Plan
Comptes Rendus

Article de recherche - Écosystèmes terrestres et aquatiques
The Asselian palynoflora from the Autunian series (Muse oil-shale beds, Autun Basin, France): new insights on early Permian equatorial palaeoflora and palaeoenvironments
[La palynoflore assélienne de la série autunienne (Couche de Muse, bassin d’Autun, France) : nouvelles perspectives sur la paléoflore équatoriale et les paléoenvironnements du Permien inférieur]
Comptes Rendus. Géoscience, Volume 357 (2025), pp. 245-263.

Résumés

The Muse oil-shale beds (Muse OSB) of the Permian Muse Formation in the Autun Basin (France) have received attention for their exceptionally well-preserved flora and fauna throughout many decades. Recent CA-ID-TIMS U/Pb radiometric datings place the Muse section in the lower Asselian (~298.6 Ma), leading to a re-examination of the palynoflora using an alternative palynological method. Twelve productive samples provide a detailed taxonomic and quantitative evaluation of the palynoflora. The new data revealed now two distinct palynological assemblages, Muse-A in the lower part and Muse-B in the middle-upper part of the Muse section, assigned to a peat swamp forest environment dominated by cordaitalean conifers, alongside medullosalean cycads and callistophytalean seed ferns, with an undergrowth of lycophytes and ferns. Additionally, a forest dominated by walchian conifers (Voltziales) would be present but more distant from the lake. Vegetation dynamics between these associations are generally stable, except for an increase in Cordaitales at the expense of Voltziales. This variation, observed throughout the Autun Basin, seems to be affected by seasonal climate-driven changes. The co-occurrence in both assemblages of Permian xerophytic elements accompanied by Carboniferous wetland flora suggests a seasonally dry climate, supporting hygrophyte plant survival, persisting for at least 300 ky after the Carboniferous–Permian boundary. The phytoplankton community consisted of freshwater green algae, increasing towards the upper part of the section, coeval with increased explosive volcanic activity. Wind-transported volcanic ash likely provided nutrient input, enhancing lacustrine phytoplankton growth.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Les argilites carbonées permiennes de la couche de Muse («  couche de schistes bitumineux de Muse » ; Muse OSB) appartenant à la Formation de Muse du Bassin d’Autun (France) ont attiré l’attention pour leur préservation exceptionnelle de flore et faune depuis plusieurs décennies. Des datations radiométriques récentes par la méthode CA-ID-TIMS U/Pb, plaçant la couche de Muse dans l’Assélien inférieur (~298,6 Ma), conduit au réexamen de la palynoflore à l’aide d’une méthode palynologique alternative. L’analyse de douze échantillons permet une évaluation taxonomique et quantitative détaillée de la palynoflore. Ces nouvelles données révèlent deux assemblages palynologiques distincts, nommés Muse-A (base de la coupe) et Muse-B (partie haute de la coupe). Ceux-ci reflétent un premier milieu dominé par des forêts de tourbières à conifères cordaitales, aux côtés de cycadales méduddales et de fougères à graines callistophytales, avec un sous-bois de lycopodes et de fougères. Un second milieu forestier dominé par des conifères walchiens (Voltziales) serait présent à une distance plus importante du lac. Les dynamiques de végétation entre ces associations sont généralement stables, à l’exception d’une augmentation des Cordaitales au détriment des Voltziales au cours du temps. Cette modification, observée dans l’ensemble du Bassin d’Autun, semble être liée à des changements climatiques saisonniers. La présence d’éléments floraux xérophytes accompagnée par des éléments floraux hygrophytes caractéristiques de marécages du Carbonifère dans les deux assemblages témoigne d’un climat sec présentant une saisonnalité, qui se poursuit pendant au moins 300 000 ans après la limite Carbonifère-Permien, permettant la survie des plantes hygrophytes. La communauté du phytoplancton est constituée d’algues vertes lacustres, augmentant au sommet de la section, coïncidant avec une activité volcanique explosive plus intense. Les cendres volcaniques transportées par le vent pourraient avoir fertilisé le milieu par l’apport en nutriments, favorisant la prolifération du phytoplancton lacustre.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

Métadonnées
Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crgeos.294
Keywords: Lacustrine palaeoecosystem, Cisuralian, Palaeobotanical reconstruction, Late Palaeozoic, Explosive volcanic activity
Mots-clés : Paléoécosystème lacustre, Cisuralien, Reconstruction paléobotanique, Paléozoïque supérieur, Volcanisme explosif

Manuel Antonio Juncal 1 ; Iván Rodriguez Barreiro 2, 3, 4 ; Jean Galtier 5 ; Jean Broutin 6 ; Pierre Pellenard 7 ; Jean-Sébastien Steyer 8 ; José Bienvenido Diez 2, 3 ; Georges Gand 7

1 CINTECX, Grupo de Tecnología Energética (GTE), Universidade de Vigo, 36310 Vigo, Spain
2 Centro de Investigación Mariña, Universidade de Vigo, BASAN, 36310 Vigo, Spain
3 Departamento de Xeociencias Mariñas e Ordenación do Territorio, Universidade de Vigo, 36310 Vigo, Spain
4 Museum of Nature South Tyrol, Bindergasse/Via Bottai 1, 39100 Bozen/Bolzano (BZ), Italy
5 CIRAD, AMAP TA 40/PS2, Boulevard de la Lironde, F-34398 Montpellier, France
6 Sorbonne Universités, Paléobotanique & Paléoécologie, CR2P, UPMC Paris 6-MNHN-CNRS, F-75005 Paris, France
7 Université Bourgogne Europe, Biogéosciences UMR CNRS/uB/EPHE 6282, 6 boulevard Gabriel, 21000 Dijon, France
8 Centre de Recherches en Paléontologie de Paris, UMR 7207, CNRS-MNHN-SU, Muséum national d’Histoire naturelle, CP 38, 8 rue Buffon, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRGEOS_2025__357_G1_245_0,
     author = {Manuel Antonio Juncal and Iv\'an Rodriguez Barreiro and Jean Galtier and Jean Broutin and Pierre Pellenard and Jean-S\'ebastien Steyer and Jos\'e Bienvenido Diez and Georges Gand},
     title = {The {Asselian} palynoflora from the {Autunian} series {(Muse} oil-shale beds, {Autun} {Basin,} {France):} new insights on early {Permian} equatorial palaeoflora and palaeoenvironments},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {245--263},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {357},
     year = {2025},
     doi = {10.5802/crgeos.294},
     language = {en},
}
TY  - JOUR
AU  - Manuel Antonio Juncal
AU  - Iván Rodriguez Barreiro
AU  - Jean Galtier
AU  - Jean Broutin
AU  - Pierre Pellenard
AU  - Jean-Sébastien Steyer
AU  - José Bienvenido Diez
AU  - Georges Gand
TI  - The Asselian palynoflora from the Autunian series (Muse oil-shale beds, Autun Basin, France): new insights on early Permian equatorial palaeoflora and palaeoenvironments
JO  - Comptes Rendus. Géoscience
PY  - 2025
SP  - 245
EP  - 263
VL  - 357
PB  - Académie des sciences, Paris
DO  - 10.5802/crgeos.294
LA  - en
ID  - CRGEOS_2025__357_G1_245_0
ER  - 
%0 Journal Article
%A Manuel Antonio Juncal
%A Iván Rodriguez Barreiro
%A Jean Galtier
%A Jean Broutin
%A Pierre Pellenard
%A Jean-Sébastien Steyer
%A José Bienvenido Diez
%A Georges Gand
%T The Asselian palynoflora from the Autunian series (Muse oil-shale beds, Autun Basin, France): new insights on early Permian equatorial palaeoflora and palaeoenvironments
%J Comptes Rendus. Géoscience
%D 2025
%P 245-263
%V 357
%I Académie des sciences, Paris
%R 10.5802/crgeos.294
%G en
%F CRGEOS_2025__357_G1_245_0
Manuel Antonio Juncal; Iván Rodriguez Barreiro; Jean Galtier; Jean Broutin; Pierre Pellenard; Jean-Sébastien Steyer; José Bienvenido Diez; Georges Gand. The Asselian palynoflora from the Autunian series (Muse oil-shale beds, Autun Basin, France): new insights on early Permian equatorial palaeoflora and palaeoenvironments. Comptes Rendus. Géoscience, Volume 357 (2025), pp. 245-263. doi : 10.5802/crgeos.294. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.5802/crgeos.294/

Version originale du texte intégral (Proposez une traduction )

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1. Introduction

The Pennsylvanian–Cisuralian transition took place at the end of a long period of globally cold climates marked by glacial activity in the South Pole and during the early tectonic post-assembly of Pangaea (Ziegler, Scotese, et al., 1979; Simancas et al., 2005; Isozaki, 2009). In the tropical regions, the early Permian was marked by a general drying trend during a transition from a maximum glacial coverage (Late Palaeozoic Ice Age or LPIA) to greenhouse conditions following a glacial recession at the Mississippian–Pennsylvanian boundary (Fielding et al., 2008; Montañez and Poulsen, 2013). In western Europe, a progressive aridification reaches its maximum around the Kungurian–Roadian boundary and was followed by a seasonal dry climate during the Guadalupian and until the Permo–Triassic boundary (Schneider et al., 2006; Montañez, Tabor, et al., 2007; Tabor and Poulsen, 2008; Lopez et al., 2008; Gulbranson et al., 2015; Michel et al., 2015).

This global climate evolution is recorded worldwide in the palaeofloras. For example, in western Europe, the Pennsylvanian continental vegetation (i.e., “Stephanian flora”) composed of pteridosperms, marattialean ferns, lycopsids, calamiteans, and cordaiteans trees (Doubinger, Vetter, et al., 1995; DiMichele, Tabor, et al., 2006; Thomas and Cleal, 2017) is mostly replaced by conifers and other gymnosperms corresponding to a meso-xerophytic flora (the “Autunian flora”), better adapted to drier conditions which became progressively predominant in the Permian palaeoenvironments (e.g., Lemoigne and Doubinger, 1984; DiMichele, Mamay, et al., 2001; Looy, Kerp, et al., 2014).

New radiometric data based on U–Pb analyses by Chemical Abrasion-Isotopic Dilution Ionisation Mass Spectrometry (CA-ID-TIMS) on zircon grains from tonsteins interbedded in lacustrine deposits have been recently published by Pellenard et al. (2017) in the Autun Basin (Figure 1A) with the aim to resolve the puzzling stratigraphical location of the Carboniferous–Permian boundary and to date the lower Autunian (i.e., Igornay and Muse formations). Subsequently, the Autunian series within the Autun Basin (France) provides an essential framework to study the changes in the vegetation succession observed during the Carboniferous–Permian transition. The objective of this paper is therefore to complete the previous palynological data after new detailed investigations in the Muse oil-shale beds (MOSB) within the Muse Formation (lower Autunian) using (1) the new established stratigraphical framework and (2) an alternative palynological method based on hydrogen peroxide (Riding et al., 2010). Our new results lead to a detailed palaeoenvironmental reconstruction based on palynology for the Autunian continental series in the global climate and geodynamic changes affecting the Carboniferous–Permian transition.

Figure 1.

(A) Geographical and geological map of the Autun Basin (modified from Gand, Châteauneuf, et al., 2007). (B) Lithostratigraphy of the lower and upper Autunian in the Autun Basin with approximate thickness of the main formations, including oil shale beds (OSB) as valuable key markers (modified from Pellenard et al., 2017). (C) Stratigraphic log of the Muse OSB (modified from Pellenard et al., 2017). The palynological samples with the asterisk are low in relative abundance (counting <200 palynomorphs). Radiometric datings reported with full uncertainties. Masquer

(A) Geographical and geological map of the Autun Basin (modified from Gand, Châteauneuf, et al., 2007). (B) Lithostratigraphy of the lower and upper Autunian in the Autun Basin with approximate thickness of the main formations, including oil shale beds (OSB) as valuable ... Lire la suite

2. Stratigraphical and Geological setting

2.1. Stratigraphy of the Regional Continental Autunian Stage

In the Autun Basin (Figure 1A), the continental Autunian stratotype is divided into lower and upper Autunian (Figure 1B; sensu Pruvost, 1942). The lower Autunian units encompass the Igornay and Muse formations, while the upper Autunian corresponds to the Surmoulin, Millery and Curgy formations (Feys and Greber, 1972; Marteau, 1983; Chèvremont et al., 1999). A synthesis of the stratigraphy and palaeobotany was proposed by Châteauneuf, Farjanel, Pacaud, et al. (1992), Châteauneuf, Farjanel, Galtier, et al. (1992). Additionally, the history of the Autunian stratotype and its geochronology according to the different “stages” or “formations” since the early 19th century was developed by Gand, Pellenard, et al. (2017).

After previous palaeobotanical studies (on both macroflora and palynomorphs), a late Gzhelian–early Sakmarian age was inferred for the regional continental Autunian Stage (e.g., Doubinger, 1956; Feys and Greber, 1972; Bouroz and Doubinger, 1977; Doubinger and P. Elsass, 1979; Châteauneuf and Farjanel, 1989; Broutin, Châteauneuf, et al., 1999; Gand, Galtier, Garric, et al., 2013). Moreover, Davydov et al. (2012), C. H. Henderson et al. (2012), and Gradstein et al. (2012), considered the Autunian as equivalent to the middle Gzhelian–Kungurian stages as proposed in the Geologic Time Scale 2012 (GTS2012). In contrast, Wagner and Álvarez-Vázquez (2010) proposed to include the whole “Autunian regional substage” in the Gzhelian Stage (Upper Pennsylvanian) based on their findings in macroflora content succession. However, recent radiometric datings using the CA-ID-TIMS U/Pb method indicate an upper Gzhelian age for the Igornay Formation and a lower Asselian age for the Lally and Muse OSBs interval (Pellenard et al., 2017). This work also suggests to fix the Carboniferous–Permian boundary in the Lally OSB, near the base of the Muse Formation, using a CA-ID-TIMS U/Pb age of 298.91 ± 0.08 Ma (0.36 full uncertainty) from interbedded tonstein dating. Therefore, a likely Asselian age can be inferred in the lower section of the Muse Formation. Conversely, the Igornay Formation must be ascribed to the upper Gzhelian.

2.2. Geology of the Autun Basin

The Autun Basin (Figure 1A) holds significant prominence within the global array of Permian basins due to its well-known status as a reference stratigraphical sequence for the lower Permian continental strata, housing the renowned Autunian stratotype (Figure 1B). The Autunian deposits are mainly composed of coarse siliciclastic sediments (i.e., sandstones and conglomerates), with intercalated organic-rich claystone intervals and singular organic matter-rich horizons called oil-shale beds (OSBs), corresponding to a strictly deltaic-lacustrine system (e.g., Mercuzot, Bourquin, Beccaletto, et al., 2021; Mercuzot, Bourquin, Pellenard, et al., 2022). It is a well-studied area which was the subject of numerous stratigraphic and cartographic investigations (Manès, 1844; Delafond, 1889; Pruvost, 1947; Elsass-Damon, 1977; Châteauneuf, Farjanel, Feys, et al., 1980; Marteau, 1983; Marteau and Feys, 1989; Châteauneuf and Farjanel, 1989; Feys, 1988; Feys, 1991; Chèvremont et al., 1999). Since the 1980s, all these studies were mainly carried out during the mining inventory of the basin by the Bureau de Recherches Géologiques et Minières (BRGM). Among them, the study of Marteau (1983) provides a tectonic, stratigraphical, and sedimentological synthetic framework of the Carboniferous–Permian deposits of the Autun Basin.

The Autun Basin is located in Morvan, northern Massif Central (France), with a W–E direction, elliptical shape and depressed to the granitic base of a volcano-sedimentary depositional environment (e.g., Marteau, 1983; Pellenard et al., 2017). This basin is a small half-graben with a present-day outcropping extension of about 260 km2 and an average altitude of 320 m. Middle Triassic sandstones overlie the Permian deposits in the centre of the basin, reaching a thickness of 458 m (e.g., Gand, Châteauneuf, et al., 2007; Gand, Steyer, Pellenard, et al., 2015; Pellenard et al., 2017). It is limited to the south by the Autun extensional fault, which was active during the Permian sedimentation in an extensive geodynamic context (Marteau, 1983; Châteauneuf and Farjanel, 1989). A second fracturing system, with radial faults perpendicular to the southern edge of the basin, caused progressive subsidence of the blocks towards the west, leading to a displacement of the depocenter in the same direction. This post-orogenic (late Variscan) extension affected many other French Permian and Carboniferous basins, including Blanzy-Le Creusot, Aumance, Lodève, Saint-Affrique and the Provence (Toutin-Morin, 1980; Châteauneuf and Farjanel, 1989; Faure, 1995; Faure et al., 2009).

The Muse OSB, located north of Autun (Figure 1A), has been a focus of study since the 19th century thanks to mining activities. The studied outcrop consists of 3.5 m of grey to black claystone and siltstone, with intercalations of fine-grained sandstone layers (Figure 1C). The internationally known “couche à poissons” (literally “fish bed”), discovered in 1811 (Brignon, 2014), is located at the base of this outcrop. It does not correspond to a single fossilised fish layer but small fossiliferous sequences (Gand, Steyer, Pellenard, et al., 2015). In addition, the Muse OSB became famous due to the discovery of the first temnospondyl of the Autun Basin: Onchiodon (“Actinodon”) frossardi (Gaudry) Werneburg and Steyer, 1999; “Protriton petrolei” = Apateon pedestris (Gaudry) Schoch 1992 (Steyer et al., 1998) and thousands of complete actinopterygian fish remains. Between 2010 and 2015, systematic excavations were headed by some of the authors of this paper (GG and JSS) to complete the knowledge of the palaeontological content and taphonomy of the Muse OSB (Gand, Steyer and Chabard, 2010; Gand, Steyer and Chabard, 2012; Gand, Steyer, Chabard, et al., 2014; Gand, Steyer, Pellenard, et al., 2015). These annual and international excavations led to the discovery of thin tonstein layers (Pellenard et al., 2017), as well as hundreds of fossil specimens. Concerning the palaeofauna, insects, possible annelids, acanthodians, sharks (orthacanthids), bony fish (aeduelliforms) and rare amphibian remains (a phalanx and a possible dermal bone) have been collected and are under study (Gand, Steyer and Chabard, 2010; Gand, Steyer and Chabard, 2012; Gand, Steyer, Chabard, et al., 2014; Gand, Steyer, Pellenard, et al., 2015; Gand, Pellenard, et al., 2017; Luccisano, Rambert-Natsuaki, et al., 2021; Luccisano, Cuny, et al., 2023).

2.3. Muse palaeobotanical background

In the Muse OSB, a detailed sampling through the sequence (Figure 1C) has been carried out by several authors during the last decades, and has documented vegetation dominated by marattialean ferns and cordaiteans, with subsidiary pteridosperms (peltasperms), medullosalean cycads, and sphenopsids. The Muse OSB contain plant remains identified by Desa Dordjevic in 2010 (Gand, Steyer and Chabard, 2010) and Isabel van Waveren (Van Waveren et al., 2012) and eventually completed by Galtier in Gand, Galtier, Broutin, et al. (2015): Lycopsida (Sigillaria sp., ?Sigillariophyllum), Equisetopsida (Asterophyllites sp., Calamites sp., Calamostachys sp., Sphenophyllum sp., Sphenophyllostachis sp.), Filicopsida (Pecopteris (=Asterotheca) arborescens, Pecopteris unita, Pecopteris sp., Dizeugotheca sp., Scolecopteris sp.), Pteridospermopsida (Neuropteris planchardii, Neuropteris cf. heterophylla, Neuropteris sp., Alethopteris sp., Callipteridium sp., Callipteris sp. (Autunia sp.), Linopteris sp., Odontopteris sp., Sphenopteris sp.) Cordaitales (Cordaites principalis, Poacordaites sp., ?Cordaianthus) Coniferales (Walchia piniformis, ?Pseudovoltzia, ?Walchiostrobus), Cycadopsida and reproductive structures (medullosan and cordaitean) and seeds (Trigonocarpus sp., Rhabdocarpus sp., Carpolithes sp., Cardiocarpus cf. expansus, Cardiocarpus sp., Samaropsis sp., Pachytesta sp.). The presence of Taeniopteris multinervis (incertae sedis) is also reported.

During the inventory at the end of five successive palaeontological excavations, ca. 600 plant specimens have been collected in the Muse OSB (ibid.). The quantitative analysis showed lycopsids (1%), equisetopsids (14%), ferns (20%), pteridosperms (9%), Cordaites (18%), conifers (2%), and cycadoids (1%), as well as incertae sedis (1%), seeds (30%), and woods (3%). During the palaeontological excavations carried out in 2010, the following taxa were observed in the upper levels of the outcrop (between tonstein GI and GV, Figure 1C): Calamites (38%), Cordaites (9%), ferns and pteridosperms (15.5%), of which Pecopteris was dominant, while Walchia piniformis and Alethopteris were both uncommon (1% or less) (ibid.).

Few works were focused on the palynology of the Muse OSB before: Doubinger (1960) first identified a preliminary assemblage with a more detailed study later in Doubinger (1969). Doubinger and F. Elsass (1975), Doubinger and P. Elsass (1979) applied a quantitative analysis to the latter palynological assemblage (Doubinger, 1969) and compared it with others from the Autun Basin. Unfortunately, these are isolated samples lacking a detailed stratigraphic location. In all these, the dominant elements are the monosaccate (in particular Potonieisporites, Wilsonisporites, and Florinites) and bisaccate (i.e., Vesicaspora) gymnosperms, while the main pteridophyte representative is Lundbladispora, frequently found in tetrads. Although scarce, prasinophycean algae (i.e., Tasmanites sp.) were also identified, which, according to the authors, may have problematic palaeoenvironmental implications (Doubinger and F. Elsass, 1975).

3. Material and methods

Fifteen samples were collected from the Muse OSB (Figure 1C). The samples were processed at the laboratory of the University of Vigo using the standard palynological technique described by Wood et al. (1996), consisting in HCl–HF–HCl acid digestion. This method consists in the addition of HCl and HF to dissolve carbonate and silicate minerals.

The bituminous characteristic of the samples hindered palynomorph isolation because these were usually overlapped by flocculent organic remains. For this reason, we decided to use an alternative method of palynological preparation procedure, including hydrogen peroxide (Riding et al., 2010). This experimental technique consisted of boiling in H2O2 (30%) the rock sample previously fragmented between 1 and 2 mm to disaggregate the organic matter, leading to obtain different fractions after successively 2, 5, 10, and 20 min. Then, evaluating the sample under the microscope is necessary to choose the fraction with a better balance between conservation and the number of palynomorphs. The oxidising character of the H2O2 and the heat of boiling are adequate to eliminate organic remains, yet less aggressive than the nitric acid technique used for these cases (Traverse, 2007). After 5–10 min, the sample fraction is diluted in 1 litre of water. A dispersing agent (sodium hexametaphosphate, (NaPO3)6) was added to facilitate filtering and sieving at 10 μm, and the residue was eventually smeared in glass slides with a mounting medium of acrylic adhesive Loctite AA 350. These palynological slides were analysed under a Leica DM 2000 LED incorporated with a Leica ICC50 W camera at the University of Vigo.

A quantitative analysis was also carried out on all positive samples (see Supplementary Material). At least 200 specimens per sample were counted to estimate the relative abundance of each taxon in the whole Muse OSB section, a standard practice in palynology that ensures statistically meaningful results for common taxa and minimises errors in relative abundance estimates (ibid.). Samples with less than 200 palynomorphs were excluded for the palaeoecological interpretation. Although the data are shown in percentages, they should be considered qualitative since taphonomic sorting might have obscured the signature of the original biocenoses. The assignation of each taxa to major taxonomic groups was based on Balme (1995), Doubinger and Grauvogel-Stamm (1971), Dimitrova et al. (2011), Looy and Hotton (2014), and DiMichele, Hook, et al. (2018).

4. Results

After the application of the alternative methodology, twelve palynological samples were productive (Figures 24), considering them as two different palynological assemblages according to their composition: Muse-A in the lower part and Muse-B in the middle-upper part of the Muse section. Both associations were as diversified as the ones from previous works (Doubinger, 1960; Doubinger, 1969; Doubinger and F. Elsass, 1975; Doubinger and P. Elsass, 1979) and throughout the entire Muse section, allowing, for the first time, a taxonomical (Figure 5) and quantitative evaluation (Figure 6). Moreover, several new species were identified belonging to 12 different genera that were found in the Muse OSB for the first time, including Crassispora, Densosporites, Endosporties, Firmysporites, Knoxisporites, Lophotriletes, Lycospora, Raistrickia, Cycadopites, Plicatipollenites, Protohaploxypinus, and Vittatina (Figure 5). The preservation grade was generally moderate except for the upper interval of the Muse-B (samples AUT/03 to AUT/01) which was low.

Figure 2.

Muse-A and Muse-B palynological assemblages: (A) Triquitrites minutus. (B) Triquitrites sp. (C) Deltoidospora adnata. (D) Deltoidospora priddyi. (E) Deltoidospora levis. (F) Deltoidospora sphaerotriangula. (G) Granulatisporites minutus. (H) Granulatisporites parvus. (I) Granulatisporites microgranifer. (J) Granulatisporites sp. (K) Lophotriletes microsaetosus. (L) Lophotriletes sp. (M) Pilosisporites microspinosus. (N) Thymospora thiessenii. (O) Thymospora pseudothiessenii. (P) Punctatosporites minutus. (Q) Punctatosporites granifer. (R) Spinosporites spinosus. (S) Raistrickia sp. (T) Lycospora sp. (U) Knoxisporites glomus. (V) Firmysporites irregularis. (W) Cyclogranisporites sp. (X) Punctatisporites sp. (Y) Verrucosisporites verrucosusMasquer

Muse-A and Muse-B palynological assemblages: (A) Triquitrites minutus. (B) Triquitrites sp. (C) Deltoidospora adnata. (D) Deltoidospora priddyi. (E) Deltoidospora levis. (F) Deltoidospora sphaerotriangula. (G) Granulatisporites minutus. (H) Granulatisporites parvus. (I) Granulatisporites microgranifer. (J) Granulatisporites sp. (K) Lophotriletes microsaetosus. (L) Lophotriletes ... Lire la suite

Figure 3.

Muse-A and Muse-B palynological assemblages: (A–B) Calamospora sp. (C) Densosporites annulatus. (D) Densosporites sp. (E) Crassispora kosankei. (F) Latensina trileta. (G) Lundbladispora sp. (H) Candidispora candida. (I) Endosporites sp. (J) Schopfipollenites sinuosus. (K) Schopfipollenites signatus. (L) Florinites millotti. (M) Florinites mediapudens. (N) Florinites florini. (O) Vesicaspora wilsonii. (P) Vesicaspora ovata. (Q) Schopfipollenites ellipsoides. (R) Wilsonites vesicatus. (S) Potonieisporites novicus. (T) Potonieisporites sp. (U) Undetermined monosaccate. (V–W) Plicatipollenites sp.

Figure 4.

Muse-A and Muse-B palynological assemblages: (A) Columnisporites peppersi. (B) Laevigatosporites perminutus. (C) Columnisporites sp. (D) Laevigatosporites vulgaris. (E) Cheiledonites sp. (F) Cycadopites sp. (G) Protohaploxypinus microcorpus. (H) Vittatina sp. (I–J) Undetermined monosaccate pollen. (K–M) Undetermined bisaccate pollen. (N) Limitisporites sp. (O) Undetermined freshwater algae. (Q) Pilasporites sp. (R) Leiosphaeridia sp. (P–S) Fungal structures.

Figure 5.

Compilation of previously published and new taxa from the Muse OSB, Autun Basin, France. Labels, (a) synonym taxa, (b) confer.

Figure 6.

Quantitative analysis of the MUSE-A and MUSE-B assemblages from the Muse OSB (Muse section, Autun, France), focusing on the main palynological groups. Samples AUT/01-AUT/03 were not plotted due to its low relative abundance ( <200 palynomorphs). Legend for stratigraphic log in Figure 1.

The Muse-A assemblage is dominated by voltzialean and cordaitalean conifers (mainly Florinites, Potonieisporites, and other monosaccate pollen). To a lesser extent, pteridophytes (Lycopsida, Filicopsida, and Marattiopsida) and medullosalean cycads (Schopfipollenites) are also present.

The Muse-B assemblage highlights a clear dominance of cordaitalean conifers with Florinites (ca. 40–50%) to the detriment of the voltzialean palynomorphs. The presence of pteridophytes and pteridosperms remains relatively constant compared to Muse-A. It is also noteworthy the increase in lacustrine elements (i.e., prasinophycean algae) towards the upper part of the assemblage (Figure 6).

5. Discussion

5.1. The Muse OSB palaeoecology

5.1.1. Terrestrial plant community

According to these new results, conifers and pteridosperms are the main components of the Muse palynofloras with a high diversity and relative abundance of ca. 50% and ca. 20%, respectively (Figure 6). Although less abundant, pteridophytes are well represented through both lycophytes and ferns with a relative abundance of ca. 15%. As stated above, a division between the Muse-A and Muse-B assemblages has been established mainly due to significant differences in the type of conifers. In the Muse-A assemblage, Cordaitales (i.e., Florinites) and Voltziales (i.e., Potonieisporites) are the main conifer representatives. By constrast, in the Muse-B assemblage, Voltziales decrease dramatically, giving way to Cordaitales sole dominance. Although the observed increase in mean particle size in the Muse-B assemblage (see Supplementary Material) may suggest a taphonomic overprint, we consider this an unlikely explanation for the observed shift in palynological composition. Notably, cordaitalean pollen—typically smaller than voltzialean pollen—becomes more abundant in the upper part of the section, while voltzialean pollen virtually disappears. Were hydrodynamic sorting the primary driver, one would expect a relative enrichment of larger pollen types, such as voltzialean Potonieisporites, in the upper levels of the section. However, this pattern is not observed. This inverse relationship suggests that the compositional change is unlikely to be taphonomically controlled and may instead reflect broader environmental or vegetational changes. In any case, the Cordaitales conifers, seed ferns, cycads, and pteridophyte spores apparently constitute the autochthonous elements of the palynoflora, while the Voltziales conifers and other bisaccate pollens (such as Pityosporites or Alisporites) may be the allochthonous elements transported to the palaeo-lake corresponding to the Muse OSB.

These new results are consistent with previous palynological studies (Doubinger, 1960; Doubinger, 1969; Doubinger and F. Elsass, 1975; Doubinger and P. Elsass, 1979): in the Muse section, isolated samples also recorded assemblages with a predominance of monosaccate pollen corresponding to cordaitalean and voltzialean conifers and putative peltasmermalean seed ferns (Wilsonites), as well as lycophytes represented by Lundbladispora spores, frequently found in tetrads). It is noteworthy that several palynological zones were also differentiated by Châteauneuf, Farjanel, Pacaud, et al. (1992) based on comparative palynological data from the Autun Basin (Doubinger and P. Elsass, 1979).

The previous vegetal macro-remains found in the Muse OSB are generally similar to the palynological data (e.g., records of Sigillaria and Pecopteris; Doubinger, 1994). However, contrary to the palynological findings, conifer remains in the macroflora associations are few in the Muse OSB. A taphonomic bias could explain why silicified conifer wood has been discovered in the Lally upper sandstones Member within the base of the Muse Fm. (Figure 1B; Doubinger and Marguerier, 1975; Marguerier and Pacaud, 1980; Gand, Galtier, Broutin, et al., 2015). These fossil trunks show similar orientations and exhibit traces of abrasion on their surface (Marguerier and Pacaud, 1980), indicative of transport in running water (Gand, Galtier, Broutin, et al., 2015). It is suggested that the silicification process occurred near the growth site, and, in some cases, the trunks were preserved in the growth position (ibid.). According to Gand, Galtier, Broutin, et al. (ibid.), these remains belong to the Dadoxylon group of type II, which would correspond to walchian conifers (Voltziales; Doubinger and Marguerier, 1975), Metacordaites rigollotii and Scleromedulloxylon varollense, reflecting a high diversity. Also, close to the Muse locality, another type of Dadoxylon wood (Cordaixylon; related to Cordaitales) and silicified fragments of Psaronius, Arthropitys, and Sigillaria have been found (Broutin, Châteauneuf, et al., 1999; Gand, Galtier, Broutin, et al., 2015). Moreover, the compilation of the macroflora findings resulted in a classification of the floral associations by different ecological groups (Van Waveren et al., 2012): hygrophytic (e.g., Equisetopsida), hygro-mesophytic (Cordaites principalis, Neuropteris planchardii, and Asterotheca arborescens), and mesophytic plants (Walchia piniformis, Sphenopteris sp., Dicranophyllales, and Cycadopsida).

Therefore, after the integration of our new palynological data with the previous palaeobotanical studies, the Muse OSB plant community corresponds to a peat swamp forest dominated by cordaitalean and (occasionally) walchian conifers, with the presence of medullosalean cycads and callistophytalean seed ferns, as well as an understory of lycophytes and ferns (primarily marattialean). Surrounding this community, distant from the lake, a forest dominated by walchian conifers would also be present (Figure 7). According to the quantitative palynological analysis, the vegetation dynamics of the Muse OSB were apparently stable except for the Cordaitales, which increased towards the upper part of the unit in to the detriment of the Voltziales (Figure 6).

Figure 7.

Palaeoecological reconstruction of the plant and phytoplankton communities in the Muse OSB.

5.1.2. Lacustrine phytoplankton community

Several aquatic palynomorphs were also found in both Muse-A and Muse-B assemblages with an increasing relative abundance upwards (Figure 6). Some of these elements resembling Leiosphaeridia (Figure 4R) and Pilasporites (Figure 4Q) are present throughout the Muse OSB. Both taxa are polyphyletic due to their simple morphology but can be considered non-marine algae. In the case of Leiosphaeridia sp., it corresponds to green algae, which includes phycomatas of pyramimonadalean prasinophytes (primarily marine) or vegetative cells of Trebouxiophyceae (primarily non-marine) (Mays et al., 2021). Pilasporites have been considered as vascular plant spore (Equisetales and Isoetales) or as zygospores of non-marine green algae (Zygnematophyceae), the latter affinity being the most likely according to algae co-occurrence and its morphology (ibid.).

In previous palynological studies, the presence of prasinophycean algae was also observed. Due to their marine affinity, these algae had controversial implications for the palaeoenvironmental interpretation (i.e., Tasmanites sp.; Doubinger and F. Elsass, 1975). However, non-marine prasinophycean species also exist (Traverse, 2007), allowing the presence of Tasmanites-like palynomorphs without marine influence. Moreover, the exclusively marine nature of Tasmanites is currently under debate, as these algae have recently been found in Permian freshwater lacustrine deposits in East Timor (Lelono, 2019). In any case, we consider the Tasmanites present in Doubinger and F. Elsass (1975) as Pilasporites instead, after comparing their illustration (ibid., plate 1, Figure 15) to ours (Figure 4Q). This re-assignation would be consistent with the purely freshwater lacustrine environment corresponding to the Autun Basin (e.g., Gand, Châteauneuf, et al., 2007; Gand, Steyer, Pellenard, et al., 2015; Mercuzot, Bourquin, Pellenard, et al., 2022; Luccisano, Cuny, et al., 2023).

5.2. Palaeoecological and palaeoenvironmental implications

Beginning with the Carboniferous–Permian transition, the early to late Permian exhibits a progressive climate shift towards more arid conditions and a subsequent succession of floras adapted to wetland first, seasonally dry then, and, eventually, arid with a wet season (Broutin, Doubinger, et al., 1990; DiMichele and Aronson, 1992; Falcon-Lang, 2003; DiMichele, Tabor, et al., 2006). However, the earliest Permian plant communities usually present transitional floras with Carboniferous and Permian characteristics. Several pteridophytes belonging to the Carboniferous-type wetland biome (Juncal et al., 2019) were found in the Muse palynofloras. In addition, medullosalean cycads and callistophytalean seed ferns, also typical Carboniferous elements, have a common occurrence in the Muse palynological assemblages.

The presence of these wetland elements together with xerophytic Permian elements (i.e., Voltziales) indicates that the Autun Basin remained under the influence of a seasonally dry climate, but maintaining enough moisture for the persistence of these hygrophytes during at least ∼300 ky in the early Asselian. These environmental conditions allowed plants producing Densosporites, Punctatosporites, Spinosporites, and Thymospora to survive in a context of instability and gradual evolution to drier conditions throughout the Permian Broutin (1986), Juncal et al. (2019).

However, the main plants in the Muse section are xerophytic or tolerant to drier climates, as is the case of the conifers (Lyons and Darrah, 1989). The best example is walchian conifers (Voltziales), which were restricted to seasonally dry habitats and considered as a marker of semi-arid floras (Ziegler, Rees, et al., 2002; DiMichele, Cecil, et al., 2010). The Cordaitales, also typical of seasonally dry conditions (Kerp, 1990; Algeo and Scheckler, 1998), were usually adapted to wetter environments than walchian conifers (Bashforth et al., 2014). In this case, they inhabited lowland peat mires where they formed mostly monotypic stands or were part of heterogeneous vegetation thriving interspersed among arborescent ferns (such as Calamites) and lycophytes (Raymond and Phillips, 1983; Trivett and Rothwell, 1991; Raymond, 1988; DiMichele and Phillips, 1994).

Walchian conifers were exclusively related to topographically high environments (e.g., Rothwell and Mapes, 1988). However, recent Palaeozoic studies on vegetation dynamics noticed that variation in walchian dominance was not affected by topographical changes but by climatic shifts between wet and dry conditions (Falcon-Lang et al., 2009; Dolby et al., 2011; DiMichele, 2014). Therefore, the differences between the Muse-A and Muse-B assemblages related to the conifer composition may reflect climate change. The walchian conifers may be established as a permanent community in distant parts, which may be topographically higher (allochthones in Muse-A and Muse-B assemblages; Figure 7), while they expanded towards the communities closer to the palaeo-lake during drier phases due to more marked seasonality (parautochthonous in Muse-A assemblage; Figure 7).

This trend is observed throughout the latest Carboniferous–early Permian transition, based on the palynological biozones established for the Autun Basin (Châteauneuf, Farjanel, Pacaud, et al., 1992). After a pronounced decrease of spores since the late Carboniferous, walchian-pollen (Potonieisporites) settles as one of the main components of the early Permian palynofloras. In the case of Cordaitales pollen (Florinites), it was present since the latest Carboniferous remaining solid as a main component throughout the early Permian. There is an inversely proportional relationship between these two floral components in the same ecological niche. The higher the proportion of Walchian pollen, the lower the proportion of Cordaitales, and vice versa. As we have seen, this was most likely influenced by climate. This pattern was also found during the Pennsylvanian Coal Age, suggesting an increase in seasonality when walchian conifers dominated (DiMichele, 2014). Therefore, in the Autun Basin, the walchian-cordaitalean pollen relation may be used as a proxy for seasonality.

Another significant aspect of Muse palaeoecology is related to the lacustrine phytoplankton community. As mentioned before, the quantitative analysis of the lacustrine elements in the Muse OSB exhibits an increase towards the upper part of the Muse-B assemblage (Figures 67). This green algae maximum interval corresponds to a sequence of tonstein occurrence (Figure 1C) and, therefore, to a period of active explosive volcanism (Pellenard et al., 2017). Volcanic ash affects the nutrient and light availability in marine and freshwater algae communities, frequently producing phytoplankton blooms or enhanced growth (e.g., Hamme et al., 2010; Modenutti et al., 2013; Browning et al., 2014). Consequently, the increase in the relative abundance of green algae in the Muse section may be related to enhanced growth of the lacustrine phytoplankton community after a more active volcanic period. It is worth noting that sample AUT/07A, located directly above one of the volcanic layers (GVIII), shows a notably low proportion of lacustrine palynomorphs. This exception may reflect local taphonomic or environmental conditions (e.g., limited water availability or rapid burial), which may have restricted phytoplankton development despite the potential nutrient input. However, the overall trend across Muse-B remains consistent with a volcanically induced productivity pulse.

6. Conclusions

The understanding of the Muse Formation in the Autun Basin, France, has significantly advanced through ongoing palaeontological investigations and geological analyses spanning back to the 19th century. In this regard, a comprehensive reassessment of prior palaeobotanical inquiries has been undertaken alongside a novel taxonomic and quantitative palynological examination across the entire Muse Formation. These endeavours aim to elucidate the fluctuations in floral composition within the predominantly lacustrine sediments of this formation.

The plant community corresponding to the Muse OSB is identified as a peat swamp forest characterised by a prevalence of cordaitalean conifers. Additionally, this community gathers medullosalean cycads and callistophytalean seed ferns, complemented by an undergrowth comprising lycophytes and ferns (including marattialean species). Adjacent to the lake and topographically higher, a forest dominated by walchian conifers (Voltziales) would also be present.

The vegetation dynamics of the Muse OSB would be relatively stable, except for the Cordaitales, which exhibit an increment towards the top of the unit to the detriment of the Voltziales. This pattern, also observed throughout the Autun Basin deposits, could be related to an increase of wetter conditions. However, taphonomical or preservation factors should not be excluded. Moreover, the persistence of palynomorphs belonging to the Carboniferous wetland biome indicates the presence of environments with enough moisture for the survival of hygrophyte plants in the Autun Basin for at least ∼300 ky after the Carboniferous–Permian boundary.

The phytoplankton community consisted of green algae, including Trebouxiophyceae and Zygnematophyceae. A higher relative abundance was observed in the upper part of the Muse OSB, corresponding to enhanced growth of this community that was likely affected by increased nutrient availability due to enhanced distal explosive volcanism.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organisation that could benefit from this article, and have declared no affiliations other than their research organisations.

Acknowledgements

We gratefully acknowledge the constructive suggestions of the editor Dr. Sylvie Bourquin, as well as the two anonymous reviewers. This research was partially financed by the Ministerio de Ciencia y Innovación of the Spanish Government (ref.: PID2022-141050NB-I00), and the research project “CALDERA - CALibrating a Deglaciation ERA: Decline of the Late Palaeozoic Ice Age and its consequences for tropical terrestrial ecosystems” financed by the Promotion of Educational Policies, University and Research Department of the Autonomous Province of Bolzano - South Tyrol (CUP H33C23001340003).


Bibliographie

[Algeo and Scheckler, 1998] T. J. Algeo; S. E. Scheckler Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events, Philos. Trans. R. Soc. Lond. B, Volume 353 (1998), pp. 113-130 | DOI

[Balme, 1995] B. E. Balme Fossil in situ spores and pollen grains: an annotated catalogue, Rev. Palaeobot. Palynol., Volume 87 (1995), pp. 1-323 | DOI

[Bashforth, Cleal, Gibling, Falcon-Lang and Miller, 2014] A. R. Bashforth; C. J. Cleal; M. R. Gibling; H. J. Falcon-Lang; R. F. Miller Paleoecology of early Pennsylvanian vegetation on a seasonally dry tropical landscape (Tynemouth Creek Formation, New Brunswick, Canada), Rev. Palaeobot. Palynol., Volume 200 (2014), pp. 229-263 | DOI

[Bouroz and Doubinger, 1977] A. Bouroz; J. Doubinger Report on the Stephanian–Autunian boundary and on the contents of Upper Stephanian and Autunian in their stratotypes, Symposium on Carboniferous Stratigraphy (V. M. Holub; R. H. Wagner, eds.), Geological Survey, Prague, 1977, pp. 147-169

[Brignon, 2014] A. Brignon Les recherches paléoichthyologiques et géologiques sur le gisement permien de Muse près d’Autun (Saône-et-Loire) au début du XIXème siècle, Bull. Soc. Géol. Fr., Volume 185 (2014), pp. 233-252

[Broutin, 1986] J. Broutin Étude paléobotanique et palynologique du passage Carbonifère Permien dans le sud-ouest de la Péninsule Ibérique : Cahiers de Paléontologie, Éditions du Centre National de la Recherche Scientifique, Paris, 1986, 165 pages

[Broutin, Châteauneuf, Galtier and Ronchi, 1999] J. Broutin; J. J. Châteauneuf; J. Galtier; A. Ronchi L’Autunien d’Autun reste-t-il une référence pour les dépôts continentaux du Permien inférieur d’Europe? Apport des données paléobotaniques, Géol. Fr., Volume 2 (1999), pp. 17-31

[Broutin, Doubinger, El Hamet and Lang, 1990] J. Broutin; J. Doubinger; M. O. El Hamet; J. Lang Palynologie comparée du Permien nigérien (Afrique occidentale) et Péritéthysien. Implications stratigraphiques et phytogéographiques, Rev. Palaeobot. Palynol., Volume 66 (1990) no. 3–4, pp. 243-261 | DOI

[Browning, Bouman, Henderson, et al., 2014] T. J. Browning; H. A. Bouman; G. M. Henderson et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash, Geophys. Res. Lett., Volume 41 (2014) no. 8, pp. 2851-2857 | DOI

[Châteauneuf and Farjanel, 1989] J. J. Châteauneuf; G. Farjanel Synthèse géologique des bassins permiens français, Synthèse géologique des bassins permiens français, Volume 128, BRGM, Orléans, 1989, p. 288

[Châteauneuf, Farjanel, Feys and Marteau, 1980] J. J. Châteauneuf; G. Farjanel; R. Feys; P. Marteau Sondages stratigraphiques dans le bassin d’Autun : étude préliminaire, Bull. Soc. Hist. Nat. Autun., Volume 95 (1980), pp. 61-83

[Châteauneuf, Farjanel, Galtier and Broutin, 1992] J. J. Châteauneuf; G. Farjanel; J. Galtier; J. Broutin The Autunian stratotype in the Permian basin of Autun, 4th IOP Excursion (OFP information, 16.C), Bureau de Recherches Géologiques et Minières, Orléans (1992), pp. 20-44

[Châteauneuf, Farjanel, Pacaud and Broutin, 1992] J. J. Châteauneuf; G. Farjanel; G. Pacaud; J. Broutin The Autun permian basin, the autunian stratotype, Cah. Micropaleont., Volume 7 (1992), pp. 123-139

[Chèvremont, Rémond, Marteau, Clozier, Thiéblemont, Jauffret, Bugnon and Thèvenot, 1999] P. Chèvremont; C. Rémond; P. Marteau; L. Clozier; D. Thiéblemont; D. Jauffret; F. Bugnon; J. P. Thèvenot Notice explicative de la carte géologique d’Epinac-Les-Mines au 1:50000, Bureau de recherches géologiques et minières, Orléans, 1999

[Davydov, Korn and Schmitz, 2012] V. I. Davydov; D. Korn; M. D. Schmitz The carboniferous period, The Geologic Time Scale 2012 (F. M. Gradstein; J. G. Ogg; M. Schmitz; G. Ogg, eds.), Elsevier, Amsterdam, 2012, pp. 603-651 | DOI

[Delafond, 1889] F. Delafond Bassin houiller et permien d’Autun et d’Épinac. Fasc. I. Stratigraphie, Étude de Gîtes Minéraux de la France, 1889, 112 pages

[DiMichele and Aronson, 1992] W. A. DiMichele; R. B. Aronson The Pennsylvanian–Permian vegetational transition: a terrestrial analogue to the onshore–offshore hypothesis, Evolution, Volume 46 (1992) no. 3, pp. 807-824 | DOI

[DiMichele and Phillips, 1994] W. A. DiMichele; T. L. Phillips Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 106 (1994), pp. 39-90 | DOI

[DiMichele, 2014] W. A. DiMichele Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics, Int. J. Plant Sci., Volume 175 (2014) no. 2, pp. 123-164 | DOI

[DiMichele, Cecil, Montañez and Falcon-Lang, 2010] W. A. DiMichele; C. B. Cecil; I. P. Montañez; H. J. Falcon-Lang Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea, Int. J. Coal Geol., Volume 83 (2010) no. 2–3, pp. 329-344 | DOI

[DiMichele, Hook, Kerp, Hotton, Looy and Chaney, 2018] W. A. DiMichele; R. W. Hook; H. Kerp; C. L. Hotton; C. V. Looy; D. S. Chaney Chapter 6 - Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas, Transformative Paleobotany (M. Krings; C. J. Harper; N. R. Cúneo; G. W. Rothwell, eds.), Academic Press, 2018, pp. 95-126 | DOI

[DiMichele, Mamay, Chaney, Hook and Nelson, 2001] W. A. DiMichele; S. Mamay; D. Chaney; R. Hook; W. Nelson An Early Permian flora with Late Permian and Mesozoic affinities from north-central Texas, J. Paleontol., Volume 75 (2001) no. 2, pp. 449-460 | DOI

[DiMichele, Tabor, Chaney and Nelson, 2006] W. A. DiMichele; N. J. Tabor; D. S. Chaney; W. J. Nelson From wetland to wet spots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras, Wetlands Through Time (S. F. Greb; W. A. DiMichele, eds.) (Special Papers 399), Geological Society of America, 2006, pp. 223-248

[Dimitrova, Cleal and Thomas, 2011] T. Dimitrova; C. J. Cleal; B. A. Thomas Palynological evidence for Pennsylvanian extra-basinal vegetation in Atlantic Canada, J. Geol. Soc. Lond., Volume 168 (2011), pp. 559-569 | DOI

[Dolby, Falcon-Lang and Gibling, 2011] G. Dolby; H. J. Falcon-Lang; M. R. Gibling A conifer-dominated palynological assemblage from Pennsylvanian (late Moscovian) alluvial drylands in Atlantic Canada: implications for the vegetation of tropical lowlands during glacial phases, J. Geol. Soc., Volume 168 (2011) no. 2, pp. 571-584 | DOI

[Doubinger and Elsass, 1975] J. Doubinger; F. Elsass Nouvelles données minéralogiques et palynologiques sur les sédiments permiens du bassin d’Autun, Bull. Soc. Hist. Nat. Autun., Volume 91 (1975), pp. 13-28

[Doubinger and Elsass, 1979] J. Doubinger; P. Elsass Le bassin Permo-Carbonifère d’Autun. Nouvelles données stratigraphiques et palynologiques, Bull. Soc. Hist. Nat. Autun., Volume 91 (1979), pp. 9-25

[Doubinger and Grauvogel-Stamm, 1971] J. Doubinger; L. Grauvogel-Stamm Présence de spores du genre Thymospora chez Pecopteris hemitelioides du Mont-Pelé (Stéphanien moyen du Bassin d’Autun), Pollen et Spores, Volume 13 (1971), pp. 597-607

[Doubinger and Marguerier, 1975] J. Doubinger; J. Marguerier Paléoxylologie : étude anatomique comparée de Scleromedulloxylon nov. gen. nov. sp. du Permien de Saint-Affrique (Aveyron, France) ; considérations taxinomiques et stratigraphiques, Geobios, Volume 8 (1975), pp. 25-59 | DOI

[Doubinger, 1956] J. Doubinger Contribution à l’étude des flores autuno-stéphaniennes, Mémoires de la Société Géologique de France, Volume 35 (1956), pp. 1-180

[Doubinger, 1960] J. Doubinger Association sporologiques (microspores), de quelques gisement stéphaniens et autuniens, Heerlen 1959, 3, ICCP International Committee for Coal Petrology, 1960, pp. 165-171

[Doubinger, 1969] J. Doubinger Études palynologiques dans le Permo-Carbonifère de I’Autunois: les schistes de Muse, Bull. Soc. Hist. Nat. Autun., Volume 50 (1969), pp. 14-19

[Doubinger, 1994] J. Doubinger Spores et pollen du basin Carbonifère et Permien de Blanzy-Montceau (Massif Central – France), Quand le Massif Central était sous l’équateur : Un écosystème Carbonifère à Montceau-les-Mines (C. Poplin; D. Heyler, eds.) (Mémoires de la Section des Sciences 12), Comité des travaux historiques et scientifiques (CTHS), Paris, 1994, pp. 61-72

[Doubinger, Vetter, Langiaux, Galtier and Broutin, 1995] J. Doubinger; P. Vetter; J. Langiaux; J. Galtier; J. Broutin La flore fossile du bassin houiller de Saint-Etienne, Mémoires du Muséum National d’Histoire Naturelle, Volume 164, Editions du Muséum, Paris, 1995, p. 357

[Elsass-Damon, 1977] F. E. Elsass-Damon Les schistes bitumineux du bassin d’Autun : pétrographie, minéralogie, cristallochimie, pyrolyse, Doctoral dissertation, University of Paris (1977) (93 pp)

[Falcon-Lang, 2003] H. J. Falcon-Lang Late Carboniferous tropical dryland vegetation in an alluvial-plain setting, 18, Palaios, Joggins, Nova Scotia, 2003, pp. 197-211

[Falcon-Lang, Nelson, Elrick, Looy, Ames and DiMichele, 2009] H. J. Falcon-Lang; W. J. Nelson; S. Elrick; C. V. Looy; P. R. Ames; W. A. DiMichele Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands, Geology, Volume 37 (2009) no. 10, pp. 923-926 | DOI

[Faure, 1995] M. Faure Late orogenic carboniferous extensions in the Variscan French Massif Central, Tectonics, Volume 14 (1995), pp. 132-153 | DOI

[Faure, Lardeaux and Ledru, 2009] M. Faure; J. M. Lardeaux; P. Ledru A review of the pre-Permian geology of the Variscan French Massif Central, C. R. Geosci., Volume 341 (2009), pp. 202-213 | DOI

[Feys and Greber, 1972] R. Feys; C. Greber L’Autunien et le Saxonien en France, Rotliegend. Essays on European Lower Permian (H. Falke, ed.), Brill, Leiden, 1972, pp. 114-136 | DOI

[Feys, 1988] R. Feys Carte géologique à 1/50 000 Le Creusot (J. Fourniguet; L. Courel; G. Gand; J. C. Menot; R. Feys; J. Arene; J. P. Guillaumet, eds.), Bureau de Recherche Géologique et Minière, Orléans, 1988

[Feys, 1991] R. Feys Carte géologique à 1/50 000 d’Autun (J. Arène; J. Delfour; L. Clozier; R. Feys; J. H. Delance, eds.), Bureau de Recherche Géologique et Minière, Orléans, 1991

[Fielding, Frank and Isbell, 2008] C. R. Fielding; T. D. Frank; J. L. Isbell The Late Paleozoic ice age - a review of current understanding and synthesis of global climate patterns, Resolving the Late Paleozoic Ice Age in Time and Space (C. R. Fielding; T. D. Frank; J. L. Isbell, eds.) (Special Paper 441), Geological Society of America, Boulder, 2008, pp. 343-354 | DOI

[Gand, Châteauneuf, Durand, Chabard and Passaqui, 2007] G. Gand; J. J. Châteauneuf; M. Durand; D. Chabard; J. P. Passaqui Permian Continental Environnements in the Autun Basin. Pre-Symposium Fieldtrip. 2 July, 2007, Association des Sédimentologistes Français, Burgundy, 2007, 35 pages

[Gand, Galtier, Broutin and Van Waveren, 2015] G. Gand; J. Galtier; J. Broutin; I. Van Waveren Two stops in the Muse Formation, Agora Paleobotanica, Autun (2015), p. 27

[Gand, Galtier, Garric, Teboul and Pellenard, 2013] G. Gand; J. Galtier; J. Garric; P.-A. Teboul; P. Pellenard Discovery of an Autunian macroflora and lithostratigraphic re-investigation on the western border of the Lodève Permian basin (Mont Sénégra, Hérault, France). Paleoenvironmental implications, C. R. Palevol., Volume 12 (2013), pp. 69-79 | DOI

[Gand, Pellenard, Galtier, Broutin and Steyer, 2017] G. Gand; P. Pellenard; J. Galtier; J. Broutin; J. S. Steyer Le Stratotype Autunien du Bassin d’Autun (Bourgogne-France) : Évolution de la stratigraphie et des âges, Bull. Soc. Hist. Nat. Autun., Volume 211 (2017), pp. 19-36

[Gand, Steyer and Chabard, 2010] G. Gand; J. S. Steyer; D. Chabard Reprise des fouilles paléontologiques dans un gîte bourguignon célèbre : les «  schistes bitumineux  » de l’Autunien de Muse (Bassin d’Autun). Bilan 2010 et perspectives, Revue Sci. Bourgogne-Nature, Volume 12 (2010), pp. 10-29

[Gand, Steyer and Chabard, 2012] G. Gand; J. S. Steyer; D. Chabard Les fouilles paléontologiques de Muse: bilan 2011, projets 2012, Bull. Soc. Hist. Nat. Autun., Volume 202 (2012), pp. 33-43

[Gand, Steyer, Chabard, Pellenard, Glé and Van Waveren, 2014] G. Gand; J. S. Steyer; D. Chabard; P. Pellenard; L. Glé; I. Van Waveren Études Géologiques 2013 et Projets 2014 sur l’Autunien du Bassin d’Autun, Bull. Soc. Hist. Nat. Autun., Volume 206 (2014), pp. 7-20

[Gand, Steyer, Pellenard, et al., 2015] G. Gand; J. S. Steyer; P. Pellenard et al. Le stratotype autunien (Permien) du bassin d’Autun: résultats préliminaires des travaux réalisés en 2014 sur les niveaux de la couche de Muse (Saône-et-Loire, France), Bull. Soc. Hist. Nat. Autun., Volume 207 (2015), pp. 12-31

[Gradstein, Ogg, Schmitz and Ogg, 2012] F. M. Gradstein; J. G. Ogg; M. Schmitz; G. Ogg The Geologic Time Scale 2012, Elsevier, Amsterdam, 2012

[Gulbranson, Montañez, Tabor and Limarino, 2015] E. L. Gulbranson; I. P. Montañez; N. J. Tabor; C. O. Limarino Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): A regional expression of a global climate perturbation, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 417 (2015), pp. 220-235 | DOI

[Hamme, Webley, Crawford, et al., 2010] R. C. Hamme; P. W. Webley; W. R. Crawford et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific, Geophys. Res. Lett., Volume 37 (2010) no. 19, L19604 | DOI

[Henderson, Davydov and Wardlaw, 2012] C. H. Henderson; V. Davydov; B. Wardlaw The Permian period, The Geologic Time Scale 2012 (F. M. Gradstein; J. G. Ogg; M. Schmitz; G. Ogg, eds.), Elsevier, Amsterdam, 2012, pp. 653-679 | DOI

[Isozaki, 2009] Y. Isozaki Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction, Gondwana Res., Volume 15 (2009), pp. 421-432 | DOI

[Juncal, Lloret, Diez, López-Gómez, Ronchi, de la Horra, Barrenechea and Arche, 2019] M. A. Juncal; J. Lloret; J. B. Diez; J. López-Gómez; A. Ronchi; R. de la Horra; J. F. Barrenechea; A. Arche New Upper Carboniferous palynofloras from Southern Pyrenees (NE Spain): Implications for palynological zonation of Western Europe, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 516 (2019), pp. 307-321 | DOI

[Kerp, 1990] H. Kerp The study of fossil gymnosperms by means of cuticular analysis, Palaios, Volume 5 (1990), pp. 548-569 | DOI

[Lelono, 2019] E. B. Lelono The Gondwanan Green Alga Tasmanites sp. in the Permian Lacustrine Deposits of West Timor, Indones. J. Geosci., Volume 6 (2019) no. 3, pp. 255-266 | DOI

[Lemoigne and Doubinger, 1984] Y. Lemoigne; J. Doubinger Réflexion sur la coexistence de flores hygrophile, mésophile et mésoxérophile durant le Paléozoïque Supérieur en Euramérie, Geobios, Volume 17 (1984), pp. 365-369 | DOI

[Looy and Hotton, 2014] C. V. Looy; C. L. Hotton Spatiotemporal relationships among Late Pennsylvanian plant assemblages: Palynological evidence from the Markley Formation, West Texas, USA, Rev. Palaeobot. Palynol., Volume 211 (2014), pp. 10-27 | DOI

[Looy, Kerp, Duijnstee and DiMichele, 2014] C. V. Looy; H. Kerp; I. A. P. Duijnstee; W. A. DiMichele The Late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective, Sedim. Record, Volume 12 (2014), pp. 4-10 | DOI

[Lopez, Gand, Garric, Körner and Schneider, 2008] M. Lopez; G. Gand; J. Garric; F. Körner; J. Schneider The playa environments of the Lodève Permian basin (Languedoc-Francia), J. Iberian Geol., Volume 34 (2008) no. 1, pp. 29-56

[Luccisano, Cuny, Pradel, Fourel, Lécuyer, Pouillon, Lachat and Amiot, 2023] V. Luccisano; G. Cuny; A. Pradel; F. Fourel; C. Lécuyer; J. M. Pouillon; K. Lachat; R. Amiot Palaeoenvironmental and palaeoecological reconstructions based on oxygen, carbon and sulfur isotopes of Early Permian shark spines from the French Massif central, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 628 (2023), 111760 | DOI

[Luccisano, Rambert-Natsuaki, Cuny, Amiot, Pouillon and Pradel, 2021] V. Luccisano; M. Rambert-Natsuaki; G. Cuny; R. Amiot; J. M. Pouillon; A. Pradel Phylogenetic implications of the systematic reassessment of Xenacanthiformes and “Ctenacanthiformes” (Chondrichthyes) neurocrania from the Carboniferous–Permian Autun Basin (France), J. Syst. Palaeontol., Volume 19 (2021) no. 23, pp. 1623-1642 | DOI

[Lyons and Darrah, 1989] P. C. Lyons; W. C. Darrah Paleoenvironmental and paleoecological significance of walchian conifers in Westphalian (Late Carboniferous) horizons of North America, Stratigraphie et de Geologie du Carbonifere Beijing 1987, Compte Rendu 3 (1989), pp. 251-261

[Manès, 1844] M. W. Manès Mémoire sur les bassins houillers de Saône-et-Loire. Description géologique du Morvan, des bassins houillers d’Autun et de Blanzy, Et. gîtes min., Volume 1 (1844), pp. 1-176

[Marguerier and Pacaud, 1980] J. Marguerier; G. Pacaud La 3° zone de bois silicifiés de I’Autunien du bassin d’Autun (France): nouvelles données sur un gisement de bois silicifiés. Caractères paléobotaniques, Bull. Soc. Hist. Nat. Autun., Volume 95 (1980), pp. 41-60

[Marteau and Feys, 1989] P. Marteau; R. Feys Le bassin d’Autun. Synthèse géologique des bassins permiens français, Mém. BRGM, Volume 128 (1989), pp. 65-71

[Marteau, 1983] P. Marteau Le bassin permo-carbonifère d’Autun. Stratigraphie, Sédimentologie et aspects structuraux, Doctoral dissertation, University of Dijon (1983) (193 pp)

[Mays, Vajda and McLoughlin, 2021] C. Mays; V. Vajda; S. McLoughlin Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications, Earth-Sci. Rev., Volume 212 (2021), 103382 | DOI

[Mercuzot, Bourquin, Beccaletto, Ducassou, Rubi and Pellenard, 2021] M. Mercuzot; S. Bourquin; L. Beccaletto; C. Ducassou; R. Rubi; P. Pellenard Palaeoenvironmental reconstitutions at the CarboniferousPermian transition south of the Paris Basin, France: implications on the stratigraphic evolution and basin geometry, Int. J. Earth Sci., Volume 110 (2021), pp. 9-33 | DOI

[Mercuzot, Bourquin, Pellenard, et al., 2022] M. Mercuzot; S. Bourquin; P. Pellenard et al. Reconsidering Carboniferous–Permian continental paleoenvironments in eastern equatorial Pangea: facies and sequence stratigraphy investigations in the Autun Basin (France), Int. J. Earth Sci., Volume 111 (2022) no. 5, pp. 1663-1696 | DOI

[Michel, Tabor, Montañez, Schmitz and Davydov, 2015] L. A. Michel; N. J. Tabor; I. P. Montañez; M. D. Schmitz; V. I. Davydov Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 430 (2015), pp. 118-131 | DOI

[Modenutti, Balseiro, Elser, et al., 2013] B. E. Modenutti; E. G. Balseiro; J. J. Elser et al. Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes, Limnol. Oceanogr., Volume 58 (2013) no. 4, pp. 1165-1175 | DOI

[Montañez and Poulsen, 2013] I. P. Montañez; C. J. Poulsen The Late Paleozoic ice age: An evolving paradigm, Annu. Rev. Earth Planet. Sci., Volume 41 (2013), pp. 629-656 | DOI

[Montañez, Tabor, Niemeier, DiMichele, Frank, Fielding and Isbell, 2007] I. P. Montañez; N. J. Tabor; D. Niemeier; W. A. DiMichele; T. D. Frank; C. R. Fielding; J. L. Isbell CO2-forced climate and vegetation instability during Late Paleozoic deglaciation, Science, Volume 315 (2007), pp. 87-91 | DOI

[Pellenard, Gand, Schmitz, Galtier, Broutin and Stéyer, 2017] P. Pellenard; G. Gand; M. Schmitz; J. Galtier; J. Broutin; J-S. Stéyer High-precision U-Pb zircon ages for explosive volcanism calibrating the NW European continental Autunian stratotype, Gondwana Res., Volume 51 (2017), pp. 118-136 | DOI

[Pruvost, 1942] P. Pruvost Etude géologique du bassin Permo-Carbonifère d’Autun (1942), p. 23 (Rapport inédit du Bureau des Recherches Géologiques et Minières)

[Pruvost, 1947] P. Pruvost Art des Mines et de la Géologie, Bilan d’une collaboration. Cent. A-l, Liège, Géologie, 1947, pp. 401-418

[Raymond and Phillips, 1983] A. Raymond; T. L. Phillips Evidence for an Upper Carboniferous mangrove community, Tasks Veg. Sci., Volume 8 (1983), pp. 19-30 | DOI

[Raymond, 1988] A. Raymond The paleoecology of a coal-ball deposit from the Middle Pennsylvanian of Iowa dominated by cordaitalean gymnosperms, Rev. Palaeobot. Palynol., Volume 53 (1988), pp. 233-250 | DOI

[Riding, Kyffin-Hughes and Owens, 2010] J. B. Riding; J. E. Kyffin-Hughes; B. Owens An effective palynological preparation procedure using hydrogen peroxide, Palynology, Volume 31 (2010), pp. 19-36 | DOI

[Rothwell and Mapes, 1988] G. W. Rothwell; G. Mapes Vegetation of a Paleozoic conifer community. In Regional geology and paleontology of upper Paleozoic Hamilton quarry area in southeastern Kansas, Kansas Geol. Survey, Volume 6 (1988), pp. 213-223

[Schneider, Körner, Roscher and Kroner, 2006] J. Schneider; F. Körner; M. Roscher; U. Kroner Permian climate development peri-Tethys area. The Lodeve basin, French Massif Central, compared in a European and global context, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 240 (2006), pp. 161-183 | DOI

[Simancas, Tahiri, Azor, Lodeiro, Martínez Poyatos and El Hadi, 2005] J. F. Simancas; A. Tahiri; A. Azor; F. G. Lodeiro; D. J. Martínez Poyatos; H. El Hadi The tectonic frame of the Variscan–Alleghanian orogen in Southern Europe and Northern Africa, Tectonophysics, Volume 398 (2005), pp. 181-198 | DOI

[Steyer, Gand and Pouillon, 1998] J. S. Steyer; G. Gand; J. M. Pouillon Les Amphibiens du Paléozoïque et du Trias de France: historique et inventaire, Bull. Soc. Hist. Nat. Autun., Volume 162 (1998), pp. 23-42

[Tabor and Poulsen, 2008] N. J. Tabor; C. J. Poulsen Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 268 (2008), pp. 293-310 | DOI

[Thomas and Cleal, 2017] B. A. Thomas; C. J. Cleal Distinguishing Pennsylvanian-age lowland, extra-basinal and upland vegetation, Palaeobiodivers. Paleoenviron., Volume 97 (2017), pp. 1-21

[Toutin-Morin, 1980] N. Toutin-Morin Le Permien continental de la Provence orientale (France), Doctoral dissertation, University of Nice (1980) (594 pp)

[Traverse, 2007] A. T. Traverse Paleopalynology, Springer, Dordrecht, 2007, 814 pages | DOI

[Trivett and Rothwell, 1991] M. L. Trivett; G. W. Rothwell Diversity among Paleozoic Cordaitales, Neues Jahrb. Geol. Paläontol., Abh., Volume 183 (1991), pp. 289-305 | DOI

[Van Waveren, Gand, Steyer, Barbier, Lemuel, Hervert and Chabard, 2012] I. Van Waveren; G. Gand; S. Steyer; J. Barbier; A. Lemuel; H. Hervert; D. Chabard Inventaire de la paléoflore découverte dans la partie supérieure de la Formation de Muse au cours des fouilles paléontologiques de 2011. (Chantier de Muse, bassin d’Autun, Autunien, Permien Inférieur), Bull. Soc. Hist. Nat. Autun., Volume 202 (2012), pp. 44-52

[Wagner and Álvarez-Vázquez, 2010] R. H. Wagner; C. Álvarez-Vázquez The Carboniferous floras of the Iberian Peninsula: A synthesis with geological connotations, Rev. Palaeobot. Palynol., Volume 162 (2010), pp. 239-324 | DOI

[Wood, Gabriel and Lawson, 1996] D. G. Wood; A. M. Gabriel; J. C. Lawson Palynological techniques – processing and microscopy, Palynology: Principles and Applications (J. Jansonius; D. C. McGregor, eds.), AASP Foundation 1, Texas, 1996, pp. 29-50

[Ziegler, Rees and Naugolnykh, 2002] A. M. Ziegler; P. M. Rees; S. V. Naugolnykh The Early Permian floras of Prince Edward Island, Canada: differentiating global from local effects of climate change, Can. J. Earth Sci., Volume 39 (2002) no. 2, pp. 223-238 | DOI

[Ziegler, Scotese, McKerrow, Johnson and Bambach, 1979] A. M. Ziegler; C. R. Scotese; W. S. McKerrow; M. E. Johnson; R. K. Bambach Palaeozoic palaeogeography, Annu. Rev. Earth Planet. Sci., Volume 7 (1979), pp. 473-502 | DOI


Commentaires - Politique