity is valid in the long-wavelength limit, ω/c ¿ π/a and |k| ¿ π/a [45]. After
straightforward calculations it is found that:

χm,n = 1

a

[
kmkn −

(ω
c

)2
δm,n

]
1

β2
m,n

, (40)

where ki = k · ûi and βm,n is a quantity that depends only on the geometry of the system, and is
given by

1

β2
m,n

=
∑

jn=0
jm=0

{ j1, j2, j3} 6={0,0,0}

[
J0

(
|k0

J |R
)]2

|k0
J |2

eik0
J ·(rm−rn ), (41)

where rn denotes the center of the nth wire in the unit cell (the nth wire translated by −rn

is centered at the origin) and J0 is the Bessel function of 1st kind and 0th order. For m = n,
βm,m = βp is the plasma wavenumber for an array of parallel PEC wires mentioned in the last
subsection [45].

For m 6= n the parameter βm,n is given by a simple series with an oscillating generic term
due to the nonzero complex exponential coefficient. In contrast, for m = n the parameter
βm,n is determined by a double series with the generic term of summation strictly positive.
Due to this reason, one has |1/β2

m,n | ¿ 1/β2
p for m 6= n. The approximation is better for a

larger physical distance between the two sub-lattices, as for a larger distance the complex
exponential will oscillate faster. Thus, the off-diagonal terms of [χm,n] can be dropped, and with
this approximation the inverse matrix elements are given by:

χm,n ≈
{

1
χn,n

m = n

0 m 6= n.
(42)

Substituting this expression into (38) it is found that the dielectric function of the double wire
medium is

εef

ε0
(ω,k) = I+

∑
i

β2
p[

k2
i −

(
ω
c

)2
] ûi ⊗ ûi . (43)

This result agrees with the nonlocal effective permittivity for perfect electric conducting wires de-
rived in [73] using a slightly different approach. Similar to the uniaxial wire medium, the effective
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permittivity of the double wire mesh is strongly spatially dispersive. Remarkably, each wire ar-

ray contributes independently to the permittivity function such that εef/ε0 = I+ ∑
n=1,2

(
εn/ε0 − I

)
,

where εn is the permittivity of the nth wire array alone.
The above derivation can be readily extended to plasmonic wires with a finite conductivity [66]

and to triple non-connected wire arrays [73]. Furthermore, the proof can also be generalized
to the case where the wire arrays are not perpendicular [70]. Also in this case, with similar
approximations, one finds that each wire array contributes independently to the permittivity
function.

4.1.3. 3D connected wire mesh

The strong spatial dispersion characteristic of nonconnected wire arrays can be tamed by
connecting the metallic wires, so that effectively the structure is formed by a single piece of
conductor [73, 74]. Here, we illustrate this by considering a 3D connected wire mesh formed by
three orthogonal and connected sets of wires as represented in Figure 2(c).

In this system, because of the discontinuity of the induced current at the wire junctions, a
single expansion function per wire is not enough to correctly homogenize the electromagnetic
response. Instead, it can be shown that five expansion functions wn,k are required to obtain an
approximate analytic expression of the effective permittivity [45, 73]. Relying on an approach
similar to that of the previous subsection (the details can be found in [45]), it can be shown that
the effective permittivity of this metamaterial is

εef

ε0
(ω,k) = εt (ω)

(
I− k⊗k

k2

)
+εl (ω,k)

k⊗k

k2 , (44)

where the transverse and longitudinal components are given respectively by

εt (ω) = 1+ 1
1

fV (εm−1) − ω2

β2
p c2

, (45)

εl (ω,k) = 1+ 1

k2

l0β
2
p
+

(
1

fV (εm−1) − ω2

β2
p c2

) . (46)

In the above, l0 = 3/(1+2β2
p /β2

1) and β1 is a constant (with unities of wave number) that depends
solely on the geometry of the structured material (see [45] for more details).

Remarkably, the 3D connected wire medium has a homogenized response equivalent to that
of a plasma described by the hydrodynamic model [75]. In particular, the response to transverse
waves (with electric field perpendicular to the wave vector) is described by the k-independent
transverse permittivity εt . However, the 3D connected wire medium remains spatially dispersive.
The reason is that the response to longitudinal waves (with electric field parallel to the wave vec-
tor) is described by a k-dependent longitudinal permittivity εl . The effects of spatial dispersion
are several orders of magnitude stronger than in metal nanostructures at optics because the pa-
rameter l0 is relatively small (l0 ≈ 2). The effects of spatial dispersion can be further suppressed
by loading the wires with metal plates, which leads to l0 À 1 [74, 76].

In general, the 3D connected wire mesh supports 3 electromagnetic modes: a longitudinal and
two transverse plane waves. Propagation is only feasible above the effective plasma frequency.
Thus, for long wavelengths the 3D connected wire mesh is completely opaque to radiation. For
further details about the electrodynamics of the connected wire medium, the reader is referred
to [45].
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4.2. Quasi-static model

The nonlocal response of wire metamaterials can be explained by a quasi-static model devel-
oped in [76]. In the quasi-static model the macroscopic electromagnetic fields are coupled to
the currents in the wires and to an “additional potential”. The additional potential may be un-
derstood as the average voltage drop from a given wire to the boundary of the cell wherein it is
contained [76]. Both the additional potential (ϕ) and the current are interpolated as continuous
functions defined in all space. As reported in [77,78], the quasi-static model is particularly useful
in problems involving interfaces, e.g., to obtain “additional boundary conditions”, and to derive
conservation laws [78].

For the case of the uniaxial wire medium (with wires oriented along ẑ) of Section 4.1.1 the
quasi-static model is determined by:

∇×E = iωµ0H (47a)

∇×H = Iz

a2 ẑ− iωεh E (47b)

∂Iz

∂z
= iωCϕ (47c)

∂ϕ

∂z
= Ez −

(
Zw − iωL

)
Iz (47d)

where E and H are the macroscopic electromagnetic fields (E = {e(r)}av and H = {b(r)}av/µ0),
Ez = E · ẑ, εh is the permittivity of the host medium and C , L and Zw are the capacitance,
inductance and self-impedance of a wire per unit of length, respectively, defined as in [76].
As seen, in this theory the macroscopic Maxwell equations are coupled to a set of differential
equations governing the dynamics of the internal degrees of freedom of the medium (Iz and ϕ).
The quasi-static model (47) fully describes the physical behavior of the uniaxial wire medium,
as it can be transformed into the nonlocal model (36) by expressing Iz and ϕ in terms of the
macroscopic fields [76].

Importantly, the quasi-static model is local as it corresponds to a standard partial-differential
system. The differential operators act on the 8-component state vector (E,H,ϕ, Iz ). The nonlo-
cality of the electromagnetic response is a consequence of the fact that Iz and ϕ are coupled to
each other through a space differential operator (∂/∂z), different from conventional local media
where the internal degrees of freedom are coupled through time differential operators (∂/∂t ).

Finally, it is worth mentioning that the quasi-static model is not restricted to the description of
the uniaxial wire medium, as it can be extended to more complex connected and nonconnected
wire medium topologies [76].

4.3. Poynting vector

In spatially-dispersive media, the energy density flux is not given by the standard textbook
formula of the Poynting vector E×H [33,34,79,80]. For the case of lossless materials characterized
by a nonlocal dielectric function the (time-averaged) Poynting vector must instead be calculated
using:

Sav · l̂ = 1

2
Re

{(
E× B∗

µ0

)
· l̂

}
− ω

4
E∗ · ∂εef

∂kl
(ω,k) ·E. (48)

Here, l̂ is a generic (real-valued) unit vector. It is implicit that the spatial dependence is of the form
eik·r with k real-valued and that the magnetic response is trivial. The formula can be generalized
to a superposition of plane waves possibly associated with complex-valued wave vectors [79, 81].
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It was demonstrated in Refs. [79, 80] that for a generic dielectric metamaterial, Equation (48)
agrees precisely with the cell-averaged microscopic Poynting vector,

Sav =
1

Vcell

∫

Ω

1

2
Re

(
e× b∗

µ0

)
d3r, (49)

provided the effective dielectric function is determined with the homogenization method of
Section 3. Therefore, the macroscopic Poynting vector can be understood as a cell-averaged
microscopic Poynting vector.

Evidently, in wire metamaterials the Poynting vector can be determined using (48), using the
relevant expression of the nonlocal permittivity in the formula. However, as previously men-
tioned, such formalism is only applicable to plane waves. A more general and useful expression
for the Poynting vector can be obtained using the quasi-static model of Section 4.2. Indeed, based
on (47) it is possible to derive a generalized Poynting theorem, which for the particular case of the
uniaxial wire medium yields the following expression for the Poynting vector [78]:

Sav =
1

2
Re

{
E×H∗+ ϕI∗z

a2 ẑ
}

. (50)

As seen, the Poynting vector is written in terms of the macroscopic electromagnetic fields and
of the internal degrees of freedom (Iz and ϕ) of the metamaterial. It can be verified that in
the lossless case and for a spatial dependence of the form eik·r with k real-valued the above
expression reduces to (48). However, Equation (50) is more general than (48) as it can be applied
to arbitrary electromagnetic field distributions. The stored energy in the wire metamaterial can
also be expressed in terms of the state vector (E,H,ϕ, Iz ), and for more details the reader is
referred to [78].

4.4. Additional boundary conditions

One important consequence of spatial dispersion is that the usual Maxwellian boundary con-
ditions, i.e., the continuity of the tangential E and H fields, are insufficient to solve wave prop-
agation problems in the presence of interfaces [34, 54, 81–86]. For example, consider a planar
interface between two regions: a standard dielectric and a generic spatially dispersive material
characterized by a nonlocal dielectric function. Suppose that a plane wave propagating in the di-
electric illuminates the spatially-dispersive material half-space. The standard approach to find
the scattered waves is to expand the electromagnetic fields into plane waves in the two regions
and then to match the fields at the interfaces by imposing the standard Maxwellian boundary
conditions. In standard dielectrics, there are exactly two plane-waves associated with an energy
flow propagating away from the interface, i.e., there are only two polarization states per propaga-
tion direction. The potential problem is that in a nonlocal material the allowed number of polar-
ization states per propagation direction may be greater than two, i.e., the medium may support
“additional" waves. For example, a uniaxial wire medium typically supports three independent
polarization states [85]. Consequently, it is generally impossible to solve a scattering problem
relying only on the Maxwellian boundary conditions because the number of unknowns (num-
ber of waves that can be excited) is greater than the number of equations (number of boundary
conditions). The problem is under-determined and additional boundary conditions (ABCs) are
needed. The number of ABCs must be the same as the number of additional waves.

For wire metamaterials, the ABC requirement is particularly clear from the quasi-static formu-
lation of Section 4.2 where it is evident that in a scattering problem the boundary conditions for
the internal degrees of freedom ϕ and Iz must also be provided [77]. Thus, one needs to specify
how the relevant internal variables behave at the interface. Unfortunately there is no systematic
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theory to find the ABCs, and their derivation must be based on the specific microscopic prop-
erties of the system under consideration. In particular, it is underlined that the ABCs (which are
interface dependent) cannot be directly obtained from the nonlocal dielectric function, i.e., from
the bulk response.

Here, we restrict our attention to an interface between a wire metamaterial and a standard
dielectric. This situation covers the important case of an interface between wire media and air,
which is of particular interest for scattering or imaging applications. Evidently, the microscopic
electric currents in the metal wires are interrupted at the interface. Hence, for a system with N
independent wires in the unit cell, it follows that at the dielectric interface

Jav · ûn = 0, n = 1, . . . , N (51)

where Jav is the cell-averaged microscopic conduction current and ûn is the unit vector oriented
along the direction of the nth wire array [81]. The vector Jav can typically be written in terms of
the dielectric function of the medium [81].

In the particular case of a uniaxial wire medium, the ABC in the quasi-static model assumes
the simple and intuitive form Iz = 0. This ABC (together with the standard Maxwellian boundary
conditions) can be expressed in terms of the electromagnetic fields as [85]:

εh n̂ ·E|WM = εd n̂ ·E|diel., (52)

where n̂ is the unit vector normal to the interface, εh is the host medium permittivity and εd

is the dielectric permittivity. Note that (52) is not equivalent to the continuity of the electric
displacement vector, since the effective permittivity of the wire medium is different from εh .
Similar ideas are used to obtain the ABCs for the case of connected wire arrays [45], interlaced
wire meshes [87] and for wires terminated with lumped loads [77, 81].

It should be noted that wire metamaterials are amongst the very few examples of structured
media for which there is a clear understanding of how to model the nonlocal effects near inter-
faces [77,81,85,88]. Another example, less well-developed, is the case of quadrupolar metamate-
rials characterized by weak spatial dispersion [89, 90]. The general problem of characterizing the
interface response of a generic nonlocal metamaterial is unsolved.

5. Anomalous refraction and light tunneling with wire metamaterials

To illustrate some of the unusual opportunities created by the spatial dispersion in wire metama-
terials, we review in the next subsections the effects of anomalous light refraction and anomalous
light tunneling.

5.1. Anomalous refraction in arrays of non-connected crossed metallic wires

As noticed in [68], a remarkable consequence of spatial dispersion is the possibility to achieve a
low-loss and broadband regime of anomalous light refraction such that, contrary to what hap-
pens in a standard glass prism, longer wavelengths are more refracted than shorter wavelengths.
This effect is forbidden by Kramers–Kronig relations in transparent and local materials. It may
however occur in a prism made of a double-wire medium formed by nonconnected wires [68,72],
see Figure 3. To understand the physical origin of this effect, we consider the wave propagation
in an unbounded double wire medium made of perfectly conducting wires lying in the xoz plane
and tilted by ±45◦ with respect to the x-axis, as represented in Figure 3(b). For simplicity, we
assume that the wave propagates along the z-direction (k = kz ẑ). For fields polarized along the
x-direction the characteristic equation is

εxx (ω,kz )
ω2

c2 = k2
z , (53)
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Figure 3. (a) Schematic of the anomalous light refraction in a prism made of non-
connected arrays of parallel wires. (b) Each array of parallel wires is arranged in a square
lattice with period a. The two arrays of wires are mutually orthogonal and lie in planes par-
allel to the x-axis. The distance between adjacent perpendicular wires is a/2. The metallic
wires are tilted by ±45◦ with respect to the xoy plane. (c) Normalized squared amplitude of
the measured electric field for a prism made of a crossed array of metallic strips for a fre-
quency of (i) 7.605 GHz (ii) 16.325 GHz. A schematic drawing of the metamaterial prism and
horn antenna (at full scale) is shown. The propagation is towards the left-hand side region.
The green dashed lines represent the refracted beam propagation direction, whereas the
black dashed lines represent the direction normal to the interface. The spatial coordinates
y and z are normalized to the reference wavelength λn = 39.71 mm [72].

where εxx = x̂ · εef · x̂ is the relevant component of the nonlocal effective permittivity for this
polarization. According to the effective model (43), εxx is given by

εxx (ω,kz ) = 1+
β2

p

k2
z

2 − ω2

c2

. (54)

Substituting εxx into (53) and solving for kz , it is found that kz = (ω/c)nef, where nef is the effective
refractive index of the double wire medium given by [68]

nef =

√√√√3

2
+ 1

2

√
1+8

(
βp c

ω

)2

. (55)

Remarkably, even though the metamaterial is lossless, the refractive index is a strictly decreasing
function of the frequency. This unique property is only possible due to the spatial dispersion
which makes the permittivity seen by the transverse field (polarized along x) dependent on a
perpendicular wave vector component (here kz ). The same effect occurs for other propagation
directions in the yoz plane.

Due to the anomalous permittivity dispersion, a prism made of a crossed wire mesh can
create a reverse rainbow as demonstrated theoretically in [68], and experimentally confirmed at
microwave frequencies in [72]. In the experiment the prism is formed by a stack of dielectric slabs
printed with the ±45◦-oriented metallic strips. A sample of the experimental results is presented
in Figure 3(c). As seen, unlike conventional prisms, in the metamaterial prism the refracted beam
comes out closer to the normal of the output interface when the frequency is increased. Materials
with anomalous light dispersion may be useful for many applications, e.g., for the compression
of light pulses or for the correction of achromatic aberrations [71].
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Figure 4. (a) Geometry of the interlaced wire mesh. The wire radii in mesh A and B are
r A and rB , respectively. The wires of each network are spaced by a distance a along the
coordinate axes. The distance between the two non-connected networks is a/2. (b) Band
diagram of the electromagnetic modes along the directionΓX . Solid lines: analytical model;
discrete symbols: full wave simulations. The inset shows the cubic unit cell of the structure.
The wires are PEC and are embedded in a dielectric with permittivity εh = 1; the radii of the
wires are r A = 0.001a and rB = 0.05a. Reprinted with permission [92].

5.2. Anomalous light tunneling in interlaced wire meshes

Here, we consider a metamaterial formed by two interlaced 3D connected wire meshes (mesh A
and B) separated by half-lattice period, see Figure 4(a) [87, 91]. In what follows, we characterize
the effective response of this “interlaced wire medium” and discuss a counter-intuitive tunneling
effect rooted in the spatially dispersive response of the metamaterial.

Consider the general problem of homogenization of a metamaterial formed by two networks
of inclusions A and B . In general, to find the effective response it is crucial to take into account
the complex near-field interactions between the different types of scatterers. However, when the
scatterers are physically distant in the unit cell it may be a good approximation to consider that
each scatterer behaves as a “macroscopic source” from the point of view of the other scatterer.
Essentially, this approximation is good when only the smooth (slowly varying) part of the fields
radiated by one of the scatterers influences the currents on the other scatterer. It can be formally
shown that in these conditions each component of the metamaterial contributes independently
to the dielectric function such that [87, 93]:

εef = ε
A
ef +ε

B
ef −εhI, (56)

where ε
i
ef with i = A,B is the nonlocal effective permittivity of the metamaterial formed only by

the i th network of inclusions.
From the results of Section 4.1.2, it is readily recognized that a double-wired mesh of noncon-

nected wires provides a nontrivial example of a system in which the different types of scatterers
interact with one another as “macroscopic sources”. Interestingly, it turns out that the interlaced
wire mesh of Figure 4(a) has the same property when the two 3D wire meshes are separated by the

maximal possible distance (a/2) [87,92]. For the interlaced wire mesh ε
i
ef is the nonlocal effective

permittivity of the (isolated) i th wire mesh given by (44).
Intuitively, the interlaced wire mesh should be opaque to radiation for frequencies below a

certain effective plasma frequency. Surprisingly, that is not the case and it turns out that the
metamaterial supports a longitudinal-type mode at arbitrary low-frequencies, as illustrated in
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Figure 5. (a) Amplitude of the transmission coefficient as a function of the incidence
angle θinc for the normalized frequency ωa/c = 1.32 and normalized thickness L/a ≈ 6.
The remaining structural parameters are as in Figure 4. The inset shows the geometry
of the problem. The solid lines represent the analytical results, and the discrete symbols
represent the full wave simulations results. (b) Density plot of the transmission coefficient
amplitude as a function of the normalized thickness L/a and of the incidence angle θinc at
the fixed frequency of ωa/c = 1.32. (c) Incidence angle θinc as a function of L/a for the nth
(n = 1,2, . . .) Fabry–Pérot resonance of the propagating longitudinal mode at ωa/c = 1.32.

the band diagram in Figure 4(b) [87, 91, 92]. This feature contrasts sharply with the properties
of the individual 3D wire meshes, which do not support electromagnetic propagation for long
wavelengths.

Remarkably, the low-frequency mode can originate a rather counter-intuitive tunneling ef-
fect. To illustrate this, we consider an interlaced wire mesh slab of finite length L (see the in-
set of Figure 5(a)). Using the effective permittivity model (56) and suitable ABCs, it is pos-
sible to find the transmission coefficient |T | of the slab [92]. Strikingly, as shown in Fig-
ure 5(a), provided the wire radii are different (r A 6= rB ) an incoming plane wave can tunnel
through the metamaterial slab for large incidence angles. This transmission anomaly is due
to a Fabry–Pérot resonance of the low-frequency longitudinal mode of the metamaterial. At
the resonance the longitudinal wave vector satisfies the condition kz L = nπ, with n = 1,2, . . .
(see Figures 5(b) and (c)).

The physical origin of the tunneling anomaly is a Fano-type resonance [93] that occurs when
r A 6= rB and enables the cancellation due to destructive interference of the scattering by the
two subcomponents of the interlaced wire mesh. This metamaterial structure may be useful for
angle-dependent filtering and sensing. For a detailed discussion of the physical properties of the
interlaced wire mesh, the reader is referred to [92].

6. Conclusions

We presented an overview of a first principles homogenization approach based on an effective
Hamiltonian that describes exactly the time evolution of the wave packet envelope when the
initial state is less localized than the lattice period. The effective Hamiltonian determines com-
pletely the band diagram of the time-stationary states of the periodic system. The homogeniza-
tion formalism can be applied to a wide range of physical systems. Its specific implementation
for the case of nonmagnetic periodic electromagnetic metamaterials was described.

In particular, we focused our attention in the homogenization of wire metamaterials with di-
verse topologies. These structures are typically characterized by a strong nonlocal response in the
long wavelength limit. In wire metamaterials formed by two or more non-connected networks,
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each metal network may contribute almost independently to the permittivity function. We un-
derlined the nontrivial implications of the spatially dispersive response in different contexts, e.g.,
the emergence of additional waves, additional boundary conditions and a non-standard defini-
tion of the Poynting vector. Finally, we illustrated the richness of the physics of the wave propaga-
tion in wire medium, showing that it can lead to a counter-intuitive tunneling effect and anoma-
lous frequency dispersion.
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1. Introduction

The development of Transformation Optics [1, 2] (TO) has been instrumental in the fast growth
that metamaterial science has experienced during the last years [3]. This theoretical tool exploits
the invariance of macroscopic Maxwell’s equations under coordinate transformations to estab-
lish a link between an electromagnetic (EM) phenomenon, described by the transformation, and
the material response required for its realization. Thus, TO determines the way in which the EM
constitutive relations, and therefore the permittivity and permeability tensors, must be tailored
in space in order to obtain a desired effect.

TO theory states that, under a general spatial transformation, r′ = r′(r) like the one sketched in
Figure 1(a), EM fields are modified exactly in the same way as they do for the following spatially-
dependent electric permittivity and magnetic permittivity tensors

ε′(r′) = Λ(r′)ε(r(r′))[Λ(r′)]T

det[Λ(r′)]
, µ′(r′) = Λ(r′)µ(r(r′))[Λ(r′)]T

det[Λ(r′)]
(1)

where ε(r) [µ(r)] and ε′(r′) [µ′(r′)] are the permittivity [permeability] tensors in the original and
final frames, respectively, and Λ(r′) = ∂r′/∂r is the Jacobian matrix for the transformation. Note
that (x, y) and (u, v) denote original and transformed coordinates in Figure 1(a).

From a metamaterial perspective, Equations (1) establish the link between material character-
istics and the EM effect resulting from the spatial operation. Thus, TO provides a recipe for the
design of metamaterials with at-will functionalities. A recent review on the use of transformation
optics for the design of cloaks, illusion devices and other elements such as rotators and concen-
trators can be found in Ref. [4]. In parallel to the development of optical metamaterials for such
applications, there has been a wide variety of advances in different areas of wave physics. For in-
stance, TO has been extended into the spatiotemporal domain to devise spacetime cloaks [5, 6]
as well as analogues of other phenomena emerging from the link between electromagnetism in
media and general relativity [7–10]. Another degree of design flexibility in the form of media with
gain and loss can be obtained by analytic continuation of the mapping coordinates into the com-
plex plane [11,12]. This way, TO can be connected with PT symmetric media [13], and reflection-
less devices can be designed [14]. TO has also been adapted for the control of surface waves [15],
as well as guided waves on integrated optical circuits [16], and for antenna engineering [17].

Furthermore, it is possible to apply TO to other wave systems beyond electromagnetics. The
cornerstone proposal of the invisibility cloak [18] has been reproduced in different fields, which
initiated the expansion of metamaterials for different physical domains. Applications of TO
include the cloaking of acoustic pressure waves [19–21], matter waves [22] or heat conduction
[23]. Particularly interesting is the fact that while the elastodynamic equations are not form
invariant under coordinate transformations [24], it has been shown that TO can still be a powerful
tool in the design of mechanical metamaterials [25–27] and even of seismic cloaks [28, 29].

Much the development of transformation optics has gone hand in hand with that of plas-
monics. In its most general form, TO accounts for the vectorial and undulatory nature of EM
fields, which makes it exact at sub- and supra-wavelength scales. Taking advantage of this, TO
has made possible the at-will moulding the flow of surface plasmons (SPs) that propagate along
metal/dielectric interfaces with subwavelength confinement [30–34]. Although the SP field ex-
tends both into the dielectric and metallic sides of the interface, it has been shown that it is
enough to act on the dielectric side by placing the metamaterial designed with (1) on top of
the metal surface [35]. This way, plasmonic invisibility cloaks, such as shown in Figure 1 (b),
beam benders and shifters operating at nearly subwavelength scales and in the visible regime
have been devised. Experimental realizations of these ideas include a broadband carpet cloak
which suppresses scattering from a bump on a metal surface [36], as well as Luneburg and Eaton
lenses [37, 38].
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From a purely computational electrodynamics perspective, Equations (1) provide the pre-
scription to interchange geometric and material characteristics of an EM system. This was, in
fact, the original motivation that led to the development of this theoretical framework. It was
devised as a strategy to ease the numerical solution of Maxwell’s Equations, using the TO map-
ping of complex and acute geometries into much simpler ones [1]. Frequently, this advantage
comes at the expense of non-uniform and anisotropic permittivity and permeability distribu-
tions. Importantly, when the transformation chosen is conformal, the permittivity and perme-
ability in the plane of the transformation are left unchanged, as well as the electrostatic potential.
Conformal transformations are 2D analytical maps, (x ′, y ′) = [x ′(x, y), y ′(x, y)], that conserve the
angle between coordinate lines and leave z ′ = z. They satisfy the Cauchy–Riemann equations,
∂x ′/∂x = ∂ y ′/∂y , ∂x ′/∂y = −∂ y ′/∂x, which directly imply that conformal transformations leave
isotropic permittivities and permeabilities unchanged in the plane of the transformation, as we
now show. Starting from a frame where ε(r) is isotropic, we have from (1),

ε′ = ε
ΛΛT

det[Λ]
= ε

det[Λ]
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 (3)

where the last step follows from straightforward application of the Cauchy–Riemann equations,
which yield det[Λ] = (∂x ′/∂x)2 + (∂x ′/∂y)2 = (∂y ′/∂y)2 + (∂y ′/∂x)2. Doing the same derivation for
the magnetic permeability, one has that conformal transformations preserve isotropic electro-
magnetic properties in the plane of the transformation. This has been used in recent years as a
means to shed analytical, instead of numerical, insight into plasmonic phenomena taking place
in deeply subwavelength metallic devices, thereby recovering the initial purpose of TO of aid-
ing in solving Maxwell’s equations. In an early work, conformal transformations were employed
to transform the canonical perfect lens formed by a flat slab with negative refractive index into
other two dimensional perfect lenses of various shapes [39].

Figure 1(c) shows an instance of two cascaded conformal transformation which first transform
vertical (blue) and horizontal (orange) slabs into a concentric annulus and a knife edge, respec-
tively, and next into an off-centered annulus and a lenticular shape. For instance, in the first step,
the transformation is z ′ = exp(z). Writing it explicitly as x ′ = ex cos(y), y ′ = ex sin(y), it can be
easily verified that it verifies the Cauchy–Riemann equations, and that its Jacobian matrix in the
plane, Λ = [(ex cos(y),−ex sin(y)), (ex sin(y),ex cos(y))], satisfies ΛΛT ∝ 12×2. Hence it conserves
the permittivity in the plane of the transformation. If we take the blue area in the left panel to
represent a metal slab embedded in dielectric surroundings, then the annulus shaded in blue in
the middle or right panel represent a cross-section of 2D core-shell nanoparticles, and similarly
for the areas shaded in orange. Transformation optics relates the spectrum of all these structures,
and allows us to derive analytically the optical response of a plasmonic nanostructure of complex
shape in terms of the analytical solution of the more symmetric one.

At visible frequencies and (sub-)nanometric length scales, spatial derivatives in Maxwell’s curl
Equations are much larger than temporal ones. Therefore, the latter can be neglected, which
translates into the decoupling of magnetic and electric fields. This is the so-called quasistatic
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Figure 1. (a) EM fields propagation in free space (sketched as a single field line) with the
background cartesian grid (left), and their distortion under an arbitrary geometric transfor-
mation, with the corresponding distorted coordinates in the background (right). Adapted
with permission [2]. (b) A bump on a metal surface can be cloaked so that a SP propagating
along the metal/dielectric interface propagates smoothly without being scattered as would
occur without the cloak (right panel). Powerflow streamlines are depicted as with lines with
arrows. Reproduced with permission from Ref. [30]. (c) Illustration of a cascade of two con-
formal transformations. An exponential map, ez , transforms a blue slab (left panel) into a
concentric annulus. Through an inversion, 1/z, the annulus is off-centered (right panel).
On the other hand, the orange slab transforms into a knife edge and subsequently into a
lenticular shape.

approximation for metallic nanostructures [40], in which the spatial dependence of electric fields
can be described in terms of an electrostatic potential, E(r) =−∇Φ(r), satisfying Gauss law

∇[ε(r)∇Φ(r)] = 0, (4)

where, in general, the permittivity is an inhomogeneous, anisotropic tensor. Importantly, al-
though the quasistatic approximation only holds for sub-wavelength systems, the validity of (4)
can be pushed to dimensions up to ∼100 nm by introducing radiation losses through the so-
called radiative reaction concept [40, 41]. Using these ideas [42–44], a set of analytical and quasi-
analytical TO approaches have been devised to investigate the harvesting of light by a wide range
of 2D and 3D geometries: touching nanoparticles [45, 46], nanocrescents [47, 48], nanorods [49],
nanosphere dimers [50, 51]. Moreover, other EM phenomena have been explored theoretically
using TO ideas, such as spatial nonlocality in metallic junctions [52, 53], electron energy loss in
metal nanostructures [54], second harmonic generation in plasmonic dimers [55], near-field van
der Waals interactions between nanoparticles [56, 57], or plasmon hybridization in collections of
several touching nanoparticles [58].

In the following, we discuss the recent exploitation of TO framework in two areas of great
interest in plasmonics in recent years. On the one hand, the design of conventional and singular
plasmonic metasurfaces, which can be metallic or based on graphene. On the other hand,
the description of strong-coupling phenomena between quantum emitters and the plasmonic
spectrum supported by metallic nanocavities.
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2. Plasmonic metasurfaces

Metasurfaces, the planar counterpart of bulk metamaterials, consist of resonant subwavelength
units arranged in a two-dimensional (2D) array [59–64]. The geometry and materials of the
subwavelength building blocks, as well as their arrangement, are appropriately designed and
manufactured to provide an ultra-thin platform for manipulating EM waves. Metasurfaces have
enabled effects such as broadband light bending and anomalous reflection and refraction in
ultrathin platforms [65, 66]. While dielectric nanoantennas have been suggested for the design
of metamaterials due to their lower loss compared to plasmonic nanoparticles [67], absorption
losses are a less stringent constrain when considering metasurfaces. For that reason, plasmonic
metasurfaces have been a particularly fruitful platform to control optical fields [68]. They are
formed of subwavelength metallic elements with resonant electric or magnetic polarizabilities,
enabling light confinement at the subwavelength scale, accompannied by large enhancements
of the EM fields. On the other hand, the high electron mobility in graphene has also motivated
the use of this 2D material for plasmonic metasurfaces at lower frequencies, making use of the
unrivalled field enhancements provided by its THz plasmons [69–73].

The analytical power of TO has been instrumental in the design of plasmonic metasurfaces
with unconventional properties, as we review in the following. In Section 2.1, we discuss in detail
the TO insights into both subwavelength metallic gratings and graphene metasurfaces, as well as
their applications. Next, in Section 2.2 we move on to present the so-called singular metasurfaces,
their fundamental properties and their understanding in terms of hidden dimensions.

2.1. Designing plasmonic gratings with transformation optics

Here we review the theoretical framework for the design of metasurfaces by means of TO. While
the use of coordinate transformations to facilitate diffraction calculations in gratings precedes
the birth of transformation optics [74, 75], conformal transformations in particular have been
recently used to design plasmonic metasurfaces. We concentrate on the most simple form of
metasurface, that is, a thin film of a plasmonic material one of whose surfaces is periodically
corrugated forming a subwavelength grating. Such plasmonic grating can be generated from a
thin metallic slab (where analytical solutions of Laplace’s equation are available) by means of a
conformal transformation [76],

z = d ′

2π
ln

(
1

ew − iw0
+ iy0

)
. (5)

Here, z = x + iy refers to the transformed coordinates in the frame of the grating, and w =
u + iv to the Cartesian coordinates in the frame of the slab. In addition, d ′ sets the length
scale of the structure by determining the grating period, w0 is a free parameter that sets the
grating modulation strength, and y0 is fixed by w0, the slab thickness, δ, and its position, u0,
as y0 = w0/(exp[2(u0 +δ)]−w2

0 ). A map of one period of the conformal transformation is shown
in Figure 2(a). The space between the blue lines represents a silver slab with one periodically
modulated surface, which maps through the transformation to a flat silver slab. The cascaded
transformation first involves an exponential, which transforms the infinite slab into a closed
annulus geometry, then an inversion that off-centers the annulus (see Figure 1(c)), and finally
a logarithmic that restores the infinite length of the starting structure, but with periodic wiggles
(Figure 2(a)).

As we have mentioned in Section 1, conformal transformations applied to Maxwell’s equations
conserve the electromagnetic parameres, and, furthermore, preserve the electrostatic potential.
Hence, in the electrostatic limit (period d ′ ¿ λ), the spectral properties of a subwavelength
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Figure 2. Realising plasmonic metasurfaces by means of conformal transformations. (a)
One period of the conformal map used to generate gratings. (b) Dispersion relation of a
silver grating modes above and below the SP frequency (dashed line). The grating inherits
the mode spectrum of the flat slab (thin gray line). (c) Optical response of the subwave-
length silver grating at normal incidence, and field distribution for the lowest and high-
est energy modes. (d) Graphene metasurfaces with spatially varying conductivity,σ(x), and
tunable modulation strength (e). (f) Dispersion relation of a graphene metasurface reveal-
ing the underlying homogeneous graphene layer (thin gray line). (g) Absorption can reach
50% at the dipolar SP resonance by tuning the modulation strenght (top). Absorption, re-
flection and transmission for w0 = 2.5 (bottom). Panels (b,f) are adapted from Ref. [77], (c)
from [76], (d,e) from [78].

plasmonic grating are equivalent to that of the thin plasmonic slab, whose dispersion relation
is given by

exp(|k|δ) =±(εm(ω)−εd )/(εm(ω)+εd ), (6)

with εm = 1−ω2
p /(ω(ω+ iγD )) being the metal permittivity (ωp is the plasma frequency and γD

is the Drude damping) and εd the one of the surrounding dielectric space. As a consequence,
the dispersion relation of the grating can be accurately predicted from the simple analytical
expression corresponding to the plasmonic slab.

Figure 2(b) shows the dispersion relation of a vacuum-embedded silver slab folded in the
first Brillouin zone of the corresponding set of gratings (periodicity 2π×5 nm), plotted as a thin
gray line. The modes of a grating with modulation strength fixed by w0 = 1.5 calculated from a
numerical finite element solver [79] are plotted with dots, presenting an excellent agreement with
the analytical prediction. The relationship between both systems ensures the quasi-degeneracies
observed at the zone center, which are only slightly lifted due to magnetic effects (the magnetic
field sees the periodicity of the grating through variations in the out-of-plane component of the
permeability). On the other hand, band gaps open at the zone edge. This reflects the periodic
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character of the grating structure, since the slab is translationally invariant and only the modes
at k = 0 share exactly the same symmetry. Mathematically this is captured by the branch cuts
of the transformation, which act as sinks and drains for the waves, effectively swapping them
to opposite sides of the slab when incident and reflected waves on the grating are transformed.
By taking this into account, band structures for the whole Brillouin zone, exact in the quasistatic
limit, can be obtained [77] (plotted as thick red and blue lines). Furthermore, by going beyond the
quasistatic approximation in a perturbative approach and including the radiative contribution
of the grating, the optical spectrum at normal incidence can be obtained analytically (shown
in Figure 2(c)). Finally, we remark that the general scope of TO has enabled to fully take into
account retardation effects by transforming the full set of Maxwell’s equations. This enables
the semi-analytical calculation of optical spectra for gratings of periods not limited to the very
subwavelength regime, for arbitrary polarization states, and is exact at the level of Maxwell’s
equations [80].

The conformal map shown in Figure 2(a) can also be used to devise graphene metasurfaces,
see panel (d). We consider the limit of an infinitely thin plasmonic slab with conductivity σ(ω) =
−i(ε(ω)− 1)ωε0δ and δ→ 0. In the grating frame, the slab of modulated thickness equivalently
represents an infinitely thin layer, i.e., graphene, with modulated conductivity [81]. Metasurfaces
consisting of graphene with periodically modulated conductivity [82–84] can be designed this
way [78], and a periodic doping modulation can be realized by optical [85] or electrostatic [86]
means, or by patterning the graphene [87, 88] or its environment [89, 90].

The dispersion relation of a graphene metasurface is shown in panel (b), displaying the
quasi-degeneracies at the zone center inherited from the dispersion relation of homogenously
doped graphene (thin gray line). The modulation period is 2.5 µm, the modulation strength is
given by ω0 = 1.5, see panel (e), and graphene’s conductivity is taken from the random phase
approximation with chemical potential µ= 0.1 eV and scattering loss τ= 10 ps. A close up of the
absorption spectrum around the dipolar resonance, lower energy mode in panel (f), is presented
in panel (g). Here the chemical potential was changed to µ = 0.65 eV, which accounts for the
frequency shift with respect to the resonance in panel (f) and a typical experimental mobility
of 104 cm2/(V·s) was used. The insensitivity of the absorption peak in the contour plot to the
modulation strength, w0, is due to the fact that gratings of different w0 map into homogeneous
graphene with the same conductivity, as this is a free parameter in the transformation. Hence,
by tuning the modulation depth, absorption in the graphene metasurface can be switched,
and, remarkably, up to 50% of the power of incident radiation can be absorbed by a single
graphene layer owing to the excitation of deeply subwavelength SPs. While 50% absorption is
the theoretical maximum for a thin layer of material, absorption can be further increased up to
100% by employing a Salisbury screen scheme and placing the metasurface close to a perfect
reflector, such that a Fabry–Perot cavity is formed. Due to the strong EM confinement enabled by
SPs, this idea allows for an ultrathin perfect absorber of deeply subwavelength thickness for THz
frequencies [91].

2.2. Singular plasmonic metasurfaces

As discussed in Section 1, TO provided a successful understanding of the harvesting of light by
plasmonic nanoparticles with singular geometries such as touching points [45, 46]. In particu-
lar, TO highlighted the geometrical origin of the broadband absorption spectra characteristic of
these systems by mapping them to infinitely extended geometries where the singularites map
into points at infinity. The infinite extension in the transformed frame removes the quantization
(discretization) condition and yields a broadband spectrum, while the large absorption efficien-
cies are caused by the SP fields travelling towards infinity with reducing group velocities. This
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Figure 3. Optical response of singular metal (a) and graphene (b) metasurfaces. (a) Reflec-
tivity spectrum of a silver surface with a periodic array of sharp grooves. As β is decreased
from the realistic value towards zero (left to right), the spectrum approaches the continuum
predicted by a local calculation. (b) Absorption spectrum for graphene metasurfaces as the
singular case is approached by reducing σ(ω) at the grating valleys (w0 increasing, left to
right). In both panels TO analytical results are plotted as solid lines and EM simulations are
plotted with dots. Adapted from Refs. [94] (a) and [95] (b).

effect has also been referred to as anomalous absorption as it is present even in the absence of
material loss [92, 93].

The physics of SPs propagating towards geometrical singularities can also play a fundamental
role in plasmonic metasurfaces. For instance, subwavelength arrays of ultra sharp grooves in
a metal surface can turn good reflectors such as gold or silver into almost perfect broadband
absorbers, usually referred to as plasmonic black metals [96]. These surfaces can be viewed
as singular plasmonic metasurfaces [97] and here we review two instances of them, sheding
light onto their continuous absorption spectra and highlighting how these can be interpreted
by means of an extra compacted dimension. In the first case the singular metasurface consists
of a periodic array of grooves with sharp edges carved on a metal surface [94, 98], see inset
of Figure 3(a). In the second case, the singularities are achieved by strongly supressing the
conductivity of graphene at the grating valleys [95, 99], see inset of Figure 3(b).

Plasmonic black metals [96] can be analytically modelled using TO by means of the periodic
surface with sharp grooves shown in the inset of Figure 3(a) [97]. The sketch shows one period of
the structure, which is generated by the same cascaded transformation as in (5), but by changing
iw0 → −a and iy0 → −1/(2a), where a is a parameter that determines the inversion point. By
now taking a periodically arranged set of slabs like the orange one shown in Figure 1(c), the
transformation first maps the periodic array into a knife edge, compressing −∞ to a point at
the origin. Then +∞ is compressed into another point, giving rise to a finite lenticular shape with
two sharp edges as shown in Figure 1(c). Finally, a logarithmic transformation is used to generate
a semi-infinite surface decorated with a periodic array of grooves (see Figure 3(a)), which inherit
the sharp edges owing to the conformal character of the transformations. The final structure
is thus a surface where SPs can be excited, and which are localized at the surface and decay
evanescently away into the metal and dielectric half-spaces. Hence, it may seem at first sight that
these modes are two-dimensional, that is, characterized by two wave-vectors parallel to the metal
surface (one in the plane of the sketch in Figure 3(a), the other out of the page). However, due to
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the conformal character of the transformations, the singular metasurface inherits the spectral
properties of the slab array, which supports three-dimensional modes, characterized by the two
wave-vectors in the planes where the slabs extend to infinity (one in the plane of the sketch in
Figure 1(c, left), and one out of the page) and by a third one along the direction where they are
periodic (the vertical direction in Figure 1(c, left)). As a consequence, the modes supported by the
singular surface are also characterized by three wave-vectors, with the third one being inherited
from the transformed structure and associated to an extra dimension that is compacted into
the singularities [97]. This has remarkable consequences in the optical spectrum of the singular
metasurface: the extra wave-vector is not subject to a selection rule, and therefore there is a mode
available at every frequency, which results in a broadband absorption spectrum. In other words,
these gratings are black (or gray) while conventional gratings, which have discrete absorption
lines, are coloured.

The broadband spectral response of a singular silver metasurface of period 10 nm is shown
in Figure 3(a), where the normal incidence reflectivity spectrum is plotted as a solid grey line.
A continuous band of low reflectivity (high absorption) can be seen, which corresponds to
the excitation of the antisymmetric mode between a cut-off frequency and the SP frequency
(ωsp = ωp /

p
2). This is in striking difference with the results discussed in Section 2.1 for a non-

singular plasmonic grating, which features a discrete series of resonant modes (see Figure 2 (c)).
The optical response of the singular structure was calculated analytically by representing a plane
wave incident on the metasurface as an array of magnetic line currents located at infinity [98].
These sources are mapped to a periodic array of sources in the slab array frame, where the power
flow carried by the excited SPs as they travel towards ±∞ is calculated. Next, the singular periodic
surface is represented by a flat surface with an effective conductivity, which can be determined
through conservation of energy, and from which the reflectivity of the singular metasurface is
calculated. We note that numerical calculations of this system are not possible due to the singular
character of the geometry.

In practice, perfect singularities are not possible to realize. Even if recent advances in nanofab-
rication enable the experimental realization of plasmonic structures with high precision [100],
achieving a perfectly singular point will always be limited by the discrete nature of the electron
gas, which prevents the existence of a perfect singularity where the electron density would di-
verge. The finite screening length of metals (∼0.1 nm in noble metals) limits the size where elec-
trons can accumulate in the singularity, and prevents the density from blowing up. These non-
local effects effectively blunt the singularities which has a strong impact on the optical response
of singular metasurfaces [94, 101]. This can be seen in Figure 3 (a), which presents the reflec-
tivity for the singular metasurface using a nonlocal dielectric permittivity as solid blue lines,
with red dashed lines obtained from numerical simulations also shown for comparison. In the
calculation, which makes use of the previously introduced coordinate transformation that de-
fines the singular metasurface, the properties of the metal are taken from the hydrodynamic
model. According to it, the metal hosts transverse modes described by the usual Drude permi-
tivity, conserved under the conformal transformation, and longitudinal modes with a permit-
tivity, εL(ω,~k) = 1−ω2

p /(ω(ω+ iγD ))−β2|~k|2, which changes under the mapping due to the ~k-
dependence. The value of β, the parameter that determines the screening length and hence the
extent of the singularity, was tuned down artificially from a realistic value for silver (left panel) to
a very low value (right panel). Nonlocality blunts the singularities, which map to slabs of finite
length in the transformed frame (we refer the reader to Ref. [94] for more details on the calcula-
tions). These are cavities for the SPs, which discretizes the spectrum and a set of reflectivity dips
are observed (left). As the local regime is approached, the singularity is effectively sharper and in
the transformed frame the cavities are longer, such that the structure supports more and more
resonances (middle), tending towards the continuum obtained in the local approximation when
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nonlocality is very small (right). The remarkable influence of nonlocality in the optical spectrum
of the singular metasurface indicates that they could be used as a platform to probe nonlocality
in metals.

A second instance of singular metasurfaces that can be smoothly approached can be realized
in graphene as proposed in Ref. [97], or in ultrathin metal slabs [101]. In this case, the conformal
transformation introduced in Section 2.1 was adapted to generate a surface with singularities in
the form of touching points rather than sharp edges. This is done by first renormalising the whole
structure through the introduction of a new length scale in the slab frame, d (the period of slab
that maps into the length between two branch points in the transformed geometry). With this,
the transformation reads as,

z = d ′

2π
ln

(
1

e2πw/d − iw0
+ iy0

)
, (7)

with y0 now defined as y0 = w0/(exp[4π(u0 +δ)d ]). Then the origin of the inversion is taken at
a point very close to one of the surfaces (w0 → 1), which generates a grating with vanishing
thickness at the valley points (see inset of Figure 3(b)). Similar to the non-singular grating, the
free parameter in the transformation, w0, determines the shape of the grating, and the singular
behaviour, with w0 → 1 representing the singularity where the two surfaces touch, or where the
doping approaches zero in the case of graphene.

Figure 3(b) presents the absorption spectrum of singular metasurfaces realized on graphene.
The singularity is approached by keeping the same maximum conductivity value while reducing
the minimum value, which is suppressed from the left to the right panels. When the grating is far
from singular, the spectrum shows a discrete set of peaks corresponding to plasmonic resonances
of increasing order (left). As the singularity is approached, more and more resonances appear
in the spectrum (medium), and when the system is very close to being singular, the spectrum
tends to a broadband of continuous absorption. These results assume a realistic value of the
loss (mobility m = 104 cm2/(V·s)), and we stress that increasing the loss (m = 3×103 cm2/(V·s))
further merges the peaks into the broadband. This system has been suggested as a tunable
ultra-thin broadband absorber for THz waves [95]. Similar to the singular silver surface, the
broadband absorption spectrum can be explained by means of an extra dimension compacted
in the singularity. This additional dimension is inherited from the periodicity introduced in the
slab frame, which tends to infinity (d → ∞), while the dimension of the slab along its length is
itself infinite. This results in a hidden dimension in the singularity in the grating frame, where
incident radiation can satisfy the dispersion relation over a continuous frequency band. In fact,
as the period in the slab frame increases, the modes are discretized in a smaller Brillouin zone.
As a consequence, SP modes at larger wavevectors are available at lower and lower frequencies.
The large confinement characteristic of these modes is responsible for the large absorptions seen
in the singular metasurfaces [99]. Finally, we remark that these singular graphene metasurfaces
provide a platform for the study of nonlocality in graphene, which is stronger when the doping
is lower. The SPs propagating towards the singularity are a sensitive probe of nonlocal effects in
graphene, which would become observable in far field measurements [102].

In this Section we have reviewed the use of TO to design plasmonic metasurfaces, and the
proposal of singular plasmonic metasurfaces which hide an extra dimension in the singularity
and can be used as ultrathin broadband absorbers. In the following, we turn our attention into a
different area of nanophotonics, that of exctiton–plasmon interactions in nanocavities.

3. Exciton–plasmon strong coupling

In recent years, much theoretical efforts have focused on developing a general methodology for
the expansion of the Dyadic Green’s functions in open, lossy and dispersive systems in terms of
a discrete set of EM modes. However, although this is currently a topic of intense activity, there
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Figure 4. (a) Left: Sketch of a single QE with transition dipole moment µE and frequency
ωE placed within the gap between two nanospheres. Right: Spherically symmetric geometry
obtained from the inversion of the original system. (b) Quasistatic spectral density at three
different QE positions, see panel (c), along the z-axis and within the 8 nm gap between two
Ag spheres (R = 120 nm). (c) Population dynamics, n(t ) (n(0) = 1), for a QE at resonance
with the plasmonic pseudomode of the gap nanocavity, ωE = ωPS, for three zE values.
Adapted with permission [112, 113].

is not yet a consensus about the precise definition of these EM modes, their associated eigen-
functions and eigenvalues. As a consequence, various terms and definitions, such as resonant
states [103], generalized normal [104] or quasinormal [105–107] modes, have been coined lately
to refer to them. Indeed, the conception of a theoretical framework allowing for a general Green’s
function decomposition would mean a significant advance in multiple areas. The investigation of
quantum optical phenomena in plasmonic [108, 109] and metallodielectric [110] nanocavities is
among them. It would allow for a convenient quantization of subwavelength EM fields avoiding
the enormous number of degrees of freedom inherent to macroscopic quantum electrodynamics
calculations [111].

As discussed in Section 1, TO has been used in the past to obtain analytical descriptions of the
light collection and concentration by a wide range of nanoparticle geometries. In this section, we
discuss the application of similar methods to build 3D [112, 113] (Section 3.1) and 2D [114–117]
(Section 3.2) models of the response of similar structures to point-like EM sources, such as
quantum emitters (QEs), placed in their vicinity. This way, TO provides analytical insights into the
Dyadic Green’s function for these systems. Importantly, this approach also reveals its convenient
decomposition and the proper definition of modal eigenvalues and eigenfunctions. Specifically,
TO has been employed in the investigation of plasmon–exciton interactions in nanocavities,
accounting for the full richness of the EM spectrum in these devices and revealing the conditions
yielding strong coupling at the single QE level. Note that, contrary to nanoantennas, where
the objective is enhancing the near- to far-field transfer of EM energy, this must be reduced in
nanocavities for strong light-matter coupling. This means that the quasistatic approximation is
an optimum starting point for the analysis of these phenomena.

3.1. Three-dimensional model

We consider first a nanocavity composed by two identical metallic spheres of radius R1 = R2 = R,
with a Drude-like permittivity, separated by a nanometric gap, δ. As illustrated in Figure 4(a),
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they can be transformed into a metal-dielectric-metal spherically-symmetric geometry under an
inversion. This requires choosing judiciously the inversion point [112]

R0 =
L

2
+ R2

2 −R2
1 −

√
δ(δ+2R1)(δ+2R2)(2L−δ)

2L
, (8)

where L = R1 + R2 + δ. As a result of the mapping, and differently from the 2D conformal
transformations discussed in Section 2, the scalar permittivity in the transformed frame acquires
a spatial dependence of the form ε′(ω,r′) = g 2ε(ω,r(r′))/|r′ − R′

0|2, where ε(ω,r) is the original
dielectric constant distribution. Note that the EM fields do not depend on the choice of g ,
a constant setting the length-scale of the mapping. It can be proven [46] that the quasistatic
potential in the inverted system can be written as Φ′(r′) = |r′−R′

0|φ′(r′) where φ′(r′) is a solution
of Laplace’s Equation in the primed frame. The potential in the transformed geometry can then
be obtained by expanding Φ′(r′) in terms of spherical solutions of Laplace’s Equation (labelled
with degree l and order m of spherical harmonics) and imposing continuity conditions on the
parallel component of the electric field and the normal component of the displacement field
at the concentric spherical boundaries. Once this is known, the potential in the original frame
is given by Φ(r) = Φ′(r′(r)). In general, this procedure requires the numerical solution of the
continuity equations, but in the limit δ¿ R analytical solutions can be obtained.

Using the TO approach briefly introduced above, the Dyadic Green’s function for the sys-
tem can be calculated by introducing a point-like dipole source, ΦE(r), modelling a QE as
the EM excitation in the original frame [113]. By imposing m = 0 in the potential expansion,
the calculations simplify significantly. With this restriction, only sources located along the z-
direction (the nanocavity axis) and oriented parallel to it can be treated. Note that the interac-
tion with the SPs supported by the spheres is maximum in these conditions. The component
of the scattering Dyadic Green’s function governing the QE–SP interaction is Gsc

zz (ω,zE,zE) =
(ε0/µE)(c/ω)2|∂zΦsc(ω,zE)|, where µE is the QE dipole moment, zE its position, and Φsc(ω,r) =
Φ(ω,r)−ΦE(r). Note that, for clarity, the spectral dependence of the scattered quasistatic poten-
tial is indicated, which originates from the presence of ε(ω,r) in the continuity equations.

The spectral density [118], the physical magnitude that weights light-matter coupling in the
nanocavity, can be expressed as [119, 120]

J (ω) = γE(ω)

2π
P (ω) =

µ2
Eω

2

πε0ħc2 Im{Gsc
zz (ω,rE,rE)}

=
∞∑

l=1

∑
σ=±1

g 2
l ,σ

π

γD/2

(ω−ωl ,σ)2 + (γD/2)2 (9)

where γE(ω) =ω3µ2
E/3πε0ħc3 is the spontaneous decay rate of the QE (ωE =ω) in free space and

P (ω) the Purcell enhancement induced by the nanocavity [40, 121]. Note that J (ω) is, except for
a factor, the QE decay rate in the plasmonic environment. The right-hand side in (9) results from
the Green’s function decomposition given by the TO approach. In the limit of small gap sizes,
ρ = δ/R ¿ 1, the SPs can be labelled in terms of their angular momentum l , and their even/odd
parity across the gap, σ [112]. This way, analytical expressions for the SP frequencies, ωl ,σ, and
SP–QE coupling constants, gl ,σ, are obtained. Note that γD in (9) is the absorption rate in the
metal Drude permittivity, the only damping mechanism in the quasistatic regime.

Figure 4(b) plots J (ω) at the 8 nm gap between two Ag spheres of radius 120 nm. Three different
QE positions are considered, zE: 4 nm (the gap center, in grey), 2.4 nm (green) and 1.2 nm
(orange). The QE dipole moment is set to µE = 1.5e·nm. The first three even (σ = 1) Lorentzian
terms in the expansion in (9) are plotted in blue dashed lines (they are the same for all zE). These
correspond to the lowest energy, most radiative SP modes which govern the absorption properties
of the sphere dimer under plane wave illumination [51,113]. The spectral density presents a much
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stronger feature at higher frequencies, this is the plasmonic pseudomode, which emerges as a
result of the spectral overlapping (within a frequency window γD) of SP modes with high angular
momentum (large l ) [120]. Note that ωPS lies in the vicinity of the quasistatic SP frequency for
the metal permittivity. Figure 4(b) shows that J (ωPS) increases as the QE is displaced away from
the gap center and approaches one of the sphere surfaces (it couples more efficiently to SPs with
shorter evanescent tails into the gap region), while the contribution due to low-frequency SPs do
not vary with zE.

Figure 4(c) renders the QE exciton population as a function of time, n(t ) in a spontaneous
emission configuration (n(0) = 1) for the three positions in panel (b) and for ωE = ωPS. The
popuplation dynamics are calculated using the Wigner–Weisskopf Equation [118],

d

dt
c(t ) =−

∫ t

0
dτ

∫ ∞

0
dω J (ω)ei(ωE−ω)(t−τ)c(τ) (10)

where the exciton population is n(t ) = |c(t )|2. Equation (10) was fed with the TO-calculated
spectral densities. The QE–SP interaction is in the weak-coupling regime at the gap center (grey)
and n(t ) decays monotonically. However, for QEs away from the gap center, Rabi oscillations
emerge in n(t ), and become stronger with smaller zE. These are the fingerprint of the onset of
strong coupling, and reveal that the population is transferred back and forth between the QE
and the nanocavity (the pseudomode it supports) several times before its decay due to metal
absorption. Figure 4(c) demonstrates that plasmon–exciton polaritons at the single QE level can
be formed in nanocavities with large (4 nm) gaps by displacing the emitter position away from
the gap center.

3.2. Two-dimensional model

The 3D model in the previous section presents several limitations. It yields analytical expressions
only for dipolar sources located along, and oriented parallel to, the symmetry axis of cavities with
small ρ = δ/R. Moreover, the description of microscopic sources of higher order than dipolar
ones cannot be handled analytically either. Finally, it is purely quasi-static and therefore does
not provide any insight into far-field magnitudes, which are instrumental for the experimental
probing of hybrid QE–SP systems. In the following, we show how these constraints can be
overcome by considering a 2D model of the nanocavity, in which translational invariance along
y-direction of the EM fields is assumed. Importantly, this approximation is justified by the
remarkable similarity between plasmon–exciton strong-coupling phenomenology in 2D and 3D
geometries [122].

Figure 5(a) shows how the 2D version of a nanoparticle-on-a-mirror (NPoM) geometry can
be transformed into a metal-dielectric-metal waveguide under a logarithmic conformal map
(%(′) = x(′) + iz(′)) with D = 2R and s = δ+D

p
ρ/(

√
2+ρ+p

ρ) [50]. The original EM point-like
source transforms into an array of coherent identical sources, which makes the transformed
system periodic. This periodicity provides again with appropriate indices for the SP modes:
the Bloch band index, l , and, similarly to the 3D case, the parity with respect to the waveg-
uide symmetry plane, σ [116]. The spectral densities can be calculated from the 2D model
by using the first equality in (9), fed with 2D calculations of the Purcell enhancement P (ω) =
(8ε0/µ2

E)(c/ω)2Im{µE∇ Φ(r,ω)|rE }, where r = (x, z) and rE is the position of the emitter in the xz-
plane. This simplified model makes it possible treating quadrupolar exciton transitions in QEs in
an analytical fashion as well [117]. Once 2D Purcell factors are known, they are combined with
3D free-space decay rates in (9).

Implementing radiation reaction corrections in the 2D model [41], the radiative decay rate
for the even (σ = +1) SPs supported by NPoM cavities, γr

l ,+1, can be calculated [122] (note that,
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Figure 5. (a) 2D mapping between a Ag NPoM geometry and a silver-dielectric-silver
waveguide. (b) Top: even SP dipole moment versus index l . Inset: even (orange) and
odd (blue) SP frequencies (D = 30 nm, δ = 0.9 nm). Bottom: coupling strength maps for
vertically oriented QES and the lower-order dipolar SP mode (left) and the plasmonic
pseudomode (right). (c) Scattering spectra aroundω1+1 =ωµ for three-level QEs (sustaining
one dipolar and one quadrupolar transition) with zE = δ/2 and ωQ = ω1,+1 (top) and
zE = 7δ/8 and ωQ =ωPS. Adapted with permission [116, 117].

by symmetry, γr
l ,−1 = 0). With this theory refinement, the spectral width of the Lorentzian terms

in (9) acquire the form γl ,σ = γD +γr
l ,+1δσ,+1. Moreover, using the method of images, the dipolar

moment of even SPs can be extracted out of γr
l ,+1 [117]. The top panel of Figure 5 renders the

SP dipolar moment versus index l for the NPoM cavity in panel (a). As expected, they decrease as
the mode order increases, and the SPs contributing to the plasmonic pseudomode are completely
dark. The inset plots the SP frequencies for even (orange) and odd (blue) parity, showing that both
branches overlap for large l . To illustrate the power of the TO approach, the bottom panels in
Figure 5(b) display the coupling strength maps for vertically oriented QEs and for the lowest even
SP mode (g1,+1, left) and the plasmonic pseudomode (gPS, right). The former is focused at the gap
region, where it becomes rather uniform, and decays away from it. The latter is tightly confined
to the metal boundaries, both at the particle and flat substrate, and presents little sensitivity to
plasmon hybridization effects across the gap of the cavity.

Using the TO-calculated SP frequencies, ωl ,σ, and the QE–SP coupling constants, gl ,σ, the
Jaynes–Cummings Hamiltonian [118] describing plasmon–exciton interactions in the NPoM
cavity can be parametrized

Ĥ =ωEσ̂
†σ̂+

∑
l ,σ
ωl ,σâ†

l ,σâl ,σ+
∑
l ,σ

gl ,σ[σ̂†âl ,σ+ σ̂â†
l ,σ], (11)

where σ̂ and âl ,σ are the QE and SP annihilation operators. Equation (11) illustrates the exploita-
tion of TO as a tool for the quantization of the complex plasmonic spectrum supported by the
NPoM cavity. Moreover, through Lindblad terms weighted by the SP damping rates, γl ,σ, we can
account for plasmonic losses in a master equation description of the system [117].
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Figure 5(c) shows scattering spectra for the cavity in panel (a) coupled to a QE modelled
as a three-level system sustaining two, one dipolar and one quadrupolar, exciton transitions.
Note that the latter is dark and could not be accessed by propagating EM fields. By adding a
coherent driving term [123] to (11), we can describe the illumination of the system by a laser
field of frequency ωL around the lowest SP resonance, ω1,+1. The far-field scattering spectrum
can be computed as the square of the steady-state expectation value of the total dipole moment
operator, M̂ = ∑

l µl âl+1 +µEσ̂µ [124]. The bare nanocavity is shown in dashed black lines. The
QE is located at the center of the gap in the top panel and displaced along z-directon in the
bottom one. In both cases, the dipolar transition is set at resonance with ω1,+1. In absence of
the quadrupolar transition, a Rabi doublet [125] is apparent in the spectra of the hybrid system,
the fingerprint of the onset of QE–SP strong coupling (see violet lines) [126]. These two scattering
peaks emerge as a result of the formation of polaritons (hybrid plasmon–exciton states) in the
system. They are displaced from the natural frequencies of their constituents, as a result of
the coupling strength between them. Therefore, the upper (lower) polariton lies above (below)
ωµ = ω1,+1. By increasing the quadrupole moment of the dark QE transition (orange and green
lines), this spectral profile is modified in opposite ways. In the top panel, a third peak emerges at
the dip between the Rabi maxima, whereas a single peak (resembling the bare cavity) is observed
in the bottom panel. These spectra show how TO allows exploring the remarkable effect that dark
excitons can have in QE–SP interactions in the strong-coupling regime [116].

4. Conclusions

In this review we have discussed the theory of transformation optics and its applications. We
have first reviewed its impact in metamaterial science for the design of electromagnetic devices
and other aspects, such as the control of surface waves or its extension into other realms of
wave physics. Next, we have revised how transformation optics has provided a set of analytical
techniques for investigating complex problems in plasmonics. We have then focused on the
application of this theoretical framework to the analytical treatment of two open problems of
much relevance in current theoretical nanophotonics.

On the one hand, we have shown how transformation optics allows for the design of plas-
monic metasurfaces with predictable optical responses inherited from a transformed structure
with more symmetries. We have also reviewed the proposal of singular plasmonic metasurfaces
in the form of subwavelength metal gratings with sharp edges or graphene metasurfaces with
points of vanishing doping level. These singular structures are a realization of compacted dimen-
sions, provide macroscopic signatures of nonlocality, and could be used as ultrathin broadband
absorbers.

On the other hand, we have presented the description of plasmon–exciton coupling in
nanocavities by means of transformation optics calculations. We have discussed the insights
that this tool provides into both near- and far-field physical magnitudes, such as the exciton dy-
namics and the scattering spectrum. Finally, we have shown that this tool enables the analyti-
cal parametrization of the Jaynes–Cummings Hamiltonian describing light-matter interactions
in these hybrid nanometric systems.
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1. Introduction

In usual resonance as the loss goes to zero, one is approaching a pole of the associated linear
response function. By contrast, anomalous localized resonance (ALR) is associated with the
approach to an essential singularity. The connection with essential singularities is evident in
Figure 8 of [1] and shown explicitly in the analysis in [2], where the underlying theory was
developed. Anomalous resonance has the following three defining features:

1. As the loss goes to zero, finer and finer scale oscillations develop as modes increasingly
close to the essential singularity become excited.

2. As the loss goes to zero, the oscillations blow up to infinity in a region which is called the
region of anomalous resonance, but outside of this region the fields converge to a smooth
field.
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3. The boundary of the region of anomalous resonance depends on the source position.

It is to be emphasized that the approach to an essential singularity does not necessarily imply
anomalous resonance. In particular, anomalous resonance does not occur for coated spheres,
with the coating and the core each being isotropic and having constant complex dielectric
constant [2]. (It can occur if one allows for an anisotropic coating [3]). Also anomalous resonance,
defined in this way, should be distinguished from the unusual feature that, in the presence
of materials with negative properties, corners or other singularities in the microstructure can
behave like sinks of energy in the limit where the loss parameters of the materials tends to zero:
see page 378 of [4, 5], Section 2 of [6] and [7, 8]. Such behavior is associated with branch cuts. For
further mathematical development see [9–12].

Here we will review anomalous resonance and its associated cloaking. We will also review the
closely related topic of superlensing which would not be possible without anomalous resonance:
anomalous resonance provides the essential mechanism for a superlens producing an image of a
point source beating the diffraction limit. At the same time it prevents the formation of a correct
image when a dielectric object being imaged is too close to the superlens. This is contrary to
what one would believe from reading most of the literature on superlenses, since this limitation
is rarely pointed out both in published papers and in popular articles on the internet (such as
in Wikipedia). It is unfortunate that wrong ideas may continue to propagate. This paper aims to
contribute to correct the situation. At this stage the literature is so vast that we can only cover, or
even reference, a selected subset of papers, partly chosen for their importance and partly chosen
because we are familiar with them.

Our analysis and the analysis in the papers that we cite will mostly be for quasistatics. It is
important to remember that quasistatics does not necessarily mean that the frequency of the
applied field tends to zero. A better procedure is that, at any fixed frequencyω0, the dimensions of
the system should be shrunk to a size where they are much smaller than the free space wavelength
for the quasistatic approximation to be valid.

2. The discovery of anomalous resonance and ghost sources

Back in 1993 we investigated with Nicolae Nicorovici the quasistatic effective properties of a
square array of coated cylinders each having core dielectric constant εc and radius rc , and with
shell dielectric constant εs and outer radius rs , and embedded in a matrix having dielectric
constant 1 [1]. Surprisingly, we found that when εs =−1 the array had exactly the same effective
dielectric constant as a square array of solid cylinders having core dielectric constant εc and
radius r0 = r 2

s /rc embedded in a matrix having dielectric constant 1. We subsequently looked
at a single coated cylinder, with the z-axis as its cylinder axis, in an infinite medium of dielectric
constant 1 subject to a non-uniform applied field at infinity independent of z [13]. Again, when
εs = −1, it was found that the effect of the shell was to magnify the core by a factor of r 2

s /r 2
c so

its response was equivalent to a solid cylinder having core dielectric constant εc and radius r0 =
r 2

s /rc . As the equivalent solid cylinder could have a very large radius when rc is small, this marked
the first discovery (in quasistatics) of what became known (for the full time-harmonic Maxwell’s
equations) as a superscatterer [14]. When εc = 1 we observed that the coated cylinder becomes
invisible to any applied quasistatic field: in this sense, the shell cloaks the core. Inclusions that
are invisible to any applied field at a prescribed frequency (not necessarily in the quasistatic
regime) were also found by Dolin [15] as an example illustrating his discovery of what is now
known as transformation optics. Later, Alu and Engheta [16] found that coated spheres, built
from appropriate materials, could be invisible to incident plane waves at a prescribed frequency,
thus extending the quasistatic results of Kerker [17]. To illuminate our discoveries further we
investigated, in the same paper [13], the infinite body Green’s function (fundamental solution)
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for a single coated cylinder in a matrix having dielectric constant 1 with a line dipole source at
a distance z0 from the cylinder axis. If the equivalence held, then when εc 6= 1 by the method of
images the exterior field should be the same as the field generated by the source line dipole and
an image line dipole at the radius r 2

0 /z0 = r 4
s /(z0r 2

c ). This represents a paradox when r 2
0 /z0 > rs ,

i.e. when z0 < r 3
s /r 2

c (the latter being greater than rs ), as then the image line dipole lies outside the
coated cylinder, i.e. there is a source there but we have not physically introduced such a source.
To resolve this paradox we recognized that any material with a negative dielectric constant should
also have some imaginary part due to resistive losses, and therefore one should set εs = −1+ iδ
and take the limit δ→ 0. Doing this we found that the field outside the radius r 2

0 /z0 converged
to the field one expected, i.e that due to the source dipole and (a ghost source) image dipole
at the radius r 2

0 /z0. Inside the radius r 2
0 /z0 (and outside the coated cylinder) the field exhibited

large oscillations whose amplitude diverged and wavelength decreased as δ→ 0. This marked the
first discovery of ghost sources and anomalous resonance: see Figure 1. See also the unpublished
introduction [18] written prior to 1996. Anomalous resonance occurs when as the loss goes to
zero the field diverges in one region (the region of anomalous resonance) that is dependent on the
position of the source, but converges to a smooth field outside this region. Insight into anomalous
resonance can be obtained simply by considering the series expansion for a pole at the point z = 1
in the complex z = x + iy-plane (not to be confused with the z-axis):

1/(1− z) = 1+ z + z2 + z3 . . . (2.1)

If we truncate at high order the function on the right we obtain a polynomial that inside the
radius of convergence |z| < 1 almost looks like it has a singularity at z = 1 (corresponding to a
ghost source) but outside the radius of convergence (corresponding to the region of anomalous
resonance) exhibits enormous oscillations. The difficulty is finding systems where the series
truncation is somehow correlated with the loss in the system, as in the anomalously resonant
coated cylinder system.

3. Anomalous resonance and ghost sources in superlenses

Anomalous resonance and ghost sources were rediscovered, both in numerical simulations and
in theoretical works [19–26], that analyzed and provided the first sound basis for Pendry’s bold
claim [27] that the Veselago lens [28] consisting of a slab of thickness d having dielectric constant
−1 and relative magnetic permeability −1 would act as a superlens, capable of breaking Abbe’s
diffraction limit and focusing light to arbitrarily small length scales. In fact, anomalous resonance
and ghost sources provide the necessary mechanism for superlensing. The papers [23, 29–31]
show that there is an essential singularity associated with this problem too. With a point dipole
source a distance d0 < d from the lens, and with a slab having a dielectric constant of −1+iδ and a
relative magnetic permeability −1+ iδ, in the limit δ→ 0 two (possibly overlapping) anomalously
resonant regions of width 2(d −d0) develop around the two slab interfaces, and a ghost dipole
source appears at the position of the expected image, at a point a distance d−d0 from the slab, on
the opposite side of slab from the source. The wavelength of the oscillations in the anomalously
resonant regions sets the length scale of resolution of the image ghost source. The connection
with our earlier work on the coated cylinder becomes clearer once one realizes that a slab can
be regarded as a coated cylinder of infinite radius keeping d = rs − rc fixed as rc → ∞. In this
limit our earlier analysis corresponds to a line dipole outside the Veselago lens in the quasistatic
limit. This connection is made more explicit in the analysis of Section 4 of [32]. Moreover, even at
high frequencies where the free-space wavelength is comparable or smaller than d , the fields in
the anomalously resonant regions remain the same as in the quasistatic approximation because
the field gradients are so large that the quasistatic approximation remains valid there (see (4.25)
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Figure 1. Reproduction, with permission, of Figure 2 of [13] highlighting our discoveries of
ghost sources and anomalous resonance. The red arrows and accompanying text are new
and are inserted to emphasize our findings. The solid curves show the actual potential,
along the x-axis in (a) and around the outer surface of the coated cylinder, with parameters
δ = 0.01, z0 = 0.49, rc = 0.35, rs = 0.40, r0 = 0.457, and r 2

0 /z0 = 0.426. The latter radius,
where the ghost source is located, is outside the coated cylinder. Outside this radius the
solid curve in (a) slowly converges as δ→ 0 to the dashed curve that has a singularity at this
radius, representing the ghost source. The proof of convergence was established based on
the ratio test for the series expansion for the actual potential. The large oscillations of the
potential in (b) clearly show the anomalous resonance. There were some mistakes in our
initial analysis, but everything was correct for the case considered here of a source on the
real axis.

and (4.26) and the discussion below them in [33]). Our coated cylinder with εs = −1 and εc = 1
became known as the perfect cylindrical lens [34] or cylindrical superlens.

It is important to recognize that when d0 < d the anomalously resonant regions occur around
both interfaces of the slab. Their presence is crucial to energy conservation as when d0 < d/2
they interact with the source and provide the “radiation resistance” needed to account for the
energy flowing towards the regions of anomalous resonance which is dissipated into heat there.
When these anomalously resonant regions interact with the source they can destroy the claimed
“perfect imaging” properties of the Veselago lens. On the other hand, when d > d0 > d/2, then
the image is in the region of anomalous resonance and it again can destroy the “perfect imaging”
properties of the lens when the fields are measured at the plane through the ghost source [32]. In
the presence of anomalously resonant fields acting on the source it is physically unlikely that the
source will not react to these fields as otherwise the energy flowing to a source of fixed amplitude
needs to be exactly tailored according to the magnitude of the anomalously resonant fields acting
on the source.

With a line dipole source outside the slab lens the electrical potential in its near vicinity takes
the form,

V =V0 +
ke cosθ

r
− ko sinθ

r
−Ex r cosθ−Ey r sinθ+O(r 2) (3.1)

where V0 is an additive constant, ke and ko are possibly complex constants governing the
amplitude of the dipole line source, and Ex and Ey are the cartesian components of the field
acting on the line source (defined by (3.1)), and (r,θ) are polar coordinates around the line source.
Then the quasistatic formula for energy conservation takes the form (see [32]):

(ω0/2)
∫

Ω
ε′′E · Ē = (ω0/2)Imag

∫

Ω
D · Ē = (ω0/2)Imag

∫

∂Ω
−ε∂V

∂r
V̄

= ω0π Imag[k̄e Ex − k̄oEy ] (3.2)
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where the quantity on the left is the power generated per unit length of the line source, Ω
is a two-dimensional domain consisting of a cross-sectional plane with an infinitesimal circle
surrounding the source cut out from it, and the overline denotes complex conjugation. Notice
that the energy flowing from (or to) the source (or sink) is dependent on the values of Ex and Ey .
When the dipole source is in the region of anomalous resonance the fields Ex and Ey scale like
|δ|2(d0/d)−1| logδ| which agrees with the scaling of the loss in the lens as demanded by (3.2). This
blows up to infinity as δ→ 0 when d0 < d/2.

4. Cloaking due to anomalous resonance

In 2005 (private communication) Alexei Efros remarked that something was amiss in everyones
understanding of the superlens. He had calculated the result just mentioned: that when d0 <
d/2 the electrical power consumed by the superlens (in the regions of anomalous resonance)
with a constant amplitude source approaches infinity as δ → 0. He had thought that energy
was not conserved and that therefore the concept of the superlens was flawed. In a closer
analysis we found (at least in the quasistatic limit) that (3.2) shows energy is conserved. As δ
is reduced, ever increasing amounts of power are drawn from the source due to its interaction
with the anomalously resonant fields. The anomalously resonant fields provide a sort of “optical
molasses” against which the source has to work – it is a type of radiation resistance. If one thinks
of the source as being generated say by oscillating charges, then the forces generated by the
anomalously resonant fields acting on these charges are directed in constant opposition to their
movement.

Later we realized that since any realistic dipole source, such as a source providing constant
power or a polarizable dipole (which becomes a source in the presence of an incident field)
cannot provide ever increasing amounts of power, its amplitude must go to zero as δ → 0.
In this limit it will become invisible outside the region of anomalous resonance – it should
become cloaked. We then proved this for an arbitrary finite number of polarizable line dipoles, or
constant power dipole sources, outside the quasistatic coated cylinder that lie within the cloaking
region [33]. In particular, as proved in Section 3 of that paper, if the total power produced by the
dipole sources remains bounded, then the amplitude of each and every dipole in the cloaking
region must go to zero in the limit δ → 0. With polarizable dipoles inside the cloaking region,
the field acting on each of them must tend to zero as δ → 0. Our paper was perhaps the first
to introduce the word “cloaking” into the scientific literature, outside computer science. Shortly
after the publication of our paper, the transformation based cloaking approaches of Pendry et
al. [35] and Leonhardt [36] appeared, for the time harmonic Maxwell equation and for geometric
optics respectively: the former can be regarded as a combination of the transformation optics
ideas for electromagnetism, which date back to Dolin [15], and singular cloaking transformations,
which date back to Greenleaf et al. [37]. One of the interesting features of cloaking due to
anomalous resonance, as opposed to transformation based cloaking, is that the cloaking region
lies outside the cloak. Rather than guiding fields around a collection of polarizable line dipoles
in the cloaking region, the fields generated in the anomalously resonant regions are such as to
almost cancel the fields acting on each polarizable line dipole. In the limit δ → 0, the nodal
lines of the total field amazingly arrange themselves so as to almost intersect all polarizable
line dipoles in the cloaking region. Numerical analysis [33, 38] confirmed these predictions, and
moreover showed that a line quadrupole in the cloaking region outside would be cloaked as
well. The original paper also established cloaking of a polarizable line dipole outside the slab
lens at all frequencies (not just in the quasistatic limit) and for a point dipole outside the three-
dimensional slab lens in the quasistatic limit. In that paper it was suggested that “it may be the
case that any object of finite extent lying entirely within the cloaking region of the slab lens will
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be cloaked” (in the limit as δ→ 0). While, for the coated cylinder, initial calculations of Bruno and
Lintner [39] suggested otherwise, a recent rigorous proof of Nguyen [40] has shown amazingly
that cylindrical objects having a small but finite cross section that are near the coated cylinder
are perfectly cloaked in the limit δ→ 0. This extended earlier work of [41] that proved cloaking
due to anomalous resonance of a cylinder with a radius going to zero as δ→ 0. Even the paper of
Bruno and Lintner established that small dielectric objects in the cloaking region can be partially
cloaked in the limit as δ → 0. The important conclusion is that the cylindrical superlens (and
presumably also the slab superlens) does not properly image dielectric objects close to the lens
even in the limit δ→ 0.

As recognized by Leonhardt and Philbin [42] the superlens can be obtained by using trans-
formations to “unfold” a folded geometry having ε′ = µ′ = 1 everywhere. In two-dimensions the
unfolding transformation is simply the inverse of the folding transformation,

x ′ = x, y ′ = y for x < 0; x ′ =−x, y ′ = y for 0 < x < d ; x ′ = x −2d , y ′ = y for x > d . (4.1)

Using the rules of transformation optics this results in a material with

ε=µ= 1 for x < 0 and for x > d ; ε=µ=−1 for 0 < x < d , (4.2)

which is the superlens. This is consistent with the mirroring property of each interface in a
superlens [43]. Anomalous resonance and cloaking also exist in other “folded” and equivalent
“unfolded geometries” [3, 44]. In these folded geometries (unlike in the folded geometry of
Leonhardt and Philbin) it is important to keep the fields on the different “sheets” separate
to analyze the anomalous resonance and associated cloaking. In the unfolded geometries the
material in the shell generally has a position dependent anisotropic dielectric tensor field.

Anomalous resonance due to cloaking with a continuous source in the cloaking region (rather
than a discrete set of dipoles) was first investigated in [2]. The magnitude of the source is scaled
so the net time averaged average power dissipation,

(ω0/2)
∫

Rd
ε′′E · Ē = δ(ω0/2)

∫

lens
E · Ē (4.3)

remains constant as δ → 0. Then cloaking due to anomalous resonance is said to occur if the
field becomes localized (in the region of anomalous resonance) and converges to zero outside of
it. That paper also introduced the concept of weak cloaking due to anomalous resonance (weak
CLAR). In that scenario cloaking due to anomalous resonance occurs for a sequence of values of δ
tending to zero, but not necessarily for all sequences of values of δ tending to zero (which would
imply strong CLAR).

One may ask if cloaking due to anomalous resonance applies to coated bodies of shapes that
are not cylindrical. Then the separation of variables method in [2,32,33] is not appropriate. Using
a variational approach Kohn, Lu, Schweizer and Weinstein [45] establish that quasistatic cloaking
due to anomalous resonance occurs with a variety of cylindrical geometries that have a non-
circular inner core, but a circular outer boundary. Kettunen, Lassas and Ola [46] went beyond the
quasistatic limit and studied anomalous resonance and its absence in a variety of shaped bodies
containing isotropic material in two and higher dimensions.

One may also ask if anomalous resonance and cloaking due to anomalous resonance occurs
in other physical equations. Using a direct mathematical exact equivalence between the complex
quasistatic equations and certain magnetoelectric or thermoelectric equations (see Section 6
in [32]) it follows that anomalous resonance and the associated cloaking occurs in these systems
of equations as they loose ellipticity in an appropriate way. Also anomalous resonance and
cloaking due to anomalous resonance has been shown to occur in the quasistatic elasticity
equations [47–49]. In these papers they find that this occurs at the essential singularity of the
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relevant Neumann–Poincaré operator. Assuming the Lame moduli of the two phases to be λ1, µ1

and λ2 = cλ1, µ2 = cµ2 they find this occurs in two-dimensions when

c =−λ1 +3µ1

λ1 +µ1
=−κ1 +2µ1

κ1
, or c =− λ1 +µ1

λ1 +3µ1
=− κ1

κ1 +2µ1
, (4.4)

where κ1 = λ1 +µ1 is the bulk modulus of phase 1. Let κ2 = λ2 +µ2 = cκ1 be the bulk modulus of
phase 2. Now in any simply connected region that is devoid of a sources a stress field that solves
the elasticity equations will also solve the elasticity equations if a constant is added to the inverse
shear moduli, and the same constant subtracted from the inverse bulk moduli (see Section 4.5
of [4] and references therein). This strongly suggests that one can remove the constraint that the
Lame moduli of phase 2 are a multiple c of the Lame moduli of phase 1, and that more generally
anomalous resonance and cloaking will occur in these two-dimensional systems when

ν1E2 −ν2E1 = 3E2 +E1 or ν2E1 −ν1E2 = 3E1 +E2, (4.5)

in which

ν1 =
κ1 −µ1

κ1 +µ1
, ν2 =

κ2 −µ2

κ2 +µ2
, E1 =

4κ1µ1

κ1 +µ1
, E2 =

4κ2µ2

κ2 +µ2
(4.6)

are the Poisson’s ratios, and Young’s moduli of the two phases. Anomalous resonance and cloak-
ing have also been shown to occur for elastodynamics, without making a quasistatic approxima-
tion [50].

We remark that transformation based cloaking associated with many other physical equations
has also been extensively studied and experimentally observed. The list is too long to include
here, especially as transformation based cloaking is not the focus of this review.

5. A closer analysis of the lossless perfect lens and in the limit as the dispersion goes
to zero

For a long while the hope persisted that the Veselago lens would be perfect if the lens was truly
lossless. However, then there is no solution to the time harmonic equations with a dipole energy
source a distance d0 < d from the lens unless one inserts a energy sink at the image point in
the lens and an energy source at the image point outside the lens: each interface of the lens
mirrors the field (or its extension) [43] and thus mirrors the field singularity. Each mirrored field
singularity is interpreted as a sink or source depending on whether there is a net flow of energy
towards it or away from it: see the numerical simulations in [51]. Physically inserting such sources
or sinks assumes prior knowledge of the source and thus clearly diminishes the utility of the lens,
so we disregard this possibility.

As discussed in [52] insight into the behavior of the lossless Veselago lens can be obtained
by taking a source that is turned on at some time. From (62) in [53] it is seen that a source of
constant strength E0 switched on at t = 0 creates an electric field which near the back interface
(and outside the lens) scales approximately as

E ∼ E0t 1−d0/d . (5.7)

The stored electrical energy SE (t ) will scale as the square of this, and consequently the time
derivative of the stored electrical energy will scale approximately as

dSE

dt
∼ E 2

0 t 1−2d0/d , (5.8)

which blows up to infinity as t →∞ when d0 < d/2. If the source produces a bounded amount of
energy per unit time we have a contradiction. The conclusion is that if the energy production
rate of the source is bounded then necessarily the amplitude E0 must decrease to zero as
t →∞.
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More can be said [52] if we take a source that is turned on exponentially slowly, i.e. with a
time dependence et/T e−iω0t = e−iωt corresponding to a complex frequency ω = ω0 + i/T where
T is a measure of the time the source has been “switched on” prior to time t = 0. (At times say
before t =−10T the source amplitude in negligibly small while for times between t =−T /10 and
t = 0 is approximately constant). For simplicity we only analyze the quasistatic case, but similar
conclusions should hold when one considers the full Maxwell equations.

Around the frequency ω0 the dielectric constant in the shell has an expansion

εs =−1+ (ω−ω0)a +O((ω−ω0)2) =−1+ ia/T +O(1/T 2), where a = dεs (ω)

dω

∣∣∣∣
ω=ω0

, (5.9)

and a is the dispersion at the frequency ω0. Thus at long times T the mathematical analysis is
the same as in the time harmonic case with the dielectric constant of the shell having a very
small imaginary part δ ≈ a/T . A correspondence of this sort was noted before [53] but not fully
exploited. Crucially, the anomalously resonant region in front of the lens still persists and again
causes cloaking. After the source has been “switched on”, say between times t =−T /10 and t = 0,
the fields are very nearly time-harmonic. With a > 0 the electrical power produced by the source,
say averaged over this time period, will be again given by the right hand side of (3.2) and for fixed
source amplitudes ke and ko will scale like

|δ|2(d0/d)−1| logδ| ≈ |a/T |2(d0/d)−1| log(a/T )| (5.10)

and diverge as T → ∞. If we want to avoid this power divergence then we need to rescale the
source amplitudes ke and ko by the reciprocal of the quantity in (5.10). Then ke and ko will go
to zero as T →∞, i.e. the source will be cloaked as T →∞. Thus we arrive at a scenario where
the source fades from view, both when it is viewed from behind and in front of the lens, as the
time “T” during which it is switched on is increased: essentially all of its energy is drawn to
build up the fields in the regions of anomalous resonance [52]. (A somewhat analogous effect
occurs with band-limited superresolution [54] where, as the width of the focal spot is decreased,
increasingly more energy is necessarily diverted to the side lobes and, correspondingly, the
relative amplitude at the image spot necessarily decreases [55].) With this scaling, the fields in
the slab lens become localized to within the regions of anomalous resonance as T →∞. When
d > d0 > d/2, then the image is in the region of anomalous resonance and it again can destroy
the “perfect imaging” properties of the lens. The interference of the surface waves associated
with anomalous resonance and the image was also concluded by Collin [29] in a more complete
analysis.

If we let E(x) denote the complex field that solves the time harmonic equations with εs =
−1+ ia/T , then the physical electric field that solves the equations in the lossless perfect lens
should at large times T be approximately

Ẽ(x, t ) = Re[ei(ω0+i/T )t E(x)] = e−t/T Re[eiω0t E(x)]. (5.11)
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We consider four cases:
(i) a > 1/ω0 so that the local electric field energy density in the slab is positive. At the frequency

ω0 this energy density is given by the Brillouin energy:

Ws (x, t ) ≈ d

dω
(ωεs (ω))|Ẽ(x, t )|2 ≈ [−1+aω0]|Ẽ(x, t )|2 ≈ e2t/T [−1+aω0]|E(x)|2 (5.12)

In fact if the material in the slab is passive one has the tighter inequality that a > 4/ω0 [52,53,56].
Note that while there is no loss either in the slab or surrounding it, there is a buildup of the
electrical energy density Ws (x) given by the Brillouin formula. Thus it will appear that there is
an absorption of energy given by

Ps (x, t ) = d

dt
Ws (x, t ) = 2e2t/T [−1+aω0]|E(x)|2/T (5.13)

(ii) 1/ω0 > a > 0 so that the local electrical field energy density in the slab, given by the Brillouin
formula, is negative, which requires the slab to be an active material

(iii) a = 0 so that there is absolutely no dispersion, which again requires an active material in
the slab.

(iv) a < 0 so that the dispersion is negative and once again requires an active material in the
slab.

The case (i) was studied in [52], and as discussed above the source becomes cloaked as T →∞.
In case (ii) for a given T the imaginary part of εs =−1+ ia/T is lower than in case (i) which means
that cloaking occurs quicker than in case (i): if we halve a and at the same time halve T then
the solution remains unchanged. Now power from the source and power from the fields in the
active material in the slab lens both flow towards the regions of anomalous resonance outside
the slab, both in front and behind the slab. There should also be a flow of energy outwards along
the slab interfaces carried by the surface plasmons associated with the anomalous resonance,
but we have not investigated this. In case (iii) we would need to look at higher order terms in the
expansion (5.9) in powers of 1/T to determine the asymptotic behavior as T → ∞. In case (iv)
εs =−1+ ia/T has a negative imaginary part and the solution is obtained by taking the complex
conjugate of the solution with a > 0. In particular this means that the “so-called” dipole source
that one puts in front of the lens needs to be a sink of energy, trapping the energy that is flowing
from the slab of active material that forms the “lens”.

Obviously these considerations show that the response of a lossless superlens is not at all
quick, rather it takes a long while for the lens to achieve deep subwavelength resolution.

Since in the time domain, the time T the source has been “on” is mathematically equivalent
to having a loss parameter δ = a/T a curious effect may happen if a source causes weak CALR
and not strong CALR. Then one may expect the source (normalized so that it provides constant
power) to flash on and off in brightness as time progresses as seen from either in front of the lens
or behind the quasistatic slab lens.

More numerical work and rigorous theoretical work needs to be done in studying the qua-
sistatic lens and the Veselago lens in the time domain, especially for sources that are turned on at
a specific time and which supply a constant power (averaged over a cycle of oscillation) thereafter.
Collin [29] studied the interesting case of what happens with a “Drude type metamaterial” when a
time harmonic source is turned on and then turned off at a later time. Further studies were made
in the papers [30, 31, 57] where the response due to a time harmonic point source turned on in
front of a half-space again containing a “Drude type metamaterial” was investigated. Anomalous
resonance does not occur with such a half space, rather the fields diverge linearly with time ev-
erywhere and consequently the image of a point source is not a point source even in the limit
as t → ∞ as shown by Gralak and Maystre [31]: the resonant fields shroud the image. All these
analyses are for constant amplitude sources, rather than constant power sources.
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6. Sensitivity of anomalous resonance, cloaking, and superlensing

As anomalous resonance is associated with essential singularities and as the behavior of ana-
lytic functions is quite wild around essential singularities it should come as no surprise that
anomalous resonance, and hence cloaking due to anomalous resonance and superlensing, is
quite sensitive to the material moduli. An indication of this sensitivity is that the cloaking re-

gion for the coated cylinder which has a radius
√

r 3
s /rc when εc = 1 changes dramatically to the

radius r 3
s /r 2

c when εc 6= 1 [33]. In fact, by considering the quasistatic slab superlens of thickness
d with εs =−1+ iδ being the dielectric constant of the slab and with dielectric constants in front
and behind the superlens of 1 and εc = 1+ i(δ+λδβ), respectively, with λ and β being real con-
stants satisfying 1 >β> 0, one finds that the position of the cloaking region depends on the value
of β [58]. Specifically, as follows from (4.11) in that paper, the cloaking region extends a distance
d/(β+1) in front of the slab. This varies continuously between d and d/2 as β varies between 0
and 1. Early studies of superlenses also show sensitivity to the material moduli of the lens: see,
for example, the excellent paper of Merlin [23].

Interestingly, Xiao et al. [59] show that while a small dielectric cylinder near the slab lens can
be cloaked due to anomalous resonance, at nearby frequencies the opposite can also occur: it can
become more visible due to a cylinder-slab resonance.

The sensitivity to material moduli is reduced as the loss parameter δ is increased, but increas-
ing δ greatly reduces the resolution of the superlens.

7. Cloaking due to complementary media

A different sort of superlens related cloaking, called cloaking due to complementary media, was
proposed by Lai et al. [60]. The idea, which has its origin in work by Pendry and Ramakrishna (see
Figure 2 in [61]), is that to cloak a given dielectric object close to the lens one should insert an
appropriate cancelling “anti-object” in the lens. For the quasistatic slab lens if the front interface
is at x = 0 and the object lying within a distance d has a dielectric constant ε(x, y, z) then inside
the lens one should modify the dielectric constant to ε(x, y, z) =−ε(−x, y, z). If one takes the field
for x < −d without the object, antiobject and lens being present, and then analytically extends
it to x < 0 in the presence of the object, then the mirroring property allows us to reconstruct the
field everywhere without disturbing the field for x <−d . Cloaking due to complementary media
also occurs with bianisotropic media [62].

Some caution is needed since in the numerical simulations in Figure 2 of [60] and Figures 8
and 10 of [62] it looks like regions of anomalous resonance are appearing, and anomalous
resonance does not enter into the argument used to justify the cloaking. Also we know that the
argument of complementary media is sometimes flawed. Specifically, the field generally will not
have an analytic extension from x <−d to x = 0 with the object being present. (The field outside
the object generally will have singularities inside the object if one analytically extends it to the
inside of the object while keeping ε = 1 everywhere. These singularities will not generally be in
the extension of the field from x <−d to x < 0, while keeping ε= 1 everywhere, as required by the
principle of complementary media.) By the argument of complementary media the quasistatic
slab lens is cancelled by a slab of material of moduli µ = 1 directly behind it having thickness
d . But this would imply the perfect imaging of polarizable dipoles, constant power sources, and
dielectric objects close to the front of the lens, and we know that these are not perfectly imaged
(even in the limitδ→ 0). Thus it appeared that the foundations of cloaking due to complementary
media were on rather shaky grounds. Fortunately, in major advances, Nguyen [63] and Nguyen
and Nguyen [64] rigorously proved cloaking due to complementary media, subject to certain
assumptions.
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Associated with cloaking due to complementary media is illusion optics [65] and these simu-
lations also appear to show anomalous resonance.

8. Classifying different types of cloaking

One way of classifying cloaking techniques is whether they satisfy the ostrich effect [66]. This
term was designed to highlight whether the technique had the undesirable property wherein the
large object hides the small object, but the large object does not hide itself. Cloaking by anomalous
resonance passes this ostrich test when εc = 1, but not when εc 6= 1 as then the coated cylinder
is visible as a larger cylinder of radius r 2

s /rc and dielectric constant εc . Classical single frequency
cloaking by transformation optics also passes it: the cloaking system as well as the object to be
hidden are difficult or impossible to detect.

Another way of classifying cloaking techniques is whether the object to be cloaked is outside
the cloaking device or not. This is a feature of cloaking due to anomalous resonance, and cloaking
due to complementary media, and is called exterior cloaking as opposed to the interior cloaking
associated with transformation based cloaks. When it boils down to it, the exterior cloaking of
anomalous resonance is due to polarization charge sources at the surface of the lens. This then
motivates one to investigate active exterior cloaks, where sources are chosen to achieve exterior
cloaking. This was successfully done by choosing sources to create a quiet zone, where the fields
are small and the object to be cloaked can be hidden, while only slightly disturbing the fields
outside a certain radius [67–71]. Such active cloaks, including the active interior cloaks proposed
earlier by Miller [72], and experimentally tested by Selvanayagam and Eleftheriades [73], have
the advantage that they are broadband, but the disadvantage that the sources need to be tailored
according to the incident field. For the plate equation realistic active cloaks have been proposed
where the cloak is tailored both according to the incident field and according to the object one
wants to cloak [74].

The question arises in cloaking due to anomalous resonance as to what happens when one
has two or more cloaking devices (such two or more cylindrical superlenses) and their “cloaking
regions” overlap. One might hope that one would get cloaking in the union of the two regions, and
this may then help to design cloaks having cloaking regions of desired shapes. Unfortunately, our
results in [66] indicate that cloaking is destroyed in the overlap region.

A challenge for cloaking by anomalous resonance is that it has yet to be experimentally
demonstrated. It is hoped that such a demonstration will become available in the near future.

9. A possible future research direction

An interesting topic which may prove a fruitful research direction concerns density of states and
related concepts in connection with anomalous resonance. Density of states functions have long
been a central tool in solid state physics, and indeed were at the heart of the 1987 paper by
Yablonovitch [75], which provided one of the two launching pads for the field of photonic crystals.
Yablonovitch pointed out that if one could create a structure having band gaps for photons
rather than electrons, one would then have in bandgap frequency ranges zero density of state for
photons, and thus through Fermi’s Golden Rule drastically inhibited spontaneous emission. The
topic of density of states functions in photonic crystals was then much discussed, and various
density of state functions were introduced- see for example [76].

The density of states function itself is only a function of frequency, but one may introduce a
local density of states (LDOS) which depends both on frequency and position within a structured
material. Note that the spatial integral of the LDOS is related to the classical density of states
(DOS) – the spatial integral in the case of a periodic system is just that over the Wigner–Setiz cell.
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Similarly, there exists a spectral density of states function (SDOS) which depends on frequency
and direction of emission. For periodic systems, its integral over the Brillouin zone gives the DOS.
All three of these functions may be constructed from the appropriate Green’s function by taking
its imaginary part at the source point, on, in the case of the SDOS, in the direction of source
emission.

Related to these densities of state functions there are their Hilbert (or causal) transforms,
which relate to the frequency shift between the source natural frequency and its emitted fre-
quency in the structured material. This relates to the difference between the real part of the
Green’s function at the source point and its value in a homogeneous reference material, and is
called the anomalous Lamb shift – see [77] and [78].

In the field of metamaterials, density of state concepts have chiefly been of interest in relation
to hyperbolic metamaterials, where permittivities and/or permeabilities have different signs in
different directions – see [79]. The result of this strong anisotropy is that the photonic density
of states is no longer bounded, but may become very large for particular frequency ranges and
directions. Systems exhibiting anomalous resonance offer similar possibilities and interest. Since
the essential singularity at the heart of anomalous resonance is the limit point of a sequence of
poles and zeros, this strongly suggests it is associated with an infinite density of states, but only at
one frequency. The reasoning here refers immediately to the DOS, but given that the DOS is the
spatial integral of the LDOS, flows on to the latter. In fact (2.6), (and to a lesser degree (2.25), (2.35),
(2.44), (2.45), (4.27) and (5.23)) in the paper [33] shows that the imaginary part of the Green’s
function is infinite within the cloaking region. In fact it is infinite in two-dimensions simply for
a dipole at any point outside a disk of dielectric constant −1+ iδ surrounded by a medium of
dielectric constant 1, in the limit δ→ 0. As is well known, this problem can be solved using the
method of images and the magnitude of the image dipole blows up as δ→ 0. Of course these
two-dimensional geometries correspond to cylindrical geometries in three dimensions with a
line dipole outside, and this is not the same as the point dipole required for the LDOS. For a point
dipole within the cloaking region surrounding the slab lens the quasistatic LDOS is infinite, as can
be seen from (5.14) and (5.23) in [33]. It is even infinite for a dipole at any point outside a sphere
of dielectric constant −1+ iδ surrounded by a medium of dielectric constant 1, in the limit δ→ 0.
This can be seen from the expressions for the image dipole and accompanying image charge or
charge distribution (see [80] and Table 4.2 on page 72 in [81]) which blow up in magnitude as
δ→ 0.

It would be of great interest to understand in more detail the various density of state functions
and their behavior in systems undergoing anomalous resonance. It is tempting to speculate that
the spontaneous emission would happen infinitely fast. But this would imply a mix of frequencies
and the infinite LDOS only occurs at one frequency.

Certain other obvious questions spring to mind:

1. What are the effects of frequency, dispersion and loss on densities of state near anoma-
lous resonances?

2. What happens to frequency Lamb shifts near anomalous resonances?

Those looking through the window offered by densities of states concepts will no doubt find
other questions begging answers. However, perhaps the fundamental challenge remaining is to
strengthen the bridge between static and dynamic formulations near an essential singularity of
the former.
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1. Introduction

All-dielectric metamaterials were proposed in the 2000’s to achieve an artificial optical mag-
netism without metals [1, 2]. They were based on materials with high values of dielectric per-
mittivity, typically larger than 100. Composite materials with such high dielectric permittivities
were proven to yield negative permeabilities when applying an effective medium theory [2]. Un-
fortunately, common materials studied in the visible and near infrared (near-IR) spectra feature
much smaller values of dielectric permittivity, typically smaller than 20. This constraint limited
the soar of all-dielectric metamaterials in the visible and near-IR spectra.

However, it was highlighted also in the 2010’s that silicon (Si) nanoparticles feature low-order
electric and magnetic Mie resonances [3–8] which can also be employed for the realization of
optical magnetism, although Si exhibits much smaller dielectric permittivities (typically around
12). Soon after, in 2012 the first experimental observations with dark-field spectroscopy of a
strong magnetic response of individual Si particles were reported by two experimental groups [9,
10]. The spectral response observed with dark-field spectroscopy in the visible and near-IR
spectra evidenced several peaks associated with low-order electric and magnetic Mie resonances.
In particular, the possibility to excite both electric or magnetic resonances, and to balance
the weight between the electric and magnetic dipolar modes to tailor the scattering properties
of the particles triggered a huge interest. The resonant interaction of electromagnetic waves
with high-index nanostructures offers the possibility to engineer and control their phase and
amplitude [11]. The possibility to combine electric and magnetic resonances inside the same
dielectric nanostructure opened novel routes to develop planar metasurfaces able to tailor the
phase of light as well as its transmittance and reflectance spectra.

Soon after, the field of “all-dielectric metamaterials”, based on effective averaged parame-
ters, has been replaced naturally by “metaphotonics” (or “meta-optics”, also called “Mie-tronics”)
where not averaged parameters but individual resonances become important. This field is in-
spired by the physics of the magnetic dipole resonances and optical magnetism originating from
the resonant dielectric nanostructures with high refractive index [12]. The concepts of meta-
optics and all-dielectric resonant nanophotonics are driven by the idea to employ subwave-
length dielectric Mie-resonant nanoparticles as “meta-atoms” for creating highly efficient op-
tical metadevices, and the term “meta” is attributed to the importance of an optically-induced
magnetic response.

Because of the unique optical resonances and their various combinations employed for re-
alizing interference effects and strong localization of the electromagnetic fields, high-index
nanoscale structures are expected to complement or even replace different plasmonic compo-
nents in a range of potential applications. Moreover, many concepts developed for plasmonic
structures, but fell short of their potential due to strong losses of metals at optical frequencies,
can now be realized with Mie-resonant dielectric structures.

2. Mie resonances

Light scattering by small particles is a fundamental problem in optics and electromagnetism. It
can be studied by solving Maxwell’s equations in the spherical coordinates. This theory, called
multipolar theory or Mie theory, was developed originally by Gustav Mie in 1908 [13] and
improved by several contributors all over the XXth century [14, 15].

Spherical microstructures host high-order multipolar resonances associated with extremely
high quality factors (Q factors) that are called whispering gallery modes. They are observed in
almost lossless dielectrics such as silica or silicon nitride microstructured in microspheres or
microdisks [16, 17]. When decreasing the size of the dielectric cavities from the micro to the
sub-micrometer scale, the strength of the resonance weakens with refractive index typically
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considered in whispering gallery modes (typically around n ≈ 1.3 and n ≈ 1.9). The order of
the excited mode decreases with the size. The smallest size of an optical resonator is achieved
when the lowest mode is excited. However, an efficient excitation of a low-order mode requires
an increase of the refractive index, typically from 1.5 to values larger than 2.2 and ideally larger
than 3. In the visible and near-IR spectra, semi-conductors such as silicon or germanium exhibit
refractive index ranging between 3 and 4 while some oxides also feature nice optical properties
such as titania.

Efficient resonant light-matter interactions at the nanoscale can be achieved for low-order
resonances in sub-micrometer sized particles. Compared with high order multipolar whispering
gallery modes, low-order resonances are characterized by smaller Q factors and a wider spectral
response (see Figures 1(a–d)). The scattering cross section of a single dielectric particle is plotted
in Figure 1(a), where R is the radius of a spherical particle. Several peaks can be observed over
the visible spectrum. A multipolar decomposition of the scattered field (see Figure 1(b)) allows to
identify the nature of the mode associated with each peak. When decreasing the wavelength, i.e.
for the largest ratio between the wavelength and size of the scatterer, the first peak corresponds
to the excitation of the magnetic dipolar mode, the second peak to the electric dipolar mode. The
Mie resonances can also be obtained in non-spherical scatterers. This property results from the
fact that the interest is brought in low-order resonances. Such resonances are less sensitive to
high spatial frequencies than high-order multipolar resonances. That is the reason why a large
set of geometries has been investigated to tailor low-order Mie resonances.

Spherical silicon particles can be fabricated with the laser ablation technique [19]. This tech-
nique is very convenient since it allows to disperse particles on glass cover-slips and to perform
dark-field optical spectroscopy, see Figure 1(c). It is enlightening to observe such well defined
electric and magnetic resonances that nicely match the numerical calculations. If the first inter-
est of Mie resonances was brought in their far field response to retrieve for example the so-called
Kerker conditions, one of the main interest of such resonances is to yield strong field intensities
inside high-refractive-index materials.

It turns out that the terminology of “Mie resonance” is classically employed for describing res-
onances in dielectric particles. However, we stress that plasmonic and dielectric resonances can
both be described by the Mie theory. In a sake of illustration, let us consider a silver particle at the
frequency that maximizes its dipolar plasmonic resonances, i.e. at the frequency that maximizes
its dipolar electric Mie coefficient a1. It turns out that a dielectric scatterer can also maximize this
Mie coefficient. An analytic expression between the two dielectric permittivities, of positive and
negative real parts, derived in Ref. [18], permits to calculate the dielectric permittivity that max-
imizes the electric dipolar resonance, or in other words, the plasmonic resonance. The calcula-
tion of the scattering cross-section of the metallic and dielectric particles displayed in Figure 1(d)
shows that the two particles can exhibit the same optical response. However, the magnetic re-
sponse is almost negligible with spherical metallic particles and strong magnetic responses can
be obtained only with more complex geometries.

The field of plasmonic metamaterials has investigated different geometries to overcome this
limitation and to yield a strong magnetic response. Among a wide variety of plasmonic shapes,
one can cite the U - and the Ω-shaped scatterers [20, 21]. Coupling a set of plasmonic scatter-
ers that exhibit a resonant electric polarizability is also an efficient way to yield artificial mag-
netism [22]. The terminology employed to describe this effect is inspired by molecular chemistry
where electronic orbitals of different atoms can couple. The coupling modifies the energy of the
electronic orbitals and leads to the formation of bonding and anti-bonding chemical bonds [23].
The set of plasmonic scatterers is therefore called “plasmonic oligomers”. This field of research
aims at engineering the coupling between the different modes of the plasmonic scatterers to op-
timize either the electric or magnetic response of the plasmonic oligomers.
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Figure 1. Scattering properties of subwavelength particles. (a) Scattering efficiency spectra
of a spherical Si particle with the radius R in air. (b) Extinction and scattering spectra of
a Si particle with R = 65 nm. The arrows indicate the electric dipole (ed) and magnetic
dipole (md) contributions to the total efficiencies. Adapted with permission from [3].
(c) Experimental reflectance spectra of a 208 nm Si sphere on a glass substrate. Inset:
Scanning Electron Microscopy (SEM) image of the corresponding Si nanoparticle and
dark-field microscopic images. Adapted with permission from [10]. (d) Equivalence of Mie
resonances in plasmonic and dielectric particles. Scattering cross-section with respect to
the wavelength. Dotted line: silver particle A with ε=−2.5+0.5i ; Solid blue line: dielectric
particle B with ε= 112+0.5i . Both particles have the same diameter: 50 nm. Adapted with
permission from [18].

The ability of spherical dielectric particles to yield a strong magnetic response is one of the
main feature of Mie resonances. This property is at the core of many investigations with dielectric
nanostructures to tailor the light scattering through the coherent excitation of electric and mag-
netic modes and also to enhance the magnetic interaction between matter and electromagnetic
waves, i.e. the wave-matter interaction via the magnetic component of the field. The magnetic
mode yields a strong magnetic response in the near field of the dielectric scatterer. The magnetic
field distribution can be engineered and strong magnetic field intensities can be obtained. The
strong magnetic response can also be used to engineer the magnetic local density of states and
to promote magnetic spontaneous emission of quantum emitters. In the far field, the coherent
excitation of both electric and magnetic dipoles leads to unique scattering properties.
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3. Kerker effect and Kerker conditions

In 1983, Milton Kerker and co-authors [24] discovered an interesting effect in the scattering of
electromagnetic waves by a spherical particle made of a magnetic material characterized by mag-
netic permeability µ and dielectric permittivity ε. This study revealed very unusual effect, nowa-
days called Kerker effect. More specifically, Kerker and his collaborators revealed the possibility
to redirect the scattered radiation to either forward or backward direction, depending on the fre-
quency. They discovered two conditions, known as the first and second Kerker conditions. The
first Kerker condition corresponds to a cancellation of the backward scattering (with a maximum
in the forward scattering), while the second Kerker condition corresponds to a deep minimum
in the forward scattering direction. The backward and forward scattering are defined by the scat-
tering along the axis of the incoming waves. The optical theorem states that the extinction cross-
section of a scatterer can be cast with respect to its forward scattering, which means that the for-
ward scattering cannot be canceled. Kerker and co-workers established that the first condition is
obtained when ε=µ, and the second condition is satisfied when

ε=−µ−4

µ+1
.

Initially, this important study did not find a wide audience due to a lack of required magnetic
materials, and also because the Kerker conditions require special values of the parameters.

Nevertheless, as was shown independently by two groups in 2011, the Kerker conditions
can be extended to nonmagnetic dielectric spheres supporting both electric and magnetic Mie
resonances [6, 25, 26]. This property of Mie scatterers to satisfy both Kerker conditions due to the
electric and magnetic Mie resonances was actually one of the first unusual property investigated
in this new field of all-dielectric metaphotonics. The artificial magnetism provided by the Mie
resonances allows to mimic the anomalous scattering properties of magnetic spheres.

The Kerker conditions are predicted through the calculation of the electric and magnetic
polarisabilities of the dielectric scatterer, αe and αh , respectively. It is convenient to derive the
electric and magnetic polarisabilities from the elements of the T (e,h)

n matrix (e and h standing for
electric and magnetic respectively), conventionally noticed an and bn , with n standing for the
multipolar orders:

αe =−T (e)
n = 3iεa1

2k3 , αh =−T (h)
n

3ib1

2µk3 .

For a dipolar scatterer, i.e. a scatterer for which the multipolar Mie scattering coefficients an and
bn can be safely neglected for n ≥ 2, the first Kerker condition is obtained when a1 = b1 while
the second Kerker condition satisfies the relations: ℜ(ε−1αe ) =−ℜ(µαm) and ℑ(ε−1αe ) =ℑ(µαm)
[25,26]. These analytical derivations can be assessed by calculating and the scattering patterns of
a single sphere at the first and second Kerker conditions [29] and first observed experimentally for
microwaves [25, 30]. Experimental values of the scattered intensity of a sphere can be matched
well with the theoretical results, as shown in Figures 2(a,b). Experimental observations of the
Kerker conditions in the visible spectrum has been reported for Si and GaAs nanoparticles [27,31].
In Ref. [27], an AlGaAs particle was fabricated by reactive ion etching followed by a transfer on
a transparent fused silica substrate. Bright field spectroscopy on a single particle allowed the
measurement of the reflected spectrum and the observation of a cancellation of the reflected
intensity in a short spectral range [27].

The first Kerker condition finds straightforward applications in the design of Huygens sources
in planar metasurfaces [32]. This condition meets several conditions that make dipolar Mie
scatterers ideal candidates to build metasurfaces: besides their weak losses, they can scatter light
in the forward direction, with a maximum of forward light scattering when a1 = b1 while the
phase of the polarisability of a dipolar scatterer experiences a phase shift of π at a resonance.

C. R. Physique, 2020, 21, n 4-5, 425-442



430 Nicolas Bonod and Yuri Kivshar

Figure 2. Kerker effects in dielectric nanoantennas. (a) Evidence of the Kerker effect in a
germanium sphere. Scattering diagram plotted for the two polarization cases (TE (blue)
and TM (red)) when illuminating a 140 nm Ge sphere at the wavelengths λ = 2193 nm
(top; forward scattering) and λ = 1823 nm (bottom; backward scattering). Adapted with
permission from [25]. (b) Observation of the Kerker effect in optics. Left: Spectrum of light
intensity backscattered by an individual GaAs nanodisk of radius 90 nm. Black dotted curve:
measurement; red curve: numerical spectrum. Right: sketch of the measurement: white
light is weakly focused on a GaAs particle. Backscattered light is separated by a 50/50 beam-
splitter and sent to a spectrometer. Adapted with permission from [27]. (c) Concept of the
transverse Kerker effect. Electric dipole (ED) is in phase with a magnetic dipole (MD), and
an electric quadrupole (EQ) is in phase with a magnetic quadrupole (MQ), whereas the
dipoles are out of phase with the quadrupoles. Adapted with permission from [28].

When combining electric and magnetic resonances, the phase of the polarisability of a single Mie
resonator can be tuned over 2π [32]. The forward light scattering being based on the excitation
of both electric and magnetic dipolar resonances, this forward scattering can be associated with
a strong modulation of the light phase. Efforts have been put to optimize the geometry of the
scatterer to optimize the forward light scattering [33]. Regarding the second Kerker condition, we
mention that besides the modulation of phase, it finds applications to develop highly refractive
metasurfaces [34].

The extension of the Kerker effect to other multipoles has been discussed in a number of
papers, and these studies have been summarized recently [35]. Here, we also mention a re-
cently demonstrated novel effect of the so-called transverse scattering of light by Mie-resonant
subwavelength particles with simultaneous suppression of both forward and backward scatter-
ing [28]. This generalized Kerker effect occurs when in-phase electric and magnetic dipoles be-
come out of phase with the corresponding pairs of quadrupoles. Shamkhi et al. [28] obtained the
general conditions for the simultaneous suppression of scattering in both forward and backward
directions, and generalized these conditions to non-spherical particles, see Figure 2(c). They ver-
ified the concept in a proof-of-principle microwave experiment, with good agreement with an-
alytical and numerical results, and also studied metasurfaces composed of the nanoparticles
with the transverse scattering patterns. In a sharp contrast to Huygens’ metasurfaces, these novel
metasurfaces scatter neither forward nor backward, being almost invisible [36].

Subwavelength structures demonstrate many unusual optical properties which can be em-
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ployed for a control of scattering of light and invisibility cloaking. Suppression of light scatter-
ing can be achieved for a uniform dielectric object with high refractive index, based on the novel
physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous di-
electric rod [37]. Scattering cancellation and optical cloaking have been reported for a variety of
systems based on dielectric metamaterials [38–40].

4. All-dielectric nanoantennas

Optical antennas are nanostructures aimed at manipulating spontaneous emission of solid-state
emitters at room temperature [41]. Plasmonic antennas were proposed early in the 2000’s, first to
engineer the local density of states in the vicinity of metallic nanostructures [42–46], and second
to control the direction of emission of quantum emitters [47]. This field of research has led to
impressive results since metallic nanostructures can yield giant decay rates and can efficiently
shape the emission pattern. Among the wide range of metallic antennas, Yagi–Uda antennas and
corrugated antennas exhibit high gains in directivity [48, 49]. Self-assembled metallic particles
were also proved to yield extremely high decay rates, either with DNA template nanoantennas
in which is grafted a single fluorescent molecule [50, 51], or with gap plasmons obtained by
depositing colloidal particles on metallic substrates and by inserting quantum emitters inside
the extremely small nanogap separating a metallic film from a colloidal particle [52, 53].

Electromagnetic Mie resonances experienced in dielectrics with weak losses are very promis-
ing to develop highly radiative and directive optical antennas. The use of dielectric particles was
first investigated with silica microspheres that host high multipolar orders [54]. The use of higher
refractive index combined with a decrease of the size of dielectric particles was investigated nu-
merically with a titania particle [55]. The titania particle was used to shape the emission pattern
of an electric dipole located in the nanogap of a silver dimer of nanoparticles. The dimer was used
to enhance the decay rates while the high refractive index was used to shape the emission direc-
tion into a narrow lobe [55]. A hybrid metal-dielectric antenna was experimentally developed in
2018 [56]. It was composed of a bow-tie gold nanoantenna coupled with 3 silicon nanorods. This
antenna was fed by the photoluminescence of gold.

Silicon particles were numerically investigated in 2011 and 2012 to tailor the emission pattern
of electric dipolar emitters. By studying the emission pattern of an electric dipole coupled with a
silicon particle hosting electric and magnetic dipolar modes, it was showed as early as 2011 that
the direction of emission can be optimized either in the backward or the forward direction [6].
The main interest of Mie resonant antennas comes from the possibility to couple the quantum
emitter with both electric and magnetic modes [6–8]. The coherent excitation of electric and
magnetic modes offers a higher degree of freedom to engineer the emission in a given direction
through the phase and amplitude of electric and magnetic modes. The coherent excitation of
electric and magnetic dipoles can be seen as an extension of the Kerker conditions in the near
field, i.e. when the Mie resonator is excited from the near field. The emission of a quantum
emitter coupled with a dielectric Mie resonator can therefore be maximized in either the forward
or the backward directions. The gains in directivity that are obtained in these two conditions are
higher than those that could be achieved with an antenna hosting a single mode resonance, i.e.
an electric dipole resonance like in the case of spherical plasmonic nanoparticles.

Besides their strong interest to shape the emission pattern of solid-state emitters, dielectric
Mie resonators are also very interesting to enhance the excitation strength of quantum emitters,
to tailor their local density of states and to control their spontaneous emission rates. When
compared with their plasmonic counterparts, the total decay rate enhancements yielded by
dielectric antennas are smaller but the ratio between radiative and total decay rates can be
larger thanks to smaller intrinsic losses. However, dielectric Mie resonators offer key properties
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to manipulate spontaneous emission: (i) they can tailor decay rates of both electric and magnetic
dipolar transitions, (ii) they exhibit weak intrinsic losses and can efficiently collect the emitted
photons, (iii) semi-conductor based antennas can be easily integrated into photonic chips,
(iv) internal fields can be engineered to boost the photoluminescence properties of emitters
located inside the high refractive index material [57].

Controlling the electric or magnetic nature of the dipolar transition with Mie resonances, and
more generally controlling higher order transition moments, is an inspiring way of investiga-
tion [58]. This field of research rapidly raised the interest since it coincided with the raise of in-
terest in the higher order transition moments in rare earth ions [59–61]. Electric and magnetic
resonances of Mie resonators were therefore investigated to promote either an electric or a mag-
netic transition of coupled rare-earth ions [62, 63]. However, from an experimental point of view,
coupling rare earth ions with Mie resonators and more precisely locating the emitter at the posi-
tion where the magnetic local density of states (LDOS) is maximum is very challenging. The main
achievements in the control of magnetic spontaneous emission were reported only recently with
either individual Si-based antennas [64] or Si-based metasurfaces [65].

If interest in Mie resonant antennas was initially driven by the original concept of magnetic
spontaneous emission, they also offer a strong interest to enhance the electric LDOS that is
suitable to enhance fluorescence of quantum dots or molecules (see Figure 3). Taking inspiration
from plasmonic nanogap antennas [50, 51, 69, 70], dielectric dimer antennas were proposed to
manipulate the spontaneous emission, as evidenced first numerically [62, 71] and in a second
step experimentally [67, 68, 72]. The main challenge is to optimize the field outside the high
refractive index and to yield strong electric field intensities with a strong contrast with the
background in order to detect fluorescence signal of molecules located in the nanogap (see
Figure 3). This method allows the enhancement of the electric field excitation on fluorescent
molecules and to increase by several orders of magnitude their fluorescence signal [68, 72].

If dielectric gap antennas are based on the strong enhancement of the electric field intensity
in the gap separating the two particles, a major interest of Mie resonant antennas lies in the fact
that they can be fed directly inside the cavity where the Purcell factor is maximum [73]. The first
result was reported in 2017 with quantum dots embedded in silicon nanodisks [74]. Let us notice
that the concept of hybridization also applies to this case so that dimers and trimers of doped
Si-nanodisks can be coupled to further boost the photoluminescence of quantum dots. The
strong enhancement of the internal field intensity driven by Mie resonances can also be exploited
to enhance the Raman signal of silicon particles [75, 76] and non linear signals. The richness of
this field of research will undoubtedly lead to several outcomes in the upcoming years.

A very promising way of development is to consider active materials to design the photonic
cavities (see Figure 4). For example, the high refractive index of diamond can be used to form
a Mie resonant cavity around color centers [77, 78]. The resonant scattering of light on nanodi-
amonds due to the excitation of electric and magnetic dipolar modes has been evidenced (see
Figure 4(a)). The photoluminescence of color centers can therefore benefit from Mie resonances.
An enhancement of the photoluminescence of Nitrogen Vacancy (NV) color centers in nanodi-
amonds was reported recently: the fluorescence efficiency can be enhanced thanks to Mie reso-
nances and the emission lifetime can be decreased [79] (see Figure 4(b)).

A very promising approach for developing active Mie resonators is to consider halide per-
ovskites, a class of semi-conductor materials characterized by a high refractive index. The dis-
covery of the exceptional excitonic properties almost 10 years ago triggered a huge interest to im-
prove the efficiency of photovoltaics and light emitting devices [80]. Halide perovskites feature ex-
ceptional excitonic properties. Bridging the gap between this novel class of light emitting materi-
als and Mie resonant cavities will lead to outcomes in integrated light sources [81]. Enhancement
of the photoluminescence of halide perovskites was first reported in 2018 by considering par-
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Figure 3. All-dielectric nanogap antennas. (a) Electric field distribution in the vicinity of
a 20 nm nanogap separating two Si microdisks (diameter 2 µm, thickness of 200 nm)
illuminated in normal incidence with an incident electric field linearly polarized along the
x-axis at a wavelength of 2.437 µm. Adapted with permission from [66]. (b) SEM image
of a silicon nanogap antenna fabricated with e-beam lithography. Diameter of 170 nm
diameter, thickness of 60 nm and nanogap of 20 nm. (c) Enhancement of the electric
field intensity yielded by a GaP dimer antenna composed of two GaP pillars, 100 nm in
diameters, 200 nm in height and separated by a 35 nm nanogap. The field distribution
is taken at mid-height (100 nm). Adapted with permission from [67]. (d) Brightness per
emitter with respect to the emission power for two different nanogap lenghts, 20 nm and
30 nm, with the Si dimer nanogap antenna displayed in (b). Comparison with the brightness
per emitter measured without antenna (measured signal × 50). Adapted with permission
from [68].

ticles made of MAPbI3 created by using a laser ablation technique on a perovskite thin film. A
maximum of the photoluminescence signal was reported at the wavelength corresponding to the
quadrupolar magnetic resonance [82]. The next challenge after performing Mie enhanced photo-
luminescence lies in the stimulated emission and the development of a novel class of laser cavi-
ties by forming Mie cavities in halide perovskites. The latest results were obtained with nanocubes
made of CsPbBr3 (see Figures 4(c–e)). High quality monocrystalline CsPbBr3 nanocubes are first
synthesized chemically on a sapphire substrate (see Figure 4(c)). Dark field spectrum performed
on a single 420 nm nanocube displayed in Figure 4(d) clearly evidences the resonant light scat-
tering due to the excitation of electric and magnetic multipoles. The photoluminescence spec-
trum of CsPbBr3 is indicated by the green zone in Figure 4(d). A peak of the dark field spectrum
can be observed in this spectral range. The resonant light scattering is assessed by observing a
strong dependence of the scattering spectra on the size of the nanocubes. The photolumines-
cence spectra are recorded when exciting nanocubes with a 150 fs laser. Importantly, the spectra
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Figure 4. Mie resonances in excitonic materials: colored centers in nanodiamonds (top
row) and perovskites (bottom row). (a) Unpolarized scattering spectrum of a single nanodi-
amond. Black line: experimental spectrum. Red line: numerical simulations implemented
with FDTD (Finite Difference Time Domain) when considering a spherical nanodiamond
with a diameter of 320 nm under the experimental conditions of the collection. Adapted
with permission from [77]. (b) Time-resolved photoluminescence measurements for two
sets of samples: NV centers in optically small (<100 nm) nanodiamonds (orange dots)
and in large and optically resonant nanodiamonds (purple dots). Adapted with permission
from [79]. (c) SEM images of CsPbBr3 nanocubes placed on a sapphire substrate. Scale bar
is 500 nm. (d) Dark-field spectra of the CsPbBr3 nanocubes. The photoluminescence spec-
tral range is indicated by the green zone. Pump intensity-dependent emission spectra for
three different fluences compared with the lasing threshold: above (red), equal (orange)
and below (green) the lasing threshold. (c–e) Adapted with permission from [83].

reveal a threshold-like appearance of a photoluminescence signal in the range λ= (532;538) nm,
that corresponds to the red side of the emission line of the exciton (see Figure 4(e)).

5. Bound states in the continuum

Bound states in the continuum have attracted a lot of attention in photonics recently, and they
originate from a coupling between the leaky modes in dielectric structures such as photonic
crystals, metasurfaces, and isolated resonators [84]. These resonances provide an alternative
mean to achieve very large Q factors for lasing [85] and also allow to tune a photonic system into
the regime of the so-called supercavity mode [86]. A true bound state in the continuum (BIC) is a
mathematical object with an infinite value of the Q factor and vanishing resonance width, and it
can exist only in ideal loss-less infinite structures or for extreme values of parameters [87, 88]. In
practice, BIC can be realized as a quasi-BIC mode, being directly associated with the supercavity
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mode [86], when both the Q factor and resonance width become finite. However, the localization
of light inspired by the BIC physics makes it possible to realize high-Q quasi-BIC modes in many
optical structures such as cavities and coupled waveguides.

Importantly, there exists a direct link between quasi-BIC states and Fano resonances since
these two phenomena are supported by the similar physics. More specifically, quasi-BIC reso-
nance can be described explicitly by the classical Fano formula, and the observed peak positions
and linewidths correspond exactly to the real and imaginary parts of the eigenmode frequencies.
The Fano parameter becomes ill-defined at the BIC condition, which corresponds to a collapse of
the Fano resonance. Importantly, every quasi-BIC modes can be linked with the Fano resonances,
whereas the opposite is not always true: the Fano resonance may not converge to the BIC mode
for any variation of the system parameters.

As an example, we consider all-dielectric metasurfaces with the in-plane symmetry break-
ing [89] that can support sharp high-Q resonances arising from a distortion of symmetry-
protected BICs. We follow the recent paper [90], we consider a metasurface made of As2S3 and
placed on a glass substrate consisting of a square lattice of meta-atoms with broken in-plane in-
version symmetry, as illustrated in Figure 5(a). The meta-atom is constructed of a pair of rect-
angular bars which have lengths L and L − δL, respectively. The asymmetry of the unit cell is
controlled by the difference in bar lengths, which is characterized by the asymmetry parameter
α= δL/L, see Figure 5(b).

Figure 5(c) demonstrates the dependence of the simulated transmission spectra on the wave-
length of excitation and the asymmetry parameter α. The white dashed line illustrates the eigen-
mode dispersion. The eigenmode simulations show that the metasurface with a symmetric unit
cell (α= 0) supports a symmetry-protected BIC at 795 nm, which has infinite Q factor and is not
manifested in the transmission spectrum. The BIC is unstable against perturbations that break
the in-plane inversion symmetry, so for α > 0 it transforms into a quasi-BIC with a finite Q fac-
tor [89]. The quasi-BIC is revealed in the transmission spectra as a sharp resonance with a Fano
lineshape whose linewidth increases with the magnitude of asymmetry. The dependence of the
radiative Q factor on α follows the inverse quadratic law for small values of the asymmetry pa-
rameter [89], as shown in Figure 5(d). Hence, the meta-atom asymmetry is necessary to obtain a
sharp resonance whose position and width can be adjusted by the degree of asymmetry.

Thus, bound states in the continuum provide a new approach for engineering a resonant
response of dielectric metasurfaces composed of meta-atoms with broken in-plane inversion
symmetry. The similar approach can be applied to the case of nonlinear metasurfaces [91, 92]
with broken-symmetry or nonlinear metasurfaces composed of arrays of chalcogenide nanores-
onators designed for the nonlinear optical generation of higher harmonics.

6. Applications of Mie resonances: structural colors

Colors perceived by eyes result from the interaction between the incoming light and the three
types of cone cells. A modification in the spectrum of the incoming light will result in a modifica-
tion of the perceived color. When white light interacts with structured matter, its broad spectrum
experiences a strong variation with peaks and dips which yield a color to the nanostructured mat-
ter. Colors resulting from the interaction between light and nano or microstructures are called
structural colors. The terminology “structural” means that the color depends on the morphology
of the structured matter. A modification of the morphology modifies the structural color. Struc-
tural colors can be found in a wide set of biological species, the most famous example being cer-
tainly the wings of the Morpho butterfly [93, 94]. Wings are structured at a sub-micrometer scale
which provides photonic band gaps. In the case of the Morpho butterfly, the photonic band gap
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Figure 5. Metasurfaces with bound states in the continuum. (a) Design of a metasurface
consisting of a square array of As2S3-bar pairs of different length placed on a glass sub-
strate. The inset shows the orientation and polarization of the incident field. (b) Defini-
tion of the asymmetry parameter α. (c) Numerically simulated transmission spectra with
respect to the excitation wavelength and the asymmetry parameter α. The white dashed
line illustrates the quasi-BIC dispersion. (d) Dependence of the radiative Q factor on the
parameter α. The dashed line shows an inverse quadratic fitting. Adapted with permission
from [90].

is centered on the blue part of the spectrum. The blue part of the spectrum is therefore reflected
which provides a vivid blue color to the wings.

Structural colors can also be found in plasmonics. When observing metallic particles of
different sizes and shapes dispersed in a transparent substrate in dark field spectroscopy, a
myriad of colors can be observed. It turns out that each particle yields its own color and behaves
like a colored pixel. The pixel size stands under the diffraction limit and achieves the limit of
resolution. This approach is very promising to create non fading colors with a high resolution.
When assembling different scatterers on a surface, colored images can be finely designed which
opens plenty of rooms to create images at high resolution [95]. Structural colors have benefited
from intense developments to extend the gamut of colors, to decrease the cost of this technology
and to extend its range of applications [96].

When observing silicon particles in dark-field spectroscopy, structural colors can also be
observed (see Figure 1) [9, 10, 19, 97]. This result was expected since their resonant interaction
with light strongly modulates the scattered spectrum. The coupling of light with electric and
magnetic Mie resonant modes of high-index particles results in a perceived color that can be
controlled through the shape and composition of the particles, and also through their mutual
coupling. This result strengthens the field of resonant structural colors since cost effective and
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Figure 6. Silicon Mie-resonant metasurfaces for generating colors and holograms. (a) Mon-
drian’s painting reproduced at a 1:1200 scale with silicon particles on a transparent sub-
strate observed in dark-field imaging. Adapted with permission from [99]. (b) Extended
gamut of colors obtained by coupling the nanostructured silicon layer with an unpatterned
underlying high refractive index layer made of Si3N4. Adapted with permission from [100].
(c) Palette of colors obtained when varying the diameter of the silicon nanodisks and the
period of the 2D array. Example of a painting reproduction. Here “The Scream” by the Nor-
wegian painter Edvard Munch. Adapted with permission from [101]. (d) Experimental holo-
graphic images from two holograms at a 1600 nm wavelength. Adapted with permission
from [106].

non toxic materials with high refractive index can be found. A strong interest has been brought
to the case of silicon based nanostructures. One of the first examples of structural colours in
silicon was presented in 2014 with periodical grooves patterned in silicon substrates [98]. When
assembling silicon Mie resonators on a substrate and when controlling their size to tailor finely
their spectral response, colored images can be obtained and painting can be reproduced. This
was shown in 2016 in dark field spectroscopy with silicon particles of different diameters etched
on a silicon film coated on a transparent substrate [99]. A palette of structural colors has been
created when considering several arrays of similar Si nanodisks. In a second step, a Mondrian’s
painting was reproduced (Figure 6(a)). Mie resonant scatterers have been optimized to extend
the gamut of colors, in particular through the control of their shape or through the coupling
with an underlying layer [100] (see Figures 6(b,c)) or by adjusting the diameter of nanodisks
and the period of the 2D array of nanodisks [101, 102]. This technique can also be employed
to design spectral filters [102, 103]. Over the last two years, outstanding achievements have
been reported in terms of designs and color rendering with different dielectric materials and
fabrication methods [101, 104, 105]. The strong efforts devoted to the development of structural
colors are motivated by numerous applications in anti-counterfeiting, spectral filtering, and
color rendering of surfaces. The latest developments are focused on novel applications such as
complex holograms [106, 107] (see Figure 6(d)).

7. Conclusion

The field of high-index dielectric metaphotonics has emerged recently as a new and rapidly de-
veloping direction of research in nanophotonics and metamaterials. The study of all-dielectric
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resonant nanostructures is motivated by the rich physics of Mie resonances allowing to excite
both electric and magnetic multipole modes in individual subwavelength particles. Metaphoton-
ics has a broad range of applications, highlighting the importance of optically-induced magnetic
response, and including structural coloring, optical sensing, spatial modulation of light, nonlin-
ear and active media, as well as both integrated classical and quantum circuitry and topologi-
cal photonics, underpinning a new generation of highly-efficient active metadevices. We antici-
pate further rapid development of these ideas into the field of active metaphotonics for creating
new types of light sources, light-emitting metasurfaces, quantum signal processing, and efficient
nanolasers.
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Abstract. Metamaterials and metasurfaces are artificial composite media engineered to exhibit extraordinary
properties of wave propagation. In bulk (3D) metamaterials, such extreme properties may result from non-
conventional values of effective homogeneous optical parameters such as the electric permittivity and
the magnetic permeability. These features generally originate in the collective response of the constitutive
structural elements, which have to be of sub-wavelength dimensions to satisfy the requirement of optical
homogeneity, and which have to be highly polarizable to provide efficient optical functions. For visible light
applications, sub-wavelength dimensions imply structuration at the nanoscale whereas high polarizability
can be achieved by optical resonators such as plasmonic or Mie resonators. Metasurfaces, on the other hand,
are 2D equivalent of metamaterials, designed to control the phase, amplitude and possibly polarization of
incident EM waves with subwavelength thickness, using interfacial discontinuities effects. This review shows
how the bottom-up approach based on nano-chemistry and the self-assembly methods of colloidal physical-
chemistry can be used to produce nano-sized tunable magneto-electric resonators which can subsequently
be assembled in bulk nanostructured metamaterials as well as in optically thin metasurfaces. Focusing
mainly on work carried out at the University of Bordeaux over the past decade, we review some of the optical
properties observed in visible light from the fabricated systems. Specific optical experiments and numerical
simulations are of crucial importance for the design of the most efficient structures and the extraction of the
effective optical parameters.

Résumé. Les métamatériaux et les métasurfaces sont des milieux composites conçus pour posséder des pro-
priétés optiques extraordinaires. Dans le cas des métamatériaux tridimensionnels, les propriétés nouvelles
peuvent résulter de valeurs non conventionnelles des paramètres optiques effectifs tels que la permittivité
diélectrique et la perméabilité magnétique. Elles proviennent en général de la réponse collective d’inclusions
fortement polarisables de dimensions sub-longueur d’onde afin d’assurer une réponse optique homogène.
Dans le spectre de la lumière visible, cette contrainte implique une structuration des matériaux à l’échelle na-
nométrique. Une forte polarisabilité peut être assurée par des résonances optiques plasmoniques ou de Mie.
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Les métasurfaces sont les équivalents bidimensionnels des métamatériaux conçus pour contrôler la phase,
l’amplitude et si possible la polarisation des ondes transmises ou réfléchies. Cette revue, centrée essentielle-
ment sur les travaux réalisés depuis une décennie à l’Université de Bordeaux, montre comment l’approche
dite “bottom-up” fondée sur la nano-chimie et les méthodes d’auto-assemblage de la physico-chimie colloï-
dale permet de produire des résonateurs magnéto-électriques accordables de dimensions nanométriques et
de les assembler pour former des métamatériaux ou des métasurfaces résonants. En parallèle, le développe-
ment de simulations numériques et leur association à des mesures optiques spécifiques sont des éléments
cruciaux pour la conception des nanostructures les plus efficaces ainsi que l’extraction de leurs paramètres
optiques effectifs.

Keywords. Metamaterials, Metasurfaces, Self-assembly, Colloids, Bottom-up, Optical resonances.

Mots-clés. Métamatériaux, Métasurfaces, Auto-assemblage, Colloïdes, Méthode ascendante, Résonances
optiques.

1. Introduction

Conceptual notions, such as double-negative materials or artificial magnetic materials, form
the backbone of the metamaterials research field. These notions have been available in the
literature for decades and the seminal article of V. Veselago is one prominent early attempt [1–
4]. However, to materialize, these ideas required modern fabrication techniques capable of
effectively manufacturing the envisioned basic units—the so-called meta-atoms—and arranging
them into a spatially organized ensemble (metamaterials).

Early realizations of metamaterials in the microwave range used classical radio-engineering
manufacturing techniques, such as printed circuitry. However, for reaching higher operating
frequencies, and the visible range, miniaturization to sizes a few tens of nanometers quickly
became necessary as the metamaterials community moved toward the visible [5]. Initial designs
resorted to top-down fabrication: in essence, top-down approaches start from raw pieces of
materials that are carved (etched) into the basic units required to generate the desired properties.
A classical example of a top-down fabricated meta-atom is the split-ring resonator, lying on a
supporting substrate. Etching to the nanoscale with sufficient precision requires state-of-the-art
fabrication facilities equipped with nanolithography devices such as electron beams, ion beams,
extreme UV, etc. This top-down approach led to spectacular and well-known results [5].

In this review article, we will focus on a radically different range of fabrication methods, known
as the bottom-up route [6–8]. This designates in reality a wide array of techniques, whereby meta-
atoms are synthetized and assembled together from raw, primary materials, and subsequently,
arranged spatially into the sought-after meta-structures. In this approach, and for the optical
range, meta-atoms are nanocolloids, the complexity of which will depend on the desired prop-
erties. In physical chemistry, nanocolloids designate a category for microscopic objects with
sizes broadly ranging from a few nanometers to a micrometer. They may be solid nanoparticles,
aggregates, polymer coils, droplets or vesicles [9, 10]. In the case of metamaterials, the required
nanocolloids are most often nanoparticles, or associations of nanoparticles and polymers.

Such a bottom-up approach has become viable only thanks to the extraordinary progress
that was witnessed in nanocolloidal engineering and nanoparticle synthesis over the past three
decades [6, 11, 12], where the variety of shapes, obtainable geometrical constructs, as well as the
variety of usable primary materials (including noble metals and semiconductors) has immensely
widened.

Nanocolloids are obtained, in most cases, in the form of a dispersion of a large number of
nanoparticles in a liquid solvent; the task of collecting and distributing them into a more or
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less dense, well-organized spatial arrangement cannot be done using any means of individual
manipulation.1

Therefore, only massively parallel processes like self-assembly may produce large metama-
terials. Self-assembly designates an ensemble of common and highly efficient processes well-
known in chemical physics, soft condensed matter physics, and biology, leading to organized
two-dimensional or three-dimensional structures of various symmetries. They can either be
spontaneous, occurring under the effect of complex—pair or multi-object—interactions, until
some free energy is minimized; or they can be directed, i.e. assisted by some external template
such as a surface, a host matrix or else guided by external inputs of energy.

There are benefits and drawbacks in using the bottom-up approach compared to the top-
down. On the one hand, top-down fabrication provides more precise and reproducible structures
that are easily modelled in numerical simulations. This makes it straightforward to optimize
and interpret the observed properties. However, samples in most cases are two- or quasi two-
dimensional, with limited lateral sizes. Fabrication is time and energy-demanding and requires
state-of-the-art, cost-intensive facilities.

On the other hand, the bottom-up approach is often less precise, as disorder is intrinsically
introduced with respect to ideal designs, due to the role of thermal energy and entropy in both
the synthesis and assembly stages. On the brighter side, chemistry and self-assembly are low-
tech, table-top fabrication means, both energy-saving and cost-friendly. They are able to produce
materials in greater quantities, making it easier to obtain 3D samples [7, 13, 14].

Globally speaking, it can be stated that the bottom-up routes introduce a trade-off between a
lesser structural precision and a better energy footprint.

This review article is devoted to nanocolloidal metamaterials for optics obtained by the
bottom-up approach. We will focus especially on the research efforts carried out at the University
of Bordeaux over the past decade.

2. Nanocolloidal meta-atoms

As stated in Section 1, the expression meta-atom is often used to denote the basic functional
element of a metamaterial. Some authors find it confusing since a meta-atom is not an atom
(whereas a metamaterial is a material). The wording meta-atom nevertheless underlines its
indivisible nature shared with true atoms (ατoµoσ): the targeted optical function of this element
is lost if its structure is broken into separate pieces. We define in the following the meta-atom as
the smallest structural element that provides the wanted optical property. Once again, the meta
prefix implies that the optical response of the meta-atom goes beyond the properties of natural
materials. Moreover, anticipating that a metamaterial constructed as a collection of meta-atoms
should exhibit homogeneous effective optical parameters, the size of the meta-atoms should be
significantly smaller than the operating wavelength. Optical resonators constitute a major class
of meta-atoms in which an optical response (e.g. the electric polarizability) exhibits a resonant
behavior at some frequency ω0 in the spectral range of interest. Indeed, the resonance may
involve a considerable increase of the optical response upon approaching ω0 hence leading to
extreme values of the effective optical parameters. Moreover, the optical response exhibits a π

phase shift upon crossing ω0 which may lead to counter-intuitive “negative” optical behaviors.
A wide set of multipolar electric and magnetic resonances can in principle be excited by the
impinging electromagnetic wave. The price to pay is the presence of optical losses imposed by

1Indeed, for a volumic (3D) metamaterial operating in the visible, an average density of one to ten active units (nano-
resonators) per wavelength will result in a collection of about 109 to 1012 nanocolloids for a sample with a volume on the
order of a cubic millimeter.
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causality through the Kramer–Kronig relations. This is a high price that is sometimes overlooked
in yet exciting models.

The strategy of the bottom-up approaches to metamaterials reported in this review is to
design, synthesize and assemble nanocolloidal meta-atoms exhibiting optical resonances in the
visible or near infrared range. The requirement of sub-wavelength dimensions implies that the
size of the meta-atoms should lie in the colloidal range from a few tens up to hundreds of
nanometers. Two main classes of optical resonators have been proposed and extensively studied
in the field of metamaterials, namely plasmonic and Mie resonators.

2.1. Plasmonic resonators

In metallic nanoparticles, free electrons oscillate harmonically driven by the electric field of
the light wave. When the exciting frequency matches the natural frequency of the electrons
in a metallic inclusion, the so-called localized surface plasmon resonance (LSPR) occurs. It is
described in a simple way by considering a spherical particle of radius a ¿ λ and permittivity
εNP immersed in a transparent medium of permittivity εm , the dipole moment p induced by the
field E0 of the wave reads

p = 4πa3εm
εNP −εm

εNP +2εm
E0. (1)

The resonance occurs when the real part of the denominator in (1) vanishes, which is made
possible since the real part of the permittivity of the metal is negative below the plasma frequency.
The strength of the induced dipole scales as the volume of the particle but the frequency of the
LSPR in the dipolar approximation depends solely on the nature of the metal and of the host
medium, regardless of the size as long as it satisfies a ¿ λ. LSPR-based systems may indeed
accommodate some degree of size-dispersion. For increasing sizes, higher order multipoles come
into play and the LSPR red-shifts progressively [15]. Dense materials assembled from plasmonic
nanospheres exhibit optical resonances reminiscent of the LSPR resonance of their meta-atoms,
but which are generally affected by the electromagnetic coupling between them, as will be shown
in Section 3 [16].

A major challenge of the field of metamaterials is the generation of artificial optical mag-
netism. Early models have suggested that controlling the magnetic response to light would give
access to spectacular novel properties like super-lensing, cloaking or light steering by transforma-
tion optics [17–19]. The absence of magnetic polarizability in natural materials at visible light and
near IR frequencies is well known [20]. Conventional optics indeed assigns the vacuum value µ0

to the magnetic permeabilityµ. In 1999 however, Pendry et al. suggested that artificial magnetism
could be produced by a resonant inductor-capacitor circuit of subwavelength dimension—split
ring resonators (SRR)—in which the electromagnetic wave could induce a circular current, thus
producing an effective magnetic response [21]. This concept was beautifully illustrated by the ob-
servation of negative refraction in microwaves [22]. It was subsequently extended to higher fre-
quencies by reducing the size of the SRR [5], up to visible light frequencies, where the top-down
techniques used to engrave SRRs on surfaces reach their limits. Alternative models were then
proposed in which the resonant loop that generates the magnetic response is made of a nano-
ring of plasmonic nanoparticles [23–25]. We shall see in Section 2.2 that colloidal interactions
can be used to synthesize 3-dimensional clusters of plasmonic nanoparticles along the models
of Figure 1 and measurements of the magnetic response will be presented. The magnetic com-
ponent of light can also come into play in chiral media. Chirality indeed enables the presence of
a magneto-electric coupling within the constitutive relations of a material [26]. Several authors
have shown that plasmonic resonances could be used to enhance the optical activity of chiral
substances. We mention a few examples of this phenomenon observed in helical clusters of gold
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Figure 1. Models of magnetic meta-atoms. (a) Planar model of a ring of plasmonic
nanoparticles [23]. (b) Octaedron 3D model [24]. (c, d) Simovski–Tretyakov model of
isotropic magnetic nanoclusters [25]. (e, f) Sketch of the electric and magnetic modes in
a plasmonic nanocluster [30].

nanoparticles driven by DNA origami, peptide fibrils templates or silica nanohelices obtained by
mineralization of self-assembled helices of gemini surfactants [27–29].

2.2. Mie resonators

Most nano-antennas and metamaterials were initially designed with plasmonic meta-atoms [5,
31], but it was realized that dielectric meta-atoms could also be used to provide a lot of the
functionalities already achieved with plasmonics. To do so, high-index dielectric nanostructures
can be built to reach the Mie resonance regime, in which the resonance wavelength will typically
be on the order of n × a, where n is the index of refraction of the material and a the typical size
of the resonator. As such, a large variety of all-dielectric metamaterials and metasurfaces have
been proposed [32–34]. Crystalline silicon that exhibits a large refractive index with low losses for
wavelengths above 600 nm is envisioned as a good candidate [35].

In the Mie regime, the scattering of dielectric nanoparticles exhibits electric and magnetic
multipole resonances that are described by the coefficients of the vector spherical harmonic
expansion of the scattered field under plane wave illumination. For a spherical particle, the
electric (magnetic) Mie coefficients an (bn) of order n are given by

{an ,bn} = {m,µ}ψn(mx)ψ′
n(x)− {µ,m}ψn(x)ψ′

n(mx)

{m,µ}ψn(mx)ξ′n(x)− {µ,m}ξn(x)ψ′
n(mx)

(2)

where ψn and ξn are the nth order Ricatti–Bessel and Hankel functions of the first kind and
are functions of the reduced frequency x = nhkr . µ is the magnetic permeability of the sphere
material (assuming it is 1 for the host medium), nS and nh are the indices of refraction of the
sphere and the host medium, m = nS/nh, r is the radius of the particle and k is the free-space
wavector. The presence of magnetic Mie resonances in the visible spectrum opens the way to
optical properties that are not observed in natural materials. A strong magnetic polarizability
may indeed lead to yet unknown magnetic bulk materials or to the realization of Huygen’s sources
exhibiting zero backward scattering.

Nanocolloidal systems enable a tuning of the multipole resonances to achieve a desired op-
tical response. For instance, by carefully tuning the size of a homogenous material with a mod-
erate index of refraction—typically between 1.17 and 2.1—nanoparticles that scatter only in the
forward direction can be achieved. This happens because the first order electric and magnetic
dipoles resonate at similar wavelengths and with comparable amplitudes. When these reso-
nances overlap perfectly in amplitude and in phase, a so-called Huygens dipole is produced, in
reference to the Huygens–Fresnel principle. The concept is the same as the first Kerker condi-
tion, further detailed in Section 4.2 and occurs whenever a1 = b1. Zhang et al. have demonstrated
experimentally direction forward-scattering using Cu2O nanospheres that were synthesized by
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Figure 2. Examples of meta-atoms engineered as Mie resonators. (a) Scanning electron
microscope (SEM) images of Copper oxide nanoparticles that exhibit a strong forward-
scattering behavior due to their moderate refractive index. (b) Forward to backward scatter-
ing ratio as a function of nanoparticle diameter. (a) and (b) are adapted from [36]. (c) Illus-
tration of a 200 nm cluster made of 60 silver nanospheres of diameter (2r ) = 30 nm. (d) The
black line is the total scattering efficiency of the silver cluster shown in (c)—defined as the
ratio of the scattering cross-section efficiency to the geometrical cross-section (πr 2)—as a
function the wavelength of the exciting field. The blue (red) line is the scattering efficiency
due to the electric (magnetic) dipole resonance. (e) Illustration of a dense 13 nanoparticle
cluster made of silicon inclusions with diameters of ∼80 nm. (f) Same as (d) for the silicon
cluster shown in (f). (c), (d), (e) and (f) are adapted from [37]. (g) SEM images of a lithium
niobate nanocube for second harmonic generation in NUV. (h) Scattering cross-sections
of the nanocube shown in (g) as a function of wavelength. The red line is the total scatter-
ing cross-section, the continuous (dashed) blue line is the scattering cross-section of the
electric (magnetic) dipole moment. (g) and (h) are adapted from [38].

wet chemistry (see Figure 2 (a,b)) [36]. The concept is not limited to homogenous spheres.
As a matter of fact, an effective meta-atom can be produced by clustering inclusions of small res-
onators that will exhibit a tailored Mie resonance. For instance in [37], Dezert et al. have shown
theoretically that a cluster of 60 silver nanoparticles will act as a medium exhibiting an effective
refractive index that is in the correct moderate range to act as a Huygens dipole (see Figure 2
(c,d)). Furthermore the same authors show that a dense meta-atom made of 13 silicon inclusions
constitutes a very efficient Huygens dipole with scattering efficiencies much larger that anything
achievable with a hypothetical homogeneous sphere [37] (see Figure 2 (e,f)). It should be noted
that the Hugyens dipole concept can be generalized to multipolar systems as forward-scattering
occurs whenever an = bn for any order n (see also Section 4.2).

Finally, Mie resonances hold great potential to act as meta-atoms for a variety of applications.
A neat example is provided by Timpu et al., who show that lithium niobate (LNO) nanocubes
are excellent candidates for second-harmonic generation in the near ultraviolet (NUV) [38].
Indeed, since the energy band-gap is larger than 4 eV, it exhibits low losses in the visible and
NUV. Furthermore, LNO has a strong second-order nonlinear susceptibility χ(2) in those ranges.
As a result, by selecting the size of LNO nanocubes fabricated by solvothermal synthesis in
the (200 nm–300 nm) range, the authors were able to show SHG emission below 400 nm with
giant enhancements compared to bulk LNO due to the Mie resonances of the nanocube (see
Figure 2 (g,h)).
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2.3. Loss-compensated resonators and nanolasing

Meta-atoms described above use resonant schemes in order to provide a significant electromag-
netic response. Such schemes go along with resonant losses due to the Kramers–Kronig causality
rule. This is even worsened in the often-encountered case of plasmonic resonators in the visible
range, where intrinsic Ohmic losses in the metallic parts are already strong [39]. As a result, the
obtained resonances are broader and weaker than expected ideally.

One of the strategies to mitigate the losses is to associate optical gain materials to the plas-
monic parts in the resonators in what is sometimes called “active plasmonic” designs [40–42].
In the case of plasmonic nanoparticles, it has been shown that resonances can indeed be sharp-
ened, and the associated light emission enhanced, as gain levels are increased [43–45]. Moreover,
when gain in the system is increased enough that it exceeds losses, new regimes of spasing and
nanolasing are observed; this has been evidenced both in top-down-fabricated structures [41,46]
and bottom-up-fabricated ones [46–49].

While experimental realizations for nanoparticle-based nanolasers are still scarce, and inves-
tigation mostly relies on full-wave numerical simulations [47], work initiated at the University
of Bordeaux was based essentially on theoretical analysis. The studied geometries were either
spherical plasmonic nanoparticles immersed in gain, core-shells (with a metal core and active
shell), or conversely, nanoshells (with a metal shell and a gain core).

The polarisability α of the particle can be calculated from (1) as α = p/E0 = 4πa3εm(εNP −
εm)/(εNP +2εm). When the gain level Im(εm) is negative (representing a gain material with neg-
ative losses) and increased in absolute value (increasing gain), the plasmon resonance is ampli-
fied and gradually sharpened [50], or in other terms, the losses in the nanoresonator are compen-
sated. When gain reaches a value such that the imaginary part of the denominator at the plasmon
frequency cancels, a singularity of the polarizability appears as the complete denominator van-
ishes. This was conjectured to be the signature of the onset of spasing/nanolasing [50].

To further investigate the situation theoretically, a detailed electromagnetic description was
set up [51]: using an exact Green function formalism, involving individual active emitters ran-
domly aggregated around a metal nanosphere, the equivalent polarizability of the metal-and-
emitters system was calculated, composed of the direct response from the metal sphere as well
as the contribution arising from the cooperative coupling between emitters and surface plas-
mons. The analysis was based on an eigenvalue decomposition, where the eigenmodes are cou-
pled, hybrid exciton (from the emitters)-plasmon modes. The calculated optical response of the
aggregate indeed showed amplified, loss-compensated plasmon responses as gain was increased.
Moreover, when gain levels becomes high enough, sharp peaks corresponding to coherent light
emission akin to the Dicke effect were found [51], thereby providing some insight into the physi-
cal nature of nanolasing.

In these works, however, as well as in almost all simulation studies on nanoparticle-based
nanolasing available in the literature [47], it is implicitly or explicitly assumed that the energy
provided by the gain is both stationary in time and independent of the intensity of the nanolasing
emission. It is well-known from laser physics that none of these are true in general, as time-
dependent regimes may appear (e.g., oscillations) and non-linear effects such as gain depletion
occur at high intensity.

A more complete theoretical approach was therefore introduced [52] where the plasmonic
response of a homogeneous metal nanoparticle immersed in a sea of surrounding gain elements
(dipole emitters) was studied in a space and time-dependent description. The model integrates a
quantum formalism (optical Bloch equations) to describe the gain and a classical, fully multipolar
treatment for the metal particle. The presence of a lasing threshold was then demonstrated.
For gain levels below the lasing threshold, loss compensation takes place and the nanoparticle

C. R. Physique, 2020, 21, n 4-5, 443-465



450 Alexandre Baron et al.

plasmon is amplified as usual. For gain above the threshold, a lasing instability sets in: an
exponential growth of the emission is initially observed, followed by an energy cascade where
all multipolar modes activate. The intricate nonlinear couplings between these modes control
the state of emission in the long term.

Recently, the nature of the long-term nanolasing state could be calculated in exact form within
the same type of theoretical model, but for a nanoshell geometry, where the core is made of an
active material and the shell is a plasmonic metal [53]. For various aspect ratios of the nanoshell,
steady-state regimes for nanolasing were demonstrated, with remarkably sharp emission lines
with widths as little as 1 nm (and possibly even less with optimization).

In conclusion of this section, situations involving meta-atoms (plasmonic nanoresonators)
coupled to optical gain were studied using increasingly elaborate theoretical models. In all cases,
a gain level threshold was evidenced, above which lasing in the form of sharp emission lines
was found. Below the threshold, plasmon amplification regimes are always found, where the
losses of the “natural” resonance of the meta-atom are gradually compensated as the gain level is
raised.

3. Metamaterials

In the preceding section, we described several types of nano-resonators which can serve as meta-
atoms in the optical wavelength range. In this section, we discuss metamaterials, i.e., materials
obtained by assembling such meta-atoms together. We shall present materials made of meta-
atoms contained into a host-matrix, as well as materials made of dense packings of only meta-
atoms.

Bottom-up techniques can fabricate samples with chemically large numbers of meta-atoms,
meaning that they are not restricted to quasi-surfaces, so that 3D bulk materials can be produced.
Depending on the specific approach, the actual thickness of the samples can be adjusted from
one or a few layers of meta-units up to macroscopic thickness. Therefore, in this section, we
will use the formalism of optically-thick materials, such as the optical index, the electrical
permittivity and the magnetic permeability. Also, effective-medium approaches will be used to
transfer individual meta-atom properties into global, macroscopic ones. This is in contrast with
metasurfaces, which will be discussed in the next section, where the optical thickness is small
compared to the wavelength.

3.1. Tunable index of refraction

Assembling nanocolloidal meta-atoms into 3D (or quasi-3D) materials allows monitoring the
optical index. As mentioned before, self-assembly processes intrinsically introduce some degree
of disorder or defects, hindering the numerical rendering of the assembled materials. Optical
properties are then either fully determined experimentally, or modelled and predicted using
somewhat phenomenological effective medium laws.

A very simple situation [54] is a set of spherical plasmonic resonators (14 nm gold nanopar-
ticles), randomly dispersed into a 3D host matrix (a transparent polymer film), see Figure 3 (a).
Films of thicknesses ranging from about 40 to 150 nm were obtained by spin-coating aqueous dis-
persions of gold nanoparticles and polymer onto a silicon wafer, and their optical properties were
analyzed using spectroscopic ellipsometry. Due to the plasmonic resonance, the introduction of
increasing amounts of gold nanoparticles generates increasing variations in the optical indices
of the film. For example, at 6% gold volume fraction, the extracted optical index shows a wide
resonance in the visible range, with the refraction index n displaying variations n = 1.66±0.13,
see Figures 3(b) and (c).
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Figure 3. (a) Polymer film with gold nanoparticles [54]. (b, c) Films with 1.6% (b) and 5.7%
(c) gold volume fraction. Experimental index of refraction n and extinction coefficient k
extracted from ellipsometry (black continuous line). Fits by the classical Maxwell Garnett
EMA (red dashed line), by a unimodal ellipsoidal Maxwell Garnett EMA (blue dashed line)
or by a bimodal ellipsoidal EMA (green dashed line).

More surprisingly, it was found that even for a low volume fraction of gold nanoparticles
( f ∼ 1%–5%), the observed plasmonic resonance was affected by electromagnetic coupling be-
tween particles, due to disorder and inevitable local inhomogeneities in particle density, which
bring some particles close together. As a consequence, even for such dilute systems, the clas-
sical Maxwell Garnett Effective Medium Approximation (EMA) failed to predict the measured
indices (Figure 3 (b)). Such couplings could be taken into account phenomenologically, us-
ing a modified Maxwell Garnett EMA based on a random distribution of ellipsoidal polariz-
abilities, since couplings can in effect be represented as deformations of the polarizability ten-
sor of individual particles [54], while the nanoparticles actually are and remain spherical. This
simple effective model for interparticle couplings proved successful: in simple cases, a uni-
modal distribution of ellipsoidal polarizabilities was enough to provide reasonably good fits of
the experimental data with only two free parameters (Figure 3 (b)). Using bimodal distribu-
tions (Figure 3 (c)) made it even possible to reproduce more complex cases where the reso-
nance presented a shoulder in the red; the bimodal population suggested that particles could
be categorized into weakly vs. strongly coupled resonators. Such modified Maxwell Garnett
EMAs present the advantage of relying on physically meaningful parameters and provide a
general tool for the phenomenological description of plasmonic couplings in various disor-
dered nanocomposites, without resorting to advanced (and often impractical) effective-medium
theories.

Inhomogeneity in the inter-particle distance can be drastically reduced by encapsulating the
plasmonic particles in a unalterable dielectric shell of well-defined thickness. Dense thin films
of such core(silver)-shell(silica) nanoparticles were fabricated by several successive Langmuir–
Schaefer transfers of a monolayer of nanoparticles at the water–air interface onto a silicon
substrate. Their refractive index exhibits a sharp resonant behavior which is nicely reproduced
by a single Lorentz oscillator (Figure 4) [55]. Thicker 3D materials can be made by controlled
evaporation of a dispersion of plasmonic meta-atoms in microfluidic devices, and the effective
refractive index of the final bulk metamaterials can be tuned by controlling the shape, the size
and the density of the resonators (Figure 5) [13].
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Figure 4. (a) TEM view of core-shell nanoparticles. The diameters of the particle and of the
Ag@SiO2 core are 83±4 nm and 27±3 nm respectively. Inset is a sketch of the structure of a 3-
layer film deposited on a silicon substrate by the Langmuir–Shaefer technique. (b, c) Plots of
the real (b) and imaginary (c) part of the refractive index of metamaterial films as a function
of the number of layers (adapted from [55]).

Figure 5. Examples of effective refractive index of 3D composite plasmonic materials made
of dense assemblies of silver cubes in (a) and gold spheres in (b). The dots are obtained by
direct retrieval from the ellipsometric data, while the continuous lines are a fit to a Tauc–
Lorentz model [13].

Although the high volume fraction of metal in self-assembled 3D systems precludes the use of
simple mixing rules for the calculation of the effective refractive index, the ellipsometric studies
show that the materials behave as homogeneous resonant metamaterials [13].

3.2. Topological darkness

The cancellation of the TM reflection from a transparent medium at Brewster’s angle is well-
known. If losses are introduced via an imaginary part of the optical index, the exact Brewster’s
extinction disappears. Nevertheless, an exact cancellation of the TM or TE reflection can be
reached in thin absorbing films deposited on an absorbing substrate as will be shown below.

For a homogeneous film on a flat surface, the amplitude reflection coefficient of the TM wave
is given in standard textbooks

rTM = rTM,1 + rTM,2e2iβ

1+ rTM,1rTM,2e2iβ
(3)

where β = (2π/λ)N1d cosφ1 is the propagation constant inside the medium, rTM,1(2) is the
reflection coefficient from the top (1) and bottom (2) interface, N1 = n+ik is the refractive index of
the film, d its thickness,λ the wavelength in vacuum andφ1 denotes the direction of the refracted
beam within the film. The solutions of the extinction condition display multiple branches shown
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Figure 6. (a) Sketch of the optical geometry. The dark point corresponds to R = 0 (destruc-
tive interference). (b) Theoretical extinction lines computed numerically for a homoge-
neous film of index N1 = n + ik deposited on a silicon substrate at constant angle of inci-
denceφ0 = 50◦ and TM polarization. Colors red, orange, yellow, green and blue correspond,
respectively, to thicknesses d of 350, 300, 280, 250 and 200 nm. Note that more than one ex-
tinction branch may exist for each thickness (only shown for thicknesses 350 and 300 nm
for sake of clarity). Different angles of incidence result in different sets of lines. Similar sets
of extinction lines are found for TE polarization (adapted from [56]).

Figure 7. (a) SEM micrographs of a monolayer of core-shell nanoparticles
Au(14 nm)@SiO2(11 nm) transferred on a silicon substrate by the Langmuir–Blodgett
technique. (b) 3D views showing the dispersion curve of a 2-layer film of core-shell parti-
cles Au(48 nm)@SiO2(18 nm) (dark green) and the theoretical extinction curves computed
for three angles of incidence (AOI). (c) details of the crossing region showing the strong
dependence on the AOI. The figure is adapted from [57].

in Figure 6 in (n, k, λ) axes for a particular value of the angle of incidence (AOI = 50◦) and for
different thicknesses.

A dark point arises when the dispersion curve of a film (n(λ),k(λ)) crosses a line rTM = 0. For a
film of given thickness on a given substrate, the only experimental parameter is the angle of inci-
dence which must be adjusted to reach the dark point. The existence of the intersection is guar-
anteed by the Jordan theorem [56]. We illustrate this effect in Figure 7 with experiments carried
out on a thin film of core-shell nanoparticles made of a gold core (diameter 14 nm) surrounded
by a silica shell (thickness 11 nm) deposited by successive Langmuir–Schaefer transfers onto a
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Figure 8. Illustration of the high sensitivity of a plasmonic sensor based on the dark point.
The ellipsometric angles Ψ (a) and ∆ (right) are computed and plotted for increasing but
weak variations of the refractive index of the ambient medium. Note the strong effect on the
phase Ψ which provides much higher sensitivity than ∆. (c) Variations of the ellipsometric
angles ∆ (blue line, left scale) and Ψ (red line, right scale) in the vicinity of the dark point.
Helium is injected above the film at t = 200 s and t = 700 s, air is injected at t = 450 s. Note
the large variation of∆∼ 100◦ for a change of 2.4×10−4 in the refractive index N0 of the gas.
The film is a transparent polymer loaded with 10% vol. gold nanoparticles spin coated on a
silicon wafer. The thickness is 179 nm, the dark point is found at AOI = 69.6◦ and λ =
616 nm.

silicon wafer [57]. A resonant dispersion produces a large exploration of the (n,k) space, which
favors the occurrence of the dark condition (see Figure 7), but the presence of a plasmonic reso-
nance is in fact not required to observe a dark point, and it may actually occur either near [58] or
away [59] from the resonance, providing in the later case a low-loss phase jump effect.

The dark phenomenon is easily detected by spectroscopic ellipsometry measuring the ratio of
the TM to TE reflection coefficients ρ = rTM/rTE = tanΨe−i∆. At the dark point, Ψ vanishes and
the phase∆ undergoes a sharp jump equal to π. The steep variation of the phase can be exploited
for ultra-sensitive sensing [56, 60].

Figure 8 (a,b) illustrates the variation of Ψ and ∆ for weak variations of the refractive index
of the ambient medium. Figure 8 (c) shows an application to the detection of weak variations
of the refractive index of a gas. A phase shift of 100◦ is observed when air is replaced by helium
in the ambient medium above the film. The change in refractive index is 2.4×10−4 which yields
a sensitivity of the phase on the order of 4× 105 deg/RIU. Figure 8 (c) shows that a detection
accuracy better than 10−5 RIU is easily achieved, which is comparable to SPR instruments based
on photodiode arrays for instance [61].

This example shows that the total extinction of the reflection due to destructive interferences
in a thin absorbing film (topological darkness), similar to the Brewster’s extinction on a transpar-
ent medium, can be used for sensing with a high sensitivity.

3.3. 3D isotropic optical magnetism

The magnetism of matter is vanishingly small in natural materials at high frequencies. Paramag-
netism and ferromagnetism are slow process that are usually extremely inefficient at frequencies
larger than the GHz and diamagnetism typically exhibits magnetic susceptibilities χm on the or-
der of 10−4 at best. As a consequence, the relative magnetic permeability µ is equal to one for
all optical materials in optics and electromagnetism at such frequencies. Natural diamagnetism
occurs—in a semi-classical description—because impinging electromagnetic fields induce local
polarization currents in atoms or molecules due to circulating charges such as an electron, re-
sulting in an angular momentum that itself produces a magnetic dipole moment m. However,
these dipole moments are very weak at optical frequencies [20].
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Figure 9. Three-dimensional magnetic metamaterial at optical frequencies. (a) Spectral
variations of the retrieved magnetic permeability µ of the metamaterial. (b, c) Scanning
electron micrographs of the self-assembled metamaterial at two different scales. Figure
adpated from [14].

Plasmonic raspberry systems such as those presented in Section 2.1 (see Figure 1(c–f)) con-
ceptually play the same diamagnetic role as the atom, because circulating plasmonic currents are
created that produce an effective magnetic dipole moment near the plasmon resonance wave-
length. This resonance wavelength is large compared to the size of the nanosystem [62]. Fur-
thermore, they have pseudo-spherical symmetry, which means that their behavior does not de-
pend on the directions of the electric and magnetic fields incident on the material. As a result,
they are ideal to serve as the building blocks of a three-dimensional isotropic metamaterial that
will exhibit a resonance in the magnetic permeability µ. This contrasts with most realizations of
magnetic metamaterials that have been proposed thus far by the top-down approach that were
mainly two-dimensional and composed of anisotropic meta-atoms [5].

Using a microfluidic evaporation technique aiming at (meta)materials fabrication [13, 63, 64],
a three-dimensional metamaterial composed of these raspberries is produced by flowing the
solvent containing the colloids through a micro-channel. The solvent eventually evaporates
through a semi-permeable membrane and a dense three-dimensional ensemble is molded into
the channel. The final metamaterial is truly bulk and constitutes a chunk 100µm wide, 5µm deep
and several mm long.

For all practical purposes, this means that at optical frequencies the metamaterial may be con-
sidered as semi-infinite, and a variable angle spectroscopic ellipsometric analytical retrieval pro-
cedure enables the unambiguous determination of the spectral variations of ε(λ) and µ(λ) [14].
The obtained metamaterial reveals a resonant behavior of the magnetic permeability µ with a
real part ranging from 0.8 to 1.45 as shown on Figure 9 (a). This corresponds to a magnetic sus-
ceptibility comprised between −0.2 and 0.45, three orders of magnitude higher than the highest
natural—static—diamagnetic susceptibility. As far as the authors know, this is the first realization
of a bulk magnetic metamaterial exhibiting reflexion properties in visible light which are correctly
described by an effective isotropic permeability parameter. A tutorial on the direct experimental
retrieval procedure is given by Flamant et al. [65].

3.4. Hyperbolic dispersion

Another type of nanostructures referred to as hyperbolic metamaterials has been proven very
promising, as it exploits anisotropy effects to monitor the propagative modes via engineering
of the dispersion relation. Indeed, hyperbolic metamaterials present, in some spectral range,
two components of the dielectric permittivity tensor ε with opposite signs, as if the material
behaved like a metal (εi < 0) along at least one direction and like a dielectric (ε j > 0) along at
least another. Because of this extraordinary anisotropy, the isofrequency surfaces open up into
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Figure 10. Block copolymer based lamellar metamaterial. (a) Scanning electron micro-
graph evidencing the regular uniaxial nanostructure. (b, c) Real part of the ordinary and
extraordinary permittivities as a function of wavelength for increasing volume fraction f of
gold NPs in the lamellae. Figure adapted from [66].

hyperboloids, instead of ellipsoids in a natural material. The extended shape of the isofrequency
surfaces allows for propagating waves with large wavevectors, which would be evanescent waves
in a natural material. This unique property of propagating high-k waves opens possibilities
for imaging with subwavelength resolution. In addition, the phase space volume between two
hyperboloids for two values of frequency is infinite, which corresponds to an infinite density
of photonic states. Finally, the peculiar dispersion relation gives rise to a number of specific
properties, from subwavelength modes to emission engineering, as reviewed in a number of past
reports [67–70].

Anisotropic metal-dielectric nanostructures with a hyperbolic dispersion law in the visible
wavelength range have been produced with either lamellar stack or cylinder array geometries.
Metal-dielectric multilayers are often grown by physical vapor deposition, using either sputter-
ing or evaporation, while cylinder arrays are often produced via the growth of aligned nanowires
within porous templating matrices [71] as well as electron beam lithography [72]. As a mat-
ter of fact, nanostructuration and anisotropy, along with some degree of long-range order, are
spontaneously arising in several self-assembled “soft matter” systems as surfactant organized
phases [73], liquid crystals [74], organized nanoparticles, and block copolymers [75]. 3D self-
assembly in the form of magnetic NPs chains, induced by the application of an external magnetic
field to a ferrofluid, creates a sufficient anisotropy to achieve hyperbolic dispersion laws [76, 77].
Carbon nanotubes packed and aligned by filtration can also constitute hyperbolic metamate-
rials [78]. Block copolymers present many advantages for the design of anisotropic nanocom-
posites. They are the result of covalently linking two or more long polymer chains, each called
a block, with a chemical nature that can be chosen within a very wide range of chemical func-
tions. Most polymers are incompatible with one another and phase separate in a blend, but be-
cause they are covalently linked, distinct blocks of a block copolymer can segregate only as far
as the size of the macromolecule, which results in the formation of nanodomains of each block
in the solid material. The morphology and degree of order of these nanodomains are fully con-
trolled by the number and relative length of the blocks, while their size directly depends on the
whole macromolecule molar mass [79]. By hybridizing an aligned block copolymer nanostruc-
ture with gold precursors, Wang et al. have produced periodic lamellar stacks of period 28 nm, of
alternating layers of pure polymer (dielectric) and layers of composite of polymer loaded with a
variable density of 7 nm gold nanoparticles [66]. For large gold loading and close to the plasmon
resonance of the nanoparticles, the lamellar stack presents ordinary and extraordinary compo-
nents of the dielectric function of opposite signs, as evidenced by spectroscopic ellipsometry and
shown on Figure 10, demonstrating the potential of this fabrication route for self-assembled bulk
hyperbolic metamaterials.
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4. Metasurfaces

Metasurfaces are 2D equivalent of metamaterials, designed to control the phase, amplitude
and possibly polarization of incident EM waves with subwavelength thickness, using interfacial
discontinuities effects (see for instance [80]). Metasurfaces rely on the tailored light scattering of
sub-wavelength resonators organized in thin films.

4.1. Large surfaces

Just as for 3D assemblies, bottom-up routes for the organization of nano-objects on surfaces
rely on constrained hydrodynamics or templating by patterned substrates in order to direct
and benefit from self-assembly phenomena, with the major advantage of providing low-cost,
large-scale fabrication routes. For instance, dewetting phenomena on topographically patterned
substrates have led to silver NPs arrays presenting surface lattice resonance modes [81]. While
the size, shape or complex geometry of nanoresonators can tailor their responses, in terms of
light absorption and scattering, the relation between these responses and the properties of a
metasurface made of the assembled resonators will be computable only if the assembly process
results in a surface of good homogeneity. Templating may be a good process to target such
homogeneity. A combination of lithography-based topographically patterned substrates and
confined drying conditions of a colloidal suspension can lead to well-controlled 2D assembly [82]
as demonstrated for instance by an anisotropic appearance in the far-field in the case of aligned
nanorods [83]. Templating can also be performed using low-tech wafer-wide spin-coated block
copolymer thin films (<50 nm). They constitute chemically patterned substrates, on which
metal or dielectric nano-objects can be attached [84] or grown [85–88]. They can also be used
as nanometric masks for lithography-like fabrication methods [89, 90]. At the University of
Bordeaux, such large scale block copolymer thin films have been used to produce tunable
gold nanoresonators in fingerprint-like structures illustrated in the Figure 11, insuring a global
azimuthal isotropy together with inter-particle distance homogeneity [86]. The tunable aspect
ratio of the resonators strongly affects the optical response of the surface nanostructure on a
silicon substrate. Indeed, a description of the optical properties of the samples was derived from
ellipsometry data in reflection in terms of an effective optical index, even though the index of so
thin films may not be defined independently of the measurement conditions [91,92]. In Ref. [86],
increasing the in-plane aspect ratio of the nanoresonators to 2, while keeping the nanostructure
thickness constant, was achieved by tuning a simple fabrication process parameter and led to
an increase of the index up to 3.2, against ∼1.6 for a nanostructure with same gold density and
resonators of aspect ratio 1.

4.2. Flat optics

The recent surge in metasurfaces has shown that it is possible to conceive a wide variety of flat
optical components that operate thanks to the careful engineering of the amplitudes and phases
of the fields scattered by individual resonant objects [34,93]. Bottom-up nanocolloidal routes can
play a role here notably thanks to the large amounts of nanoresonators they can produce and the
vast surfaces that can be coated by various self-assembly techniques. The variety of meta-atoms
that can be synthesized makes it possible to tailor the resonances of the electric dipole moment
(p) as well as the magnetic dipole moment (m) both in amplitude and in resonance wavelength.

For instance, when a particle has the property that |p| = |m|, the so-called first Kerker condition
is reached and a Huygens dipole is produced [94]. The Huygens dipoles emit spherical waves
solely in a direction u such that (u,p,m) forms a direct trihedron. This dipole is named after
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Figure 11. SEM images of gold nanoparticle arrays formed on a silicon wafer using a PS-b-
P2VP block copolymer template by immersion in a 1 wt% aqueous gold precursor solution
for (A) 1 h, (B) 48 h and (C) 120 h [86]. Scale bars = 100 nm.

Christiaan Huygens as it corresponds to the fictitious point sources of secondary spherical
wavelets from the Huygens–Fresnel principle [95]. As a result, when the meta-atom is excited by
an impinging plane wave, scattering only occurs in the direction of the exciting wave. This means
that a surface composed of these meta-atoms are reflection-less and exhibit a transmission close
to unity, these are Huygens metasurfaces [96]. Furthermore the fact that both dipolar resonances
are super-imposed means that a full range of dephasing is accessible on the [0,2π] interval and
virtually any wavefront may be shaped and flat optical components may be produced, such as
prisms or lenses. Huygens sources can be obtained with several systems such as those described
in Section 2.2, by exploiting the Mie resonances of homogenous nanoparticles that have the right
dispersion and size to reach the Huygens regime, or else by using the clusters system proposed
by Dezert et al. [37]. It was demonstrated that clusters of plasmonic or dielectric inclusions were
good candidates to produce flat lenses and prisms [97]. This 2π phase-shift occurs over narrow-
spectral ranges and as a result group-velocity dispersion may be large. This potentially means that
metasurfaces composed of isotropic Huygens sources could be used for temporal pulse shaping
as was proposed by Decker et al. [96] in the case of a periodic metasurface. But since ordering
does not play a role, disordered metasurfaces could be used and this is adapted to the bottom-up
platform.

Additional types of flat optical components such as filters may be produced. The cases of
resonant perfect absorbers is discussed below.

4.3. Perfect absorbers

In many circumstances, it may be useful to have a material that absorbs all of the incoming
radiation. This concept is certainly applicable to photovoltaics or even some classes of sensors for
instance. Furthermore, Kirschoff’s law of thermal radiation roughly states that the emissivity of a
body is equal to its absorptivity at a given temperature [98]. This means that a perfectly absorbing
metamaterial or metasurface may act as a great thermal emitter, or else, due to its thermal activity,
it may act as an insulator or bolometer.

Bottom-up colloidal metasurfaces may also play a role in this field, since the metasurface
inherits its property from the properties of meta-atoms. Film-coupled metasurfaces acting as

C. R. Physique, 2020, 21, n 4-5, 443-465



Alexandre Baron et al. 459

Figure 12. Nanocolloidal Perfect Absorbers. (a) Perfect absorbing metasurface composed
of film coupled silver nanocubes ranging from 75 to 140 nm in size deposited on a
gold evaporated film and spaced a few nanometers above the gold film. (b) Wavelength-
dependence of the reflectivity exhibiting a resonant dip at λ≈ 650 nm. The photograph on
the right-hand side of the graph show that large areas can be covered. (c) Illustration of a
canonical metasurface composed of nanocolloids. The metasurface inherits its radiation
properties from the scattering properties of the multipoles of the colloids. (d) Top graph:
absorption (black), transmisttance (blue) and reflectance (red) spectrum of a perfect ab-
sorber composed of a periodic array of germanium nanoclusters. Bottom-graph: multipo-
lar decomposition of the nanocluster in the array. (e) Metasurface composed of core-shell
nanocolloids containing a silver core and a n-doped silicon shell. (f) Absorption spectrum
of the core-shell metasurface. (a) and (b) are adapted from [102]. (c) and (d) are adapted
from [103]. (e) and (f) are adapted from [104].

perfect absorbers have been demonstrated by Moreau et al. [99]. They are composed of silver
nanocubes deposited on gold films with a separating dielectric gap layer of a couple of nanome-
ters typically. The gap layer is composed of alternating positively and negatively charged poly-
electrolytes deposited on the gold surface by dip-coating. The surfaces operate in reflectance and
exhibit a resonance dip in the reflectance at a wavelength that is determined by the nanocube
size and gap thickness. The amplitude of the resonance is governed by the surface fill frac-
tion [100, 101]. Akselrod et al. have shown that such perfect absorbers could cover and conform
to large areas (see Figure 12 (a,b)) [102].

C. R. Physique, 2020, 21, n 4-5, 443-465



460 Alexandre Baron et al.

Alternatively, it is also possible to produce perfect absorbers, that operate as transmissive
monolayers of nanocolloids resonantly absorbing all the impinging light. For instance, a design
was proposed by Radi et al. consisting in a periodic square array composed of core-shell nanocol-
loids containing a silver core and a n-doped silicon shell [104] (see Figure 12 (e)). These systems
may resonantly act as Huygens dipoles (see Section 4.2), which ensures that no reflection from
the metasurface occurs. Furthermore, they show that the perfect absorption condition is reached
when both the electric and magnetic polarizabilities (αe and αm respectively) of the core-shell in
the metasurface satisfies the following relation

µ0

ε0
αe =

ε0

µ0
αm = i

S

ω
(4)

where S is the area of the unit cell of the periodic array and µ0 is the free-space magnetic
permittivity. Figure 12 (f) shows that unity absorption is achieved for this system near a frequency
equal to 300 THz.

It was shown recently by Dezert et al. that the nanocolloids do not have to be dipolar and that
multipolar systems can be used in a periodic array to achieve perfect absorbtion (see Figure 12
(c)) [103]. Indeed, what is required is (i) that the sum of odd multipole modes be equal to the
sum of even multipole modes, which is a generalization of the famous first Kerker condition
(see Section 4.2) and produces Huygens multipoles (i.e. no back-scattering) and (ii) that they
both be real and equal to a specific value such that zero-transmission occurs. The condition is
summarized by the following relation

∞∑
n=1

On =
∞∑

n=1
En = k2S

π
(5)

where On (En) is the nth order odd (even) multipole and k is the free-space wavevector. This
property, will ensure that the field radiated by all mutipoles will interfere destructively in the
backward direction and reflectance will be cancelled. As a result of this generalization, several
designs of perfect absorbing metasurfaces can be proposed. Figure 12 (d) provides an example
where near unity absorption is achieved at optical wavelengths, with an array composed of
germanium nanoclusters, which operate in a severely multipolar regime.

These designs have great potential for bottom-up nanocolloidal metasurfaces operating at
optical frequencies.

5. Conclusion

The examples given in this review illustrate some advantages of the bottom-up approach over
top-down fabrication routes for the realization of metamaterials operating in visible light. The
extreme versatility of nanochemistry enables the large-scale synthesis of finely engineered meta-
atoms. Moreover, self-assembly, relying solely on colloidal interactions, or directed-assembly,
benefiting from external guiding constraints, enable the fabrication of bulk materials at little
energy cost. In this way, assembling more than 109 meta-atoms in a volume of 106 µm3 is
routinely achieved. The successful observation of an isotropic effective magnetic permeability
different from the vacuum value µ0 in an optically thick metamaterial follows from this ability to
produce and assemble a large number of resonators.

Bottom-up metamaterials nevertheless face many difficult challenges. Nanochemistry and
self-assembly result in statistical distributions of the shape, size and ordering of the meta-
atoms. For optical functions requiring a high precision in the response and the location of
each meta-atom, like planar lenses, some top-down fabrication processes seem inescapable.
On the other hand, if homogeneous effective optical properties are sought for, some degree of
structural disorder at scales shorter than the wavelength has little impact. The random packing
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of the magnetic meta-atoms is even necessary to enable the validity of an effective magnetic
permeability parameter [14].

Increasing the optical response of the meta-atoms is another important challenge. In particu-
lar, higher values of their magnetic polarizability are needed for the production of Huygens meta-
surfaces or mu-near-zero (MNZ) materials. Silver has proved to be more efficient than gold in the
raspberry model [14,62]. Mie-resonators made of high-index dielectric seem particularly promis-
ing for future materials [32, 105]. Increasing the magnetic response of the meta-atoms may how-
ever affect the validity of the permeability parameter µ and stimulate more theoretical work. In-
deed, artificial magnetism is an effect of spatial dispersion of the permittivity that cannot in prin-
ciple be reduced to a second-rank tensor µi j [106].

Optical losses constitute a major limitation for most applications of metamaterials in optics.
Compensation of losses by addition of a gain medium excited by optical pumping is a complex
and costly process that may be reserved for research studies or specific applications. The impact
of losses can nevertheless be limited by using dielectric instead of plasmonic resonators or by
reducing the optical thickness in metasurfaces. On the other hand, the Ohmic losses of plasmonic
resonators are welcome for applications requiring a local source of heat like heat therapy.
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Abstract. Originally discovered in condensed matter systems, topological insulators (TIs) have been ubiqui-
tously extended to various fields of classical wave physics including photonics, phononics, acoustics, me-
chanics, and microwaves. In the bulk, like any other insulator, electronic TIs exhibit an excessively high resis-
tance to the flow of mobile charges, prohibiting metallic conduction. On their surface, however, they support
one-way conductive states with inherent protection against certain types of disorder and defects, defying the
common physical wisdom of electronic transport in presence of impurities. When transposed to classical
waves, TIs open a wealth of exciting engineering-oriented applications, such as robust routing, lasing, signal
processing, switching, etc., with unprecedented robustness against various classes of defects. In this article,
we first review the basic concept of topological order applied to classical waves, starting from the simple one-
dimensional example of the Su–Schrieffer–Heeger (SSH) model. We then move on to two-dimensional wave
TIs, discussing classical wave analogues of Chern, quantum Hall, spin-Hall, Valley-Hall, and Floquet TIs. Fi-
nally, we review the most recent developments in the field, including Weyl and nodal semimetals, higher-
order topological insulators, and self-induced non-linear topological states.

Résumé. Découverte à l’origine en matière condensée, la notion d’isolant topologique (IT) a été étendue à
divers domaines de la physique des ondes classiques, notamment la photonique, la phononique, l’acous-
tique, la mécanique et les micro-ondes. Dans leur volume, comme tout autre isolant, les IT électroniques
présentent une résistance excessivement élevée à l’écoulement des charges, interdisant la conduction mé-
tallique. Sur leur surface, cependant, ils présentent des états conducteurs unidirectionnels avec une protec-
tion inhérente contre certains types de défauts, au-delà de ce que pouvait laisser présager la physique du
transport électronique en présence d’impuretés. Transposés aux ondes classiques, les IT ouvrent une mul-
titude d’applications passionnantes en ingénierie, comme le routage, les lasers, le traitement du signal, les
commutations, etc. avec une robustesse sans précédent face à différentes classes de défauts. Dans cet article,
nous passons d’abord en revue le concept de base des IT appliqué aux ondes classiques, à partir de l’exemple
simple et monodimensionnel du modèle Su–Schrieffer–Heeger (SSH). Nous passons ensuite aux IT à ondes
bidimensionnelles, en discutant des analogues pour les ondes classiques des IT de Chern, d’effet Hall quan-
tique, de spin-Hall, de Valley-Hall, et de Floquet. Enfin, nous passons en revue les développements les plus
récents dans le domaine, y compris les semi-métaux de Weyl et nodaux, les isolants topologiques d’ordre
supérieur et les états topologiques non linéaires auto-induits.
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1. Introduction

Phases of matter are conventionally characterized using the so-called Landau’s approach [1],
classifying them in terms of the symmetries that break spontaneously at phase transitions. In
the 1980’s, however, the discovery of the so-called quantum Hall effect, the quantum mechanical
version of the classical Hall effect, suggested a fresh view on how to distinguish insulating
phases [2]. More specifically, this phenomenon, observed in a 2D electron gas subject to an out-
of-plane magnetic field, indicated a completely different classification paradigm based on the
abstract concept of topology [3], a branch of mathematics concerned with the study of quantities
that are preserved under continuous transformations.

Over the past few years, the topological classification of phases of matter has been extensively
developed in order to understand the pivotal differences in the physical properties of electronic
insulators, allowing for the distinction between ordinary and topological insulators (TIs) [4–6]. In
the bulk, like any other ordinary insulator, a TI exhibits an energy band gap separating the valance
and conduction bands. However, contrary to normal insulators, TIs support conductive gapless
states flowing along their edges. These edge states are characterized by a special non-local integer
number, known as a topological invariant or Chern number [7], which guarantees their presence
and cannot change unless the insulating phase undergoes a discontinuous transformation that
closes the band gap.

The edge modes of topological insulators can exhibit various interesting properties, the most
important ones being the robustness of their existence, as well as their resilience to disorder-
induced backscattering. Indeed, in order to destroy the presence of the edge states, topology
requires that the bandgap is first closed, implying a stringent modification of the bulk properties,
impossible with localized edge imperfections or weak disorder. In addition, fermionic topological
edge propagation is typically unidirectional or spin-locked, due to symmetry properties that are
not broken by most impurity types. In electronics, these features have been established as a
cornerstone for the realization of novel devices with a strong immunity against imperfections [8–
11]. For instance, new types of spin-resolved electronic devices have recently been proposed
that, by taking the advantage of the robustness of TIs, perfectly separate the “read” current path
from the “write” one [12, 13]. This leads to not only a better output signal but also an improved
reliability of spintronic systems.

Although discovered in quantum condensed matter systems, topological insulators are not
intrinsically based on quantum phenomena and, as such, can be also obtained in classical sys-
tems. Indeed, the topological properties of insulators boil down to geometrical phase effects [14]
that are, in principle, not related to the spatial scale or the physical nature of the system. In a
pioneering paper [15], Haldane and Raghu proposed to extend the notion of Chern topological
insulators to electromagnetic waves propagating in periodic media comprising magnetically bi-
ased ferrites. This sparked a search for classical applications of topological physics, in particular
in wave phenomena of various kinds, from electromagnetics and photonics [16–68], to acoustics
and phononics [69–100], as well as mechanics [101–122]. Classical wave systems can therefore
benefit from a new kind of topologically inherited robustness to defects and disorder. In compar-
ison with their fermionic counterparts, classical topological systems offer a larger control over
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their space and time properties, representing a particularly relevant platform to design, fabri-
cate and detect all kinds of topological effects that may not be straightforwardly observed in con-
densed matter systems.

In this paper, we provide a comprehensive overview of recent advances of wave-based classical
topological insulators, with an emphasis on the multidisciplinary aspect of this research field,
and the important underlying physical concepts. The review is organized as follows: we first
discuss the basic consequences of topological order when applied to classical waves, starting
from the one-dimensional scenario, which includes the realization of the so-called Su–Schrieffer–
Heeger (SSH) model in various wave physical platforms. We then move to two-dimensions,
reviewing wave analogues of the quantum Hall and quantum spin Hall phases, as well as other
related ideas such as valley-selective waveguiding, and Floquet topological insulators. We next
move on to more recent developments of the field including higher-order topological insulators,
three-dimensional topological phases in semi-metals, and nonlinear self-induced topological
insulators. Finally, the last section reviews some of the most important technology-oriented
applications that are actively being pursued for wave-based topological insulators, providing a
clear overview of the future directions in this field.

2. Ordinary topological phases

2.1. One-dimensional wave topological insulators

One of the simplest forms of topological insulating phase is found in a periodic one-dimensional
discrete chain, known as the Su–Schrieffer–Heeger (SSH) chain [123–135], consisting of identical
evanescently coupled resonators with alternating coupling coefficients. The unit cell of the SSH
tight-binding chain includes two resonators with identical resonance frequency coupled to each
other with an intra-cell coupling coefficient K , whereas an extra-cell coupling coefficient J
couples adjacent unit cells. When K = J , the two dispersion bands of this one-dimensional crystal
touch each other at the edge of the Brillouin zone, as a result of band folding. For K 6= J , on the
other hand, the band structure is gapped, leading to an insulating phase. Depending on whether
K > J or K < J , this insulating phase can be of trivial or topological nature. In particular, it has
been shown that when the value of the extra-cell coupling coefficient is larger than the intra-cell
one (i.e. K < J ), the corresponding insulating phase is of topological nature, supporting mid-gap
edge modes at the interface with any trivial insulator. On the contrary, K > J leads to a trivial
insulating phase without any edge mode [123]. While both cases (K > J or K < J ) look similar
when only considering the band structure, i.e. the eigenvalues of the tight-bighting Hamiltonian,
the topological difference resides in the associated eigenmodes, which shows a band inversion
as one goes from the center to the edge of the Brillouin zone. In this one-dimensional case,
the topology is defined from the mapping between the Brillouin circle to the space of 2 × 2
Hermitian Hamiltonian with chiral symmetry (also known as the equator of the Bloch sphere),
and is characterized by a winding number [123]. Importantly, this topological invariant is only
well defined for chiral symmetric systems, meaning that all of the resonators should have the
same resonance frequency. As a consequence, edge modes are robust to any disorder that
preserves this symmetry and is not strong enough to close the band gap, which happens at the
onset of Anderson localization. Note also that there exist different types of topological phases
in one-dimension, which are all symmetry protected, and summarized in the Altland-Zirnbauer
classification table for topological phases [136].

Considering the simplicity of the SSH model, this topological system has been implemented
in a large variety of classical wave platforms. For instance, in [137] Parto, et al., realized the
optical version of the SSH structure making use of 16 identical coupled micro ring resonators
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fabricated on InGaAsP quantum wells (Figure 1a). By changing the successive distances between
the adjacent rings, the strengths of intra-cell and extra-cell coupling coefficients were engineered
such that they give rise to a non-trivial topological phase. The inset of Figure 1b illustrates the
profile of the corresponding topological mid-gap state, which is pinned to the edge of the array,
and exploited for lasing.

The SSH model has also been implemented in acoustics. In [138], Xiao, et al. demonstrated
the model in a one-dimensional sonic crystal consisting of cylindrical pipes with alternating
cross-sectional areas, thereby mimicking the SSH scheme. Figure 1c shows a photograph of the
fabricated SSH structure, which consists of two one-dimensional arrays with different topological
properties (different winding numbers), connected to each other to form a mid-gap edge state at
the phase transition interface. The inset of Figure 1d shows the profile of the edge mode.

The strong localization of the edge mode of the SSH array has been of particular interest for
applications such as lasing [137,139], and sensing [140]. Yet, these kinds of edge modes cannot be
used for waveguiding, as they are confined in zero dimensions. In the next part of this section, we
move to two dimensions and describe 2D topological insulators whose edge modes are confined
in one dimension and can therefore be leveraged for waveguiding and energy transport.

2.2. Chern wave insulators

The integer quantum Hall effect (IQHE) provides the first example of a two-dimensional (2D)
electronic topological insulator, in which the electrons flow unidirectionally along the edge of a
2D system subject to an out-of-plane external magnetic field [141]. Under these conditions, the
Hall conductance takes the quantized valuesσH =Ce2/h, in which h is the Plank constant, e is the
electron charge, and C is an integer, corresponding to the topological invariant of the system. This
quantity, also known as Chern number, is defined as a surface integral over the entire Brillouin
zone (BZ), which is a torus in the three dimensional momentum space. The integral is expressed
as

C = 1

2π

∮

BZ
A(k)dk. (1)

The parameter A(k) in (1) is the so-called Berry curvature defined as A(k) = ∇k ×
[〈ψn(k)|i∂k |ψn(k)〉], in which ψn(k) represents the corresponding Bloch state on the nth
band, k is the Bloch wave number, and ∂k and ∇k× are the derivative and curl operators with
respect to k, respectively. Since A(k) is an odd function for time-reversal symmetric systems,
the Chern number C is zero in the absence of an external magnetic field. Applying a bias odd
under time reversal is therefore essential to achieve a non-zero Chern number. Insulating
phases with non-trivial topological order exhibit intriguing unidirectional charge transport
along their edges. Note that in two dimensions the topology is defined by mapping the Bril-
louin torus to the entire Bloch sphere. In this picture, a twisted topology corresponds to an
obstruction to define the Bloch wave functions over the entire Brillouin zone using a single phase
convention [123].

Motivated by the developments of quantum Hall phases in electronic and quantum systems,
the classical analogues of such phases were realized shortly thereafter. As mentioned earlier,
Chern insulating phases are associated with a broken time reversal symmetry, which can be
achieved in the context of microwave engineering using ferromagnetic materials. In [142], Wang
et al. realized the electromagnetic version of quantum Hall phases based on gyromagnetic
microwave materials. This achievement was obtained in a two-dimensional square lattice of
ferrite rods, implemented inside a microwave waveguide and biased with an external uniform
magnetic field (see Figure 1e). The one-way character of the topological edge mode was studied
and demonstrated both in numerical simulations and experiments, as illustrated in Figure 1f.

C. R. Physique, 2020, 21, n 4-5, 467-499



Farzad Zangeneh-Nejad et al. 471

Figure 1. Topological wave insulators. a, b, Realization of a one-dimensional electromag-
netic topological insulator (based on the SSH scheme) in an array of coupled micro ring
resonators fabricated on InGaAsP quantum wells. c, d, Realization of the SSH model in
acoustics based on cylindrical waveguides with alternating cross-sectional areas, tuning
the strengths of the coupling coefficients. e, f, Two-dimensional Chern wave insulators were
firstly realized in electromagnetics based on a square lattice of magnetically-biased gyro-
magnetic ferrite rods, implemented inside a microwave waveguide. g, h, Realization of a
Chern insulator in acoustics by constructing a hexagonal lattice of sonic ring cavities filled
with rotationally biased moving fluids. i, j, Photonic realization ofZ2 wave insulating phases
based on a metamaterial with strong bi-anisotropic behavior, providing TE and TM polar-
ized modes with opposite spin-orbit forces. k, l, A strategy to achieve acoustic versions of
Z2 insulators is to expand the primitive unit-cell of a hexagonal lattice to a larger one, and
use the corresponding folded degenerate Bloch states as pseudo-spins. m, n, Photonic real-
ization of Valley Hall insulators based on a zigzag edge domain wall of two crystals with op-
posite on-site potential organizations. o, p, Realization of Valley Hall insulators in a sonic
crystal consisting of triangular polymethyl methacrylate rods positioned in a triangular-
lattice with opposite rotation angles. q, r, Photonic analogue of Floquet topological insu-
lator, based on a graphene-like lattice of helical waveguides evanescently coupled to each
other. The helicity of the waveguides breaks z-reversal symmetry. s, t, Realization of Floquet
topological insulator based on a hexagonal lattice of acoustic trimers, with capacitances
modulated in time in a rotating fashion.

Just a few years after this work, researchers extended such extraordinary phases to another
field of classical wave physics, namely acoustics. This extension, however, required a different
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trick [143]. In particular, since sound waves do not interact efficiently with magnetic fields,
a different strategy was employed to break time-reversal symmetry, namely the use of fluid
motion [144]. In 2015, two independent works proposed the use of rotating fluids to realize
acoustic analogues of quantum Hall phases [145,146]. Fleury et al. proposed an acoustic analogue
of magnetically-biased graphene (Figure 1g), based on a honeycomb network of ring cavities
filled with rotationally moving fluids [145]. Yang, et al. [146] suggested a different approach
employing a triangular array of rotating cylinders in a viscous fluid. The corresponding edge
modes of such topological phases provide the unique opportunity of reflection-less routing of
sound along irregularly shaped pathways, as seen in Figure 1h. Such backscattering-immune
classical wave transport has been confirmed in a series of related proposals [147, 148], as well
as experimental investigations [149, 150].

2.3. Z2 wave insulators

While Chern insulators require breaking of time-reversal symmetry, there exists another type of
topological insulators in two-dimensions that, on the contrary, preserve time-reversal symmetry.
In electronic condensed matter systems, these insulators are referred to as Z2 topological insu-
lators, and typically emerge in the presence of spin-orbit coupling, as in the quantum spin-Hall
effect [151, 152]. Such phases can be pictured as systems in which two time-reversed copies of a
quantum Hall phase with opposite Chern numbers coexist without coupling. One of the copies
corresponds to electrons with positive spins, and its time-reversed version to electrons with neg-
ative spins. As a consequence, two topological edge modes exist that propagate in opposite di-
rections, carrying electrons with different spins. In presence of time-reversal symmetry, Kramers
theorem prevents any interaction between the two spin species, which cannot backscatter at
non-magnetic defects. Since they do not require time-reversal symmetry breaking,Z2 topological
insulators may appear easier to realize than the Chern class in electronic systems. Yet, realization
of these phases in classical systems is not quite straightforward for two principal reasons. First,
photons (and also phonons), associated with electromagnetic (or sound) waves, are spin-less par-
ticles. Second, they are bosons, for which the time-reversal operator Tb squares to +1, and not
to −1, as for electrons, which are fermions (T 2

f = −1). Interestingly, the relation T 2
f = −1 is es-

sential for Kramers theorem to hold, guaranteeing truly independent spin subspaces. In order to
solve these issues, one must construct a pseudo-spin degree of freedom and “augment” bosonic
time-reversal with another symmetry operation C such that (C T b)2 = −1, enforcing Kramers
degeneracy when both C and Tb are preserved [153–186]. Note that this procedure potentially
makes the classical version of a Z2 topological phase less robust than its electronic counterpart,
since not only Tb breaking defects induces backscattering for the topological edge modes, but
also defects that break C .

For electromagnetic waves, described by Maxwell equations, spin can be emulated by lever-
aging electromagnetic duality as an additional symmetry C , by enforcing ε = µ. This assump-
tion indeed restores the duality of Maxwell’s equations, creating two degenerate, time-reversed
(pseudo)spins. By properly introducing some bi-anisotropy (coupling the TE and TM compo-
nents of the field), the two spins of such a system can undergo opposite interaction terms emulat-
ing spin-orbit coupling. This leads to the realization of an electromagnetic analogue of the quan-
tum spin Hall effect, based on the combination of duality and time-reversal symmetry. Employing
this scheme, in [187] Khanikaev et al. proposed the photonic analogue of the quantum spin Hall
effect in a hexagonal lattice of a spin-degenerate dual metamaterial, composed of split ring res-
onators with strong bianisotropic behavior (Figure 1i). The inset of Figure 1j represents the profile
of one (spin up) of the corresponding edge modes. Defects in the form of sharp turns that do not
couple the two polarizations do not break duality nor time-reversal symmetry, hence they do not
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reflect the spin-locked topological edge modes that can seamlessly be routed along an irregularly
shaped topological interface. Note that the duality condition ε=µ is hard to achieve as dispersive
effects might make it difficult to guarantee this condition over a broad frequency range. Never-
theless, it can be enforced with very good approximation over a couple of crystal bands, which is
more than sufficient for observing exceptionally robust edge wave transport along bent paths. A
similar idea has been implemented for Lamb waves over a structured plate based on accidental
degeneracy between two Lamb modes with distinct polarizations [188]. Finally, the extension of
these concepts to continuous electromagnetic media satisfying a generalized form of symmetry,
P T D symmetry, has been successfully conducted by a series of paper by Silveirinha [189, 190].
These photonic systems have similar properties as those based on duality.

In fluid acoustics, the explained strategy to achieve quantum spin Hall phases is not readily
functional due to the absence of a polarization degree of freedom. An alternative strategy to em-
ulate acoustic pseudospin is to exploit the symmetry of a crystal lattice, in which case C is some
sort of crystalline symmetry operation. Such a scheme, based on six-fold rotational symmetry,
was initially proposed by Wu and Hu in 2015 in a triangular lattice of hexagonal resonators [191],
and implemented in a variety of platforms including microwaves [192], photonics [193–197], elas-
tic [198–201] and acoustics [202–205]. Figure 1k and 1l show an example [205] that employed this
strategy to induce a deeply subwavelength acoustic topological edge mode in a subwavelength
sonic crystal made of Helmholtz resonators (simple soda cans) arranged in a modified hexagonal-
like lattice. The unit cell of the crystal is shown in the inset of Figure 1k. Figure 1l illustrates how
the edge mode of such a crystal propagates with good transmission along a path involving sharp
turns. Note that all symmetry-based strategies for emulating pseudo-spins only allow for an ap-
proximate realization of Kramers degeneracy, which only holds at the high-symmetry points of
the Brillouin zone (Γ point in the case of six-fold rotational symmetry). Thus, the quantum spin-
Hall Hamiltonian can only be emulated “locally” around this degenerate point, as may be proven
by performing a first order k ·p approximation of the Hamiltonian around the point [191]. How-
ever, pushing the k ·p analysis beyond first order reveals that Kramers degeneracy is quickly bro-
ken away from the high symmetry point, on the same band. Direct use of topological quantum
chemistry concepts [206] has confirmed the impossibility of rigorously defining a globalZ2 topo-
logical invariant on the entire band structure of these systems. Rigorous quantitative statistical
analysis of the edge mode robustness against different kinds of defects [207] is also consistent
with an incomplete, or approximate, level of topological protection. Nevertheless, designs based
on exploiting crystalline symmetries work very well in practice, and they allow easy and direct
exploitation of topological ideas based on lattice symmetries regardless of the physical platform,
still leading to relatively large robustness to backscattering.

2.4. Valley Hall wave insulators

In a hexagonal lattice in which the Dirac degeneracy has been lifted by breaking inversion
symmetry, modes belonging to the K and K ′ valleys, which are obviously time-reversed images of
each other, also carry some form of chirality or pseudospin [208–245]. Locally, these time reversed
pairs, which correspond to valleys created by opening time-reversed Dirac cones, carry an
opposite Berry flux. Since inversion also changes the K valley into the K ′ one, one can construct
two crystals, inversion images of each other, with valleys having opposite Berry fluxes oriented
along a given direction. Then, interfacing these two crystals along this direction amounts to
requiring an abrupt sign change of the Berry flux, which requires the band gap to close at the
interface, supporting the necessary presence of an edge mode. Similar to the schemes based
on six-fold rotational symmetries, it is not possible to define a global topological invariant over
the full Brillouin zone, and this type of edge modes is not globally topological. However, it
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remains exceptionally robust to Valley-preserving defects, like Z shaped turns. In [246], Noh, et al.
leveraged the valley degree of freedom to realize photonic analogues of the Valley Hall effect in
a two-dimensional honeycomb lattice of optical waveguides, shown in Figure 1m. The red and
green waveguides in the figure possess different refractive indices, corresponding to two different
on-site potentials that allow inversion symmetry breaking. The valley edge modes were obtained
along a zigzag edge domain between two crystals with opposite on-site potential configurations
(referred to as AB and BA). Under this condition, the edge modes cross the band gaps formed at
the proximity of high-symmetric corners of the Brillouin zone. The inset of Figure 1n illustrates
the profile of one of the corresponding edge modes.

Interestingly, the valley Hall waveguiding scheme also works in other types of lattices, when
some form of operation that flips the sign of the Berry curvature is used. For instance, topological
valley Hall phases were realized in acoustic systems based on symmetry-breaking rotations of
the crystal constituents. In [247], Lu et al. built a sonic valley Hall waveguide with a sonic crystal
consisting of triangular polymethyl methacrylate rods (Figure 1o) positioned in a triangular
lattice with a rotation angle α with respect to the vector a1. When α= nπ/3, the crystal supports
two-folded Dirac cones at the edge of the Brillouin zone. These degeneracies are lifted for other
rotation angles, opening a frequency band gap. By connecting two different domain walls with
opposite rotation angles ofα= 10◦ andα=−10◦ corresponding to opposite Berry fluxes, a pair of
valley chiral edge states, counterpropagating at the interface, can be realized. Such edge modes
can be utilized for guiding of sound along an irregularly shaped zigzag path (Figure 1p). This
method is transposable to other wave platforms, including highly dispersive ones, such as gravity-
capillary waves at the surface of liquids [248].

2.5. Floquet topological insulators

Another conceptually distinct route to achieve electronic topological phases without the need for
an external magnetic field is to apply a time-periodic modulation in the electron potential energy
or hopping rate [249–251]. In the field of semiconductor physics, it was firstly shown [252] that,
by irradiating a trivial semiconductor quantum Well with a time periodic microwave wave, a new
kind of topological phase transition can be achieved. Such topological phases, dubbed as Floquet
topological insulators, support helical edge modes in their quasi-energy spectral gaps.

Parallel to the developments of Floquet topological insulators in condensed matter systems,
these concepts were extended to classical systems [253–267]. In [268], Rechtsman, et al., demon-
strated the photonic analogue of a Floquet topological insulator, based on a graphene-like lattice
of helical waveguides evanescently coupled to each other, as seen in Figure 1q. The dynamics
of beam diffraction through such a lattice is described by the Schrödinger equation, where the
distance of propagation takes the role of time. The helicity of the waveguides breaks z-reversal
symmetry, effectively emulating time-Floquet modulation, in which the coordinate space z takes
the role of time. Within the framework of this mapping, the quasi-band structure of the crystal
becomes identical to the one of a Floquet topological insulator, supporting one-way edge states
that are protected from scattering at the lattice corners. Shown in Figure 1r is the profile of such
edge modes when a beam excites the array from its top edge.

Time-Floquet topological insulators have also been proposed in acoustics. In [269], Fleury et
al. demonstrated a time-Floquet topological insulator based on a hexagonal lattice of acoustic
trimers, whose acoustic properties were periodically modulated in time in a rotating fashion,
with uniform handedness throughout the lattice (Figure 1s). Figure 1t shows the profile of
one of the corresponding edge states, flowing across the boundary of a finite piece of such a
crystal. Compared to acoustic quantum Hall phases discussed in Figure 1g and h, such kinds of
topological states are potentially more practical as they do not rely on moving background fluids.
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It is also worth mentioning at this point that a one-to-one correspondence between time-Floquet
systems and unitary scattering networks can be made, where the unitary network scattering
matrix takes the role of the Floquet time-evolution operator over a period [270, 271]. This has
allowed an easier experimental exploration of different Floquet topological phases (Chern or
anomalous [272]), in both photonics and acoustics [273–275].

3. Topological semimetals

In 2D periodic systems, the topological phases usually stem from point degeneracies in the
band structure, which are known as Dirac cones. By properly tuning the system parameters, the
degenerate points can be lifted, and bandgaps can be opened, leading to different topologies. In
three dimensions, possible band degeneracies are line nodes [276–282], Weyl points [283–303],
or 3D Dirac points [304–311]. Weyl points are particularly interesting as they behave as sources
of Berry flux, carrying a Chern number of ±1, which manifests itself as topological surface states
along any surface interface enclosing a non-vanishing number of Weyl charges [16].

Following the discovery of Weyl and nodal semimetals in the field of semiconductor
physics [284], Lu et al. theoretically realized both line nodes and Weyl points in a gyroid pho-
tonic crystal made from germanium high-index glasses [312]. Shown in Figure 2a is the real space
unit cell of the 3D periodic structure. By applying proper symmetry-breaking perturbations to the
unit-cell of such structure, a nodal line degeneracy was realized. This is accomplished by replac-
ing part of the gyroids with air spheres, as seen in the inset of Figure 2a. Figure 2b represents
the 3D band structure of the crystal cut at (101) plane. A closed line degeneracy around the Γ

point is observed in the band structure of the crystal. Note that the area enclosed by this line de-
generacy can be controlled by the strength of the applied perturbation, that is, the radius of the
air-sphere.

The unit cell of the crystal in Figure 2a respects parity-time (PT ) symmetry. A possible
approach to achieve Weyl point degeneracies is to break the PT symmetry of the unit cell. In
fact, it is known that a line node degeneracy creates either a frequency band gap or a set of paired
Weyl points upon breaking PT symmetry. The PT symmetry of the double gyroid crystal can be
broken by, for example, removing one of the air spheres of the two gyroids. By doing so, the line
node degeneracy splits into four Weyl degenerate points alongΓN andΓH directions, as observed
in the band structure of Figure 2c.

Weyl and nodal semimetals have also been realized in acoustic systems. In [313], Xiao, et al.
theoretically discussed the possibility to achieve Weyl and nodal semimetals in a lattice made
of coupled sonic resonators and waveguides, described by a tight-binding model involving chi-
ral interlayer couplings. A few years later, phononic Weyl phases were experimentally demon-
strated [314] in a chiral phononic crystal, fabricated using layer-stacking technique. The insets of
Figure 1d represent the corresponding 3D structure, consisting of stacked layers of air-filled hol-
low waveguides, connected to each other via spiral hollow channels. Such a structure supports
two pairs of Weyl points at kz = 0 and kz = π/a. Shown in Figure 2d is the measured band struc-
ture of the crystal for kz = 0, from which the existence of Weyl points at the high-symmetry point
K is apparent. The inset of Figure 2e shows the Fermi arcs of the corresponding surface states.

Despite the fact that topological semi-metallic phases have successfully been demonstrated
in photonic and phononic systems, the realization of such phases is often challenging due to
their 3D structure. Based on the notion of synthetic dimension, in [315] Lin, et al. explored
Weyl physics in a planar 2D geometry, consisting of on-chip ring resonators with dynamic
modulation of the refractive index, as sketched in Figure 2g. Each resonator supports a set
of discrete modes, whose resonance frequencies are equally spaced. These discrete resonance
modes can therefore be pictured as a periodic lattice in the synthetic frequency dimension.
Together with the real dimensionality of the crystal, this third, synthetic frequency dimension
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Figure 2. Classical wave Weyl semimetals. a, Realization of electromagnetic analogues of
topological semimetals based on a crystal with the real-space unit cell shown in the panel,
consisting of two inversion-symmetric gyroids made of germanium high-index glasses.
b, Band structure of the corresponding nodal semi metallic phase. c, By breaking the spatial
inversion symmetry of the unit cell, the line node degeneracy splits into four distinct Weyl
points. d, Realization of acoustic topological semimetals in a chiral phononic crystal fab-
ricated using a layer-stacking strategy. The structure consists of stacked layers of air-filled
hollow waveguides, connected to each other via spiral hollow channels. e, Band structure
of the crystal shown in panel f, exhibiting Weyl degeneracy at K point. f, Fermi arc surface
of the corresponding topological states. g, Exploring Weyl physics in a planar 2D geometry,
consisting of on-chip ring resonators with dynamic modulation of refractive indices. h, The
discrete resonance modes can be pictured as a periodic lattice in the synthetic frequency
dimension. i, Band structure of the crystal in the 3D synthetic dimension, exhibiting four
Weyl points.

forms a three-dimensional space (Figure 2h). By modulating the refractive indices of the ring
resonators properly, one can then appropriately couple these modes to each other so as to
achieve Weyl point degeneracies in the 3D synthetic space formed by the two spatial dimensions
and the frequency axis. The inset of Figure 2i shows the corresponding Weyl points and their
charges.
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4. Higher-order topological insulators

All the topological phases discussed thus far obey the so-called bulk boundary correspondence
principle [316, 317] in codimension 1, stating that a d-dimensional topological insulator with
Chern number C , hosts a number C of d −1 dimensional boundary states, when interfaced with
a trivial insulator. Recently, a new class of topological phases has been proposed, which obeys
another form of bulk-boundary correspondence. These topological phases of matter, called
higher-order topological insulators, exhibit gapped boundaries that are themselves topological
phases in a lower dimension. A d-dimensional higher order topological insulator (of order n)
supports d −n dimensional gapless boundary states. For instance, a two-dimensional second
order topological insulator supports zero dimensional (0D) topological corner states that, as their
name suggests, are localized not only at the edges, but also at the “edges of edges”, i.e., at the
corners of the insulator [318–325].

In [326], Benalcazar, et al. theoretically introduced the concept of higher-order topological
insulators, based on a C4 symmetric square lattice crystal with detuned hopping terms and two
non-commuting reflection symmetries, leading to an insulating phase with quantized Wannier
centers and a quadrupole bulk polarization. Both ordinary 1D edge states and higher-order 0D
corner states were simultaneously realized in this lattice. Following this theoretical proposal,
higher-order topological states were experimentally observed in various fields. For instance,
in electronics a topological circuit was introduced in [327], realizing 0D corner modes. The
circuit, shown in Figure 3a, consists of LC tanks coupled to each other via coupling capacitances.
The connectivity of the circuit elements guarantees the required C4 rotational symmetry of the
Hamiltonian, as well as the two non-commuting reflection symmetries with respect to x and
y directions. Hence, the circuit can indeed be pictured as a second-order topological phase
supporting gap-less corner states. The corner mode of the circuit shows itself as a topological
boundary resonance in the corner impedance profile of the circuit, as seen in Figure 3c.

At microwaves, higher-order topological insulators have been implemented [328] in a square
lattice with unit cell composed of four identical resonators, implemented using H-shaped mi-
crostrip transmission lines (Figure 3d). Adjacent cells were connected to each other via trans-
mission lines with proper lengths. Figure 3e shows the measured spectrum of the absorption co-
efficient, exhibiting in-gap resonances corresponding to the corner state. The inset of Figure 3f
shows the spatial distribution of absorptance, summed over the shaded bands. It is observed that
the corner states are indeed localized at the four corners of the crystal.

Higher-order topological insulators have also been transferred to the realm of acoustics.
In [329, 330], Xue et al., and Ni et al., independently demonstrated a second-order topological
insulator in an acoustic metamaterial, based on a breathing Kagome lattice with non-trivial bulk
polarization. The corresponding Kagome lattice is shown in Figure 3g, consisting of coupled
acoustic air-filled cylindrical resonators with metal walls. When the extra-cell couplings become
higher than the intra-cell ones, the lattice crystal under study becomes topological (of second-
order character). Figure 3h represents the spectrum of normalized density of states obtained from
the measurements of acoustic energy stored in the bulk (yellow), at the edges (red) and corners
(blue) of the crystal. Figure 3i shows the profile of the corresponding corner state integrated
over the corresponding frequency region. Such 0D states hold great promise for controlling and
trapping waves at specific points in a robust fashion, which is relevant in a variety of applications
such as energy harvesting, lasing, sensing, and enhanced wave-matter interactions.

In the context of mechanical topological insulators, the in-gap corner states have also been
realized and experimentally observed on a structured elastic plate [331]. The realization is based
on a perturbative mechanical metamaterial shown in Figure 3j, consisting of coupled plates of
single-crystal silicon. The thin beams between the nearest neighboring plates controls the sign
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Figure 3. Higher-order classical topological insulators. a, Tight binding lattice realizing topo-
logical corner modes. b, A circuit design realizing corner modes circuit, consisting of LC tanks
coupled to each other via some coupling capacitances. c, Corner impedance profile of the
circuit, exhibiting a dominant resonance peak associated with the topological corner mode.
d, Realization of higher order topological states in microwaves, based on a square crystal of
four identical resonators implemented using H-shaped micro strip transmission lines. e, The
measured spectrum of the absorption coefficient, exhibiting in-gap resonances correspond-
ing to the corner state. f, Spatial distribution of absorptance, summed over the shaded bands.
g, Acoustic higher order topological insulators based on a Kagome lattice with a non-trivial
bulk polarization. The structure consists of coupled acoustic air-filled cylindrical resonators
with metal walls. h, Spectrum of normalized density of states obtained from measuring acous-
tic power at the bulk (yellow), edge (red) and corner (blue) of the crystal. i, Profile of the corre-
sponding corner state. j, Realization of an elastic second order mechanical topological insulator
based on a perturbative mechanical metamaterials consisting coupled plates of single-crystal
silicon. k, Spectrum of the bulk (blue), edge (orange) and corner (green) modes. l, Profile of the
corner mode of the structure at its resonance frequency.
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and amplitude of the corresponding coupling coefficients. Figure 3k shows the spectrum of bulk
(blue), edge (orange), and corner (green) states, when the structure is excited with an ultrasound
air-transducer. Figure 3l depicts the profile of corner states, demonstrating their confinement to
the corners of the crystal. Other realizations of higher-order TIs have been reported in [332–346].

5. Nonlinear topological insulators

All topological phases discussed thus far are based on linear structures. The presumption of lin-
earity, albeit crucial to define a band structure, can however imply stringent geometrical condi-
tions. For instance, in order to realize spin Hall phases in the acoustic lattice crystal discussed
in Figure 1g and h, the extra cell coupling between resonators are necessarily required to be
larger than the intra-cell ones. Amplitude-dependent nonlinear phenomena [347–352], how-
ever, can be utilized to achieve the same kind of topological phases without this special con-
dition. In [353], Hadad et al. investigated a one-dimensional nonlinear topological system based
on a SSH toy model with nonlinear staggered potentials (Figure 4a). Each unit cell of the SSH
array consisted of two atoms with the same on-site potentials. These atoms were connected
to each other via linear intra-cell coupling κ0. The nearest-neighboring cells were connected
to each other with amplitude-dependent nonlinear extra-cell coupling coefficients of the form
ϑn =ϑ0+α(|a(1)

n |2+|a(2)
n |2), in which ϑ0 < κ0 is a constant, andα is a Kerr coefficient. Under these

assumptions, and assuming weak nonlinearity, the dynamics of the system can be expressed
with a tight-binding Hamiltonian of the form H = cos(kB a)[κ0 − (ϑ0 +αI (|a(1)

0 |2 + |a(2)
0 |2))]σx +

sin(kB a)[(ϑ0 +αI (|a(1)
0 |2 + |a(2)

0 |2))]σy , in which σx are σy are Pauli matrices. Note that, in con-
trast to the linear case, the Hamiltonian H depends on the eigenstates of the system. Hence, in
principle, its eigenvalues should be calculated in an iterative manner. Since ϑ0 < κ0, the Hamil-
tonian H corresponds to a trivial insulator at low excitation intensities (I → 0), exhibiting a fre-
quency band gap that is topologically trivial. The enhancement of the field amplitude, however,
effectively increases the extracell couplings. At some threshold intensity Ith , the strengths of ϑn

and κ0 become equal, which closes the band gap and results in a topological phases transition.
By increasing the excitation intensity further, the strength of extra-cell couplings becomes larger
than that of the intra-cell ones, opening a band gap in the band structure of the crystal with a
nontrivial topological order (Figure 4b). Interestingly, these predictions based on assumptions of
periodicity for the infinite non-linear lattice correctly predict the behavior of edge modes when
the non-linear system is truncated to a finite size. Figure 4c shows the evolution of the mode
profile of the mid-gap state versus intensity, illustrating the transition from bulk to exponentially
decaying edge modes. Note that, as opposed to their linear counterparts, these nonlinear topo-
logical edge states decay to a plateau of non-zero amplitude, highlighting the local nature of the
associated band gaps [353]. Essentially, as the intensity of the mode decays away from the edge,
locally the gap becomes narrower, and asymptotically tends to close, yielding the plateau profile
that extends into the lattice.

Such kinds of topological phases with nonlinear staggered potentials have been implemented
in a circuit [354], composed of LC tanks connected to each other with linear capacitances (intra-
cell dynamics) and nonlinear varactor diodes (extra-cell dynamics), as seen in Figure 4d. Shown
in Figure 4e is the spectrum of the input admittance of the circuit at high power intensity, corre-
sponding to a non-trivial topological phase. As observed, the spectrum exhibits a dominant res-
onance peak, which corresponds to the self-induced topological corner state. Figure 4f exhibits
the voltage distribution of the circuit at the resonance frequency of the corner mode.

Not only does the nonlinear phenomenon allow one to achieve self-induced topological
phases, but it also establishes an ideal platform for dynamically tuning the spectral and local-
ization characteristics of the edge modes. In [355], Dobrykh, et al. demonstrated such a striking
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Figure 4. Nonlinear self-induced classical topological insulators. a, A one-dimensional
nonlinear topological system, based on a SSH toy model with alternating linear and non-
linear staggered potentials. b, Evolution of the band gap of the SSH array versus the exci-
tation intensity. At low excitation intensities, the SSH array is topologically trivial, with its
extra-cell couplings being smaller than the intra-cell ones. Enhancing the excitation inten-
sity, however, closes the band gap of the crystal and re-opens it as topological. c, Evolution
of the mode profile of the mid-gap state versus intensity. d, Implementation of the nonlin-
ear topological insulator discussed in Figure 4a, based on a circuit lattice composed of LC
tanks connected to each other via linear capacitances (intra-cell dynamics) and nonlinear
varactor diodes (extra-cell dynamics). e, Spectrum of the input admittance of the circuit
at high power intensity. The spectrum exhibits a dominant resonance peak, which corre-
sponds to the self-induced topological corner state. f, Voltage distribution of the circuit at
the resonance frequency of the corner mode. g, Enhancing the excitation intensity allows
one to tune the spectral characteristics of the topological edge mode of a one-dimensional
photonic crystal. h, Self-induced topological phase transition in a SSH array consisting of
masses connected to each other with two types of alternating nonlinear springs, dubbed
as “stiffening” (orange) and “softening” (blue). i, Self-induced second order topological in-
sulator, based on a circuit lattice of LC tanks, connected to each other with alternating
linear and nonlinear capacitors. The circuit supports zero-dimensional topological corner
modes, manifesting themselves as a dominant resonance peak in the corner input admit-
tance spectrum of the circuit (bottom panel).
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possibility for a one-dimensional SSH array of coupled nonlinear photonic resonators. The array
is designed to be of topological nature in the linear regime, corresponding to low excitation in-
tensity. Hence it supports an edge mode, protected by chiral symmetry, at its boundary. When the
excitation intensity is enhanced, the spectral line shape of the edge modes shifts towards the bulk
modes as observed in Figure 4g, top. This shift reduces the localization of the edge modes as seen
in the bottom panel of the figure. These observations demonstrate how the nonlinear phenome-
non enables dynamic reconfiguration of the spectral characteristics of the supported topological
edge modes.

The nonlinear phenomenon has also been studied in phononic systems to achieve self-
induced topological transitions. In [356], Chaunsali and Theocharis demonstrated such kind of
transitions in a SSH array consisting of masses connected to each other with two types of al-
ternating nonlinear springs (Figure 4h), namely “stiffening” and “softening” types. As mentioned
earlier, such system can go through a topological phase transition by enhancing the excitation in-
tensity and invoking the nonlinear dynamics. The bottom panel of Figure 4h illustrates the evolu-
tion of the band gap of the SSH structure versus the excitation intensity, indicating the topological
phase transition induced by nonlinearity.

Finally, we remark that nonlinear phenomena have also been applied to realize self-assembled
higher-order topological insulators. In [357], it was shown how the nonlinear phenomenon
can be leveraged to achieve self-induced topological corner states. Unlike the linear case, the
spectral properties of such 0D topological modes can be tuned by changing the excitation
intensity, enabling dynamic reconfigurability. The inset of Figure 4i (top) shows the realization
of such topological phases in a modified hexagonal lattice of LC tanks, connected to each other
via alternating linear and nonlinear coupling capacitors. The circuit is designed to be in the
trivial phase when it is excited at a low excitation intensity. Upon enhancing the excitation
power, however, the circuit becomes topological (of second-order character), supporting zero-
dimensional corner states. Such topological states manifest themselves as a resonance peak in
the corner admittance spectrum of the circuit, as seen in Figure 4i (bottom panel).

6. Applications

In the previous sections we have discussed how the field of topological insulators has provided a
rich platform to manipulate waves in a variety of platforms, and to implement topological phases
of matter in classical wave physics. However, the impact of this area of research has been rapidly
expanding in the realm of practical applications of these concepts, as we detail in this section,
in which we discuss the most important recently proposed technology-oriented applications of
topological wave insulators.

6.1. Robust waveguiding

An important application of classical topological insulators is robust guiding of energy over arbi-
trary paths [357–380]. An ordinary waveguide exhibits a bi-directional type of dispersion. On the
contrary, the gapless edge states of Chern wave insulators possess a frequency dispersion with
only positive (or negative) slope (or group velocity). Consequently, waves (light or sound) cannot
couple to any backward state when it reaches an imperfection, and does not backscatter. Suppose
that a perfectly conducting obstacle is placed on the way of the electromagnetic wave propagat-
ing along the edge of the topological system discussed in Figure 1e. While this normally induces
strong reflection in any ordinary waveguide, the topological insulator lets the electromagnetic
energy flow around the PEC with perfect transmission (Figure 5a). Such fascinating property has
also been proposed in acoustics for reflection-less guiding of sound waves. Figure 5b shows how
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Figure 5. Applications of classical wave topological insulators. a, In contrast to any ordi-
nary type of waveguide, the edge mode of the topological insulator discussed in Figure 1a
smoothly flows around a PEC obstacle without backscattering, enabling robust guiding of
electromagnetic energy. b, Reflection-less guiding of sound waves using the topological in-
sulator discussed in Figure 1c. Despite the presence of several types of defects on the way
of the edge mode, it flows along the perimeter of the crystal with almost perfect transmis-
sion. c, Theoretical realization of the lasing action from the edge mode of a topological in-
sulator, based on an aperiodic topological array of micro ring resonators. d, Experimental
demonstration of the lasing action. The lasing mode shows strong robustness to disorder.
e, By inducing two topological subspaces of even and odd modes in a SSH array of cylin-
ders arranged inside a monomode acoustic waveguide (top panel), a new class of Fano res-
onances, namely topological Fano resonances, is obtained (bottom panel). f, Evolution of
the spectral line shape of the topological Fano resonance versus disorder strength. g, Topo-
logical analog signal processing based on the mid-gap state of a SSH array, built from cylin-
drical rods arranged inside an acoustic waveguide. Upon exciting the mid-gap state, such a
system performs time domain differential equation solving (top signal path), with a strong
immunity against imperfection (bottom signal path).

the edge mode of the acoustic topological insulator discussed in Figure 1g ideally travels along
an interface involving various types of defects and detours. This is in stark contrast to ordinary
acoustic waveguides in which two subsequent defects always create Fabry–Pérot interferences
and, more generally, impedance matching issues. These unusual properties have been proposed
to realize compact delay lines [381].
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6.2. Lasing

Another promising application of topological insulators is single-mode robust lasing [382–389].
In [389], Harari, et al., theoretically proposed to achieve the lasing action from the edge modes of
a topological insulator. The realization was based on an aperiodic topological array of micro-ring
resonators, which was one of the basic platforms explored for achieving photonic topological
insulators [390, 391]. The aperiodic nature of such structure creates an artificial gauge field,
allowing one to have edge states analogues to quantum Hall phases without the presence of any
external magnetic field. By providing gain to the resonator cavities located on the perimeter of
the crystal, the lasing action from such a configuration was demonstrated, as seen in Figure 5b,
and demonstrated to be robust to spin-preserving defects.

Based on these theoretical findings, in [392], Bandres et al. experimentally verified the lasing
action from such kind of a system. Figure 5c represents the lasing from such a topological system.
Remarkably and consistent with the topological nature of the structure, the lasing mode and
its slope efficiency shows a strong immunity against disorder. We note that the edge modes
of this topological lasing systems are time-reversal symmetry preserved and, as such, are not
truly unidirectional. Yet, there are proposals [383] on the realization of topological lasers with a
broken time-reversal symmetry, enabling truly unidirectional and non-reciprocal lasing action at
telecommunication wavelength.

6.3. Fano resonances

Fano resonances are caused by the interference between a sharp resonance state (the dark state)
with a wider-band one (bright state). Such exotic kind of resonances, which are characterized by
an asymmetric and ultra-sharp spectral line shape, have found a large variety of applications in
sensing, due to their extremely high sensitivity to perturbations. However, this sensitivity is not
desirable in other applications such as switching, filtering, and lasing. In [393], a new class of
Fano resonances was introduced, whose ultrasharp line shapes is guaranteed and protected by
topology. This was achieved by inducing two topological subspaces of even and odd modes in
a SSH array of cylinders arranged inside a mono-modal acoustic waveguide. The corresponding
even edge mode, originating from multiple scattering of sound, takes the role of the bright state.
On the other hand, the odd edge mode, stemming from so-called bound states in the continuum,
served as the dark state. By slightly breaking the reflection mirror symmetry of the system, these
two topological states were then allowed to couple to each other, creating a Fano line shape
(Figure 1e). Thanks to the topological nature of the bright and dark states, such resonance was
found to be robust to high levels of disorder. Figure 1f plots the evolution of the Fano line shape
versus disorder strength, constituting a direct evidence of its robustness. These Fano resonances
are immune to fabrication imperfections and weak disorder, and can be envisioned in other
physical platforms, such as optics and microwaves [393].

6.4. Analog signal processing

Wave-based analog computing systems have recently been attracted considerable amount of
attention for carrying out specialized computational tasks such as differentiation, integration and
convolution at extremely fast speeds and low power requirements [394–399]. These advantages
are due to the fact that these systems perform the computation at the speed of the wave in
the analog domain, without having to digitize the signals, giving rise to real-time and high-
throughput computation. Yet, like any other analog system, they suffer from their relatively high
sensitivity to perturbations. In [400], the relevance of topological insulators for performing robust
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signal processing tasks was demonstrated, based on mid-gap one-dimensional topological states.
The array was made of cylindrical rods arranged inside an acoustic waveguide. The topological
state of such an array induces a Lorentzian transmission spectrum, corresponding to a first-
order transfer function. Hence, upon exciting its mid-gap state, the topological system performs
time-domain differential equation solving (see Figure 5d, top signal path). Such analog signal
processing system is expected to be robust to disorder by virtue of its topological nature. This
salient feature is demonstrated in the bottom signal path of Figure 5d, in which the cylinders are
randomly shifted away from their original positions. It is observed that the topological analog
computing system interestingly maintains its original functionality in the presence of disorder.

7. Discussion and conclusion

In this paper, we reviewed recent findings in the field of classical-wave-based topological in-
sulators. While we discussed a few important technology-oriented applications of topological
wave insulators in the previous section, there exists a large variety of reports on other relevant
applications, including switching [401–407], modulation [408–410], lensing [411], negative re-
fraction [412], sensing [413], beam splitting [414–418], mode locked fiber lasers [419–424], delay
lines [425–427], integrated photonic and phononic devices [428, 429], frequency filters [430], fre-
quency converters [431–433], interferometers [434], and amplifiers [435,436]. It is important to re-
alize that the advantageous properties of topological wave systems, especially in acoustics, are of-
ten mitigated by the presence of dissipation losses, imposing certain restrictions on the available
bandwidth of operation or propagation length of the topological edge modes. Studying the effect
of losses on the topological phases of matter is therefore an emerging direction of research, which
has recently inspired the new field of non-Hermitian topological insulators [437–453]. By exploit-
ing the interplay between gain, loss and coupling strengths, such types of insulating phases allow
one to go beyond the restrictions of Hermitian topological insulators, especially their sensitivity
to absorption losses.

Apart from the Chern insulating phases that are protected by time-reversal symmetry, the re-
maining topological phases discussed in this review are protected by special symmetries that can
be easily broken (like rotational symmetry of the underlying crystal). Enhancing the robustness
of topological insulators to disorders that break these symmetries is therefore another impor-
tant direction, which needs to be pursued. In order to develop defect-immunity engineering at
optical frequencies, it may be possible to exploit metatronic techniques [454], so as to optimize
the system parameters in a way that it not only benefits from topological protection but it also
minimizes its sensitivity to the types of disorder that break the topology of the system.

Exploring topological phases of matter in dimensions higher than what is physically accessible
is another promising direction of research [455–458]. In particular, while here we restricted
our discussion to two-dimensional and three-dimensional topological phases, there have been
several recent reports on topological phases in four dimensions and above, based on the notion
of synthetic dimensions [459–473]. Despite the fact that such states have not found specific
engineering-oriented applications up to date, they have established an elegant experimental
platform, stimulating the deep connection between condensed-matter and elementary particle
physics. In general, the idea of exploiting temporal modulations in this context appears to be very
rich and not yet fully exploited.

Overall, while to date many of the ideas explored in the context of wave topological insulators
have been motivated by physics-driven explorations, the field has a bright future not only
in emerging theoretically-driven directions (non-linear, non-Hermitian, etc), but also in the
plethora of practical applications of topology in wave engineering (disorder immunity, signal
processing, sensing, lasing, etc).
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