logo CRAS
Comptes Rendus. Physique
Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains
Comptes Rendus. Physique, Volume 22 (2021) no. S5, pp. 33-50.

Part of the special issue: Prizes of the French Academy of Sciences 2020

Elastomers used in everyday life are always reinforced with rigid nanoparticles (carbon black or silica). The addition of rigid nanoparticles to an elastomer gives it very specific viscoelastic properties. In this article, we discuss the current understanding of mechanical properties of a polymer matrix around its glass transition, focusing on the situation of polymers confined between two rigid surfaces with a nanometric gap. Then, we will explain how the properties of the matrix can help to understand the properties of filled or reinforced elastomers. We will then explain that in reinforced rubbers, the mechanical properties are dominated by stress propagation between neighboring aggregates through a nanometric polymer gap, thus by confined polymer bridges. We will discuss how knowledge of the dynamics of confined polymers allows us to understand the temperature dependence, the pressure dependence and the non-linearities observed for strain below 0.1 of reinforced elastomers.

Les élastomères utilisés dans la vie courante sont toujours renforcés avec des nanoparticules rigides (noir de carbone, ou silice). L’ajout de nanoparticules rigides dans un élastomère leur confère des propriétés mécaniques très spécifiques. Dans cet article, nous rappelons d’abord ce que l’on connait aujourd’hui des propriétés mécaniques d’un élastomère autour de sa transition vitreuse, et en particulier lorsqu’il est confiné entre deux surfaces solides proche de quelques nanomètres. Puis nous expliquerons comment ces propriétés peuvent aider à la compréhension de celles des élastomères renforcés. En effet nous montrons que dans les élastomères renforcés, les propriétés mécaniques sont dominées par la propagation de la contrainte entre nanoparticules par des ponts de polymère confinés. Nous discuterons comment la connaissance de la dynamique des polymères confinés permet de comprendre les effets de température, de pression est les non-linéarités précoces de la mécanique des élastomères renforcés.

Online First:
Published online:
DOI: 10.5802/crphys.96
Keywords: Glass transition, Polymer physics, Mechanical properties, Reinforced elastomers, Confinement, Nanoparticles, Pressure
Helene Montes 1; Francois Lequeux 1

1 Sciences et Ingénierie de la Matière Molle, UMR 7615, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2021__22_S5_33_0,
     author = {Helene Montes and Francois Lequeux},
     title = {Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains},
     journal = {Comptes Rendus. Physique},
     pages = {33--50},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S5},
     year = {2021},
     doi = {10.5802/crphys.96},
     language = {en},
}
TY  - JOUR
AU  - Helene Montes
AU  - Francois Lequeux
TI  - Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains
JO  - Comptes Rendus. Physique
PY  - 2021
DA  - 2021///
SP  - 33
EP  - 50
VL  - 22
IS  - S5
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crphys.96
DO  - 10.5802/crphys.96
LA  - en
ID  - CRPHYS_2021__22_S5_33_0
ER  - 
%0 Journal Article
%A Helene Montes
%A Francois Lequeux
%T Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains
%J Comptes Rendus. Physique
%D 2021
%P 33-50
%V 22
%N S5
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crphys.96
%R 10.5802/crphys.96
%G en
%F CRPHYS_2021__22_S5_33_0
Helene Montes; Francois Lequeux. Relation between mechanical response of reinforced elastomers and dynamics of confined polymer chains. Comptes Rendus. Physique, Volume 22 (2021) no. S5, pp. 33-50. doi : 10.5802/crphys.96. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.96/

[1] S. Kaufman; W. P. Slichter; D. D. Davis Nuclear magnetic resonance study of rubber–carbon black interactions, J. Polym. Sci. B Polym. Phys., Volume 9 (1971), pp. 829-839 | DOI

[2] J. Berriot; H. Montes; F. Lequeux; D. Long; P. Sotta Evidence for the shift of the glass transition near the particles in silica-filled elastomers, Macromolecules, Volume 35 (2002), pp. 9756-9762 | DOI

[3] J. Berriot; H. Montes; F. Lequeux; D. Long; P. Sotta Gradient of glass transition temperature in filled elastomers, Europhys. Lett., Volume 64 (2003), pp. 50-56 | DOI

[4] A. Papon; H. Montes; M. Hanafi; F. Lequeux; L. Guy; K. Saalwächter Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry, Phys. Rev. Lett., Volume 108 (2012), 065702 | DOI

[5] A. R. Payne The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci., Volume 6 (1962), pp. 57-63 | DOI

[6] J. L. Keddie; R. A. L. Jones Glass transition behavior in ultra-thin polystyrene films, Isr. J. Chem., Volume 35 (1995), pp. 21-26 | DOI

[7] D. S. Fryer; P. F. Nealey; J. J. de Pablo Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness, Macromolecules, Volume 33 (2000), pp. 6439-6447 | DOI

[8] B. D. Vogt Mechanical and viscoelastic properties of confined amorphous polymers, J. Polym. Sci. B Polym. Phys., Volume 56 (2018), pp. 9-30 | DOI

[9] M.-J. Wang Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chem. Technol., Volume 71 (1998), pp. 520-589 | DOI

[10] S. S. Sternstein; A.-J. Zhu Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior, Macromolecules, Volume 35 (2002), pp. 7262-7273 | DOI

[11] J.-L. Barrat; J. Baschnagel; A. Lyulin Molecular dynamics simulations of glassy polymers, Soft Matter., Volume 6 (2010), pp. 3430-3446 | DOI

[12] N. A. García; J.-L. Barrat Entanglement reduction induced by geometrical confinement in polymer thin films, Macromolecules, Volume 51 (2018), pp. 9850-9860 | DOI

[13] M. Vladkov; J.-L. Barrat Local dynamics and primitive path analysis for a model polymer melt near a surface, Macromolecules, Volume 40 (2007), pp. 3797-3804 | DOI

[14] J. D. Ferry Viscoelastic Properties of Polymers, Wiley, New York, USA, 1980

[15] D. Long; F. Lequeux Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films, Eur. Phys. J. E, Volume 4 (2001), pp. 371-387 | DOI

[16] J. Perez Physics and Mechanics of Amorphous Polymers, Routledge, London, UK, 1998 | DOI

[17] J. S. Langer Shear-transformation-zone theory of plastic deformation near the glass transition, Phys. Rev. E, Volume 77 (2008), 021502 | DOI

[18] M. Rubinstein; S. Panyukov Elasticity of polymer networks, Macromolecules, Volume 35 (2002), pp. 6670-6686 | DOI

[19] G. R. Strobl The Physics of Polymers: Concepts for Understanding Their Structures and Behavior, Springer-Verlag, Berlin, Heidelberg, 2007 (e-books)

[20] G. B. McKenna; S. L. Simon 50th anniversary perspective: challenges in the dynamics and kinetics of glass-forming polymers, Macromolecules, Volume 50 (2017), pp. 6333-6361 | DOI

[21] L. Berthier; G. Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI

[22] S. Merabia; D. Long Heterogeneous dynamics at the glass transition in van der Waals liquids: Determination of the characteristic scale, Eur. Phys. J. E, Volume 9 (2002), pp. 195-206 | DOI

[23] A. Dequidt et al. Heterogeneous dynamics and polymer plasticity, Macromolecules, Volume 49 (2016), pp. 9148-9162 | DOI

[24] H. Montes; A. Belguise; S. Cantournet; F. Lequeux Modeling the mechanics of amorphous polymer in the glass transition, Mechanics and Physics of Solids at Micro- and Nano-Scales (I. R. Ionescu; S. Queyreau; C. R. Picu; O. U. Salman, eds.), Wiley, London, UK, 2019, pp. 231-262 (Ch. 9) | DOI

[25] R. J. Masurel et al. Role of dynamical heterogeneities on the viscoelastic spectrum of polymers: a stochastic continuum mechanics model, Macromolecules, Volume 48 (2015), pp. 6690-6702 | DOI

[26] H.-N. Lee; R. A. Riggleman; J. J. de Pablo; M. D. Ediger Deformation-induced mobility in polymer glasses during multistep creep experiments and simulations, Macromolecules, Volume 42 (2009), pp. 4328-4336 | DOI

[27] D. R. Long; L. Conca; P. Sotta Dynamics in glassy polymers: The Eyring model revisited, Phys. Rev. Mater., Volume 2 (2018), 105601 | DOI

[28] A. Belguise; S. Cantournet; F. Lequeux; H. Montes Weak nonlinearities in viscoelastic mechanical properties of polymers near their glass transition: Local versus macroscopic laws for stress-induced acceleration of the mechanical response, Phys. Rev. Mater., Volume 5 (2021), 033601 | DOI

[29] A. Dequidt; D. R. Long; P. Sotta; O. Sanséau Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations, Eur. Phys. J. E, Volume 35 (2012), 61 | DOI

[30] R. J. Masurel et al. Role of dynamical heterogeneities on the mechanical response of confined polymer, Phys. Rev. Lett., Volume 118 (2017), 047801 | DOI

[31] A. P. Holt et al. Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites, Macromolecules, Volume 47 (2014), pp. 1837-1843 | DOI

[32] J. G. Meier; M. Klüppel Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy, Macromol. Mater. Eng., Volume 293 (2008), pp. 12-38 | DOI

[33] H. Montes; T. Chaussée; A. Papon; F. Lequeux; L. Guy Particles in model filled rubber: Dispersion and mechanical properties, Eur. Phys. J. E, Volume 31 (2010), pp. 263-268 | DOI

[34] J. Champagne et al. Role of glassy bridges on the mechanics of filled rubbers under pressure, Macromolecules, Volume 53 (2020), pp. 3728-3737 | DOI

[35] A. D. Drozdov; A. Dorfmann The payne effect for particle-reinforced elastomers, Polym. Eng. Sci., Volume 42 (2002), pp. 591-604 | DOI

[36] H. Montes; F. Lequeux; J. Berriot Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers, Macromolecules, Volume 36 (2003), pp. 8107-8118 | DOI

Cited by Sources: