[Problèmes de Kashiwara–Vergne en genre supérieur et la bigèbre de Lie de Goldman–Turaev]
We define a family
Nous définissons une famille
Accepté le :
Publié le :
Anton Alekseev 1 ; Nariya Kawazumi 2 ; Yusuke Kuno 3 ; Florian Naef 1
@article{CRMATH_2017__355_2_123_0, author = {Anton Alekseev and Nariya Kawazumi and Yusuke Kuno and Florian Naef}, title = {Higher genus {Kashiwara{\textendash}Vergne} problems and the {Goldman{\textendash}Turaev} {Lie} bialgebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--127}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.12.007}, language = {en}, }
TY - JOUR AU - Anton Alekseev AU - Nariya Kawazumi AU - Yusuke Kuno AU - Florian Naef TI - Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra JO - Comptes Rendus. Mathématique PY - 2017 SP - 123 EP - 127 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.12.007 LA - en ID - CRMATH_2017__355_2_123_0 ER -
%0 Journal Article %A Anton Alekseev %A Nariya Kawazumi %A Yusuke Kuno %A Florian Naef %T Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra %J Comptes Rendus. Mathématique %D 2017 %P 123-127 %V 355 %N 2 %I Elsevier %R 10.1016/j.crma.2016.12.007 %G en %F CRMATH_2017__355_2_123_0
Anton Alekseev; Nariya Kawazumi; Yusuke Kuno; Florian Naef. Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 123-127. doi : 10.1016/j.crma.2016.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.007/
[1] The Kashiwara–Vergne conjecture and Drinfeld's associators, Ann. Math., Volume 175 (2012) no. 2, pp. 415-463
[2] New series in the Johnson cokernels of the mapping class groups of surfaces, Algebraic Geom. Topol., Volume 14 (2014), pp. 627-669
[3] Elliptic associators, Sel. Math., Volume 20 (2014), pp. 491-584
[4] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986), pp. 263-302
[5] The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978), pp. 249-271
[6] Intersections of curves on surfaces and their applications to mapping class groups, Ann. Inst. Fourier (Grenoble), Volume 65 (2015), pp. 2711-2762
[7] The Goldman–Turaev Lie bialgebra and the Johnson homomorphisms (A. Papadopoulos, ed.), Handbook of Teichmuller Theory, Volume V, EMS Publishing House, Zurich, Switzerland, 2016, pp. 97-165
[8] Formal descriptions of Turaev's loop operations (preprint) | arXiv
[9] Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not., Volume 2014 (2014) no. 1, pp. 1-64
[10] Poisson brackets in Kontsevich's “Lie World” (preprint) | arXiv
[11] L. Schneps, Talk at the conference “Homotopical Algebra, Operads and Grothendieck–Teichmüller Groups”, Nice, France, 9–12 September 2014.
[12] L. Schneps, E. Raphael, On linearised and elliptic versions of the Kashiwara–Vergne Lie algebra, in preparation.
[13] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 24 (1991), pp. 635-704
[14] Double Poisson algebras, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 5711-5799
[15] Configuration spaces of points and their rational homotopy theory, mini-course given in Les Diablerets (Switzerland) http://drorbn.net/dbnvp/LD16_Willwacher-1.php (on 31 August–1 September 2016. Video available at)
Cité par Sources :
Commentaires - Politique