Comptes Rendus
Complex analysis
Fekete–Szegö inequality for certain spiral-like functions
[Inégalité de Fekete–Szegö pour certaines fonctions spiralées]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1065-1070.

Pour |α|<π/2, soit Sα la classe des fonctions analytiques normalisées f(z)=z+n=2anzn, non nulles dans le disque unité D:={zC;|z|<1} et satisfaisant RePf(z)>0 dans D, où

Pf(z)=eiα(1+zf(z)f(z)).
Pour f(z)Sα, la fonction zf(z) est spiralée, notion introduite et étudiée de façon approfondie par M.S. Robertson [24]. Dans la présente Note, nous obtenons une borne supérieure précise de la fonctionnelle de Fekete–Szegö |a3λa22|, où λ est un paramètre complexe et fSα.

For |α|<π/2, let Sα denote the class of non-vanishing normalized analytic functions f(z)=z+n=2anzn in the unit disk D:={zC:|z|<1} satisfying RePf(z)>0 in D where

Pf(z)=eiα(1+zf(z)f(z)).
The class Sα consists of functions f(z) for which zf(z) is spiral-like, which has been introduced and extensively studied by M.S. Robertson [24]. In the present paper, we obtain the sharp upper bound for the Fekete–Szegö functional |a3λa22| for the complex parameter λ when fSα.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.09.008

Allu Vasudevarao 1

1 Department of Mathematics, Indian Institute of Technology Khargpur, Kharagpur-721 302, West Bengal, India
@article{CRMATH_2016__354_11_1065_0,
     author = {Allu Vasudevarao},
     title = {Fekete{\textendash}Szeg\"o inequality for certain spiral-like functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1065--1070},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.09.008},
     language = {en},
}
TY  - JOUR
AU  - Allu Vasudevarao
TI  - Fekete–Szegö inequality for certain spiral-like functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1065
EP  - 1070
VL  - 354
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2016.09.008
LA  - en
ID  - CRMATH_2016__354_11_1065_0
ER  - 
%0 Journal Article
%A Allu Vasudevarao
%T Fekete–Szegö inequality for certain spiral-like functions
%J Comptes Rendus. Mathématique
%D 2016
%P 1065-1070
%V 354
%N 11
%I Elsevier
%R 10.1016/j.crma.2016.09.008
%G en
%F CRMATH_2016__354_11_1065_0
Allu Vasudevarao. Fekete–Szegö inequality for certain spiral-like functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1065-1070. doi : 10.1016/j.crma.2016.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.008/

[1] H.R. Abdel-Gawad; D.K. Thomas The Fekete–Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., Volume 114 (1992) no. 2, pp. 345-349

[2] B. Bhowmik; S. Ponnusamy; K.-J. Wirths On the Fekete–Szegö problem for concave univalent functions, J. Math. Anal. Appl., Volume 373 (2011) no. 2, pp. 432-438

[3] P.N. Chichra Regular functions f(z) for which zf(z) is α-spiral, Proc. Amer. Math. Soc., Volume 49 (1975), pp. 151-160

[4] J.H. Choi; Y.C. Kim; T. Sugawa A general approach to the Fekete–Szegö problem, J. Math. Soc. Jpn., Volume 59 (2007) no. 3, pp. 707-727

[5] P.L. Duren Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983

[6] M. Fekete; G. Szegö Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933), pp. 85-89

[7] J.A. Jenkins A general coefficient theorem, Trans. Amer. Math. Soc., Volume 77 (1954), pp. 262-280

[8] J.A. Jenkins On certain coefficients of univalent functions, Analytic Functions, Princeton University Press, Princeton, NJ, USA, 1960

[9] F.R. Keogh; E.P. Merkes A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Volume 20 (1969) no. 1, pp. 8-12

[10] Y.C. Kim; T. Sugawa Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2), Volume 49 (2006), pp. 131-143

[11] W. Koepf On the Fekete–Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 89-95

[12] W. Koepf On the Fekete–Szegö problem for close-to-convex functions II, Arch. Math., Volume 49 (1987), pp. 420-433

[13] R.J. Libera; M.R. Ziegler Regular functions f(z) for which zf(z) is α-spiral, Trans. Amer. Math. Soc., Volume 166 (1972), pp. 361-370

[14] M.-C. Liu On functions of bounded boundary rotation, Proc. Amer. Math. Soc., Volume 29 (1971) no. 2, pp. 345-348

[15] R.R. London Fekete–Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., Volume 117 (1993) no. 4, pp. 947-950

[16] W. Ma; D. Minda An internal geometric characterization of strongly star-like functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 45 (1991), pp. 89-97

[17] W. Ma; D. Minda A unified treatment of some special classes of univalent functions (Z. Li; F. Ren; L. Yang; S. Zhang, eds.), Proceedings of the Conference on Complex Analysis, International Press Inc., 1992, pp. 157-169

[18] W. Ma; D. Minda Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., Volume 205 (1997), pp. 537-553

[19] Z. Nehari The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., Volume 55 (1949), pp. 545-551

[20] J.A. Pfaltzgraff Univalence of the integral of f(z)λ, Bull. Lond. Math. Soc., Volume 7 (1975), pp. 254-256

[21] A. Pfluger The Fekete–Szegö inequality by a variational method, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 10 (1985), pp. 447-454

[22] A. Pfluger The Fekete–Szegö inequality for complex parameters, Complex Var. Theory Appl., Volume 7 (1986), pp. 149-160

[23] S. Ponnusamy; A. Vasudevarao; H. Yanagihara Region of variability of univalent functions f(z) for which zf(z) is spiral-like, Houst. J. Math., Volume 34 (2008) no. 4, pp. 1037-1048

[24] M.S. Robertson Univalent functions f(z) for which zf(z) is spiral-like, Mich. Math. J., Volume 16 (1969), pp. 97-101

[25] V. Singh; P.N. Chichra Univalent functions f(z) for which zf(z) is α-spiral-like, Indian J. Pure Appl. Math., Volume 8 (1977), pp. 253-259

[26] L. Špaček Contribution à la théorie des fonctions univalentes, Čas. Pěst. Math. Fys., Volume 62 (1933), pp. 12-19

[27] A. Vasudevarao An arclength problem for some subclasses of univalent functions, J. Anal., Volume 22 (2014), pp. 145-149 (in Czech)

[28] A. Vasudevarao Fekete–Szego problem for certain subclasses of univalent functions, Bull. Korean Math. Soc., Volume 52 (2015) no. 6, pp. 1937-1943

Cité par Sources :

Commentaires - Politique