[Dynamique de flammes prémélangées, confinées et swirlées]
Un effort de recherche important est actuellement effectué pour comprendre les mćanismes fondamentaux qui contrôlent les instabilitś de combustion et pour développer des méthodes permettant de prévoir ces phénomènes. Un aspect central de ce probléme est la réponse dynamique des flammes à des perturbations amont. Cette question est abordé dans cet article qui considère spécifiquement la réponse de flammes prémélangées et swirlées à des perturbations de vitesse imposées en amont du brûleur. Cette réponse de flamme est caractérisée par la mesure du taux de dégagement de chaleur de la flamme induit par les perturbations de vitesses. Une fonction de transfert généralisée (FDF pour “Flame Describing Function”) est alors définie en prenant le rapport du dégagement de chaleur relatif et de la fluctuation de vitesse relative. Cette quantité est déterminé pour une gamme de fréquence et pour plusieurs amplitudes de la fluctuation de vitesse. La dynamique de flamme est aussi étudiée à l'aide des images d'émission moyennes conditionnées par la phase et traitées par transformé d'Abel pour obtenir la géométrie de la flamme à différents instants du cycle d'excitation. L'ensemble de ces résultats peuvent être utiles à la détermination des régimes d'instabilités possibles.
Considerable effort is currently being extended to examine the fundamental mechanisms of combustion instabilities and develop methods allowing predictions of these phenomena. One central aspect of this problem is the dynamical response of the flame to incoming perturbations. This question is examined in the present article, which specifically considers the response of premixed swirling flames to perturbations imposed on the upstream side of the flame in the feeding manifold. The flame response is characterized by measuring the unsteady heat release induced by imposed velocity perturbations. A flame describing function is defined by taking the ratio of the relative heat release rate fluctuation to the relative velocity fluctuation. This quantity is determined for a range of frequencies and for different levels of incoming velocity perturbations. The flame dynamics is also documented by calculating conditional phase averages of the light emission from the flame and taking the Abel transform of these average images to obtain the flame geometry at various instants during the cycle of oscillation. These data can be useful to the determination of possible regimes of instability.
Mot clés : Combustion, Swirl, Fonction de transfert généralisés, Couplage acoustique, Confinement
P. Palies 1 ; D. Durox 1 ; T. Schuller 1 ; P. Morenton 2 ; S. Candel 1, 3
@article{CRMECA_2009__337_6-7_395_0, author = {P. Palies and D. Durox and T. Schuller and P. Morenton and S. Candel}, title = {Dynamics of premixed confined swirling flames}, journal = {Comptes Rendus. M\'ecanique}, pages = {395--405}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.001}, language = {en}, }
TY - JOUR AU - P. Palies AU - D. Durox AU - T. Schuller AU - P. Morenton AU - S. Candel TI - Dynamics of premixed confined swirling flames JO - Comptes Rendus. Mécanique PY - 2009 SP - 395 EP - 405 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.001 LA - en ID - CRMECA_2009__337_6-7_395_0 ER -
P. Palies; D. Durox; T. Schuller; P. Morenton; S. Candel. Dynamics of premixed confined swirling flames. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 395-405. doi : 10.1016/j.crme.2009.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.001/
[1] Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 1-28
[2] Introduction: combustion dynamics in lean-premixed prevaporized gas turbines, Journal of Propulsion and Power, Volume 19 (2003), p. 721
[3] A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, Volume 32 (2006), pp. 93-161
[4] Swirl flows in combustion: a review, AIAA Journal, Volume 15 (1977) no. 8, pp. 1065-1078
[5] Swirl Flows, Abaqus Press, 1984
[6] S.K. Thumuluru, H.H. Ma, T. Lieuwen, Measurements of the flame response to harmonic excitation in a swirl combustor, AIAA Paper 2007-0845, Reno, US, 2007
[7] Flame transfer function saturation mechanisms in a swirl-stabilized combustor, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 3181-3188
[8] B.D. Bellows, M.K. Bobba, J.M. Seitzman, T. Lieuwen, Nonlinear flame transfer function characteristics in a swirl-stabilized combustor, ASME Paper GT2006-91119, in: ASME Turbo Expo 2006, vol. 129, Barcelona, Spain, 2007, pp. 954–961
[9] LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation, Combustion and Flame, Volume 150 (2007), pp. 40-53
[10] Enhanced performance of a gas-turbine combustor using miniature vortex generators, Proceedings of the Combustion Institute, Volume 29 (2003), pp. 123-129
[11] F.E.C. Culick, Dynamics of combustion systems: fundamentals, acoustics and control, in: RTO AVT Course on “Active control of engine dynamics”, Von Karman Institute Rhode Saint Genese, Belgium, 2001
[12] An experimental study of combustion dynamics of a premixed swirl injector, Proceedings of the Combustion Institute, Volume 27 (1998), pp. 1849-1856
[13] An experimental estimation of mean rate and flame structure during combustion instability in a lean premixed gas turbine combustor, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 775-782
[14] Thermo-acoustic frequency selection by swirled premixed flames, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 823-830
[15] An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame, Combustion and Flame, Volume 151 (2007), pp. 29-36
[16] Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combustion and Flame, Volume 150 (2007), pp. 2-26
[17] Combustion dynamics of a low-swirl combustor, Combustion and Flame, Volume 151 (2007), pp. 412-425
[18] Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions, Combustion and Flame, Volume 144 (2006), pp. 205-224
[19] Combustion dynamics of turbulent swirling flames, Combustion and Flame, Volume 131 (2002), pp. 70-84
[20] H.C. Mongia, Perspective of combustion modeling for gas turbine combustors, AIAA Paper 2004-0156, 2004, pp. 1–33
[21] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, Volume 141 (2005), pp. 40-54
[22] LES studies of the flow in a swirl gas combustor, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1791-1798
[23] Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1775-1782
[24] Investigation of a strongly swirled unconfined premixed flame using LES, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1477-1485
[25] Combustion dynamics of inverted conical flames, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 1717-1724
[26] Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations, Combustion and Flame, Volume 143 (2005), pp. 37-55
[27] Flow seeding with an air nebulizer, Experiments in Fluids, Volume 27 (1999), pp. 408-413
[28] Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners, Combustion and Flame, Volume 135 (2003), pp. 525-537
[29] A unified framework for nonlinear combustion instability analysis based on the flame describing function, Journal of Fluid Mechanics, Volume 615 (2008), pp. 139-167
[30] A unified model for the prediction of laminar flame transfer functions comparisons between conical and V-flame dynamics, Combustion and Flame, Volume 134 (2003), pp. 21-34
[31] S.H. Preetham, T. Lieuwen, Nonlinear flame-flow transfer function calculations: flow disturbance celerity effects, in: 40th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference & Exhibit, Fort Lauderdale, Florida, 2004
[32] Turbulent Combustion, Cambridge University Press, Cambridge, 2000
Cité par Sources :
Commentaires - Politique