[Il n'existe pas de rescaling conformément Einstein d'une métrique d'Einstein pseudo-Riemannienne complète]
Let g be an Einstein metric of indefinite signature such that the conformally-equivalent metric
The proof is based on the investigation of the behavior of the function ψ along light-line geodesics: we show that for every light-line geodesic
If the manifold is closed, the function ψ accepts its maximal value
Soit g une métrique pseudo-riemannienne non définie de type Einstein telle que la métrique conformément équivalente
La démonstration est basée sur l'étude du comportement de la fonction ψ le long des géodésiques de type lumière. Si
Si la variété est fermée, la fonction ψ prend sa valeur maximale
@article{CRMATH_2009__347_17-18_1067_0, author = {Volodymyr Kiosak and Vladimir S. Matveev}, title = {There are no conformal {Einstein} rescalings of complete {pseudo-Riemannian} {Einstein} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {1067--1069}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.06.017}, language = {en}, }
TY - JOUR AU - Volodymyr Kiosak AU - Vladimir S. Matveev TI - There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics JO - Comptes Rendus. Mathématique PY - 2009 SP - 1067 EP - 1069 VL - 347 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2009.06.017 LA - en ID - CRMATH_2009__347_17-18_1067_0 ER -
%0 Journal Article %A Volodymyr Kiosak %A Vladimir S. Matveev %T There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics %J Comptes Rendus. Mathématique %D 2009 %P 1067-1069 %V 347 %N 17-18 %I Elsevier %R 10.1016/j.crma.2009.06.017 %G en %F CRMATH_2009__347_17-18_1067_0
Volodymyr Kiosak; Vladimir S. Matveev. There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 1067-1069. doi : 10.1016/j.crma.2009.06.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.06.017/
[1] Groups of conformal transformations of Riemannian spaces, Mat. Sb., Volume 89 (1972) no. 131, pp. 285-301 (in Russian) Engl. transl.: Math. USSR Sb., 18, 1972
[2] Einstein spaces which are mapped conformally on each other, Math. Ann., Volume 94 (1925), pp. 119-145
[3] The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996), pp. 277-291
[4] Essential Conformal Structures in Riemannian and Lorentzian Geometry. Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008 (pp. 231–260)
[5] Sur le groupe d'automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 5, pp. 741-764 http://www.math.u-psud.fr/~frances/cartan-english6.pdf (English translation available on)
[6] Conformal transformations between Einstein spaces, Bonn, 1985/1986 (Aspects Math.), Volume vol. E12, Vieweg, Braunschweig (1988), pp. 105-146
[7] W. Kühnel, H.-B. Rademacher, Einstein spaces with a conformal group, Results in Math., in press
[8] Twistor spinors with zero on Lorentzian 5-space, Comm. Math. Phys., Volume 275 (2007) no. 3, pp. 587-605
[9] On concircular and torse-forming vector fields “in the large”, Math. Montisnigri, Volume 4 (1995), pp. 43-54 (in Russian)
[10] On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481
[11] Einstein spaces admitting a one-parameter group of conformal transformations, Ann. Math. (2), Volume 69 (1959), pp. 451-461
- Split curvature, Proceedings of the International Geometry Center, Volume 17 (2024) no. 3, pp. 232-243 | DOI:10.15673/pigc.v17i3.2817 | Zbl:8060399
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’21, Volume 2522 (2022), p. 120001 | DOI:10.1063/5.0100795
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’21, Volume 2522 (2022), p. 120003 | DOI:10.1063/5.0100787
- Geodesic mappings of compact quasi-Einstein spaces. II, Proceedings of the International Geometry Center, Volume 14 (2021) no. 1, pp. 80-91 | DOI:10.15673/tmgc.v14i1.1936 | Zbl:1468.53019
- On conformally reducible pseudo-Riemannian spaces, Proceedings of the International Geometry Center, Volume 14 (2021) no. 2, pp. 154-163 | DOI:10.15673/tmgc.v14i2.2097 | Zbl:1481.53091
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040001 | DOI:10.1063/5.0033657
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040003 | DOI:10.1063/5.0033700
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040004 | DOI:10.1063/5.0034024
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040007 | DOI:10.1063/5.0033749
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040008 | DOI:10.1063/5.0033953
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040009 | DOI:10.1063/5.0033941
- , APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20, Volume 2302 (2020), p. 040010 | DOI:10.1063/5.0033965
- Differential Geometry of Special Mappings, 2019 | DOI:10.5507/prf.19.24455365
- Differential Geometry of Special Mappings, 2019 | DOI:10.5507/prf.19.24455358
- There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics, Mathematics, Volume 7 (2019) no. 9, p. 801 | DOI:10.3390/math7090801
- , Volume 2025 (2018), p. 080004 | DOI:10.1063/1.5064924
- Null lifts and projective dynamics, Annals of Physics, Volume 362 (2015), pp. 642-658 | DOI:10.1016/j.aop.2015.09.002 | Zbl:1343.37055
- About the Lorentzian Yamabe problem, Geometriae Dedicata, Volume 174 (2015), pp. 287-309 | DOI:10.1007/s10711-014-0018-8 | Zbl:1326.53099
- The Lichnerowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifolds, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 126 (2015), pp. 262-323 | DOI:10.1016/j.na.2015.06.024 | Zbl:1325.53041
- On the conformal mappings of quasi-Einstein spaces, Journal of Mathematical Sciences, Volume 184 (2012) no. 1, p. 12 | DOI:10.1007/s10958-012-0848-6
- Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two, Communications in Mathematical Physics, Volume 297 (2010) no. 2, pp. 401-426 | DOI:10.1007/s00220-010-1037-4 | Zbl:1197.53055
- Gallot-Tanno theorem for pseudo-Riemannian metrics and a proof that decomposable cones over closed complete pseudo-Riemannian manifolds do not exist, Differential Geometry and its Applications, Volume 28 (2010) no. 2, pp. 236-240 | DOI:10.1016/j.difgeo.2009.10.009 | Zbl:1207.53072
Cité par 22 documents. Sources : Crossref, zbMATH
Commentaires - Politique