logo CRAS
Comptes Rendus. Physique
Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure
Comptes Rendus. Physique, Online first (2021), pp. 1-12.

Article du numéro thématique : Recent advances in 2D material physics
[Physique du solide 2D]

Heterostructures made from van der Waals (vdW) materials provide a template to investigate a wealth of proximity effects at atomically sharp two-dimensional (2D) heterointerfaces. In particular, near-field charge and energy transfer in vdW heterostructures made from semiconducting transition metal dichalcogenides (TMD) have recently attracted interest to design model 2D “donor–acceptor” systems and new optoelectronic components. Here, using Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide (MoSe 2 ) monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the MoSe 2 layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the MoSe 2 excitonic linewidth gets as narrow as 1.6 meV, approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the MoSe 2 /graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the non-radiative transfer time, its low-temperature photoluminescence is only quenched by a factor of 3.3±1 and 4.4±1 in the presence of mono- and bilayer graphene, respectively. Finally, while our bare MoSe 2 on hBN exhibits negligible valley polarization at low temperature and under near-resonant excitation, we show that interfacing MoSe 2 with graphene yields a single-line emitter with degrees of valley polarization and coherence up to 15 %.

Première publication :
DOI : https://doi.org/10.5802/crphys.58
Mots clés : van der Waals heterostructures, Transition metal dichalcogenides, Graphene, Energy transfer, Excitons, Optoelectronics, Valleytronics
     author = {Luis Enrique Parra L\'opez and Lo{\"\i}c Moczko and Joanna Wolff and Aditya Singh and Etienne Lorchat and Michelangelo Romeo and Takashi Taniguchi and Kenji Watanabe and St\'ephane Berciaud},
     title = {Single- and narrow-line photoluminescence in a boron nitride-supported {MoSe}$_2$/graphene heterostructure},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2021},
     doi = {10.5802/crphys.58},
     language = {en},
     note = {Online first},
Luis Enrique Parra López; Loïc Moczko; Joanna Wolff; Aditya Singh; Etienne Lorchat; Michelangelo Romeo; Takashi Taniguchi; Kenji Watanabe; Stéphane Berciaud. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe$_2$/graphene heterostructure. Comptes Rendus. Physique, Online first (2021), pp. 1-12. doi : 10.5802/crphys.58.

[1] K. F. Mak; C. Lee; J. Hone; J. Shan; T. F. Heinz Atomically thin MoS 2 : a new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805

[2] A. Splendiani; L. Sun; Y. Zhang; T. Li; J. Kim; C.-Y. Chim; G. Galli; F. Wang Emerging photoluminescence in monolayer MoS 2 , Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | Article

[3] G. Wang; A. Chernikov; M. M. Glazov; T. F. Heinz; X. Marie; T. Amand; B. Urbaszek Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys., Volume 90 (2018), 021001 | Article | MR 3833231

[4] M. Goryca; J. Li; A. V. Stier; T. Taniguchi; K. Watanabe; E. Courtade; S. Shree; C. Robert; B. Urbaszek; X. Marie; S. A. Crooker Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields, Nat. Commun., Volume 10 (2019) no. 1, 4172 | Article

[5] X. Xu; W. Yao; D. Xiao; T. F. Heinz Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., Volume 10 (2014) no. 5, pp. 343-350 | Article

[6] J. R. Schaibley; H. Yu; G. Clark; P. Rivera; J. S. Ross; K. L. Seyler; W. Yao; X. Xu Valleytronics in 2D materials, Nat. Rev. Mater., Volume 1 (2016), 16055 | Article

[7] K. F. Mak; J. Shan Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, Volume 10 (2016) no. 4, pp. 216-226 | Article

[8] L. Ciorciaro; M. Kroner; K. Watanabe; T. Taniguchi; A. Imamoglu Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe 2 /CrBr 3 heterostructure, Phys. Rev. Lett., Volume 124 (2020), 197401 | Article

[9] T. P. Lyons; D. Gillard; A. Molina-Sánchez; A. Misra; F. Withers; P. S. Keatley; A. Kozikov; T. Taniguchi; K. Watanabe; K. S. Novoselov; J. Fernández-Rossier; A. I. Tartakovskii Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures, Nat. Commun., Volume 11 (2020) no. 1, 6021 | Article

[10] M. Massicotte; P. Schmidt; F. Vialla; K. Schädler; A. Reserbat-Plantey; K. Watanabe; T. Taniguchi; K. Tielrooij; F. Koppens Picosecond photoresponse in van der Waals heterostructures, Nat. Nanotechnol., Volume 11 (2016) no. 1, pp. 42-46 | Article

[11] Y. K. Luo; J. Xu; T. Zhu; G. Wu; E. J. McCormick; W. Zhan; M. R. Neupane; R. K. Kawakami Opto-valleytronic spin injection in monolayer MoS 2 /few-layer graphene hybrid spin valves, Nano Lett., Volume 17 (2017) no. 6, pp. 3877-3883 | Article

[12] A. Avsar; D. Unuchek; J. Liu; O. L. Sanchez; K. Watanabe; T. Taniguchi; B. Özyilmaz; A. Kis Optospintronics in graphene via proximity coupling, ACS Nano, Volume 11 (2017) no. 11, pp. 11678-11686 | Article

[13] A. H. Castro Neto; F. Guinea; N. M. R. Peres; K. S. Novoselov; A. K. Geim The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), pp. 109-162 | Article

[14] K. F. Mak; L. Ju; F. Wang; T. F. Heinz Optical spectroscopy of graphene: from the far infrared to the ultraviolet, Solid State Commun., Volume 152 (2012) no. 15, pp. 1341-1349 | Article

[15] E. Lorchat; S. Azzini; T. Chervy; T. Taniguchi; K. Watanabe; T. W. Ebbesen; C. Genet; S. Berciaud Room-temperature valley polarization and coherence in transition metal dichalcogenide–graphene van der waals heterostructures, ACS Photonics, Volume 5 (2018) no. 12, pp. 5047-5054 | Article

[16] J. He; N. Kumar; M. Z. Bellus; H.-Y. Chiu; D. He; Y. Wang; H. Zhao Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures, Nat. Commun., Volume 5 (2014), 5622

[17] G. Froehlicher; E. Lorchat; S. Berciaud Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures, Phys. Rev. X, Volume 8 (2018), 011007

[18] L. Yuan; T.-F. Chung; A. Kuc; Y. Wan; Y. Xu; Y. P. Chen; T. Heine; L. Huang Photocarrier generation from interlayer charge-transfer transitions in WS 2 -graphene heterostructures, Sci. Adv., Volume 4 (2018) no. 2, e1700324 | Article

[19] M. Selig; E. Malic; K. J. Ahn; N. Koch; A. Knorr Theory of optically induced Förster coupling in van der Waals coupled heterostructures, Phys. Rev. B, Volume 99 (2019), 035420 | Article

[20] C. Robert; D. Lagarde; F. Cadiz; G. Wang; B. Lassagne; T. Amand; A. Balocchi; P. Renucci; S. Tongay; B. Urbaszek; X. Marie Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, Volume 93 (2016), 205423 | Article

[21] H. H. Fang; B. Han; C. Robert; M. A. Semina; D. Lagarde; E. Courtade; T. Taniguchi; K. Watanabe; T. Amand; B. Urbaszek; M. M. Glazov; X. Marie Control of the exciton radiative lifetime in van der Waals heterostructures, Phys. Rev. Lett., Volume 123 (2019), 067401

[22] E. Lorchat; L. E. P. López; C. Robert; D. Lagarde; G. Froehlicher; T. Taniguchi; K. Watanabe; X. Marie; S. Berciaud Filtering the photoluminescence spectra of atomically thin semiconductors with graphene, Nat. Nanotechnol., Volume 15 (2020) no. 4, pp. 283-288 | Article

[23] Y.-J. Yu; Y. Zhao; S. Ryu; L. E. Brus; K. S. Kim; P. Kim Tuning the graphene work function by electric field effect, Nano Lett., Volume 9 (2009) no. 10, pp. 3430-3434 | Article

[24] Y. Liang; S. Huang; R. Soklaski; L. Yang Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides, Appl. Phys. Lett., Volume 103 (2013) no. 4, 042106 | Article

[25] N. R. Wilson; P. V. Nguyen; K. Seyler; P. Rivera; A. J. Marsden; Z. P. L. Laker; G. C. Constantinescu; V. Kandyba; A. Barinov; N. D. M. Hine; X. Xu; D. H. Cobden Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Sci. Adv., Volume 3 (2017) no. 2, e1601832 | Article

[26] H. M. Hill; A. F. Rigosi; A. Raja; A. Chernikov; C. Roquelet; T. F. Heinz Exciton broadening in WS 2 /graphene heterostructures, Phys. Rev. B, Volume 96 (2017), 205401

[27] S. Ryu; L. Liu; S. Berciaud; Y.-J. Yu; H. Liu; P. Kim; G. W. Flynn; L. E. Brus Atmospheric oxygen binding and hole doping in deformed graphene on a SiO 2 substrate, Nano Lett., Volume 10 (2010) no. 12, pp. 4944-4951 | Article

[28] B. Miller; E. Parzinger; A. Vernickel; A. W. Holleitner; U. Wurstbauer Photogating of mono-and few-layer MoS 2 , Appl. Phys. Lett., Volume 106 (2015) no. 12, 122103 | Article

[29] W. Lin; P. Zhuang; H. Chou; Y. Gu; R. Roberts; W. Li; S. K. Banerjee; W. Cai; D. Akinwande Electron redistribution and energy transfer in graphene/MoS2 heterostructure, Appl. Phys. Lett., Volume 114 (2019) no. 11, 113103

[30] C. R. Dean; A. F. Young; I. Meric; C. Lee; L. Wang; S. Sorgenfrei; K. Watanabe; T. Taniguchi; P. Kim; K. Shepard et al. Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., Volume 5 (2010) no. 10, pp. 722-726 | Article

[31] F. Cadiz; E. Courtade; C. Robert; G. Wang; Y. Shen; H. Cai; T. Taniguchi; K. Watanabe; H. Carrere; D. Lagarde; M. Manca; T. Amand; P. Renucci; S. Tongay; X. Marie; B. Urbaszek Excitonic linewidth approaching the homogeneous limit in MoS 2 -based van der Waals heterostructures, Phys. Rev. X, Volume 7 (2017), 021026

[32] O. A. Ajayi; J. V. Ardelean; G. D. Shepard; J. Wang; A. Antony; T. Taniguchi; K. Watanabe; T. F. Heinz; S. Strauf; X.-Y. Zhu; J. C. Hone Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers, 2D Mater., Volume 4 (2017) no. 3, 031011 | Article

[33] P. Back; S. Zeytinoglu; A. Ijaz; M. Kroner; A. Imamoğlu Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe 2 , Phys. Rev. Lett., Volume 120 (2018), 037401 | Article

[34] G. Scuri; Y. Zhou; A. A. High; D. S. Wild; C. Shu; K. De Greve; L. A. Jauregui; T. Taniguchi; K. Watanabe; P. Kim; M. D. Lukin; H. Park Large excitonic reflectivity of monolayer MoSe 2 encapsulated in hexagonal boron nitride, Phys. Rev. Lett., Volume 120 (2018), 037402 | Article

[35] Y. Zhou; G. Scuri; J. Sung; R. J. Gelly; D. S. Wild; K. De Greve; A. Y. Joe; T. Taniguchi; K. Watanabe; P. Kim; M. D. Lukin; H. Park Controlling excitons in an atomically thin membrane with a mirror, Phys. Rev. Lett., Volume 124 (2020), 027401 | Article

[36] G. Wang; E. Palleau; T. Amand; S. Tongay; X. Marie; B. Urbaszek Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe 2 monolayers, Appl. Phys. Lett., Volume 106 (2015) no. 11, 112101 | Article

[37] G. Kioseoglou; A. T. Hanbicki; M. Currie; A. L. Friedman; B. T. Jonker Optical polarization and intervalley scattering in single layers of MoS 2 and MoSe 2 , Sci. Rep., Volume 6 (2016), 25041 | Article

[38] J. S. Ross; S. Wu; H. Yu; N. J. Ghimire; A. M. Jones; G. Aivazian; J. Yan; D. G. Mandrus; D. Xiao; W. Yao et al. Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun., Volume 4 (2013), 1474

[39] S. Barja; S. Refaely-Abramson; B. Schuler; D. Y. Qiu; A. Pulkin; S. Wickenburg; H. Ryu; M. M. Ugeda; C. Kastl; C. Chen et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat. Commun., Volume 10 (2019) no. 1, 3382 | Article

[40] T. Ahmed; K. Roy; S. Kakkar; A. Pradhan; A. Ghosh Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures, 2D Mater., Volume 7 (2020), 025043 | Article

[41] W. Zhang; C.-P. Chuu; J.-K. Huang; C.-H. Chen; M.-L. Tsai; Y.-H. Chang; C.-T. Liang; Y.-Z. Chen; Y.-L. Chueh; J.-H. He; M.-Y. Chou; L.-J. Li Ultrahigh-gain photodetectors based on atomically thin graphene-MoS 2 heterostructures, Sci. Rep., Volume 4 (2014), 3826

[42] A. C. Ferrari; D. M. Basko Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., Volume 8 (2013) no. 4, pp. 235-246 | Article

[43] S. Pisana; M. Lazzeri; C. Casiraghi; K. S. Novoselov; A. K. Geim; A. C. Ferrari; F. Mauri Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater., Volume 6 (2007) no. 3, pp. 198-201 | Article

[44] J. Yan; Y. Zhang; P. Kim; A. Pinczuk Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett., Volume 98 (2007) no. 16, 166802

[45] G. Froehlicher; S. Berciaud Raman spectroscopy of electrochemically gated graphene transistors: geometrical capacitance, electron-phonon, electron-electron, and electron-defect scattering, Phys. Rev. B, Volume 91 (2015), 205413 | Article

[46] J. Yan; E. Henriksen; P. Kim; A. Pinczuk Observation of anomalous phonon softening in bilayer graphene, Phys. Rev. Lett., Volume 101 (2008), 136804

[47] J. E. Lee; G. Ahn; J. Shim; Y. S. Lee; S. Ryu Optical separation of mechanical strain from charge doping in graphene, Nat. Commun., Volume 3 (2012), 1024

[48] D. Metten; F. Federspiel; M. Romeo; S. Berciaud Probing built-in strain in freestanding graphene monolayers by Raman spectroscopy, Phys. Status Solidi (b), Volume 250 (2013) no. 12, pp. 2681-2686 | Article

[49] D. Metten; F. Federspiel; M. Romeo; S. Berciaud All-optical blister test of suspended graphene using micro-Raman spectroscopy, Phys. Rev. Appl., Volume 2 (2014), 054008 | Article

[50] A. Das; S. Pisana; B. Chakraborty; S. Piscanec; S. K. Saha; U. V. Waghmare; K. S. Novoselov; H. R. Krishnamurthy; A. K. Geim; A. C. Ferrari; A. K. Sood Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol., Volume 3 (2008) no. 4, pp. 210-215 | Article

[51] A. Raja; A. Chaves; J. Yu; G. Arefe; H. M. Hill; A. F. Rigosi; T. C. Berkelbach; P. Nagler; C. Schüller; T. Korn; C. Nuckolls; J. Hone; L. E. Brus; T. F. Heinz; D. R. Reichman; A. Chernikov Coulomb engineering of the bandgap and excitons in two-dimensional materials, Nat. Commun., Volume 8 (2017), 15251 | Article

[52] Z. Chen; S. Berciaud; C. Nuckolls; T. F. Heinz; L. E. Brus Energy transfer from individual semiconductor nanocrystals to graphene, ACS Nano, Volume 4 (2010) no. 5, pp. 2964-2968 | Article

[53] I. Paradisanos; K. M. McCreary; D. Adinehloo; L. Mouchliadis; J. T. Robinson; H.-J. Chuang; A. T. Hanbicki; V. Perebeinos; B. T. Jonker; E. Stratakis; G. Kioseoglou Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition, Appl. Phys. Lett., Volume 116 (2020) no. 20, 203102 | Article

[54] S. Aeschlimann; A. Rossi; M. Chávez-Cervantes; R. Krause; B. Arnoldi; B. Stadtmüller; M. Aeschlimann; S. Forti; F. Fabbri; C. Coletti; I. Gierz Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures, Sci. Adv., Volume 6 (2020) no. 20, eaay0761 | Article

[55] D. Pommier; R. Bretel; L. E. P. López; F. Fabre; A. Mayne; E. Boer-Duchemin; G. Dujardin; G. Schull; S. Berciaud; E. Le Moal Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor, Phys. Rev. Lett., Volume 123 (2019), 027402 | Article

[56] L. Banszerus; T. Sohier; A. Epping; F. Winkler; F. Libisch; F. Haupt; K. Watanabe; T. Taniguchi; K. Müller-Caspary; N. Marzari et al. Extraordinary high room-temperature carrier mobility in graphene-WSe 2 heterostructures (2019) (https://arxiv.org/abs/1909.09523)

[57] Y. Kurman; N. Rivera; T. Christensen; S. Tsesses; M. Orenstein; M. Soljačić; J. D. Joannopoulos; I. Kaminer Control of semiconductor emitter frequency by increasing polariton momenta, Nat. Photonics, Volume 12 (2018) no. 7, pp. 423-429 | Article

[58] P. Schmidt; F. Vialla; S. Latini; M. Massicotte; K.-J. Tielrooij; S. Mastel; G. Navickaite; M. Danovich; D. A. Ruiz-Tijerina; C. Yelgel; V. Fal’ko; K. S. Thygesen; R. Hillenbrand; F. H. L. Koppens Nano-imaging of intersubband transitions in van der Waals quantum wells, Nat. Nanotechnol., Volume 13 (2018) no. 11, pp. 1035-1041 | Article

[59] A. Castellanos-Gomez; M. Buscema; R. Molenaar; V. Singh; L. Janssen; H. S. J. van der Zant; G. A. Steele Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater., Volume 1 (2014), 011002 | Article

Cité par document(s). Sources :