A toroidal bubble or a cylindrical gas jet are known to be subjected to the Rayleigh–Plateau instability. Air bubble rings produced by beluga whales and dolphins however are observed that remain stable for long times. In the present work, we analyse the generation of such toroidal bubbles via numerical simulations, in particular how the process depends on surface tension. Their stability properties are then briefly analysed. For the estimated Reynolds and Weber numbers relative to the bubbles produced by these animals, the presence of a vortex inside and around the bubble is found to strongly stabilize the Rayleigh–Plateau instability.
Yonghui Xu 1 ; Ivan Delbende 2, 3 ; Daniel Fuster 4 ; Maurice Rossi 4
@article{CRMECA_2020__348_6-7_519_0, author = {Yonghui Xu and Ivan Delbende and Daniel Fuster and Maurice Rossi}, title = {Instability of a swirling bubble ring}, journal = {Comptes Rendus. M\'ecanique}, pages = {519--535}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.22}, language = {en}, }
TY - JOUR AU - Yonghui Xu AU - Ivan Delbende AU - Daniel Fuster AU - Maurice Rossi TI - Instability of a swirling bubble ring JO - Comptes Rendus. Mécanique PY - 2020 SP - 519 EP - 535 VL - 348 IS - 6-7 PB - Académie des sciences, Paris DO - 10.5802/crmeca.22 LA - en ID - CRMECA_2020__348_6-7_519_0 ER -
Yonghui Xu; Ivan Delbende; Daniel Fuster; Maurice Rossi. Instability of a swirling bubble ring. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 519-535. doi : 10.5802/crmeca.22. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.22/
[1] Observation expérimentale de la turbulence bidimensionnelle dans un film liquide mince, C. R. Acad. Sci. Paris II, Volume 297 (1983), pp. 641-645
[2] Characterization of the low pressure filaments in three-dimensional turbulent shear flow, Phys. Fluids, Volume 7 (1995), pp. 630-646 | DOI
[3] Dolphin Blowing Rings https://www.youtube.com/watch?v=2m6ie3MVIAw (Youtube video, last seen 2020)
[4] Beluga whales blowing bubble rings https://www.youtube.com/watch?v=Iiuv2ELttaQ (Youtube video, last seen 2020)
[5] Xvi. On the instability of a cylinder of viscous liquid under capillary force, Lond. Edinburgh Dublin Phil. Mag. J. Sci., Volume 34 (1892) no. 207, pp. 145-154 | Zbl
[6] Xix. On the instability of cylindrical fluid surfaces, Lond. Edinburgh Dublin Phil. Mag. J. Sci., Volume 34 (1892) no. 207, pp. 177-180 | Zbl
[7] The stability of a column of rotating liquid, Mathematica, Volume 6 (1959) no. 1, pp. 25-32 | MR | Zbl
[8] The effect of viscosity on the stability of a uniformly rotating liquid column in zero gravity, J. Fluid Mech., Volume 572 (2007), pp. 261-286 | DOI | MR | Zbl
[9] Helical instability of a rotating viscous liquid jet, Phys. Fluids, Volume 19 (2007) no. 11 (114108) | Zbl
[10] The stability of a rotating viscous jet, Q. Appl. Math., Volume 19 (1962) no. 4, pp. 301-308 | DOI | MR | Zbl
[11] On the instability of inviscid, rigidly rotating immiscible fluids in zero gravity, Z. Angew. Math. Phys., Volume 48 (1997) no. 6, pp. 921-950 | DOI | MR | Zbl
[12] Shooting Underwater Hydro-Rings https://www.youtube.com/watch?v=5KdsVsiZ6bU (Youtube, last seen 2020)
[13] Underwater bubble ring https://www.youtube.com/watch?v=4mbu2ueMe2E (Youtube, last seen 2020)
[14] How To Make Underwater Bubble Rings - Bubble Ring Tutorial https://www.youtube.com/watch?v=vFbN31EuMvc (Youtube, last seen 2020)
[15] Vortex Dynamics, Cambridge University Press, Cambridge, 1992 | Zbl
[16] Vortex rings, Fluid Vortices (S. I. Green, ed.) (Fluid Mechanics and Its Applications), Volume 30, Springer, Dordrecht, 1995, pp. 95-153 | DOI
[17] Basilisk (http://basilisk.fr)
[18] A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys., Volume 302 (2015), pp. 336-358 | DOI | MR | Zbl
[19] Dynamically stretched vortices as solution of the 3D Navier–Stokes equations, Physica D, Volume 132 (1999), pp. 497-510 | DOI | Zbl
[20] Rapid relaxation of an axisymmetric vortex, Phys. Fluids, Volume 6 (1994) no. 11, pp. 3717-3723 | DOI | Zbl
[21] The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., Volume 146 (1984), pp. 21-43 | DOI | Zbl
[22] Statistical equilibrium states for two-dimensional flows, J. Fluid Mech., Volume 229 (1991), pp. 291-310 | DOI | MR | Zbl
[23] Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), pp. 16-18 | DOI
Cité par Sources :
Commentaires - Politique