Abridged version
1 Introduction
The structural arrangement of the northwestern Paris Basin usually depends on fault throws with N120–130 (Armorican), or N150–160 orientations, mainly resulting from the Hercynian orogenesis [30,39]. The structural maps of the ‘Pays de Caux’ reflect this predominancy of N120–130 (Armorican) and N150–160 orientations for the faults, downbendings and folds (Fig. 1): faults of Fécamp–Lillebonne (F1), of the Seine (F7), of Grand-Tendos (eastern segment of the fault F2), and of the Bray (F4). These structural maps underscore the presence of fault throws with N30–50 (Variscan) orientations: fault of Villequier (F9) and fault F8.
Our analysis based on the fractal interpretation of talweg networks, on the stratigraphy and on the cartography of the clay, with flints and chalk, provides new elements, allowing us to complement the structural map of the northwestern Paris Basin.
2 Fractal analysis of the morphology of talweg networks
The fractal analysis rests on the calculation of the Bouligand–Minkowski dimension. This fractal dimension is achieved by the dilatation of talweg networks that are contained in the plane [13,22,23].
Each calculated block is characterised by a value of the Bouligand–Minkowski dimension (Dm) between 1 and 2. The more the talweg network is spread in the plane, the more the fractal dimension Dm that describes it is close to 2. On the contrary, an important concentration of the talweg network results in a value approaching 1. From a geomorphologic point of view, a low fractal dimension characterises a less developed network, with a low hierarchical organisation. A high fractal dimension corresponds to a well-spread and homogeneous network [31–33,35]. The variation of the fractal dimensions in the observed area indicates a contrasted geomorphologic evolution, due to the tectonic activity. This differentiation is accentuated by a lithological contrast induced from the presence of faults.
The observed area is divided into four main blocks characterised by an important decrease of the dimensions (F2) from the southwest (Dm=1.62) to northeast (Dm =1.36). These blocks are split by three supposed main faults (F1, F2, F3; Fig. 2). This result makes us assume that there are important fault throws (F2, F3) in the ‘Pays de Caux’, with a N90–100 orientation, which is not listed on the usual structural maps.
Each block so determined has been divided into sub-blocks to complete our analysis (Fig. 2). We obtain new variations in the structure of talweg networks in the space. These variations underline the existence of new blocks delimited by faults with N90 orientation (F10 and western segment of F20), or N150–160 (F5, F11, F12) orientations. We still find N120 (Armorican) orientation (F18) and N45 (Variscan) orientation (eastern segment of F20).
3 Geological heterogeneousness linked with the geomorphologic segmentation of the ‘Pays de Caux’
Laignel [17], Laignel et al. [18,19], Quesnel [28], and Quesnel et al. [29] have realised a stratigraphic and cartographic synthesis of Cenozoic superficial and Cretaceous deposits in the northwestern Paris Basin.
This analysis allows us to individualise several geographic zones, in agreement with the segmentation established by the fractal analysis of talweg networks. It demonstrates the presence of ‘new’ faults (Table 1). The differentiated geometry and stratigraphy of the Cretaceous chalks attest to the existence of faults F2, F3, F5, F6, F11. The distribution of the Lower Tertiary deposits attest to the presence of faults F2, F3, F11, F12, F30. Finally, the dissymmetry of the thickness of the clay with flints and the distribution of the Pliocene sands demonstrate a recent tectonic activity.
Relations entre dimensions fractales, géologie et morphologie des différents blocs tectoniques. Dm : Dimension fractale de Bouligand–Minkowski ; SbE–W : sous-blocs définis sur la Fig. 2 ; : bloc soulevé ; : bloc affaissé.
Relations between fractal dimensions, geology, and morphology of various fault blocks. Dm: Fractal dimension of Bouligand–Minkowski; SbE–W: sub-fault blocks defined in Fig. 2; : uplifted block; : trough-fault block.
Faille nom / orientation | Dm bloc | Dm bloc | Affleurement lithologique bloc soulevé | Affleurement lithologique bloc affaissé | Nom bloc / épaisseur argiles à silex | Nom bloc / épaisseur argiles à silex | Fracturation observée/localité | Fracturation, platier littoral | Caractéristiques morphologi- ques et/ou géologiques particulières |
F1 / N150–160 (validation sur faille connue) | 1,54 | 1,62 | Cénomanien Turonien Coniacien | Santonien | Fécamp–Durdent 8–10 m | Étretat 14–16 m | N150–160, Fé- camp, Bolbec, Lillebonne, sis- micité historique | N160 Elétot, Fécamp, Senneville | Alignement de dépôts ter- tiaires (petits grabens et poches de dissolution) le long de la faille. Brèches/activité sismique |
F2 / N90–100 | 1,54 | 1,46 | Coniacien | Santonien Dépôts paléogènes partiels | Fécamp–Durdent 8–10 m | Caux Maritime 6–8 m | N90 Grainville-la-Teinturière, Bosville, N110 Fécamp, N125 Auzouville/Sa | N100–110 Élétot | Bloc affaissé, marqué par des altitudes <100 m. Aligne- ment de dépôts tertiaires paléogènes et pliocènes |
F3 / N90–100 | 1,46 | 1,36 | Coniacien Dépôts paléogènes partiels | Santonien Campanien Série complète des dépôts paléogènes | Caux Maritime 0–8 m | Dieppe–Ailly 0–2 m | N90 Veules-les-Roses, Bourg- Dun, Sismicité historique. N120 Tourville-sur-Arques | N90 Veules-les-Roses | Bloc affaissé, marqué par des altitudes <70 m. Activité sismique [20] |
F5 / N150–160 | 1,54 | 1,61 | Cénomanien Turonien Coniacien | Santonien | SbE–W 12–16 m | SbE–E 14–16 m | N160 Étretat | Alignement de dépôts tertiaires pliocènes | |
F6 / N120–130 | Cénomanien Turonien | Coniacien | 8–14 m | 14–16 m | Alignement de dépôts tertiaires pliocènes | ||||
F10 / N80–90 | 1,61 | 1,52 | Au niveau du platier rocheux : Cénomanien | Au niveau du platier rocheux : Turonien sup. | SbE–S 12–16 m | SbE–N 12–14 m | N90 Bruneval | Bloc affaissé, marqué par des altitudes <100 m. Dépôts tertiaires pliocènes alignés ; poudingue ferrugineux sur le bloc affaissé (Plio-Quat. ?) | |
F11 / N150–160 | 1,41 | 1,46 | Coniacien | Santonien Campanien Grès thanétiens | SbVF 6–8 m | SbSTV 4–6 m | N160 Grainville- la-Teinturière | N160 Petites Dalles | Alignement de dépôts tertiaires yprésiens + pliocènes (?) |
F12 / N150–160 | 1,46 | 1,42 | Grès thanétiens | Sables et argiles cuisiens | SbSTV 4–6 m | SbVIE 0–2 m | N150 Veules-les-Roses | Nappe alluviale Quaternaire ancien sur le bloc affaissé | |
F16 / N120–130 | 14–16 m | <14 m | |||||||
F18 / N120–130 | 1,59 | 1,57 | SbE–SW 14–16 m | SbE–NE 12–14 m | N130 Le Tilleul | N130 Tilleul | Alignement de dépôts tertiaires yprésiens + pliocènes | ||
F19 / N45 | 14–16 m | 12–14 m | Alignement de dépôts tertiaires pliocènes. Alignement de points d'infiltration karstique (bétoires) | ||||||
F20 / N90 (partie ouest) N45 (partie est) | 1,49 | 1,54 | Présence de dépôts pliocènes | SbD–S 8–12 m | SbD–N 8–12 m | Alignement de dépôts tertiaires pliocène. Alignement de points d'infiltration karstique (bétoires). Remontée brutale de la nappe phréatique au niveau de la faille sur le compartiment affaisé | |||
F30 / N160 | Grès thanétiens 4–6 m | Sables et argiles cuisiens ; 4–6 m | Nappe alluviale Quaternaire anc. sur le bloc affaissé (graben) |
4 Discussion
These results allow us (1) to confirm the presence of major tectonic orientations N150–160 and N120–130 (Armorican) and of a secondary tectonic orientation N30–50 (Variscan) and (2) to bring to the fore an additional N80–90 orientation in the northwestern Paris Basin. They also allow understanding the morphotectonic regional evolution. The main faults N150–160 or N130-orientated (F1, F2 – east segment –, F5), splitting the blocks where collapsed compartments are characterised by an important thickness of weathered rocks and high fractal dimensions, attest to an oldest geomorphologic evolution. It implies an inverted tectonic evolution, which occurred between the end of the Palaeogene and the Quaternary, and recent and small fault reactivations. On the contrary, the faults N90-orientated (F2 west segment, F3 and F10) split blocks where large fractal dimensions and large thickness of weathered rocks coincide with the uplifted blocks. In this case, the collapsed blocks coinciding with topographically low sectors (<100 m for F2 and F10; <70 m for F3) suggest a rapid, recent, and brutal evolution, in agreement with the collapsed dynamic of the eastern Channel and the Straight of Dover at the Pleistocene [6,7,37].
1 Introduction et synthèse bibliographique
L'organisation structurale du Nord-Ouest du bassin de Paris repose habituellement sur des accidents tectoniques de direction N120–130 (armoricaine) ou N150–160, dont les éléments majeurs résultent principalement de l'orogenèse hercynienne. Ainsi, les failles (Fig. 1) de Fécamp–Lillebonne (F1), de la Seine (F7), de Grand-Tendos (partie orientale de la faille F2) et du Bray (F4) trouvent leur origine dans la mise en place des écailles les plus importantes de cet orogène [30,39]. Cette structure, mise en place au Paléozoı̈que, a largement affecté la couverture sédimentaire durant le Mésozoı̈que par des mouvements compressifs ou distensifs, induisant le rejeu des failles principales [30]. Au Tertiaire, le Paléogène est marqué par une importante phase de compression méridienne, liée à l'orogenèse pyrénéenne, provoquant un soulèvement généralisé du Pays de Caux [28]. De nombreux jeux décrochants de grabens et de plis affectent alors la couverture sédimentaire, la plupart étant orientés selon une direction armoricaine provenant du rejeu des accidents du socle. La phase de distension Oligocène qui suit facilite le piégeage de sédiments paléogènes, tandis qu'une nouvelle phase de compression intervient au Mio-Pliocène, suivant une direction NW–SE liée à la surrection alpine, et se prolonge au Quaternaire, selon une direction NNW–SSE [16,21,30]. Cette seconde phase de compression entraı̂ne alors un rejeu des plissements paléogènes.
Les schémas structuraux du plateau cauchois reflètent cette prédominance des directions N120–130 (armoricaine) et N150–160 pour les failles, les flexures et plis [4,8,9,12,15,21,25,38,39]. Celui établi par Cavelier et Médioni [3] sert le plus souvent de référence et traduit cette logique d'organisation. Ces derniers soulignent également l'existence d'accidents de direction N30–50 dont les éléments principaux sont la faille de Villequier (F9) et son prolongement vers le nord-est (F8). Ceci suggère ainsi un ensemble de directions plus secondaires au plan régional et perpendiculaires aux directions principales, traduisant un jeu en cisaillement senestre durant la phase hercynienne [39].
Notre analyse, basée sur l'interprétation fractale de la morphologie des réseaux de thalwegs ainsi que sur la stratigraphie et la cartographie régionale des formations superficielles et du substrat crayeux apportent de nouveaux éléments, qui permettent de compléter le schéma structural du Nord-Ouest du bassin de Paris.
2 Analyse fractale de la morphologie des réseaux de thalwegs
L'analyse fractale basée sur la méthode de Richardson est couramment utilisée pour décrire la sinuosité des thalwegs [1,2,14]. Nous proposons ici d'effectuer le calcul de la dimension fractale (Dm) des réseaux de thalwegs selon la méthode de Bouligand–Minkowski [13,22,23] obtenue en dilatant la structure des réseaux de thalwegs projetés dans le plan et préalablement squelettisés. Celle-ci repose sur la relation générale
Avec un plateau incliné d'est en ouest (altitudes allant de 180 à 100 m), entaillé par un réseau assez dense de vallées et vallons drainés ou non, le Pays de Caux semble de prime abord particulièrement homogène. Toutefois, l'analyse fractale appliquée à l'ensemble des bassins côtiers depuis le Cap d'Antifer jusqu'à Dieppe permet de souligner l'existence d'une segmentation de la morphologie régionale résultant de la présence de différents compartiments tectoniques (Figs. 1 et 2).
Le schéma structural proposé ici reprend l'ensemble des failles répertoriées sur une zone englobant le Pays de Caux. On ne discutera pas ici l'existence des failles clairement admises par les schémas cités précédemment et répertoriées sous les numéros suivants : F1, F2 (uniquement pour la partie orientale N160), F4, F7–9, F13–15, F17, F21–29 (Fig. 1).
On obtient une partition de la zone d'étude en quatre blocs principaux, caractérisés par une très forte diminution des dimensions (Fig. 2) du sud-ouest (Dm=1,62±0,026) vers le nord-est (Dm=1,36 ±0,026). Ceux ci sont séparés par trois failles principales supposées (F1, F2, F3 ; Fig. 2). La faille F1 n'est autre que la faille Fécamp–Lillebonne, élément majeur de la tectonique régionale. Celle-ci sépare le bloc tectonique Étretat (Dm=1,62±0,026) du bloc Fécamp–Durdent (Dm=1,54±0,032), avec des dimensions différentes qui traduisent une évolution morphologique contrastée sur ces deux blocs. Ce résultat valide la méthode et permet d'avancer l'hypothèse de la présence de deux autres accidents tectoniques majeurs dans le Pays de Caux (F2, F3). Ces derniers possèdent une orientation N90–100, qui n'apparaissait pas comme une direction essentielle de la tectonique régionale.
Chacun des principaux blocs ainsi déterminés a lui-même été subdivisé en sous-blocs, dans le but d'affiner notre analyse (Fig. 2). Pour comparer ces nouveaux résultats, la dimension des blocs principaux a été recalculée sur des surfaces équivalentes à celle des sous-blocs, afin de compenser l'effet de taille, qui a tendance à surévaluer le résultat lorsque l'on effectue ce type de mesures [10]. On obtient de nouvelles variations de la structure des réseaux de thalwegs dans l'espace, qui souligne une évolution différenciée de compartiments délimités par des failles, soit de direction N90 (F10 et partie occidentale de F20), soit de direction N150–160 (F5, F11, F12). On retrouve, en outre, les directions armoricaine N130 (F18) et varisque N45 (partie orientale de F20). Cependant, l'écart des dimensions fractales pour certains sous-blocs est faible, mais cette discrimination ne disparaı̂t que si l'on considère les marges d'erreurs extrêmes. De plus, les failles F11, F12 et F18 séparant les différents sous-blocs ont été reconnues sur le terrain.
3 Mise en évidence d'une hétérogénéité géologique liée à la segmentation morphologique du Pays de Caux
Laignel [17], Laignel et al. [18,19], Quesnel [28] et Quesnel et al. [27,29] ont réalisé une synthèse stratigraphique et cartographique des dépôts crétacés et des formations superficielles cénozoı̈ques présents dans le Nord-Ouest du bassin de Paris. Celle-ci permet l'individualisation de zones géographiques en bonne adéquation avec les compartiments mis en évidence par l'analyse fractale des réseaux de thalwegs, validant ainsi l'existence de « nouvelles » failles (Tableau 1) :
- • la géométrie et la stratigraphie différenciées des craies crétacées attestent l'existence des failles F2, F3, F5, F6, F11 ;
- • la répartition des dépôts paléogènes témoigne de la présence des failles F2, F3, F11, F12, F30 ;
- • une dissymétrie dans l'épaisseur des formations résiduelles à silex [17,19] atteste une activité tectonique récente ;
- • la présence ou l'absence des sables pliocènes témoigne aussi de mouvements récents (l'un ou l'autre de ces facteurs affecte la totalité des failles étudiées) ;
- • l'accumulation de sables paléogènes ou pliocènes piégés dans de petits fossés d'effondrement, ou des poches de dissolution, et la présence de points d'infiltration karstique des eaux (bétoires), selon un alignement remarquable [5,34], mettent en évidence ces accidents.
À cela s'ajoutent des observations directes des failles sur le terrain (F2, F3) ou d'accidents de direction identique à proximité (F11), notamment sur le platier rocheux du littoral (F2, F11, F18) [26].
4 Discussion
Ces résultats confirment la présence, dans le Pays de Caux, de directions tectoniques majeures N150–160 et N120–130 (armoricaine), et secondaires N30–50 (varisque) (F5, F6, F11, F12, F18, F30). Ils mettent surtout en lumière l'existence d'une direction supplémentaire N90–100 (F2 : partie occidentale, F3, F10, F20 : partie occidentale), perpendiculaire à la direction N150–160 de façon similaire au positionnement relatif des failles armoricaines et varisques.
Ils permettent d'avancer quelques observations importantes à propos de l'évolution morphotectonique régionale. En effet, les failles principales orientées N150–160 ou N130 (F1, F5) séparent des blocs dans lesquels les compartiments affaissés sont caractérisés par de fortes épaisseurs d'altérites et des dimensions fractales élevées, attestant une évolution morphologique plus ancienne. Ceci laisse supposer une évolution en inversion tectonique intervenue entre la fin du Paléogène et le Quaternaire et un rejeu récent de faible ampleur (les failles F2 (partie orientale), F4, F6 et F7 répondent à cette même logique).
À l'opposé, les failles orientées N90 (F2 partie occidentale, F3 et F10) séparent des blocs où dimensions fractales élevées et forte épaisseur des formations résiduelles à silex coı̈ncident avec le bloc soulevé. Le fait que les compartiments effondrés au nord de ces trois failles correspondent à des secteurs topographiquement déprimés (<100 m pour F2 et F10 ; <70 m pour F3) suggère une évolution rapide, brutale et récente, qui n'est sans doute pas sans rapport avec la dynamique en graben de la Manche orientale et l'ouverture du Pas de Calais au Pléistocène [6,7,36,37]. Cependant, l'existence de ces failles orientées N90–100 est sans doute liée au rejeu d'accidents tectoniques ayant affecté le socle lors de l'orogenèse hercynienne, voire cadommienne [40]. Ceci a d'ailleurs été mis en évidence pour les failles de direction armoricaine (N120–130) ou N150–160 [39]. La présence de directions similaires aux failles N80–90 constituant certaines limites de roches cristallines basiques ou de fossés permiens dans le socle [24] indique vraisemblablement un comportement identique pour les accidents suivant cette direction.