Plan
Comptes Rendus

Stratigraphy, sedimentology (Palaeoenvironment)
The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea
[Transition dernier glaciaire-interglaciaire et kystes de dinoflagellés en Méditerranée occidentale]
Comptes Rendus. Géoscience, Volume 344 (2012) no. 2, pp. 99-109.

Résumés

Using the analysis of dinoflagellate cysts in three deep-sea sediments cores situated in the Sicilian-Tunisian Strait, in the Gulf of Lions and in the Alboran Sea, we reconstruct the paleoenvironmental changes that took place during the last glacial-interglacial transition in the western Mediterranean Sea. The development of the warm microflora Impagidinium aculeatum and especially Spiniferites mirabilis appears to be an important proxy for recognizing warm periods as the Bölling/Alleröd and the Early Holocene. Bitectatodinium tepikiense, Spiniferites elongatus and Nematosphaeropsis labyrinthus mark the end of the Heinrich event 1 and the Younger Dryas. This cold microfloral association confirms the drastic climate changes in the western Mediterranean Sea synchronous to the dry and cold climate which occurred in the South European margin. The dinocyst N. labyrinthus shows high percentages in all studied regions during the Younger Dryas. Its distribution reveals a significant increase from the South to the North of this basin during this cold brief event. Thus, we note that this species can be considered as a new eco-stratigraphical tracer of the Younger Dryas in the western Mediterranean Sea.

En utilisant l’analyse des kystes de dinoflagellés dans trois carottes de sédiments océaniques situés dans le détroit entre Sicile et Tunisie, le golfe du Lion et la mer d’Alboran, les changements climatiques qui se sont produits au cours de la transition dernier glaciaire-interglaciaire en Méditerranée occidentale ont été reconstitués. Le développement de la microflore chaude à Impagidinium aculeatum et spécialement à Spiniferites mirabilis semble être un élément important dans la reconnaissance de périodes chaudes, telles le Bölling/Alleröd et l’Holocène inférieur. Bitectatodinium tepikiense, Spiriferites elongatus et Nematosphaeropsis labyrinthus marquent la fin de l’évènement Heinrich 1 et du Dryas récent. Cette association de microflores froides confirme les changements climatiques drastiques en Méditerranée occidentale, synchrones du climat froid et sec qui régnait sur la marge sud de l’Europe. Le dinokyste N. labyrinthus se caractérise par de forts pourcentages dans toutes les régions étudiées pendant le Dryas récent. Sa répartition révèle une augmentation significative du Sud au Nord du bassin pendant ce bref évènement froid. Ainsi, nous remarquons que cette espèce peut être considérée comme un traceur écostratigraphique du Dryas récent en Méditerranée occidentale.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2012.01.002
Keywords: Dinoflagellate cysts, Younger Dryas, Bölling/Alleröd, Western Mediterranean, Nematosphaeropsis labyrinthus
Mot clés : Kystes de dinoflagellés, Dryas récent, Bölling/Alleröd, Méditerranée occidentale, Nematosphaeropsis labyrinthus

Imene Rouis-Zargouni 1, 2 ; Jean-Louis Turon 2 ; Laurent Londeix 2 ; Néjib Kallel 1 ; Latifa Essallami 1

1 Laboratoire GEOGLOB, faculté des sciences de Sfax, route de Soukra, BP 802, 3028 Sfax, Tunisia
2 UMR 5805 EPOC, université Bordeaux 1, avenue des Facultés, 33405 Talence cedex, France
@article{CRGEOS_2012__344_2_99_0,
     author = {Imene Rouis-Zargouni and Jean-Louis Turon and Laurent Londeix and N\'ejib Kallel and Latifa Essallami},
     title = {The last glacial-interglacial transition and dinoflagellate cysts in the western {Mediterranean} {Sea}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {99--109},
     publisher = {Elsevier},
     volume = {344},
     number = {2},
     year = {2012},
     doi = {10.1016/j.crte.2012.01.002},
     language = {en},
}
TY  - JOUR
AU  - Imene Rouis-Zargouni
AU  - Jean-Louis Turon
AU  - Laurent Londeix
AU  - Néjib Kallel
AU  - Latifa Essallami
TI  - The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea
JO  - Comptes Rendus. Géoscience
PY  - 2012
SP  - 99
EP  - 109
VL  - 344
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crte.2012.01.002
LA  - en
ID  - CRGEOS_2012__344_2_99_0
ER  - 
%0 Journal Article
%A Imene Rouis-Zargouni
%A Jean-Louis Turon
%A Laurent Londeix
%A Néjib Kallel
%A Latifa Essallami
%T The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea
%J Comptes Rendus. Géoscience
%D 2012
%P 99-109
%V 344
%N 2
%I Elsevier
%R 10.1016/j.crte.2012.01.002
%G en
%F CRGEOS_2012__344_2_99_0
Imene Rouis-Zargouni; Jean-Louis Turon; Laurent Londeix; Néjib Kallel; Latifa Essallami. The last glacial-interglacial transition and dinoflagellate cysts in the western Mediterranean Sea. Comptes Rendus. Géoscience, Volume 344 (2012) no. 2, pp. 99-109. doi : 10.1016/j.crte.2012.01.002. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2012.01.002/

Version originale du texte intégral

1 Introduction

Numerous paleoclimate records from Greenland ice cores, North Atlantic marine sequences and northern European terrestrial sequences indicate that the last glacial-interglacial transition was punctuated in the North Atlantic region by abrupt climate changes (e.g. Bard et al., 1987; Björck et al., 1996; Dansgaard et al., 1993; Lehman and Keigwin, 1992; NGRIP members, 2004). In order to improve our understanding of the wider impacts of this perturbation of the North Atlantic climate and the mechanisms underlying the transmission of climate changes, several paleoclimate records are required. In this respect, the Mediterranean Sea is considered as a key region, thanks to its miniature dimension, its close atmospheric and oceanic linkages to the North Atlantic region and its teleconnection with African and Asian monsoon (Lionello et al., 1996).

The millennium cooling of the Younger Dryas constitutes the most recent brutal cold event which interrupted the onset of the postglacial warming occurred since 15 ka cal. BP. It is widely accepted that the Younger Dryas cold episode resulted from an abrupt reduction in the North Atlantic thermohaline circulation occasioned by a massive influx of freshwater. Until recently, the prevailing view ascribed the source to meltwater drainage around the southern and eastern margins of the warming Laurentide Ice Sheet through the St. Lawrence Seaway (Teller et al., 2002) or in the Canadian Arctic Ocean (Murton et al., 2010). However, several studies have found little geomorphological, chronological or paleoceanographic support for such a connection at the onset of the Younger Dryas (Broecker, 2006; de Vernal and Hillaire-Marcel, 1996; Keigwin and Jones, 1995; Lowell et al., 2005).

The aim of this paper is to reconstruct the paleoenvironmental changes during the last glacial-interglacial transition on the basis of studying the main dinocyst species in three deep-marine sequences from the western Mediterranean Sea. This proxy was widely studied in the North Atlantic (de Vernal and Hillaire-Marcel, 2006; de Vernal et al., 1992, 1994, 2005; Eynaud et al., 2004; Harland and Howe, 1995; Marret et al., 2004; Rochon et al., 1998; Turon, 1978, 1981a,b) but remains poorly developed in the western Mediterranean in spite of the original results obtained by the previous studies in this basin (Beaudouin et al., 2007; Combourieu-Nebout et al., 1999; Sangiorgi et al., 2002; Turon and Londeix, 1988). The choice of this proxy is to complement and improve our understanding of climatic abrupt changes during the last deglaciation and extend our knowledge about the ecology of several dinoflagellate taxa in the Mediterranean Sea. Moreover, we discuss the distribution of Nematosphaeropsis labyrinthus and compare our data to those of previous studies in the same basin.

2 Material and environmental setting

The cores (MD04-2797, MD95-2043, MD99-2346) were collected during expeditions of the Marion-Dufresne (Fig. 1; Table 1). Samples were taken every 10 cm and at a higher resolution during the marine isotopic stage 1 of the MD99-2346 because of its lower sedimentation rate.

Fig. 1

Location of the studied cores (Table 1) in the western Mediterranean Sea.

Localisation des carottes étudiées (Tableau 1) en Méditerranée occidentale.

Table 1

Informations géographiques sur les carottes étudiées.

Location Core Water depth (m) Latitude Longitude
Sicilian-Tunisian Strait MD04-2797CQ 771 36°57′N 11°40′E
Alboran Sea MD95-2043 1841 36°09′N 02°37′W
Gulf of Lions MD99-2346 2090 42°05′N 04°15′E

The Mediterranean Sea is a semi-enclosed marginal basin, connected with the Atlantic Ocean through the strait of Gibraltar. It is subdivided into western and eastern sub-basins by the Sicilian-Tunisian Strait. Situated in the sub-tropical region, the Mediterranean Sea receives much solar radiation. An excess of evaporation over precipitation furthermore results in a strong salinity increase from west to east (Béthoux, 1979; Wüst, 1961). Net buoyancy loss maintains a two-layer flow regime through the strait of Gibraltar, consisting of Atlantic surface water inflow and Mediterranean subsurface water outflow (Béthoux et al., 1998).

Relatively dense water masses are formed and sink to a great depth in very specific regions of the Mediterranean Sea such as the Gulf of Lions where Western Mediterranean Deep Water (WMDW) is formed (Lacombe et al., 1985). The eastern Mediterranean Sea has two main convection cells, one in the Levantine Basin where Levantine Intermediate Water (LIW) forms and the other in the Adriatic Sea (sometimes switching to the Aegean Sea) where the Eastern Mediterranean Deep-Water (EMDW) forms. Deep-water overturning is controlled by regional evaporation but also by the local wind systems over these areas. In the western Mediterranean Sea (our study region), the flow of relatively dry and cold north winds in the Gulf of Lions (the Mistral from the north and the Tramontane from the west/northwest) intensifies water evaporation and promotes cooling but also adds kinetic momentum, which allows water to sink (Lacombe et al., 1985; Miller, 1983; Millot, 1990) and formed (WMDW). As a consequence, changes in the intensity of these overturning Mediterranean cells can provide a good diagnosis of the dominant climatic conditions in this region. These Mediterranean water masses are also relevant to the North Atlantic Ocean as they export the Mediterranean Outflow Water (MOW) that is fed by a mixture of modified LIW and WMDW.

3 Methods

3.1 Age model

The chronology of the three marine cores was established on the basis of AMS-14C dates on planktonic foraminifera (Tables 2–4). The conventional 14C ages have been calibrated in calendar years using the Calib 5.01 program (Stuiver et al., 1998) and the marine calibration dataset of Hughen et al. (2004). The precise spatial and temporal patterns of change in paleoreservoir age are not fully understood, and therefore we have applied a uniform reservoir correction of −400 years (Bard, 1988; Siani et al., 2001). The age models were determined from interpolation between the calibrated ages. In addition to radiocarbon ages, a stratigraphical correlation between the δ18O curves for G. bulloides of the core MD04-2797CQ and the dated core MD95-2043 (Cacho et al., 1999) was used to establish the age models of the MD04-2797CQ (Rouis-Zargouni et al., 2010). Data are presented here against a calibrated chronology. Mean uncertainty on ages is estimated to be about 500 years.

Table 2

Modèle d’âge de la carotte MD95-2043 (Mer d’Alboran), basé sur 17 âges radiocarbone calibrés selon Calib.5.01 (Cacho et al., 1999).

Depth (cm) Age 14C (BP) Error Sample Age (cal. BP)
14 1000 Extrapolation
54 1980 60 G. bulloides 1540 Calib 5.01
96 3216 37 G. bulloides 3030 Calib 5.01
178 4275 41 G. bulloides 4390 Calib 5.01
238 5652 42 G. bulloides 6060 Calib 5.01
298 6870 50 G. bulloides 7380 Calib 5.01
348 8530 47 N. pachyderma 9170 Calib 5.01
418 9200 60 G. bulloides 10,010 Calib 5.01
487 9970 50 N. pachyderma 10,940 Calib 5.01
512 10,560 60 N. pachyderma 11,800 Calib 5.01
588 10,750 60 N. pachyderma 12,170 Calib 5.01
595 11,590 60 N. pachyderma 13,090 Calib 5.01
682 11,880 80 N. pachyderma 13,330 Calib 5.01
708 12,790 90 G. bulloides 14,410 Calib 5.01
758 13,100 90 G. bulloides 14,970 Calib 5.01
802 14,350 110 N. pachyderma 16,620 Calib 5.01
858 15,440 90 N. pachyderma 18,330 Calib 5.01
18,260 120 N. pachyderma 21,090 Calib 5.01
Table 3

Modèle d’âge de la carotte MD04-2797 CQ (détroit entre Sicile et Tunisie) (Rouis-Zargouni et al., 2010), basé sur l’interpolation de six âges radiocarbone convertis en âges calendaires par utilisation de Calib. 5.01 et la corrélation entre δ18O (enregistré sur Globigerina bulloides dans la carotte MD04-2797 CQ) et δ18O enregistré dans la carotte datée MD95-2043 (Cacho et al., 1999).

Depth (cm) Age 14C (BP) Error Sample Age (Cal. BP)
0 1105 20 G. inflata 662 Calib 5.01
40 2508 MD95-2043
120 4770 MD95-2043
140 5990 MD95-2043
160 6764 MD95-2043
200 7465 30 Globigerinoïdes ruber 7929 Calib 5.01
330 8965 30 Globigerinoïdes ruber 9380 Calib 5.01
370 10,715 MD95-2043
470 12,605 40 G. inflata 14,058 Calib 5.01
490 15,498 MD95-2043
511 13,800 100 G. bulloides 15,909 Calib 5.01
560 17,080 MD95-2043
610 15,590 50 G. bulloides 18,617 Calib 5.01
700 21,660 MD95-2043
910 25,530 MD95-2043
960 27,180 MD95-2043
970 27,960 MD95-2043
1010 28,640 MD95-2043
1030 29,110 MD95-2043
Table 4

Modèle d’âge de la carotte MD99-2346 (Golfe du Lion), basé sur 11 âges radiocarbone calibrés selon Calib. 5.01.

Depth (cm) Age 14C (BP) Error Sample Age (Cal. BP)
0 0 Extrapolation
30 3535 30 G. bulloides 3418 Calib 5.01
46 4830 50 G. bulloides 5128 Calib 5.01
160 10,830 35 G. bulloides 12,329 Calib 5.01
280 12,370 35 G. bulloides 13,821 Calib 5.01
340 13,025 35 G. bulloides 14,888 Calib 5.01
370 13,295 45 G. bulloides 15,219 Calib 5.01
435 14,010 90 G. bulloides 16,191 Calib 5.01
579 16,330 110 G. bulloides 19,115 Calib 5.01
690 17,820 45 G. bulloides 20,553 Calib 5.01
748 18,400 130 G. bulloides 21,313 Calib 5.01
880 20,750 150 N. pachyderma sinistral 24,354 Calib 5.01

3.2 Dinoflagellate cysts analysis

Dinocyst analysis was performed on the fraction < 150 μm. The palynological processing followed the procedure described by de Vernal et al. (1996) and Rochon et al. (1999), slightly modified at the UMR-EPOC laboratory (www.epoc.u-bordeaux.fr/equipethematique_paleo/Outils). After chemical treatments (cold 10, 25 and 50% HCl, cold 40 then 70% HF shaken during 24 h), the samples were sieved through a single use 10 μm nylon mesh screens. Acetolysis was not used to avoid the destruction of polykrikacean and protoperidiniacean cysts (Marret, 1993; Turon, 1984). The final residue was mounted with glycerine jelly coloured with fuschin. Dinocysts were counted using a Zeiss Axioscope light microscope at 400 ×. An average of 100 to 300 dinoflagellate cysts were identified and counted from each sample. References for dinocyst identification are based on studies from Turon (1984) and de Vernal et al. (1992). The dinocyst taxonomy is generally in agreement with that cited in Fensome and MacRae (1998). Dinocyst concentrations were calculated using the marker grain method (de Vernal et al., 1996) based on aliquot number of Lycopodium spores.

C=N×L/I×V
where

C = Dinocyst concentration (number of dinocysts/cm3);

N = number of palynomorph counted;

L = number of Lycopodium spores added during the treatment of the sample;

V = volume of sample (cm3);

I = number of Lycopodium spores counted.

4 Results

4.1 Overview of the dinocyst data for the last deglaciation

Dinocyst analyses in the studied sections are based on the identification of over 30 taxa. During the last deglaciation, our assemblages are dominated by O. centrocarpum, N. labyrinthus, Spiniferites mirabilis and Impagidinium aculeatum (Figs. 2–4). Also, there are a presence, albeit in low percentages (< 10%), of Bitectatodinium tepikiense and Spiniferites elongatus. In accordance to the available literature, especially concerning the Mediterranean area, the species I. aculeatum and S. mirabilis are considered to represent a warm signal, while the cold assemblages includes the species B. tepikiense, S. elongatus and N. labyrinthus (e.g., Edwards and Andrle, 1992; Harland, 1983; Rochon et al., 1999; Taragona i Pujolà, 1997; Turon and Londeix, 1988; Zonneveld, 1996). O. centrocarpum is not included in our interpretation because it is a cosmopolitan species found in modern sediments in a broad range of environmental conditions (e.g. Marret and Zonneveld, 2003; Mudie, 1992; Rochon et al., 1999; Turon, 1984; Wall et al., 1977).

Fig. 2

Oxygen isotope (δ18O) obtained from Globigerina bulloides and relative abundance of main species of dinocysts (%) and their concentration in the core MD04-2797CQ (Sicilian-Tunisian Strait) during the last glacial-interglacial transition and the Early Holocene. Main thermophilous species of dinocysts are S. mirabilis and I. aculeatum. Grey bands indicate Heinrich events (H1) and the Younger Dryas event.

Valeurs d’oxygène isotopique (δ18O) obtenues à partir de Globigerina bulloides et abondance relative des principales espèces de dinokystes (%) et leur concentration dans la carotte MD04-2797 CQ (détroit entre Sicile et Tunisie), pendant la dernière transition glaciaire-interglaciaire et l’Holocène inférieur. Les principales espèces thermophiles de dinokystes sont Spiniferites mirabilis et Impagidinium aculeatum. Les bandes grises indiquent les évènements de Heinrich (H1) et celui du Dryas récent.

Fig. 3

Oxygen isotope (δ18O) obtained from Globigerina bulloides and relative abundance of main species of dinocysts (%) and their concentration in the core MD95-2043 (Alboran Sea) during the last glacial-interglacial transition and the Early Holocene. Main thermophilous species of dinocysts are S. mirabilis and I. aculeatum. Grey bands indicate Heinrich events (H1) and the Younger Dryas event.

Valeurs d’oxygène isotopique (δ18O) obtenues à partir de Globigerina bulloides et abondance relative des principales espèces de dinokystes (%) et leur concentration dans la carotte MD95-2043 (Mer d’Alboran) pendant la dernière transition glaciaire-interglaciaire et le Dryas récent. Les principales espèces thermophiles de dinokystes sont Spiniferites mirabilis et Impagidinium aculeatum. Les bandes grises indiquent les évènements de Heinrich et celui du Dryas récent.

Fig. 4

Oxygen isotope (δ18O) obtained from Globigerina bulloides and relative abundance of main species of dinocysts (%) and their concentration in the core MD99-2346 (Gulf of Lions) during the last glacial-interglacial transition and the Early Holocene. Main thermophilous species of dinocysts are S. mirabilis and I. aculeatum. Grey bands indicate Heinrich events (H1) and the Younger Dryas event.

Valeurs d’oxygène isotopique (δ18O) obtenues à partir de Globigerina bulloides et abondance relative des principales espèces de dinokystes (%) et leur concentration dans la carotte MD99-2346 (Golfe du Lion) pendant la dernière transition glaciaire-interglaciaire et l’Holocène inférieur. Les principales espèces thermophiles de dinokystes sont Spiniferites mirabilis et Impagidinium aculeatum. Les bandes grises indiquent les évènements de Heinrich (H1) et celui du Dryas récent.

4.1.1 Thermophilous species

S. mirabilis prefers sea-surface temperature between 10 and 15 °C during winter and 15 to 22 °C during summer (Rochon et al., 1999). Morzadek-Kerfourn (1998) demonstrated its southward tropical extension (as far as 10°N). The dominance of this thermophilous species (Harland, 1983; Marret and Turon, 1994; Rochon et al., 1999; Turon, 1981b, 1984) allows us to define warm periods. In our records (3 cores), we have identified a significant increase (20–40%) of this taxa during the Bölling/Alleröd interval and at the beginning of the Holocene.

In addition to S. mirabilis, the subtropical species I. aculeatum occurred also during these warm intervals. The maximum frequencies of this latest species and most Impagidinium species (except I. pallidum) are in tropical to warm temperate waters between 20 and 35°N (Harland, 1983). I. aculeatum, which is typical of subtropical domains (Turon, 1984), marks also warm episodes as well as the Bölling/Alleröd and the Early Holocene. In this study, I. aculeatum does not reach 10% during the Bölling/Alleröd but increases to 30% at the beginning of the Holocene.

4.1.2 Cryophilous species

N. labyrinthus is a typical oceanic species. It has been positively correlated with open cold water masses and high (winter) nutrient availability (Devillers and de Vernal, 2000; Harland, 1983; Turon and Londeix, 1988). Its main published distribution, so far, is between 45 and 65°N in the North Atlantic Ocean (de Vernal et al., 2005; Matthiessen, 1995; Rochon et al., 1999), especially on the southwestern Iceland margin where the Irminger Current dominates (Marret et al., 2004). In our records (Figs. 2–4), we have identified a significant increase of the percentage of this species during the Younger Dryas interval (35–70%). It is clear that this taxa tends to mark the transition between glacial and interglacial conditions. This finding confirms the suggestion of Turon (1984) and Eynaud et al. (2004), concerning the transitional character of N. labyrinthus during events of severe hydrological changes.

B. tepikiense is mainly distributed from temperate to sub-Arctic environments of the North Atlantic (55 and 65°N), with maximum representation south of the Gulf of St. Lawrence (de Vernal et al., 2001; Rochon et al., 1999). This species appears to tolerate large seasonal variations in temperature, with cold winters (as cold as 1 °C) and mean summer temperatures over 15 °C (de Vernal et al., 2005). In our records, B. tepikiense is scarce or in very low percentages as well as S. elongatus. This latest species occurs frequently in sediments of Baffin Bay and of the Barents Sea and occurs in significant numbers in the central North Atlantic between 50 and 60°N (Rochon et al., 1999). In this study, the percentages of these two species do not reach 10% and they are nearly absent during the Early Holocene. The lower percentages of B. tepikiense and S. elongatus obtained at the end of Heinrich Event 1 and especially during the Younger Dryas in all our records are probably linked to the coeval presence of N. labyrinthus.

4.2 Dinocyst concentration

Dinocysts are abundant throughout all the studied cores (Figs. 2–4), with cell concentrations varying between 1000 and 10,000 cysts/cm3. In this study, we have identified a major peak of dinocyst concentrations (8000–10,000 cysts/cm3) during the Younger Dryas. Also, the optimal development of N. labyrinthus during the Younger Dryas coincides with the maximum dinocyst concentration in all studied sites (Rouis-Zargouni, 2010). The occurrence of this species in high percentage is currently associated to cold water masses with high nutrients availability (Devillers and de Vernal, 2000; Turon and Londeix, 1988). These observations suggest an increase of nutrients availability in the western Mediterranean Sea as well as in the Iberian margin (Eynaud, 1999) during this cold event.

5 Discussion

As well as in the North Atlantic region, the last deglaciation in the Mediterranean Sea is also punctuated by abrupt climate changes and we distinguished warm and cold intervals:

5.1 The warm intervals of the last deglaciation

The beginning of the Bölling/Alleröd, dated at about 14.8 ka cal. BP (Rasmussen et al., 2006; Wolff et al., 2010), is marked by the development of the warm water species I. aculeatum (10%) and especially S. mirabilis (15–20%) in the western Mediterranean Sea. The proliferation of these species correspond to the sudden warming of the sea-surface temperatures which increased from 9 °C during the last glacial period to 16 °C during the Bölling/Alleröd (Essallemi et al., 2007; Kallel et al., 1997a; Melki et al., 2009; Rouis-Zargouni et al., 2010; Sbaffi et al., 2004). So, it is rather surprising to find B. tepikiense, characteristic of the coldest phases of the last glacial period (Turon and Londeix, 1988; Turon et al., 2003), in the Adriatic Sea during the Bölling/Alleröd (Combourieu-Nebout et al., 1998). The high seasonal thermal contrast of this species allows us to suggest an increase run-off of cold fresh water from the Pô river. This situation was due to the increase of precipitation and atmospheric temperature which induced snow melting in the Borderland Mountains (Combourieu-Nebout et al., 1998).

In addition, the pollen records show a contraction of Artemisia-rich steppe areas and well-developed forest vegetation during the Bölling/Alleröd in the Alboran sea (Fig. 5: Fletcher and Sanchez-Goni, 2008; Fletcher et al., 2009), in the Adriatic sea (Combourieu-Nebout et al., 1998; Guinta et al., 2003) and in the Iberian margins hinterland (Fletcher et al., 2007). These observations confirm that the Bölling/Alleröd is warm and wet in the Mediterranean Sea.

Fig. 5

Relative abundance (%) of N. labyrinthus and thermophilous species of dinocysts (S. mirabilis and I. aculeatum) in addition to the percentages of pollen records (from Fletcher et al., 2009) and their concentrations in the core MD95-2043 (Alboran Sea) during the last glacial-interglacial transition and the Early Holocene. Grey bands indicate Heinrich events (H1) and the Younger Dryas event.

Abondance relative (%) de Nematosphaeropsis labyrinthus et des espèces de dinocystes (Spiniferites mirabilis et Impagidinium aculeatum) ajoutée aux pourcentages d’enregistrements de pollen (d’après Fletcher et al., 2009) et leurs concentrations dans la carotte MD95-2043 (Mer d’Alboran) pendant la dernière transition glaciaire-interglaciaire et l’Holocène inférieur. Les bandes grises indiquent les évènements de Heinrich (H1) et celui du Dryas récent.

At about 12.8 ka cal. BP, the warm dinocysts taxa decrease considerably and after a millennium reappear at the beginning of the Holocene (11.7 ka cal. BP). These maximum values ever obtained for S. mirabilis during the last deglaciation of the Mediterranean Sea enable us to locate the warmest period as the Holocene and the Bölling/Alleröd. Also, in the Bay of Biscay, the beginning of the Holocene has been clearly identified with elevated percentages of S. mirabilis (Zaragosi et al., 2001). In temperate domains of the Atlantic (Iberian Margin, Sanchez-Goni et al., 1999; Rockall Margin, Eynaud, 1999) as well as further north in the South Icelandic Basin (Eynaud et al., 2004), the warmest substage of MIS 5 was characterised by a significant increase of S. mirabilis. The same observation was made during MIS 7 and MIS 5 in the Bay of Biscay (Penaud et al., 2008).

5.2 The cold interval of the last deglaciation

The cold events of the last deglaciation are marked by the development of N. labyrinthus and the subpolar species B. tepikiense and S. elongatus especially at the end of Heinrich Event 1 (H1). These latest species with Neogloboquadrina pachyderma (left coiling) are characteristic of the Heinrich events in the Mediterranean Sea (Rouis-Zargouni, 2010; Rouis-Zargouni et al., 2010) and in the Iberian Margin (Turon et al., 2003). So, they are scarce or absent during the Younger Dryas in the western Mediterranean Sea. In contrast, N. labyrinthus shows its optimum during this brief cold event. In addition, pollen records show a development of the Artemisia-rich steppe in the Adriatic Sea (Combourieu-Nebout et al., 1998; Guinta et al., 2003), Alboran Sea (Combourieu-Nebout et al., 1999, 2002; Fletcher and Sanchez-Goni, 2008) and Iberian margin (Sanchez-Goni et al., 2002; Turon et al., 2003) areas during the Younger Dryas and the Heinrich events. These simultaneous responses of the vegetation and our microfloral records confirm that at about 12.8 ka cal. BP, a return to dry and cold climate is recorded in the Mediterranean Sea and along the neighbouring borderlands of this sea as well as during the Heinrich events. So, we observe a persistence of the pollen of temperate Mediterranean forest (TMF: namely Acer, Alnus, Betula, Corylus, Fraxinus excelsior type, Populus, Taxus, Ulmus, Quercus deciduous type, Quercus evergreen type, Quercus suber type, Cistus, Coriaria myrtifolia, Olea, Phillyrea and Pistacia) with a lower increase of the Artemisia-rich steppe during the Younger Dryas than during the Heinrich events (Fig. 5). These observations suggest that the Younger Dryas is less dry and cold than the Heinrich events. Also, the sea-surface temperatures (based on planktonic foraminifera) of this period, which are about 10 °C, in the Tyrrhenian sea (Kallel et al., 1997b; Sbaffi et al., 2004), in the Gulf of Lions (Melki et al., 2009), in the Alboran sea (Cacho et al., 1999) and in the Sicilian-Tunisian Strait (Essallemi et al., 2007; Rouis-Zargouni et al., 2010) are higher than those recorded during the Heinrich events (about 1 to 2 °C).

5.3 Ecological information provided by Nematosphaeropsis labyrinthus

In modern western Mediterranean sediments, the percentage of N. labyrinthus does not reach 20% (Mangin, 2002). So, during the Younger Dryas, the percentages of this taxa increase considerably in all studied domains (Figs. 2–4). During this cold event, its distribution shows a gradual increase from the south to the north of the Mediterranean Sea. In fact, N. labyrinthus constitutes 40% of the dinocyst assemblage in the Sicilian-Tunisian Strait, 50% in Alboran Sea but the highest percentage (90%) occurred in the Gulf of Lions. Also, Eynaud (1999) has shown an important development of this species in the Iberian margin but the percentages remains less significant than those recorded in the western Mediterranean Sea. So, the highest percentage of this taxa in the Gulf of Lions appears related to the coldest condition in this site in comparison to the other regions of the Mediterranean. The Gulf of Lions is dominated by strong continental winds (the Mistral and the Tramontane), which generate up-wellings (Millot, 1982) and down-wellings (Millot, 1990) leading to the formation of the WMDW. The dry and cold climate of the Younger Dryas could cause an intensification of the thermohaline circulation and the acceleration of the subsurface MOW. This hypothesis is confirmed by the presence of ‘coarse-grained contourites’ in the gulf of Cadix (west of Gibraltar strait) during this cold event (Toucane et al., 2007). This situation facilitates the vertical mixing of the water column and cause increased advection of nutrients into the euphotic layer where they can be used for phytoplankton production.

In addition, the optimum occurrence of N. labyrinthus during the Younger Dryas is contemporaneous to the maximum concentration of dinocysts in the western Mediterranean Sea. Also, this species has been positively correlated with open cold water masses and high (winter) nutrient availability (Devillers and de Vernal, 2000; Harland, 1983; Turon and Londeix, 1988). These observations lead us to conclude that the highest abundance of N. labyrinthus in association with the maximum concentration of dinocysts represents an important signal of nutrients availability.

In the Atlantic Ocean and, particularly, on the northern part of the Mediterranean Sea, in the Bay of Biscay, N. labyrinthus occurs in this region during the Bölling/Alleröd. However, a development of Pentapharsodinium dalei is recorded during the Younger Dryas in the same site (Eynaud, 1999). In the West of Scotland, this same cold event is characterised by the presence of Islandinium minutum (Boessenkool, 2001). This species, absent also in the Bay of Biscay, is correlated to the development of seasonal sea ice cover. These observations reflect more drastic conditions during the Younger Dryas in the Atlantic Ocean than in the Mediterranean Sea. In conclusion, the Mediterranean and Iberian margins microfloral associations during the Younger Dryas are equivalent to those of the Bölling/Alleröd in the Bay of Biscay. In addition, N. labyrinthus has characterised the transition between the marine isotopic substages7e/7d in the North of the Bay of Biscay (Penaud et al., 2008). Also, Turon (1984) and Eynaud et al. (2004) have suggested the transitional character of this species during the events of severe hydrologic changes. Therefore, it appears obvious that N. labyrinthus may be considered as a significant ecostratigraphic proxy for periods of severe climatic changes, but its necessary to document the past distribution of this species carefully in relation with the geographic studied field.

6 Conclusion

Dinocyst records confirm the existence of climatic instability during the last glacial-interglacial transition in the western Mediterranean Sea. The development of the warm dinocyst species during the Bölling/Alleröd and the Early Holocene reflects a comparable warming condition during these two periods. The cooling of the Younger Dryas interrupts abruptly this climatic amelioration and leads to the proliferation of the dinocyst N. labyrinthus.

The highest abundance of N. labyrinthus in association with the maximum concentration of dinocysts could represent an important signal of nutrients availability during the Younger Dryas in the western Mediterranean. Also, the maximum occurrence of this species during this brief cold event may be a useful ecostratigraphic proxy for recognising the events of severe hydrologic changes as the Younger Dryas in the western Mediterranean Sea and in the Iberian margin. However, this propriety must be used in the Atlantic Ocean with caution because of the ecological changes due to environmental variations of the study areas.

The dry and cold climate in the Mediterranean Sea during the Younger Dryas (Beaudouin et al., 2005; Combourieu-Nebout et al., 1999; Triat-Laval, 1978) generates the vertical convection of the water column and leads to the intensification of the formation of WMDW, in the Gulf of Lions. This condition intensifies the thermohaline circulation and the exchange of water masses between the Mediterranean and the Atlantic. This hypothesis must be further developed by the study of benthic foraminifera and ostracods, which reflect the physical and chemical proprieties of the deep circulation.

Acknowledgments

The authors thank the Institut National des Sciences de l’Univers (INSU) of the Centre National de la Recherche Scientifique (CNRS), the RV Marion-Dufresne officers and crew, the IMAGES program and the Institut Paul-Emile-Victor (IPEV) for support and organisation of the coring cruises (GINNA, GEOSCIENCES, PRIVILEGE). We would finally like to thank B. Lecoat for isotope analyses and ARTEMIS for the radiocarbon age measurements and M.H. Castera (UMR-EPOC5805) for his technical assistance.


Bibliographie

[Bard et al., 1987] E. Bard; M. Arnold; P. Maurice; J. Duprat; J. Moyes; J.C. Duplessy Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14 C accelerator mass spectrometry, Nature, Volume 328 (1987), pp. 791-794

[Bard, 1988] E. Bard Correction of accelerator mass spectrometry 14 C ages measured in planktonic foraminifera., paleoceanographic implications, Paleoceanography, Volume 3 (1988), pp. 635-645

[Beaudouin et al., 2005] C. Beaudouin; J.P. Suc; N. Acherki; L. Courtois; M. Rabineau; J.C. Aloïsi; F.J. Sierro; C. Oberlin Palynology of the northwestern Mediterranean (Gulf of Lions): first vegetational record for the last climatic cycle, Marine and Petroleum Geology, Volume 22 (2005) no. 6-7, pp. 845-863

[Beaudouin et al., 2007] C. Beaudouin; G. Jouet; J.P. Suc; S. Berné; G. Escarguel Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology, Quaternary Sci. Rev., Volume 26 (2007) no. 7-8, pp. 1037-1054

[Béthoux, 1979] J.P. Béthoux Budgets of the Mediterranean Sea. Their dependence on the local climate and on the characteristics of the Atlantic waters, Oceanologica Acta, Volume 2 (1979), pp. 157-163

[Béthoux et al., 1998] Béthoux; J.P. Moran; P. Chaumery; C. Connan; O. Gentili; B. Ruiz-Pino. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentration with respect to environmental change, Marine Chem., Volume 63 (1998), pp. 155-169

[Björck et al., 1996] S. Björck; B. Kromer; S. Johnsen; O. Bennike; D. Hammarlund; G. Lemdahl; G. Possnert; T.L. Rasmussen; B. Wohlfarth; C.U. Hammer; M. Spurk Synchronized terrestrial-atmospheric deglacial records around the North Atlantic, Science, Volume 274 (1996), pp. 1155-1160

[Boessenkool, 2001] K.P. Boessenkool Century-to-millennium-scale records of climate variability, paleoproductivity and surface circulation offshore northwest Scotland during the last deglaciation (Eds.). Environmental changes in the North Atlantic region during the last deglaciation, LPP Contributions Series, Volume 15 (2001), pp. 51-70

[Broecker, 2006] W.S. Broecker Was the Younger Dryas triggered by a flood?, Science, Volume 312 (2006), pp. 1146-1148

[Cacho et al., 1999] I. Cacho; J.O. Grimalt; C. Pelejero; M. Canals; F.J. Sierro; J.A. Flores; N. Shackleton Dansgaard-Oeschger and Heinrich imprints in Alboran Sea paleotemperatures, Paleoceanography, Volume 14 (1999), pp. 698-705

[Combourieu-Nebout et al., 1998] N. Combourieu-Nebout; M. Paterne; J.L. Turon; G. Siani A high-resolution record of the last deglaciation in the central Mediterranean Sea: paleovegetation and paleohydrological evolution, Quaternary Sci. Rev., Volume 17 (1998), pp. 303-317

[Combourieu-Nebout et al., 1999] N. Combourieu-Nebout; L. Londeix; F. Baudin; J.L. Turon; R. von Grafenstein; R. Zahn Quaternary marine and continental paleoenvironments in the western Mediterranean (site 976, Alboran Sea): palynological evidence. Proceedings of the Ocean Drilling Program, Sci. Results, Volume 161 (1999), pp. 457-546

[Combourieu-Nebout et al., 2002] N. Combourieu-Nebout; J.-L. Turon; R. Zahn; L. Capotondi; L. Londeix; K. Pahnke Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 ky, Geology, Volume 30 (2002), pp. 863-866

[Dansgaard et al., 1993] W. Dansgaard; S.J. Johnsen; H.B. Clausen; D. Dahl-Jensen; N.S. Gundestrup; C.U. Hammer; C.S. Hvidberg; J.P. Steffensen; A.E. Sveinbjörnsdottir; J. Jouzel; G. Bond Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, Volume 364 (1993), pp. 218-220

[de Vernal and Hillaire-Marcel, 1996] A. de Vernal; C. Hillaire-Marcel Reduced meltwater outflow from the Laurentide ice margin during the Younger Dryas, Nature, Volume 381 (1996), pp. 774-777

[de Vernal and Hillaire-Marcel, 2006] A. de Vernal; C. Hillaire-Marcel Provincialism in trends and high frequency changes in the Northwest North Atlantic during the Holocene, Global Planet. Change, Volume 54 (2006), pp. 263-290

[de Vernal et al., 1996] A. de Vernal; M. Henry; G. Bilodeau Techniques de préparation et d’analyse en micropaléontologie, Les cahiers du GEOTOP, Volume 3 (1996), pp. 1-29

[de Vernal et al., 1992] A. de Vernal; L. Londeix; P.J. Mudie; R. Harland; M.T. Morzadek-Kerfourn; J.L. Turon; J.H. Wrenn Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy (M.J. Head; J.H. Wrenn, eds.), Neogene and Quaternary dinoflagellate cyst of the North Atlantic Ocean and adjacent seas: ecostratigraphy and biostratigraphy, AASP Foundation, 1992, pp. 289-328

[de Vernal et al., 1994] A. de Vernal; J.L. Turon; J. Guiot Dinoflagellate cyst distribution in high latitude environments and quantitative reconstitution of sea-surface temperature, salinity and seasonality, Can. J. Earth Sci., Volume 31 (1994), pp. 48-62

[de Vernal et al., 2001] A. de Vernal; M. Henry; J. Matthiessen; P.J. Mudie; A. Rochon; K. Boessenkool; F. Eynaud; K. Grosfjeld; J. Guiot; D. Hamel; R. Harland; M.J. Head; M. Kunz-Pirrung; E. Levac; V. Loucheur; O. Peyron; V. Pospelova; T. Radi; J.-L. Turon; E. Voronina Dinocyst assemblages as tracer of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the n = 677 database and derived transfer functions, J. Quaternary Sci., Volume 16 (2001), pp. 681-698

[de Vernal et al., 2005] A. de Vernal; F. Eynaud; M. Henry; C. Hillaire-Marcel; L. Londeix; S. Mangin; J. Matthiessen; F. Marret; T. Radi; A. Rochon; S. Solignac; J.L. Turon Reconstitution of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages, Quaternary Sci. Rev., Volume 24 (2005), pp. 897-924

[Devillers and de Vernal, 2000] R. Devillers; A. de Vernal Distribution of dinocysts in surface sediments of the northern North Atlantic in relation with nutrients and productivity in surface waters, Marine Geol., Volume 166 (2000), pp. 103-124

[Edwards and Andrle, 1992] L.E. Edwards; V.A.S. Andrle Distribution of selected dinoflagellate cysts in modern marine sediments (M.J. Head; J.H. Wrenn, eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs, American Association of Stratigraphic Palynologists Foundation, Dallas, TX, 1992, pp. 259-288

[Essallemi et al., 2007] L. Essallemi; M.-A. Sicre; N. Kallel; L. Labeyrie; G. Siani Hydrological changes in the Mediterranean Sea over the last 30,000 years. Geochemistry, Geophysics, Geosystems, Volume 8 (2007), p. 7 | DOI

[Eynaud, 1999] Eynaud, F., 1999. Kystes de dinoflagellés et évolution paléoclimatique et paléohydrologique de l’Atlantique Nord au cours du Dernier Cycle climatique du Quaternaire. Thèse, l’université Bordeaux 1.

[Eynaud et al., 2004] F. Eynaud; J.L. Turon; J. Duprat Comparison of the Holocene and Eemian palaeoenvironments in the South- Icelandic basin: dinoflagellate cysts as proxies for the North Atlantic surface circulation, Rev. Paleobotany Palynology, Volume 128 (2004), pp. 55-79

[Fensome and MacRae, 1998] Fensome, R.A., MacRae, R.A., 1998. DINOFLAJ. Geoloigal Survey of Canada Open File 3653.

[Fletcher and Sanchez-Goni, 2008] W.J. Fletcher; M.F. Sanchez-Goni Orbital and sub-orbital scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr, Quaternary Res., Volume 70 (2008), pp. 451-464

[Fletcher et al., 2007] W. Fletcher; T. Boski; D. Mourra Palynological evidence for environmental and climatic change in the lower Guadiana valley (Portugal) during the last 13 000 years, The Holocene, Volume 17 (2007), pp. 479-492

[Fletcher et al., 2009] W.J. Fletcher; M.F. Sanchez-Goni; O. Peyron; I. Dormoy Abrupt climate changes of the last deglaciation detected in a western Mediterranean forest record, Climate. Past Discuss., Volume 5 (2009), pp. 203-235

[Guinta et al., 2003] S. Guinta; A. Negri; C. Morigi; L. Capotondi; N. Combourieu-Nebout; K.C. Emeis; F. Sangiorgi; L. Vigliotti Coccolithophorid ecostratigraphy and multi-proxy paleoceanographic reconstitution in the Southern Adriatic Sea during the last deglacial time (Core Ad91-17), Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 190 (2003), pp. 39-59

[Harland, 1983] R. Harland Distribution maps of recent dinoflagellate cysts in bottom sediments from the North Atlantic Ocean and adjacent seas, Palaeontology, Volume 26 (1983), pp. 321-387

[Harland and Howe, 1995] R. Harland; J.A. Howe Dinoflagellate cysts and Holocene oceanography of the northeastern Atlantic ocean, The Holocene, Volume 5 (1995), pp. 220-228

[Hughen et al., 2004] K.A. Hughen; M.G.L. Baillie; E. Bard; A. Bayliss; J.W. Beck; C. Bertrand; P.G. Blackwell; C.E. Buck; G. Burr; K.B. Cutler; P.F. Damon; R.L. Edwards; R.G. Fairbanks; M. Friedrich; M. Guilderson; T.P. Kromer; B. McCormac; F.G. Manning; S. Bronk Ramsey; C. Reimer; P.J. Reimer; R.W. Remmele; S. Southon; J.R. Stuiver; M. Talamo; S. Taylor; F.W. van der Plicht; J.C.E. Weyhenmeyer Marine 04 Marine Radiocarbon Age Calibration, 0-26 Cal kyr BP, Radiocarbon, Volume 46 (2004), pp. 1059-1086

[Kallel et al., 1997a] N. Kallel; M. Paterne; J.C. Duplessy; C. Vergnaud-Grazzini; C. Pujol; L. Labeyrie; M. Arnold; M. Fontugne; C. Pierre Enhanced rainfall in the Mediterranean region during the last sapropel event, Oceanologica Acta, Volume 20 (1997), pp. 697-712

[Kallel et al., 1997b] N. Kallel; M. Paterne; L. Labeyrie; J.C. Duplessy; M. Arnold Temperature and salinity records of the last 18 000 years, Palaeogeogr. Paleoclimatol., Paleoecol., Volume 135 (1997), pp. 97-108

[Keigwin and Jones, 1995] L.D. Keigwin; G. Jones The marine record of deglaciation from the continental margin off Nova Scotia, Paleoceanography, Volume 10 (1995), pp. 973-985

[Lacombe et al., 1985] H. Lacombe; P. Tchernia; L. Gamberoni Variable bottom water in the Western Mediterranean Basin, Prog. Oceanography, Volume 14 (1985), pp. 319-338

[Lehman and Keigwin, 1992] S.J. Lehman; L.D. Keigwin Sudden changes in North Atlantic circulation during the last deglaciation, Nature, Volume 356 (1992), pp. 757-762

[Lionello et al., 1996] P. Lionello; P. Malanotte-Rizzoli; R. Boscolo; P. Alpert; V. Artale; L. Li; J. Luterbacher; W. May; R. Trigo; M. Tsimplis; U. Ulbric; E. Xoplaki The Mediterranean climate: an overview of the main characteristics and issues (P. Lionello; P. Malanotte-Rizzoli; R. Boscolo, eds.), Mediterranean climate variability, developments in earth and environmental sciences, 4, Elsevier, Amsterdam, 1996, pp. 1-26

[Lowell et al., 2005] T. Lowell; N. Waterson; T. Fisher; H. Loope; K. Glover; G. Comer; I. Hajdas; G. Denton; V. Schaefer; V. Rinterknecht; W. Broecker; J. Teller Testing the Lake Agassiz meltwater trigger for the Younger Dryas, EOS, Volume 86 (2005), pp. 365-372

[Mangin, 2002] Mangin, S., 2002. Distribution actuelle des kystes de dinoflagellés en Méditerranée occidentale et application aux fonctions de transfert. M.Sc. Thèse, Université Bordeaux 1, Talence.

[Marret, 1993] F. Marret Les effets de l’acétolyse sur les assemblages de dinoflagellés, Palynosciences, Volume 2 (1993), pp. 267-272

[Marret and Turon, 1994] F. Marret; J.L. Turon Paleohydrology and paleoclimatology of Northwest Africa during the last glacial-interglacial transition and the Holocene: Palynological evidences, Marine Geol., Volume 118 (1994), pp. 107-117

[Marret and Zonneveld, 2003] F. Marret; K.A.F. Zonneveld Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobotany Palynology, Volume 125 (2003), pp. 1-200

[Marret et al., 2004] F. Marret; J. Eriksson; K.L. Knudsen; J.L. Turon; J.D. Scourse Distribution of dinoflagellate cyst assemblages in surface sediments from the northern and western shelf of Iceland, Rev. Palaeobotany Palynology, Volume 128 (2004), pp. 35-53

[Matthiessen, 1995] J. Matthiessen Distribution patterns of dinoflagellate cysts and other organic-walled microfossils in recent Norwegian-Greenland Sea sediments, Marine Micropaleontology, Volume 24 (1995), pp. 307-334

[Melki et al., 2009] T. Melki; N. Kallel; F.J. Jorrissen; F. Guichard; B. Dennielou; S. Berné; L. Labeyrie; M. Fontugne Abrupt climate change, sea-surface salinity and paleoproductivity in the Western Mediterranean (Gulf of Lions) during the last 28 kyr, Palaeogeogr. Palaeoclimatol. Palaeocol., Volume 279 (2009), pp. 96-113

[Miller, 1983] Miller, A.R., 1983. The Mediterranean Sea. Ecosystems of the world, 26. Estuaries and enclosed seas. Ketchum, B. H., pp. 219–251.

[Millot, 1982] Millot, C., 1982. Analysis of upwelling in the Gulf of Lions. In: Niboul (Eds.), Hydrodynamics of semi-enclosed seas.

[Millot, 1990] C. Millot The Gulf of Lion's hydrodynamics, Continental shelf research, Volume 10 (1990) no. 9-11, pp. 885-894

[Morzadek-Kerfourn, 1998] M.T. Morzadek-Kerfourn Estuarine dinoflagellate cysts among oceanic assemblages of Pleistocene Deep-sea sediments from the west African margin and their paleenvironmental significance (M.J. Head; J.H. Wrenn, eds.), Neogene and Quaternary dinoflagellate cyst of the north Atlantic Ocean and adjacent seas: Ecostratigraphy and biostratigraphy, AASP Foundation, 1998, pp. 133-146

[Mudie, 1992] P.J. Mudie Circum-Arctic Quaternary and Neogene marine palynofloras: paleoecology and statistical analysis (M.J. Head; J.H. Wrenn, eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs, American Association of Stratigraphic Palynologists Foundation, Dallas, TX, 1992, pp. 347-390

[Murton et al., 2010] J.B. Murton; M.D. Bateman; S.R. Dallimore; J.T. Teller; Z. Yang Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean, Nature, Volume 464 (2010), pp. 740-743

[NGRIP members, 2004] NGRIP members High-resolution record of northern hemisphere climate extending into the last interglacial period, Nature, Volume 431 (2004), pp. 147-151

[Penaud et al., 2008] A. Penaud; F. Eynaud; J.L. Turon; S. Zaragosi; F. Marret; J.F. Bourillet Interglacial variability (MIS 5 and MIS 7) and dinoflagellate cyst assemblages in the Bay of Biscay (North Atlantic), Marine Micropaleontol., Volume 68 (2008), pp. 136-155

[Rasmussen et al., 2006] S.O. Rasmussen; K.K. Anderson; A.M. Svensson; J.P. Steffensen; B.M. Vinther; H.B. Clausen; M.L. Stiggaard-Andersen; S.H. Johnsen; L.B. Larsen; D. Dahl-Jensen; M. Bigler; R. Rothlisberger; H. Fisher; K. Goto-Azuma; M.E. Hansson; U. Ruth A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., Volume 111 (2006) no. D6 (D061202)

[Rochon et al., 1998] A. Rochon; A. de Vernal; H.P. Sejrup; H. Haflidason Palynological evidence of climatic and oceanographic changes in the North Sea during the Last Deglaciation, Quaternary Res., Volume 49 (1998), pp. 197-207

[Rochon et al., 1999] A. Rochon; A. de Vernal; J.-L. Turon; J. Matthiessen; M.J. Head Distribution of dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-syrface parameters. American Association of Stratigraphic Palynologists, Contribution Series, Volume 35 (1999), p. 152

[Rouis-Zargouni, 2010] Rouis-Zargouni, I. 2010. Évolution paléoclimatique et paléohydrologique de la Méditerranée occidentale au cours des derniers 30 000 ans : contribution des dinokystes et des foraminifères planctoniques. Thèse en co-tutelle université de Sfax/université Bordeaux 1.

[Rouis-Zargouni et al., 2010] I. Rouis-Zargouni; J.L. Turon; L. Londeix; L. Essallami; N. Kallel; M.A. Sicre Environmental and climatic changes in the central Mediterranean Sea (Siculo-Tunisian strait) during the last 30 ka based on dinoflagellate cyst and planktonic foraminifera assemblages, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 285 (2010), pp. 17-29

[Sanchez-Goni et al., 1999] M.F. Sanchez-Goni; F. Eynaud; J.L. Turon; N.J. Shackleton High-resolution palynological record off the Iberian margin: direct land-sea correlation for the Last Interglacial complex, Earth Planet. Sci. Lett., Volume 171 (1999), pp. 123-137

[Sanchez-Goni et al., 2002] M.F. Sanchez-Goni; I. Cacho; J.L. Turon; J. Guiot; F.J. Sierro; J.P. Peypouquet; J.O. Grimalt; N.J. Shackleton Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region, Climate Dynamics, Volume 19 (2002), pp. 95-105

[Sangiorgi et al., 2002] F. Sangiorgi; L. Capotondi; H. Brinkhuis A centennial scale organic-walled dinoflagellate cyst record of the last deglaciation in the South Adriatic Sea (Central Mediterranean), Palaeogeogr. Palaeoclimatol., Palaeoecol., Volume 186 (2002), pp. 199-216

[Sbaffi et al., 2004] L. Sbaffi; F.C. Wezel; G. Curzi; U. Zoppi Millennial-to centennial-scale palaeoclimatic variations during Termination I and the Holocene in the central Mediterranean Sea, Global Planet. Change, Volume 40 (2004), pp. 201-217

[Siani et al., 2001] G. Siani; M. Paterne; E. Michel; R. Sulpizio; A. Sbrana; M. Arnold; G. Haddad Mediterranean sea-surface radiocarbon reservoir age changes since the Last Glacial Maximum, Science, Volume 294 (2001), pp. 1917-1920

[Stuiver et al., 1998] M. Stuiver; P.J. Reimer; E. Bard; W. Beck; G.S. Burr; K.A. Hughen; B. Kromer; F.G. McCormac; J. van der Plicht; M. Spurk INTCAL98 radiocarbon age calibration, 24,000 cal BP, Radiocarbon, Volume 40 (1998), pp. 1041-1083

[Taragona i Pujolà, 1997] Taragona i Pujolà, J., 1997. Climatic and Oceanographic Evolution of the Mediterranean Region over the Last glacial-interglacial transition; A palynological Approach. Ph.D. Thesis, LPP Contr. Series 7, Utrecht University, 1–155.

[Teller et al., 2002] J.T. Teller.; D.W. Leverington; J.D. Mann Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, Quaternary Sci. Rev., Volume 21 (2002), pp. 879-887

[Toucane et al., 2007] S. Toucane; T. Mulder; J. Schönfeld; V. Hanquiez; J. Gonthier Duprat; M. Cremer; S. Zaragosi Contourites of the Gulf of Cadiz. A high-resolution record of the paleocirculation of the Mediterranean outflow water during the last 50 000 years, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 246 (2007), pp. 354-366

[Triat-Laval, 1978] Triat-Laval, H., 1978. Contribution pollen analytique à l’histoire tardive et post-glaciaire de la végétation de la Basse Vallée du Rhône: Thèse d’État, Université Marseille, 308 p.

[Turon, 1978] J.L. Turon Les dinoflagellés témoins des paléoenvironnements durant l’Holocène dans l’Atlantique Nord oriental. Signification paléohydrologique et paléoclimatique, C. R. Acad. Sci. Paris, Volume 286 (1978), pp. 1861-1864

[Turon, 1981a] Turon, J.L., 1981. Le palynoplancton dans l’environnement actuel de l’Atlantique nord-oriental. Évolution climatique et hydrologique depuis le Dernier Maximum Glaciaire. Thèse d’État, Bordeaux 1, 313 p.

[Turon, 1981b] J.L. Turon Les kystes de dinoflagellés dans les sédiments récents de l’Atlantique nord-oriental et leurs relations avec l’environnement océanique. Application aux dépôts Holocène du chenal de Reckall, Mem. Museum National Histoire, Volume 27 (1981), pp. 269-282

[Turon, 1984] Turon, J.L., 1984. Le phytoplankton dans l’environnement actuel de l’Atlantique nord-oriental. Évolution climatique et hydrologique depuis le Dernier Maximum Glaciaire. Mem. Institut Geol. Bassin d’Aquitaine, 17.

[Turon and Londeix, 1988] J.L. Turon; L. Londeix Les assemblages de kystes de dinoflagellés en Méditerranée occidentale (Mer d’Alboran). Mise en évidence de l’évolution des paléoenvironnements depuis le Dernier Maximum Glaciaire, Bull. Centres Explor. Prod. Elf-Aquitaine, Volume 12 (1988) no. 1, pp. 313-344

[Turon et al., 2003] J.L. Turon; A.M. Lézine; M. Denèfle Land-sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin, Quaternary Res., Volume 59 (2003), pp. 88-96

[Wall et al., 1977] D. Wall; B. Dale; G.P. Lohmann; W.K. Smith The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic oceans and adjacent seas, Marine Micropaleontol., Volume 2 (1977), pp. 121-200

[Wolff et al., 2010] E.W. Wolff; J. Chappellaz; T. Blunier; S.O. Rasmussen; A. Svensson Millennial-scale variability during the Last Glacial: the ice-core record, Quaternary Sci. Rev., Volume 29 (2010) no. 21–22, pp. 2828-2838

[Wüst, 1961] G. Wüst On the vertical circulation of the Mediterranean Sea, J. Geophys. Res., Volume 66 (1961) no. 10, pp. 3261-3271

[Zaragosi et al., 2001] S. Zaragosi; F. Eynaud; C. Pujol; G.A. Auffret; J.L. Turon; T. Garlan Initiation of European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek Terrace and Trevelyan Escarpment): a multi-proxy approach, Earth Planet. Sci. Lett., Volume 188 (2001), pp. 493-507

[Zonneveld, 1996] K.A.F. Zonneveld Paleoclimatic reconstruction of the last deglaciation (18-8 ka BP) in the Adriatic Sea region; a land-sea correlation based on palynological evidence, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 122 (1996), pp. 89-106


Commentaires - Politique