[Un groupe de Wilson de croissance exponentielle non-uniforme]
Cette Note construit un groupe W de type fini dont la croissance des boules est exponentielle, mais pour laquelle l'infimum des taux de croissance vaut 1 – en d'autres termes, W est de croissance exponentielle non-uniforme.
Ceci répond à une question de Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in : J. Lafontaine, P. Pansu (Eds.), CEDIC, Paris, 1981).
Cette construction donne aussi un groupe de croissance intermédiaire V ressemblant localement à W dans le sens que (en changeant le système générateur de W) des boules de rayon arbitrairement grand coïncident dans les graphes de Cayley de V et W.
This Note constructs a finitely generated group W whose word-growth is exponential, but for which the infimum of the growth rates over all finite generating sets is 1 – in other words, of non-uniformly exponential growth.
This answers a question by Mikhael Gromov (Structures métriques pour les variétés riemanniennes, in: J. Lafontaine, P. Pansu (Eds.), CEDIC, Paris, 1981).
The construction also yields a group of intermediate growth V that locally resembles W in that (by changing the generating set of W) there are isomorphic balls of arbitrarily large radius in V and W's Cayley graphs.
Accepté le :
Publié le :
Laurent Bartholdi 1
@article{CRMATH_2003__336_7_549_0, author = {Laurent Bartholdi}, title = {A {Wilson} group of non-uniformly exponential growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {549--554}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00131-6}, language = {en}, }
Laurent Bartholdi. A Wilson group of non-uniformly exponential growth. Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 549-554. doi : 10.1016/S1631-073X(03)00131-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00131-6/
[1] L. Bartholdi, Groups of intermediate growth, 2002, submitted
[2] Uniform exponential growth for linear groups, Internat. Math. Res. Notices, Volume 31 (2002), pp. 1675-1683
[3] On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, Volume 271 (1983) no. 1, pp. 30-33
[4] Structures métriques pour les variétés riemanniennes (J. Lafontaine; P. Pansu, eds.), CEDIC, Paris, 1981
[5] Uniform growth in groups of exponential growth, Geom. Dedicata, Volume 95 (2002), pp. 1-17
[6] Some questions of Edjvet and Pride about infinite groups, Illinois J. Math., Volume 30 (1986) no. 2, pp. 301-316
[7] D.V. Osin, The entropy of solvable groups, Ergodic Theory Dynamical Systems, 2003, to appear
[8] J.S. Wilson, On exponential and uniformly exponential growth for groups, Preprint, 2002, http://www.unige.ch/math/biblio/preprint/2002/growth.ps
Cité par Sources :
Commentaires - Politique