[Insuffisance de la condition de noyau de Hörmander pour les opérateurs multilinéaires de Calderón–Zygmund]
It is well known that the Hörmander smoothness condition
Il est bien connu que la condition de lissage de Hörmander
Accepté le :
Publié le :
Loukas Grafakos 1 ; Danqing He 2 ; Lenka Slavíková 1
@article{CRMATH_2019__357_4_382_0, author = {Loukas Grafakos and Danqing He and Lenka Slav{\'\i}kov\'a}, title = {Failure of the {H\"ormander} kernel condition for multilinear {Calder\'on{\textendash}Zygmund} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {382--388}, publisher = {Elsevier}, volume = {357}, number = {4}, year = {2019}, doi = {10.1016/j.crma.2019.04.002}, language = {en}, }
TY - JOUR AU - Loukas Grafakos AU - Danqing He AU - Lenka Slavíková TI - Failure of the Hörmander kernel condition for multilinear Calderón–Zygmund operators JO - Comptes Rendus. Mathématique PY - 2019 SP - 382 EP - 388 VL - 357 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2019.04.002 LA - en ID - CRMATH_2019__357_4_382_0 ER -
Loukas Grafakos; Danqing He; Lenka Slavíková. Failure of the Hörmander kernel condition for multilinear Calderón–Zygmund operators. Comptes Rendus. Mathématique, Volume 357 (2019) no. 4, pp. 382-388. doi : 10.1016/j.crma.2019.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.04.002/
[1] E. Buriánková, D. He, P. Honzík, Multilinear rough singular integrals, in preparation.
[2] Multilinear weighted norm inequalities under integral type regularity conditions (S. Chanillo et al., eds.), Harmonic Analysis, Partial Differential Equations and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, Switzerland, 2017, pp. 193-216
[3] On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., Volume 212 (1975), pp. 315-331
[4] Commutateurs d' intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), Volume 28 (1978), pp. 177-202
[5] Au-delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, 1978
[6] Method of rotations for bilinear singular integrals, Commun. Math. Anal. Commun. Math. Anal. Conf., Volume 3 (2011), pp. 99-107
[7] Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014
[8] Rough bilinear singular integrals, Adv. Math., Volume 326 (2018), pp. 54-78
[9]
[10] Uniform bounds for the bilinear Hilbert transforms, I, Ann. of Math. (2), Volume 159 (2004), pp. 889-933
[11] Multilinear Calderón–Zygmund theory, Adv. Math., Volume 165 (2002), pp. 124-164
[12] Estimates for translation invariant operators in
[13] Multilinear estimates and fractional integration, Math. Res. Lett., Volume 6 (1999), pp. 1-15
[14] Uniform bounds for the bilinear Hilbert transform II, Rev. Mat. Iberoam., Volume 22 (2006), pp. 1069-1126
[15] Sparse domination theorem for multilinear singular integral operators with
[16] Lack of natural weighted estimates for some singular integral operators, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 385-396
[17] Calderón–Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, UK, 1997 (translated from the 1990 and 1991 French originals by David Salinger)
[18] Minimal regularity conditions for the end-point estimate of bilinear Calderón–Zygmund operators, Proc. Amer. Math. Soc. Ser. B, Volume 1 (2014), pp. 1-13
Cité par Sources :
☆ The first author was supported by the Simons Foundation (No. 315380). The second author was supported by the NNSF of China (No. 11701583), the Guangdong Natural Science Foundation (No. 2017A030310054) and the Fundamental Research Funds for the Central Universities (No. 17lgpy11).
Commentaires - Politique