Comptes Rendus
Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations
[Interaction entre un jet propulsif et un tourbillon de sillage d'avions : dynamique à petite échelle et transformations physico-chimiques]
Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 525-547.

Ce papier décrit les progrès récents concernant l'étude de l'interaction entre les jets propulsifs et les tourbillons de sillage, dans le champ proche d'un avion de transport. Une attention particulière a été portée sur les effets des jets sur la dynamique des tourbillons de sillage et l'influence des ces derniers à la fois sur la dispersion des émissions aussi bien que sur les transformations microphysiques et chimiques, qui peuvent avoir un impact sur l'environnement. Nous discutons les résultats de simulations numériques basées sur des approches DNS et LES, de la dynamique et du mélange à petite échelle ainsi que les transformations chimiques et la formation des traînées de condensation.

This paper summarizes recent progress made in the understanding of the interaction between exhaust jets and trailing vortices, in the near field of an aircraft wake. Emphasis is placed on the effects of the jet on the wake vortex dynamics and the effects of the wake on the exhaust dispersion, as well as their potential microphysical and chemical transformations. We discuss in detail results of high-resolution numerical simulations of jet/vortex interaction that include microscale turbulent mixing, gas-phase chemistry and contrail formation.

Publié le :
DOI : 10.1016/j.crhy.2005.05.003
Keywords: Wake vortex, Exhaust jet, DNS, LES, Contrails, Chemical transformations
Mot clés : Tourbillon de sillage, Jet propulsif, DNS, LES, Traînées de condensation, Transformations chimiques
Roberto Paoli 1 ; François Garnier 2

1 CERFACS, 42, avenue Gaspard Coriolis, 31057 Toulouse cedex, France
2 ONERA-DMPH, 29, avenue de la Division Leclerc, 92320 Châtillon cedex, France
@article{CRPHYS_2005__6_4-5_525_0,
     author = {Roberto Paoli and Fran\c{c}ois Garnier},
     title = {Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations},
     journal = {Comptes Rendus. Physique},
     pages = {525--547},
     publisher = {Elsevier},
     volume = {6},
     number = {4-5},
     year = {2005},
     doi = {10.1016/j.crhy.2005.05.003},
     language = {en},
}
TY  - JOUR
AU  - Roberto Paoli
AU  - François Garnier
TI  - Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 525
EP  - 547
VL  - 6
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.05.003
LA  - en
ID  - CRPHYS_2005__6_4-5_525_0
ER  - 
%0 Journal Article
%A Roberto Paoli
%A François Garnier
%T Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations
%J Comptes Rendus. Physique
%D 2005
%P 525-547
%V 6
%N 4-5
%I Elsevier
%R 10.1016/j.crhy.2005.05.003
%G en
%F CRPHYS_2005__6_4-5_525_0
Roberto Paoli; François Garnier. Interaction of exhaust jets and aircraft wake vortices: small-scale dynamics and potential microphysical-chemical transformations. Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 525-547. doi : 10.1016/j.crhy.2005.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.003/

[1] P.R. Spalart Airplane trailing vortices, Annu. Rev. Fluid Mech., Volume 30 (1998), p. 107

[2] Intergovernmental Panel of Climate Change, Aviation and the Global Atmosphere, Cambridge University Press, Cambridge, UK, 1999

[3] D.W. Fahey, U. Schumann, Aviation-produced aerosols and cloudiness, in: J.E. Penner et al. (Eds.), Aviation and the Global Atmospheren, International Panel of Climate Change, Special Report

[4] P. Schulte; H. Schlager; H. Ziereis; U. Schumann; S.L. Baughcum; F. Deidewig NOx emission indices of subsonic long-range jet aircraft at cruise altitude: in situ measurements and predictons, J. Geophys. Res., Volume 102 (1997), pp. 21431-21442

[5] U. Schumann; H. Schlager; F. Arnold; R. Baumann; P. Haschberger; O. Klemm Dilution of aircraft exhaust plumes at cruise altitudes, Atmos. Environ., Volume 32 (1998), pp. 3097-3103

[6] F. Garnier; C. Baudoin; P. Woods; N. Louisnard Engine emission alteration in the near field of an aircraft, Atmos. Environ., Volume 31 (1997), pp. 1767-1781

[7] T. Gerz; T. Durbeck; P. Konopka Transport and effective diffusion of aircraft emissions, J. Geophys. Res., Volume 103 (1998), pp. 25905-25913

[8] H. Hoshizaki; L.B. Anderson; R.J. Conti; N. Farlow; J.W. Meyer; T. Overcamp; K.O. Redler; V. Watson CIAP Monograph 3, The Stratosphere Perturbed by Propulsion Effluents, Final Report-DOT-TST-75-53, U.S. Department of Transportation, Washington, DC, 1975

[9] R.C. Miake-Lye; R.C. Brown; C.E. Kolb Plume and wake dynamics, mixing and chemistry behind a high speed civil transport aircraft, J. Aircraft, Volume 30 (1993), pp. 467-479

[10] Z. El-Ramy; W.J. Rainbird Effect of simulated jet engines on the flowfield behind a swept-back wing, J. Aircraft, Volume 14 (1977), pp. 343-349

[11] S. Brunet, F. Garnier, L. Jacquin, Numerical/experimental simulation of exhaust jet mixing in wake vortex, AIAA paper 1999-3418, 1999

[12] J.M. Seiner, M.K. Ponton, B.J. Jansen S.M. Dash, D.C. Kenakowski, Installation effects on high speed plume evolution, ASME paper FEDSM97-3227, 1997

[13] F.Y. Wang; M.J. Proot; J.-M. Charbonnier Near-field interaction of a jet with leading-edge vortices, J. Aircraft, Volume 37 (2000), pp. 779-785

[14] F.Y. Wang; K.B.M.Q. Zaman Aerodynamic of a jet in the vortex-wake of a wing, AIAA J., Volume 40 (2002), pp. 401-407

[15] H.L. Kantha; W.S. Lewellen; F.H. Durgin Response of a trailing vortex to axial injection into the core, J. Aircraft, Volume 9 (1972), pp. 226-254

[16] W.R.C. Phillips; J.A.H. Graham Reynolds stress measurements in a turbulent trailing vortex, J. Fluid Mech., Volume 147 (1984), pp. 353-371

[17] G. Huppertz; E. Fares; R. Abstiens; W. Schroder Investigation of engine jet/wing-tip vortex interference, Aerosp. Sci. Tech., Volume 8 (2004), pp. 175-183

[18] E. Fares, M. Meinke, W. Schroeder, Numerical simulation of the interaction of wingtip vortices and engine jets in the near field, AIAA paper 2000-2222, 2000

[19] T. Gerz; T. Ehret Wingtip vortices and exhaust jets during the jet regime of aircraft wakes, Aerosp. Sci. Tech., Volume 1 (1997), pp. 463-474

[20] F. Garnier; S. Brunet; L. Jacquin Modeling exhaust plume mixing in the near field of an aircraft, Ann. Geophys., Volume 16 (1997), pp. 1468-1477

[21] T. Gerz; F. Holzapfel Wingtip vortices, turbulence, and the distribution of emissions, AIAA J., Volume 37 (1999), pp. 1270-1276

[22] F. Holzapfel; T. Gerz; D. Darracq; H. Moet; F. Garnier; C. Ferreira Gago Analysis of wake vortex decay mechanisms in the atmosphere, Aerosp. Sci. Tech., Volume 7 (2003), pp. 263-275

[23] A. Michalke; G. Hermann On the inviscid instability of a circular jet with external flow, J. Fluid Mech., Volume 114 (1982), pp. 343-359

[24] P. Brancher, Etude numérique des instabilités secondaires de jets, Ph.D. thesis, Ecole Polytechnique, Palasieu, 1996

[25] T. Loiseleux; J.M. Chomaz; P. Huerre The effects of swirl on jets and wakes: Linear instability of the Rankine-vortex with axial vortex, Phys. Fluids, Volume 10 (1998), pp. 1120-1134

[26] G. Lu; S.K. Lele Inviscid instability of compressible swirling mixing layers, Phys. Fluids, Volume 11 (1999), pp. 450-461

[27] J.B. Freund; S.K. Lele; P. Moin Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rates, J. Fluid Mech. (2000), pp. 229-267

[28] J.B. Freund; P. Moin; S.K. Lele Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar, J. Fluid Mech. (2000), pp. 269-292

[29] J.B. Freund; S.K. Lele; P. Moin Numerical simulation of a Mach 1.92 turbulent jet and its sound field, AIAA J., Volume 38 (2000), pp. 2023-2031

[30] J.B. Freund Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, J. Fluid Mech. (2001), pp. 277-305

[31] F.P. Ricou; D.B. Spalding Measurements of entrainment by axisymmetrical turbulent jets, J. Fluid Mech., Volume 11 (1961), pp. 21-32

[32] G.N. Abramovich; O.V. Yakovleski; I.P. Smirnova; A.N. Secundov; S. Yu An investigation of the turbulent jets of different gases in a general stream, Acta Astron., Volume 14 (1969), p. 229

[33] P.A. Monkewitz; X.D. Sohn Absolute instability in hot jets, AIAA J., Volume 26 (1988), pp. 911-916

[34] V.J. Rossow Lift-generated vortex wakes of subsonic transport aircraft, Prog. Aerosp. Sci., Volume 35 (1999), p. 507

[35] G. Batchelor Axial flow in trailing line vortices, J. Fluid Mech., Volume 20 (1964), pp. 645-658

[36] E.W. Mayer; K.G. Powell Viscous and inviscid instabilities of a trailing vortex, J. Fluid Mech., Volume 245 (1992), pp. 91-114

[37] S. Ragab; M. Sreedhar Numerical simulation of vortices with axial velocity deficits, Phys. Fluids, Volume 7 (1995), pp. 549-558

[38] G. Hu; D. Sun; X. Yin A numerical study of dynamics of a temporally evolving swirling jet, Phys. Fluids, Volume 13 (2001), pp. 951-965

[39] D.C. Lewellen; W.S. Lewellen Large-eddy simulations of the vortex-pair breakup in aircraft wakes, AIAA J., Volume 34 (1996), pp. 2337-2345

[40] D.C. Lewellen; W.S. Lewellen; L.R. Poole; R.J. DeCoursey; G.M. Hansen; C.A. Hostetler; G.S. Kent Large-eddy simulations and lidar measurements of vortex-pair breakup in aircraft wakes, AIAA J., Volume 36 (1998), pp. 1439-1445

[41] S.C. Rennich; S.K. Lele Method for accelerating the destruction of aircraft wake vortices, J. Aircraft, Volume 36 (1999), pp. 398-404

[42] T. Leweke; C.H.K. Williamson Cooperative elliptic instability of a vortex pair, J. Fluid Mech., Volume 360 (1998), pp. 85-119

[43] S. Le Dizès; F. Laporte Theoretical predictions for the elliptic instability in a two-vortex flow, J. Fluid. Mech., Volume 471 (2002), pp. 169-201

[44] J.D. Crouch Instability and transient growth for two trailing-vortex pairs, J. Fluid Mech., Volume 350 (1997), pp. 311-330

[45] D. Fabre; L. Jacquin Stability of a four-vortex aircraft wake model, Phys. Fluids, Volume 12 (2000), pp. 2438-2443

[46] W.J. Devenport; M.C. Rife; S.I. Liapis; G.J. Follin The structure and development of a wing-tip vortex, J. Fluid Mech., Volume 312 (1996), pp. 67-106

[47] W.J. Devenport; J.S. Zsoldos; C.M. Vogel The structure and development of a counter-rotating wing-tip vortex pair, J. Fluid Mech., Volume 332 (1997), pp. 1-104

[48] A. Chen; J.D. Jacob; O. Savas Dynamics of corotating vortex pairs in the wakes of flapped airfoils, J. Fluid Mech., Volume 382 (1999), pp. 155-193

[49] L. Jacquin, D. Fabre, P. Geffroy, E. Coustols, The properties of a transport aircraft wake in the extended near field: an experimental study, AIAA paper 2001-1038, 2001

[50] D. Fabre, Instabilités et instationnarités dans les tourbillons: application aux sillage d'avions, Ph.D. thesis, Université Paris VI – ONERA, 2002

[51] F. Laporte, Simulation numérique appliquée à la caractérisation et aux instabilités des tourbillons de sillage d'avions de transport, Ph.D. thesis, Institut National Polytechnique de Toulouse – CERFACS, 2002

[52] C. Ferreira Gago; S. Brunet; F. Garnier Numerical investigation of turbulent mixing in a jet/wake vortex interaction, AIAA J., Volume 40 (2002), pp. 276-284

[53] R. Paoli; F. Laporte; B. Cuenot; T. Poinsot Dynamics and mixing in jet/vortex interactions, Phys. Fluids, Volume 15 (2003), pp. 1843-1860

[54] S.K. Lele Compact finite difference scheme with spectral-like resolution, J. Comp. Phys., Volume 103 (1992), pp. 16-42

[55] T. Poinsot; S.K. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comp. Phys., Volume 101 (1992), pp. 104-129

[56] M. Gaster A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability, J. Fluid Mech., Volume 14 (1962), pp. 222-224

[57] R. Verzicco; P. Orlandi Direct simulations of the transitional regime of a circular jet, Phys. Fluids, Volume 6 (1994), pp. 751-759

[58] A.B. Cortesi; B.L. Smith; G. Yadigaroglu; S. Banerjee Numerical investigation of the entrainment and mixing processes in neutral and stably-stratified mixing layers, Phys. Fluids, Volume 7 (1999), pp. 162-184

[59] S. Brunet, L. Jacquin, P. Geffroy, Experimental heated jets/wake vortex interaction, ONERA Report RT 15/2496 DAFE/Y, 1999

[60] P.G. Saffman Vortex Dynamics, Cambridge University Press, Cambridge, UK, 1992

[61] G. Erlebacher; M.Y. Hussaini; C.G. Speziale; T.A. Zang Towards the large-eddy simulation of compressible turbulence, J. Fluid Mech., Volume 238 (1992), pp. 155-185

[62] P. Moin; K. Squires; W. Cabot; S. Lee A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids, Volume 3 (1991), pp. 2746-2757

[63] F. Ducros; P. Comte; M. Lesieur Large-eddy simulation of transition to turbulence in a boundary layer spatially developing over a flat plate, J. Fluid. Mech., Volume 326 (1996), pp. 1-36

[64] O. Métais; M. Lesieur Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid. Mech., Volume 239 (1992), pp. 157-194

[65] L. Jacquin; C. Pantano On the persistence of trailing vortices, J. Fluid Mech., Volume 471 (2002), pp. 159-168

[66] J. Jeong; F. Hussain On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94

[67] B.M. Cetegen; N. Mohamad Experiments on liquid mixing and reaction in a vortex, J. Fluid Mech., Volume 249 (1993), pp. 391-414

[68] W.B. De More; S.P. Sander; D.M. Golden; M.J. Molina; R.F. Hampson; M.J. Kuylo; C.J. Howard; A.R. Ravihankara Chemical Kinetics and Photo-Chemical Data for Use in Stratospheric Modeling, JPL Publication, 1992

[69] World Meteorological Organization, Scientific assessment of ozone depletion, Global Ozone Research and Monitoring Project, Report 25, 1992

[70] S.K. Meilinger; B. Kärcher; T. Peter Suppression of chlorine activation on aviation-produced volatile particles, Atmos. Chem. Phys., Volume 2 (2002), pp. 307-312

[71] W.R. Stockwell; J.G. Calvert The mechanism of the HOSO2 reaction, Atmos. Environ., Volume 17 (1983), pp. 2231-2235

[72] F. Arnold; J. Scheid; T. Stilp; H. Schlager; E. Reinhardt Measurements of jet aircraft emissions at cruise altitude I: the odd-nitrogen gases NO, NO2 and HNO3, Geophys. Res. Lett., Volume 19 (1992), pp. 2421-2424

[73] T. Reiner; F. Arnold Laboratory flow reactor measurements of reaction SO3 + H2O + M → H2SO4: implication for gaseous H2SO4 and aerosol formation in the plume of the jet aircraft, Geophys. Res. Lett., Volume 20 (1993), pp. 2659-2662

[74] A.M. Starik; A.M. Savel'ev; N.S. Titova; U. Schumann Modeling of sulfur gases and chemiions in aircraft engines, Aerosp. Sci. Techn., Volume 6 (2002), pp. 63-81

[75] A.M. Starik; A.M. Savel'ev; N.S. Titiva; E.E. Loukhovitskaya; U. Schumann Effect of aerosol precursors from gas turbine engines on the volatile sulfate aerosols and ion clusters formation in aircraft plumes, Phys. Chem. Chem. Phys., Volume 6 (2004), pp. 3426-3436

[76] A. Sorokin; E. Katragkou; F. Arnold; R. Busen; U. Schumann Gaseous SO3 and H2SO4 in the exhaust of an aircraft gas turbine engine: measurements by CIMS and implications for fuel sulfur conversion to sulfur (VI) and conversion of SO3 to H2SO4, Atmos. Environ., Volume 38 (2004), pp. 449-456

[77] H. Appleman The formation of exhaust condensation trails by jet aircraft, Bull. Amer. Meteor. Soc., Volume 34 (1953), pp. 14-20

[78] U. Schumann On the conditions for contrails formation, Meteorol. Z., Volume 5 (1996), pp. 4-23

[79] A. Petzold; R. Busen; F. Schröder; R. Baumann; M. Kuhn; D.E. Hagen; P.D. Whitefield; D. Baumgardner; F. Arnold; S. Borrmann; U. Schumann Near-field measurements on contrail properties from fuels with different sulfur content, J. Geophys. Res., Volume 102 (1997), pp. 29867-29881

[80] F. Schröder; B. Kärcher; C. Duroure; J. Ström; A. Petzold; J.-F. Gayet; B. Strauss; P. Wendling; S. Borrmann On the transition of contrails into cirrus, J. Atmos. Sci., Volume 57 (2000), pp. 464-480

[81] U. Schumann; F. Arnold; R. Busen; J. Curtius; B. Kärcher; A. Kiendler; A. Petzold; H. Schlager; F. Schröder; K.-H. Wohlfrom Influence of fuel sulfur on the composition of aircraft exhaust plumes: the experiments SULFUR 1-7, J. Geophys. Res., Volume 107 (2002) no. D15, p. AAC 2-1-AAC 2-27 | DOI

[82] R. Sussmann; K. Gierens Lidar and numerical studies of the different evolution of vortex pair and secondary wake in young contrails, J. Geophys. Res., Volume 104 (1999), pp. 2131-2142

[83] D.C. Lewellen; W.S. Lewellen The effects of aircraft wake dynamics on contrail development, J. Atmos. Sci., Volume 58 (2001), pp. 390-406

[84] K.M. Gierens Numerical simulations of persistent contrails, J. Atmos. Sci., Volume 53 (1996), pp. 3333-3348

[85] R. Paoli; J. Hélie; T. Poinsot Contrail formation in aircraft wakes, J. Fluid Mech., Volume 502 (2004), pp. 361-373

[86] P. Mirabel, F. Garnier, J.-F. Gayet, R. Sussmann, J. Strom, P. Wendling, Formation processes and radiative properties of particles in aircraft wakes, Aerocontrail Final report, 1998

[87] R. Paoli, J. Hélie, T. Poinsot and S. Ghosal, Contrails formation in aircraft wakes using large-eddy simulations, in: Proc. Summer Program of the Center for Turbulence Research, Stanford, 2002, pp. 229–241

[88] M. Boivin; O. Simonin; K.D. Squires Direct numerical simulations of turbulence modulation by particles in isotropic turbulence, J. Fluid Mech., Volume 375 (1998), pp. 235-263

[89] P.K. Yeung; S.B. Pope An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence, J. Comp. Phys., Volume 79 (1988), pp. 373-416

[90] B. Karcher; T. Peter; U. Biermann; U. Schumann The initial composition of jet condensation trails, J. Atmos. Sci., Volume 53 (1996), pp. 3066-3083

[91] B. Karcher Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. Part 1. Model description, J. Geophys. Res., Volume 103 (1998), pp. 17111-17128

[92] B. Karcher; R. Busen; A. Petzold; F.P. Schröder; U. Schumann; E.J. Jensen Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles. Part 2. Comparison with observations and sensitivity studies, J. Geophys. Res., Volume 103 (1998), pp. 17129-17147

[93] X. Qu; E.J. Davis Droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sc., Volume 32 (2001), pp. 861-875

[94] D. Sonntag Advancements in the field of hygrometry, Meteorol. Z., Volume 3 (1994), pp. 51-66

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Unsteadiness, instability and turbulence in trailing vortices

Laurent Jacquin; David Fabre; Denis Sipp; ...

C. R. Phys (2005)


Formation, properties and climatic effects of contrails

Ulrich Schumann

C. R. Phys (2005)