Plan
Comptes Rendus

Genetics and conservation biology
[Génétique et biologie de la conservation]
Comptes Rendus. Biologies, Volume 326 (2003) no. S1, pp. 22-29.

Résumés

Conservation genetics encompasses genetic management of small populations, resolution of taxonomic uncertainties and management units, and the use of molecular genetic analyses in forensics and to understanding species' biology. The role of genetic factors in extinctions of wild populations has been controversial, but evidence now shows that they make important contributions to extinction risk. Inbreeding has been shown to cause extinctions of wild populations, computer projections indicate that inbreeding depression has important effects on extinction risk, and most threatened species show signs of genetic deterioration. Inappropriate management is likely to result if genetic factors are ignored in threatened species management.

La génétique de la conservation inclut la gestion génétique des petites populations, la résolution des incertitudes taxinomiques et des unités de gestion, l'utilisation d'analyses moléculaires dans l'expertise et la compréhension de la biologie des espèces. Le rôle des facteurs génétiques dans l'extinction des populations sauvages a été controversé, mais il a été mis en évidence que cela contribue grandement au risque d'extinction. La consanguinité provoque des extinctions de populations sauvages, les modélisations indiquent que la dépression de consanguinité a des effets importants sur les risques d'extinction et la plupart des espèces en danger souffrent de détérioration génétique. La gestion conservatoire sera inapropriée si les facteurs génétiques sont ignorés pour les espèces en danger.

Métadonnées
Publié le :
DOI : 10.1016/S1631-0691(03)00023-4
Keywords: endangered, extinction, forensics, genetic diversity, inbreeding depression, reproductive fitness, taxonomy
Mots-clés : espèces en danger, extinction, expertise, diversité génétique, dépression de consanguinité, fitness reproductive, taxinomie

Richard Frankham 1

1 Key Centre for Biodiversity and Bioresources, Department of Biological Sciences, Macquarie University, NSW 2109, Australia
@article{CRBIOL_2003__326_S1_22_0,
     author = {Richard Frankham},
     title = {Genetics and conservation biology},
     journal = {Comptes Rendus. Biologies},
     pages = {22--29},
     publisher = {Elsevier},
     volume = {326},
     number = {S1},
     year = {2003},
     doi = {10.1016/S1631-0691(03)00023-4},
     language = {en},
}
TY  - JOUR
AU  - Richard Frankham
TI  - Genetics and conservation biology
JO  - Comptes Rendus. Biologies
PY  - 2003
SP  - 22
EP  - 29
VL  - 326
IS  - S1
PB  - Elsevier
DO  - 10.1016/S1631-0691(03)00023-4
LA  - en
ID  - CRBIOL_2003__326_S1_22_0
ER  - 
%0 Journal Article
%A Richard Frankham
%T Genetics and conservation biology
%J Comptes Rendus. Biologies
%D 2003
%P 22-29
%V 326
%N S1
%I Elsevier
%R 10.1016/S1631-0691(03)00023-4
%G en
%F CRBIOL_2003__326_S1_22_0
Richard Frankham. Genetics and conservation biology. Comptes Rendus. Biologies, Volume 326 (2003) no. S1, pp. 22-29. doi : 10.1016/S1631-0691(03)00023-4. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/S1631-0691(03)00023-4/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The biodiversity of the planet is being rapidly depleted as a direct and indirect consequence of human actions. An unknown but large number of species are already extinct, while many others have reduced population sizes that put them at risk [1]. Many species now require benign human intervention to improve their management and ensure their survival.

The primary factors contributing to extinction are habitat loss, introduced species, over exploitation and pollution. These factors are caused by humans, and are related to human population growth. Human-related factors reduce species to population sizes where they are susceptible to stochastic effects. These encompass environmental, demographic, or genetic (inbreeding depression, and loss of genetic diversity) stochasticity and catastrophes. Even if the original cause of population decline is removed, problems associated with small population size will still persist.

Conservation genetics deals with the genetic factors that affect extinction risk and genetic management regimes required to minimise these risks. There are 11 major genetic issues in conservation biology [1]:

  • • The deleterious effects of inbreeding on reproduction and survival (inbreeding depression).
  • • Loss of genetic diversity and ability to evolve in response to environmental change.
  • • Fragmentation of populations and reduction in gene flow.
  • • Genetic drift overriding natural selection as the main evolutionary process.
  • • Accumulation and loss (purging) of deleterious mutations.
  • • Genetic adaptation to captivity and its adverse effects on reintroduction success.
  • • Resolving taxonomic uncertainties.
  • • Defining management units within species.
  • • Use of molecular genetic analyses in forensics.
  • • Use of molecular genetic analyses to understand aspects of species biology important to conservation, and
  • • Deleterious effects on fitness that sometimes occurs as a result of outcrossing (outbreeding depression).
Succeeding papers in this session will consider many of these issues, and all have recently been reviewed by Frankham et al. [1]. I have chosen to concentrate on the contentious issue of the role of genetic factors in extinctions.

2 Genetics and extinction

Endangered species have small and/or declining populations, so inbreeding and loss of genetic diversity are unavoidable in them. Since inbreeding reduces reproduction and survival rates, and loss of genetic diversity reduces the ability of populations to evolve to cope with environmental change, Frankel and Soulé [2] and others suggested that genetic factors would contribute to extinction risk in threatened species.

However, this view was challenged in the late 1980s and the contribution of genetic factors to the fate of endangered species was generally considered to be minor. Lande [3] suggested that demographic and environmental stochasticity and catastrophes would cause extinction before genetic deterioration became a serious threat to wild populations. A healthy controversy has persisted [1]. However, there is now a compelling body of both theoretical and empirical evidence indicating that genetic changes in small populations are intimately involved with their fate. Specifically:

  • • Inbreeding causes extinctions in deliberately inbred captive populations.
  • • Inbreeding has contributed to extinctions in some natural populations and there is circumstantial evidence to implicate it in many other cases.
  • • Computer projections based on real life histories, including demographic, environmental, and catastrophic factors, indicate that inbreeding will cause elevated extinction risks in realistic situations faced by natural populations.
  • • Many surviving populations have now been shown to be genetically compromised (reduced genetic diversity and inbred).
  • • Loss of genetic diversity increases the susceptibility of populations to extinction.

3 Inbreeding reduces reproduction and survival

Inbreeding has been known to reduce reproduction and survival (inbreeding depression) since Darwin's classic work [4]. For example, inbred individuals showed higher juvenile mortality than outbred individuals in 41 of 44 captive mammal populations studied by Ralls and Ballou [5]. On average, brother-sister mating resulted in a 33% reduction in juvenile survival. By extrapolation, it was anticipated that inbreeding would increase the risk of extinction in wild populations.

There is now clear evidence that inbreeding adversely affects most wild populations. Crnokrak and Roff [6] reviewed 157 valid data sets, including 34 species, for inbreeding depression in natural situations. In 141 cases (90%) inbred individuals had poorer attributes than comparable outbreds (i.e. they showed inbreeding depression), two were equal and only 14 were in the opposite direction. Results were very similar across birds, mammals, poikilotherms and plants. Further, significant inbreeding depression has been reported in at least another 15 taxa [1].

3.1 Relationship between inbreeding and extinction

Deliberately inbred populations of laboratory and domestic animals and plants show greatly elevated extinction rates. Between 80% and 95% of deliberately inbred populations have died out when the inbreeding coefficient exceeds 0.8 [2]. Such extinctions could be due to either inbreeding, or to demographic stochasticity, or a combination of these effects. However, under circumstances where demographic stochasticity is excluded, inbreeding clearly increased the risk of extinction in captive populations [7,8].

The above mentioned populations were rapidly inbred using brother–sister matings or self-fertilization, while natural populations of outbreeding wild animals and plants are usually subject to slower rates of inbreeding, dependent on their population sizes. Slower inbreeding allows natural selection more opportunity to remove deleterious alleles. However, even slow rates of inbreeding increase the risk of extinction; it just takes longer for inbreeding to accumulate and extinction to occur [9,10]. Mean inbreeding coefficients when 50% of populations were extinct from inbreeding were 0.62 for full-sib mating, 0.79 for populations with sizes of Ne=10 and 0.77 for populations with Ne=20 [11].

3.2 Do taxonomic groups differ in susceptibility to inbreeding depression?

Much information on inbreeding and extinctions come from species used in laboratory experiments. It is therefore essential to know whether these findings can be extrapolated to other species and taxonomic groups. Most studies find little evidence for differences among major diploid taxa in inbreeding depression for naturally outbreeding species [6,8,12].

The one major exception is that inbreeding depression in plants is typically higher for Gymnosperms than Angiosperms [13]. This could be related to a higher level of polyploidy in the latter than the former. Since the rate of increase in homozygosity is slower in polyploids than in diploids, polyploids are expected to suffer less inbreeding depression [1].

4 Direct evidence of extinctions due to inbreeding and loss of genetic diversity

Inbreeding and loss of genetic diversity has been shown to increase the risk of extinction for two populations in nature. Inbreeding was a significant predictor of extinction risk for butterfly populations in Finland after the effects of all other ecological and demographic variables had been removed [14]. Further, experimental populations of the Clarkia pulchella plant founded with a low level of genetic diversity (and high inbreeding) exhibited 75% extinction rates over three generations in the wild, while populations with low inbreeding showed only a 21% extinction rate [15]. However, it was not clear whether these were general results, or exceptions.

5 Computer projections

Computer projections incorporating factual life history information are often used to assess the combined impact of all deterministic and stochastic factors on the probability of extinction of populations. Mills and Smouse [16] using computer simulations, found that inbreeding generally increases the risk of extinction, especially in species with low reproductive rates. These simulations encompassed only a 20 year time frame and they were criticised for not accounting for purging of deleterious alleles [17].

Brook et al. [18] conducted computer projections for 20 outbreeding bird, mammal, and invertebrate life cycles that allowed for the effects of purging. Median times to extinction were on average reduced by 24–31% when inbreeding depression of 3.14 lethal equivalents was applied to juvenile survival, compared to cases where inbreeding depression was omitted. These results underestimate the true impact of inbreeding depression, as it is approximately 12 lethal equivalents for populations in nature ([19], Frankham et al. unpublished data). A related computer projection for the rare European plant Gentiana pneumonanthe yielded similar conclusions [20]. These computer projections indicate that the results of Saccheri et al. [14] and Newman and Pilson [15] are not exceptions, but are likely to apply to the majority of species.

6 Circumstantial evidence for extinctions due to inbreeding

Declines in population size or extinction in the wild have been attributed, at least in part, to inbreeding in many populations including bighorn sheep, Florida panthers, Isle Royale gray wolves, greater prairie chickens, heath hens, middle spotted woodpeckers, adders, and many island species [1]. Further, inbreeding colonial spiders have a higher rate of colony extinction than non-inbreeding species.

6.1 Extinction proneness of islands populations

Island populations of vertebrates are more prone to extinction than mainland populations [1]. This is typically attributed to ‘non-genetic’ factors, but could be due partly to inbreeding and loss of genetic diversity. Island populations typically have less genetic diversity and are more inbred than mainland populations [8,21]. Significantly, inbreeding in many island populations is at levels where captive populations show an elevated risk of extinction.

Endemic populations of vertebrates are more prone to extinction than non-endemic island populations [8]. The greater extinction proneness of endemic than non-endemic island species is predicted by genetic, but not by demographic and ecological considerations. Endemic island populations have generally existed on islands at restricted population sizes for longer than non-endemics. They are therefore expected to be more inbred, and this has been found to be the case [8]. Consequently, endemic island populations are expected to be more prone to extinction than non-endemics for genetic reasons. Conversely, there are no obvious demographic or environmental reasons why endemic and non-endemic island populations should differ in extinction proneness. Consequently, genetic factors are probably, at least partly, responsible for the extinction proneness of island populations.

7 Are species driven to extinction before genetic factors can impact?

Lande [3] suggested that species would often be driven to extinction by demographic factors before genetic factors had time to impact, and many other authors have repeated this refrain. While Lande [17] has subsequently changed his views on the contribution of genetic factors to extinctions, this is due to his championing of ‘mutational meltdown’ and not due to a retraction of his 1988 views.

If the Lande scenario is common then threatened species should show little difference in genetic diversity, compared to related non-endangered species. The majority of threatened species do not fit the Lande scenario, as most have reduced genetic diversity compared to related threatened species [22–24]. Further, the magnitude of differences is such that threatened species are likely to be suffering serious reductions in fitness, as proportionate loss of genetic diversity estimates the inbreeding coefficient. Genetic diversity has been shown to be related to fitness, as expected from the relationship between genetic diversity and inbreeding in random-mating populations [25]. Consequently, most threatened species are likely to have both reduced reproductive fitness due to inbreeding depression and reduced evolutionary potential.

8 Relationship between loss of genetic diversity and extinction

Natural populations face continuous assaults from environmental changes including new diseases, pests, parasites, competitors and predators, pollution, climatic cycles such as the El Niño–La Niña cycles, and human-induced global climate change [1]. Species must evolve to cope with these new conditions or face extinction. To evolve, species require genetic diversity. Naturally outbreeding species with large populations normally possess large stores of genetic diversity that confer differences among individuals in their responses to such environmental changes [1].

Small populations typically have lower levels of genetic diversity than large populations [1]. There are compelling theoretical predictions that loss of genetic diversity will reduce the ability of populations to evolve in response to environmental change, and experimental evidence validates these predictions [1]. Consequently, we expect a relationship between loss of genetic diversity and extinction rate due to environmental change. However, there are only a few examples where extinctions of natural populations can be directly attributed to lack of genetic variation, as described below.

8.1 Relationship between loss of genetic diversity at self-incompatibility loci and extinction in plants

The most direct evidence of a relationship between loss of genetic diversity and increased risk of extinction comes from studies of self-incompatibility loci in plants. About half of all flowering plant species have genetic systems that reduce or prevent self-fertilisation [26]. Self-incompatibility is regulated by one or more loci that may have 50 or more alleles in large populations. If the same allele is present in a pollen grain and the stigma, fertilisation by that pollen grain will not be successful.

Self-incompatibility alleles are lost by random sampling in small populations. This leads to a reduction in the number of plants that can potentially fertilise the eggs of any individual and eventually to reduced seed set and extinction. For example, the Lakeside daisy population from Illinois declined to three plants. This population did not reproduce for 15 years despite bee pollination, as it contained so few alleles [27], i.e. this population was functionally extinct. Plants did however produced viable seed when fertilised with pollen from large populations in Ohio or Canada. While reduced fitness due to loss of self-incompatibility alleles has only been documented in a few species of plants [28,29], it is likely to be a problem, or become so, in most threatened, self-incompatible plants.

8.2 Relationship between loss of genetic diversity and susceptibility to disease, pests and parasites

Populations with low genetic diversity are expected to suffer more seriously from diseases, pests and parasites than those with high genetic diversity [1]. Novel pathogens constitute one of the most significant challenges to all species. Loss of genetic diversity severely diminishes the capacity of populations to respond to this pressure. For example, the American chestnut was driven to near extinction in the 1950s by the introduced chestnut blight disease, as it had no genetic variation for resistance [1]. Previously, the chestnut had dominated the northeastern forests of the USA, so this event represents one of the largest ecological disasters to strike the USA.

There is circumstantial evidence that loss of genetic diversity in the major histocompatibility complex (MHC) is associated with reduced ability to evolve to cope with new and changed diseases. Genetic diversity is maintained by selection that either favours heterozygotes or rare genotypes [1]. Even though MHC diversity is maintained by selection, it is lost by genetic drift in small populations [30,31]. With reduced diversity at the MHC in small populations, a pathogen capable of killing one individual becomes capable of killing most or all.

Associations between loss of genetic diversity and inbreeding and increased susceptibility to disease and parasites have been reported in fish, Soay sheep, deer mice, bumblebees and Drosophila [24,32–34].

9 Why is the Lande scenario incorrect?

The Lande [3] scenario has failed numerous tests so it must be rejected for the majority of species [1]. What assumptions were made in the Lande scenario that are incorrect? Lande [3] did not present an explicit quantitative model that can be addressed point by point in a quantitative manner. However, it seems from his work and other papers around that time that four factors were probably involved, the ratio of effective to census sizes (Ne/N), the extent of interactions among stochastic factors, the extent of inbreeding depression in the wild, and the effectiveness of purging.

Genetic impacts depend on the effective population size (Ne), so the ratio of effective to census size is critical in determining genetic impacts. Around the time of Lande's paper it was typical to talk of Ne/N ratios of 0.25–0.5 [35]. Subsequently, Ne/N ratios in unmanaged populations have been found to average approximately 0.1 [36], so genetic factors impact sooner than Lande [3] would have expected.

Fluctuations in population size and sex-ratio and variation in family size all occur due to demographic and environmental stochasticity and catastrophes and result in reduced Ne/N ratios. Consequently, there are interactions between stochastic factors that increase genetic impacts on population persistence [37,38].

It was common in the late 1980s and early 1990s for people to be sceptical about the extent of inbreeding depression in the wild. Considerable data now exists and points to much higher levels of inbreeding depression than found in captivity [1,6]. For example, Ralls and Ballou [12] found a median of 3.14 diploid lethal equivalents for captive mammals, but total inbreeding depression across the life cycle in the wild is approximately 12 lethal equivalents ([19], Frankham, O'Grady, Brook, Ballou and Tonkyn, unpublished data).

The final factor leading to an underestimation of the impact of inbreeding on population viability is the effectiveness of purging. At the time of Lande's paper, purging was considered to be effective in markedly reducing inbreeding depression. Subsequent modelling and empirical work indicates that purging effects are typically relatively small [1,39,40].

All the above points lead to greater impacts of inbreeding depression on population viability than would have been expected in 1988.

10 What are the consequences of ignoring genetic factors in threatened species management?

Recovery programs may not be successful if genetic factors are ignored. For example, the Illinois population of greater prairie chickens declined from millions to only 200 in 1962, and failed to recover following habitat restoration [41]. It showed clear evidence of inbreeding depression (reduced fertility and hatchability). However, when inbreeding effects were removed by crossing to unrelated birds from other states, the population recovered its fertility and hatchability and grew in numbers. In the case of the koala in southeastern Australia, reintroductions using a small island population with only 2–3 founders have resulted in a substantial reduction in genetic diversity, to a rise in inbreeding, to a decrease in sperm quality, to a marked increase in testicular aplasia [42,43].

The effects of loss of self-incompatibility alleles on population fitness in plants are likely to be a major factor in species persistence, but will not be addressed unless genetic factors are recognised [27–29].

Acute reductions of population fitness occur when diploid and tetraploid populations of a species are introduced into proximity with each other [29]. Sterile triploids have resulted, with consequently reproductive wastage.

Genetic considerations are of particular importance in management of fragmented populations. Small fragmented populations with limited gene flow will lose genetic diversity and become inbred and have elevated extinction risks [1,14,44]. Adequately genetic management of fragmented populations is rare, and is one of the greatest unaddressed issues in conservation biology.

Overall, there is little effective genetic management of wild populations of threatened species, but a substantial need for it [1]. By contrast, genetic management of captive populations is widely practiced and generally well done.

11 Conclusion

Inbreeding and loss of genetic diversity are of conservation concern as they increase the risk of extinction. Inbreeding increases the risk of extinction in captive populations, and there is now strong evidence that it is one of the factors causing extinctions of wild populations. Loss of genetic diversity reduces the ability of species to evolve to cope with environmental change. Inappropriate management and allocation of resources is likely to result if genetic factors are ignored in management of threatened species.

Acknowledgements

The Australian Research Council and Macquarie University has supported my research. I thank Julian O'Grady for comments on the manuscript and Jonathan Ballou and David Briscoe for their contributions to the ideas herein. This is publication number 363 of the Key Centre for Biodiversity and Bioresources.


Bibliographie

[1] R. Frankham; J.D. Ballou; D.A. Briscoe Introduction to Conservation Genetics, Cambridge University Press, Cambridge, UK, 2002

[2] O.H. Frankel; M.E. Soulé Conservation and Evolution, Cambridge University Press, Cambridge, UK, 1981

[3] R. Lande Genetics and demography in biological conservation, Science, Volume 241 (1988), pp. 1455-1460

[4] C. Darwin The Effects of Cross and Self Fertilisation in the Vegetable Kingdom, John Murray, London, 1876

[5] K. Ralls; J. Ballou Extinction: Lessons from zoos (C.M. Schonewald-Cox; S.M. Chambers; B. MacBryde; L. Thomas, eds.), Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, Benjamin/Cummings, Menlo Park, CA, 1983, pp. 164-184

[6] P. Crnokrak; D.A. Roff Inbreeding depression in the wild, Heredity, Volume 83 (1999), pp. 260-270

[7] R. Frankham Inbreeding and extinction: A threshold effect, Conserv. Biol., Volume 9 (1995), pp. 792-799

[8] R. Frankham Inbreeding and extinction: Island populations, Conserv. Biol., Volume 12 (1998), pp. 665-675

[9] B.D.H. Latter; J.C. Mulley Genetic adaptation to captivity and inbreeding depression in small laboratory populations of Drosophila melanogaster, Genetics, Volume 139 (1995), pp. 255-266

[10] D.H. Reed; E.H. Bryant Experimental test of minimum viable population size, Anim. Conserv., Volume 3 (2000), pp. 7-14

[11] D.H. Reed; E. Lowe; D.A. Briscoe; R. Frankham Inbreeding and extinction: Effects of rate of inbreeding, Conserv. Genet. (2003)

[12] K. Ralls; J.D. Ballou; A. Templeton Estimates of lethal equivalents and the cost of inbreeding in mammals, Conserv. Biol., Volume 2 (1988), pp. 185-193

[13] B.C. Husband; D.W. Schemske Evolution of the magnitude and timing of inbreeding depression in plants, Evolution, Volume 50 (1996), pp. 54-70

[14] I. Saccheri; M. Kuussaari; M. Kankare; P. Vikman; W. Fortelius; I. Hanski Inbreeding and extinction in a butterfly metapopulation, Nature, Volume 392 (1998), pp. 491-494

[15] D. Newman; D. Pilson Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella, Evolution, Volume 51 (1997), pp. 354-362

[16] L.S. Mills; P.E. Smouse Demographic consequences of inbreeding in remnant populations, Amer. Natur., Volume 144 (1994), pp. 412-431

[17] R. Lande Mutation and conservation, Conserv. Biol., Volume 9 (1995), pp. 782-791

[18] B.W. Brook, D.W. Tonkyn, J.J. O'Grady, R. Frankham, Contribution of inbreeding to extinction risk in threatened species, Conserv. Ecol. 16 (2002), URL: http://www.consecol.org/vol16/iss11/art16

[19] L.F. Keller Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia), Evolution, Volume 52 (1998), pp. 240-250

[20] J.G.B. Oostermeijer Population viability analysis of the rare Gentiana pneumonanthe; the importance of genetics, demography and reproductive biology (A.G. Young; G.M. Clarke, eds.), Genetics, Demography and Viability of Fragmented Populations, Cambridge University Press, Cambridge, UK, 2000, pp. 313-334

[21] R. Frankham Do island populations have lower genetic variation than mainland populations?, Heredity, Volume 78 (1997), pp. 311-327

[22] R. Frankham Conservation genetics, Annu. Rev. Genet., Volume 29 (1995), pp. 305-327

[23] S.M. Haig; J.C. Avise Avian conservation genetics (J.C. Avise; J.L. Hamrick, eds.), Conservation Genetics: Case Histories from Nature, Chapman & Hall, New York, 1996, pp. 160-189

[24] D. Spielman, Does inbreeding and a loss of genetic diversity decrease a population's ability to resist virulent disease?, Ph.D. thesis, Macquarie University, Sydney, Australia, 2002

[25] D.H. Reed; R. Frankham Population fitness is correlated with genetic diversity, Conserv. Biol. (2003)

[26] A.J. Richards Plant Breeding Systems, Chapman & Hall, London, 1997

[27] M.M. Demauro Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra), Conserv. Biol., Volume 7 (1993), pp. 542-550

[28] D.H. Les; J.A. Reinhartz; E.J. Esselman Genetic consequences of rarity in Aster furcatus (Asteraceae), a threatened, self-incompatible plant, Evolution, Volume 45 (1991), pp. 1641-1650

[29] A.G. Young; A.H.D. Brown; B.G. Murray; P.H. Thrall; C.H. Miller Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides (A.G. Young; G.M. Clarke, eds.), Genetics, Demography and Viability of Fragmented Populations, Cambridge University Press, Cambridge, UK, 2000, pp. 335-359

[30] J.M. Seddon; P.R. Baverstock Variation on islands: Major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat, Mol. Ecol., Volume 8 (1998), pp. 2071-2079

[31] G. Zegers, Genetic variability and resistance to infectious disease with particular emphasis on the major histocompatibility complex in the valley pocket gopher, Ph.D. thesis, University of California, Santa Cruz, 2000

[32] C.M. Lively; C. Craddock; R.C. Vrijenhoek Red queen hypothesis supported by parasitism in sexual and clonal fish, Nature, Volume 344 (1990), pp. 864-866

[33] S. Meagher Genetic diversity and Capillaria hepatica (Nematoda) prevalence in Michigan deer mouse populations, Evolution, Volume 53 (1999), pp. 1318-1324

[34] D.W. Coltman; J.G. Pilkington; J.A. Smith; J.M. Pemberton Parasite-mediated selection against inbred soay sheep in a free-living island population, Evolution, Volume 53 (1999), pp. 1259-1267

[35] L. Nunney; K.A. Campbell Assessing minimum viable population size: Demography meets population genetics, Trends Ecol. Evol., Volume 8 (1993), pp. 234-239

[36] R. Frankham Effective population size/adult population size ratios in wildlife: A review, Genet. Res., Volume 66 (1995), pp. 95-107

[37] A.J. van Noordwijk The interaction of inbreeding depression and environmental stochasticity in the risk of extinction of small populations (V. Loeschcke; J. Tomiuk; S.K. Jain, eds.), Conservation Genetics, Birkhäuser Verlag, Basel, Switzerland, 1994, pp. 131-146

[38] Y. Tanaka Extinction of populations by inbreeding depression under stochastic environments, Popul. Ecol., Volume 42 (2000), pp. 55-62

[39] P.W. Hedrick Purging inbreeding depression and the probability of extinction: Full-sib mating, Heredity, Volume 73 (1994), pp. 363-372

[40] R. Frankham; D.M. Gilligan; D. Morris; D.A. Briscoe Inbreeding and extinction: Effects of purging, Conserv. Genet., Volume 2 (2001), pp. 279-284

[41] R.L. Westemeier; J.D. Brawn; S.A. Simpson; T.L. Esker; R.W. Jansen; J.W. Walk; E.L. Kershner; J.L. Bouzat; K.N. Paige Tracking the long-term decline and recovery of an isolated population, Science, Volume 282 (1998), pp. 1695-1698

[42] B.A. Houlden; P.R. England; A.C. Taylor; W.D. Greville; W.B. Sherwin Low genetic variability of the koala Phascolarctos cinereus in southeastern Australia, Mol. Ecol., Volume 5 (1996), pp. 269-281

[43] A.M. Seymour; M.E. Montgomery; B.H. Costello; S. Ihle; G. Johnsson; B. St John; D. Taggart; B.A. Houlden High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinereus), Anim. Conserv., Volume 4 (2001), pp. 211-219

[44] T. Madsen; R. Shine; M. Olsson; H. Wittzell Restoration of an inbred adder population, Nature, Volume 402 (1999), pp. 34-35


Cité par

  • Douglas Tave Endangered Fish Management, Conservation Aquaculture (2025), p. 1 | DOI:10.1007/978-3-031-71978-3_1
  • Douglas Tave Captive Conservation Genetic Management, Conservation Aquaculture (2025), p. 21 | DOI:10.1007/978-3-031-71978-3_2
  • Gohta Kinoshita; Kyoko Suda; Daisuke Aoki; Ohnishi Naoki; Takamichi Jogahara; Jun J. Sato; Fumio Yamada; Hitoshi Suzuki Island Population Dynamics Since the Late Miocene: Comparative Phylogeography of Mammalian Species in Three Genera (Pentalagus, Diplothrix, and Tokudaia) Endemic to the Central Ryukyu Islands, Mammal Study, Volume 50 (2025) no. 2 | DOI:10.3106/ms2024-0045
  • Jing-Jing Zhao; Lin-Lin Sun; Zhi Pi; Sheng-Nan Li; Ze-Dong Wu Genetic Diversity Analysis of 89 Monogerm Maintainer Lines of Sugar Beet, Sugar Tech (2025) | DOI:10.1007/s12355-025-01545-x
  • Lena Bonassin; Lucian Pârvulescu; Ljudevit Luka Boštjančić; Caterina Francesconi; Judith Paetsch; Christelle Rutz; Odile Lecompte; Kathrin Theissinger Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains, BMC Ecology and Evolution, Volume 24 (2024) no. 1 | DOI:10.1186/s12862-024-02268-5
  • Leticia Hernández-López; Pilar Zamora-Tavares; Jessica Pérez-Alquicira; Darío Figueroa-García; Armando Arias-García Diversidad y estructura genética de Lobelia villaregalis (Campanulaceae), especie en peligro endémica de Jalisco, México, Botanical Sciences, Volume 102 (2024) no. 4, p. 1201 | DOI:10.17129/botsci.3492
  • Kerstin Glaus; Sharon A. Appleyard Genetic Diversity, Kinship, and Polychromatism in the Spotted Eagle Ray Aetobatus ocellatus of Fiji, Diversity, Volume 16 (2024) no. 9, p. 588 | DOI:10.3390/d16090588
  • Ambre Mautuit; Daniel Fernández Marchán; Sandra Barantal; Matthias Brand; Annick Lucas; Jérôme Cortet; Alan Vergnes; Thibaud Decaëns Environmental drivers of genetic diversity and phylogeographic pattern in urban earthworms, European Journal of Soil Biology, Volume 121 (2024), p. 103620 | DOI:10.1016/j.ejsobi.2024.103620
  • Joaquín Ortego; Violeta Muñoz‐Fuentes; Raquel López‐Luque; Alex D. Ball; Muhammad Ghazali; Salwan Ali Abed; Mudhafar A. Salim; Andy J. Green Demographic and conservation genomic assessment of the threatened marbled teal (Marmaronetta angustirostris), Evolutionary Applications, Volume 17 (2024) no. 5 | DOI:10.1111/eva.13639
  • Ammad Aslam Khan; Anees Fatima Gone with the Species: From Gene Loss to Gene Extinction, Frontiers in Bioscience-Scholar, Volume 16 (2024) no. 4 | DOI:10.31083/j.fbs1604022
  • Gabriela Pozo; Martina Albuja-Quintana; Lizbeth Larreátegui; Bernardo Gutiérrez; Nathalia Fuentes; Felipe Alfonso-Cortés; Maria de Lourdes Torres; R Mallarino First whole-genome sequence and assembly of the Ecuadorian brown-headed spider monkey (Ateles fusciceps fusciceps), a critically endangered species, using Oxford Nanopore Technologies, G3: Genes, Genomes, Genetics, Volume 14 (2024) no. 3 | DOI:10.1093/g3journal/jkae014
  • Sandra Heras; Alba Abras; Aleix Palahí; Jose-Luis García-Marín; María Inés Roldán Genomic Analysis of the Giant Red Shrimp (Aristaeomorpha foliacea) Using Next-Generation Sequencing: Set of Tools for Population Studies, Genes, Volume 15 (2024) no. 11, p. 1360 | DOI:10.3390/genes15111360
  • Yasaman Ranjbaran; Dennis Rödder; Reihane Saberi-Pirooz; Faraham Ahmadzadeh What happens in ice age, does not stay in ice age: Phylogeography of Bombus terrestris revealed a low genetic diversity amongst the Eurasian populations, Global Ecology and Conservation, Volume 49 (2024), p. e02775 | DOI:10.1016/j.gecco.2023.e02775
  • C Kurniawan; A M Samosir; A Mashar Haplotype diversity of coastal horseshoe crab (Tachypleus gigas, Muller 1785) based on 16S rRNA gene markers as a basis for conservation, IOP Conference Series: Earth and Environmental Science, Volume 1400 (2024) no. 1, p. 012022 | DOI:10.1088/1755-1315/1400/1/012022
  • Renato R. Hilário; Bárbara Moraes; João Pedro Souza-Alves; Stephen F. Ferrari The Density of Callicebus coimbrai is Better Predicted by Vegetation Structure Variables than by Surrounding Landscape, International Journal of Primatology, Volume 45 (2024) no. 1, p. 54 | DOI:10.1007/s10764-022-00278-y
  • Kiana B Young; Kevin S White; Aaron B A Shafer; Melissa Hawkins Unraveling the complex biogeographic and anthropogenic history of mountain goats (Oreamnos americanus) in Alaska, Journal of Mammalogy, Volume 105 (2024) no. 5, p. 1094 | DOI:10.1093/jmammal/gyae065
  • Lorena Ortiz-Jiménez; Ilad Vivas; Isabel Barja Is reproductive management for oestrus detection a stressful routine for female European mink (Mustela lutreola)?, Journal of Vertebrate Biology, Volume 73 (2024) no. 23082 | DOI:10.25225/jvb.23082
  • Melania Agulló; Sandra Heras; Alba Abras; José Luis García‐Marín; María Inés Roldán Genetic Differentiation Between Sympatric Crustacean Decapods Inhabiting the Mediterranean Sea: Implications to Avoid Larval and Adult Misidentification, Marine Ecology, Volume 45 (2024) no. 6 | DOI:10.1111/maec.12834
  • Adriana Ripa; José A. Díaz-Caballero; María Jesús Palacios-González; Antonio Espinosa; Juan Luis García-Zapata; José Luis Fernández-Garcia Application of real-time PCR for the identification of the endangered species Galemys pyrenaicus through faecal samples, Molecular Biology Reports, Volume 51 (2024) no. 1 | DOI:10.1007/s11033-023-09010-2
  • Wanli Liu; Zhuo Duan; Dingcheng Wang; Wenge Zhao; Peng Liu; Tzen-Yuh Chiang Phylogenetic relationships and genetic differentiation of two Salamandrella species as revealed via COI gene from Northeastern China, PLOS ONE, Volume 19 (2024) no. 2, p. e0298221 | DOI:10.1371/journal.pone.0298221
  • Kerstin Glaus; Epeli Loganimoce; Gauthier Mescam; Sharon A. Appleyard; Karissa Lear Genetic diversity of an undescribed cryptic maskray (Neotrygon sp.) species from Fiji, Pacific Conservation Biology, Volume 30 (2024) no. 5 | DOI:10.1071/pc23064
  • D. Stojanovic; E. McLennan; G. Olah; M. Cobden; R. Heinsohn; A. D. Manning; F. Alves; C. Hogg; L. Rayner Reproductive skew in a Vulnerable bird favors breeders that monopolize nest cavities, Animal Conservation, Volume 26 (2023) no. 5, p. 675 | DOI:10.1111/acv.12855
  • Geís Ferreira Neves; Sérgio Yoshimitsu Motoike; Kacilda Naomi Kuki; Sebastián Giraldo Montoya; Cosme Damião Cruz; Wassali Valadares de Sousa Genetic diversity of Syagrus coronata and principal component analysis of phenotypic traits: a palm from the brazilian semiarid biome, Biodiversity and Conservation, Volume 32 (2023) no. 13, p. 4275 | DOI:10.1007/s10531-023-02689-6
  • Juan F Moncada-jimenez; Felipe Hernandez-gonzalez; Carlos F Prada-quiroga; Lina M García-calderon; Yessy García; Elkin Hernandez; Aristides Lopez; Arnold Argel; Juan Manuel Polo; Nidia Farfan-ardila; Sergio A Balaguera-Reina Phylogeography of the American crocodile, Crocodylus acutus (Crocodylia: Crocodylidae) in Colombia: a conservation perspective, Biological Journal of the Linnean Society, Volume 140 (2023) no. 4, p. 606 | DOI:10.1093/biolinnean/blad073
  • Zsófia Kovács; Jelena Mlinarec; Mária Höhn Living on the edge: morphological, karyological and genetic diversity studies of the Hungarian Plantago maxima populations and established ex situ collection, Botanical Studies, Volume 64 (2023) no. 1 | DOI:10.1186/s40529-022-00365-6
  • Matías Cona; Alexandra Chávez; Pedro León-Lobos; Juan Carlos Marín; Patricio Hinrichsen Genetic structure and north-south decrease of genetic diversity in the Patagonian maqui berry (Aristotelia chilensis [Molina] Stuntz): implications for its conservation and use, Conservation Genetics, Volume 24 (2023) no. 6, p. 693 | DOI:10.1007/s10592-023-01526-1
  • Wagner Franco Molina; Fábio de Almeida Vieira; Cristiane Gouvêa Fajardo Status Quo and Orchid Conservation Challenges in the Neotropical Region, Conservation Genetics in the Neotropics (2023), p. 73 | DOI:10.1007/978-3-031-34854-9_4
  • Yan‐yan Du; Yan‐ping Zhang; Zhong‐yu Lou; Tai Wang Unrecognized diversity, genetic structuring, and phylogeography of the genusTriplophysa(Cypriniformes: Nemacheilidae) sheds light on two opposite colonization routes during Quaternary glaciation that occurred in the Qilian Mountains, Ecology and Evolution, Volume 13 (2023) no. 4 | DOI:10.1002/ece3.10003
  • Shahid Ul Islam; Zahid Ahmed Mangral; Lubna Tariq; Basharat Ahmad Bhat; Wajahat Waseem Tantray; Rameez Ahmad; Anzar Ahmad Khuroo; Tanvir Ul Hassan Dar Conservation genetics of endangered Trillium govanianum Wall. ex D. Don – A pharmaceutically prized medicinal plant from the Himalaya and implications for species recovery, Gene, Volume 888 (2023), p. 147748 | DOI:10.1016/j.gene.2023.147748
  • Syuan-Yu Chen; Chi-Chun Huang; Yu-Tzu Cheng; Chih-Chiang Wang; Chiuan-Yu Li; I-Ling Lai; Kuo-Hsiang Hung Effect of geographic isolation on genetic variation and population structure of Euphrasia nankotaizanensis, a threatened endemic alpine herb in Taiwan, Heliyon, Volume 9 (2023) no. 3, p. e14228 | DOI:10.1016/j.heliyon.2023.e14228
  • Diana María Rivera-Rodríguez; Alicia Mastretta-Yanes; Ana Wegier; Lino De la Cruz Larios; Fernando Santacruz-Ruvalcaba; José Ariel Ruiz Corral; Benjamín Hernández; José de Jesús Sánchez González; Mehdi Rahimi Genomic diversity and population structure of teosinte (Zea spp.) and its conservation implications, PLOS ONE, Volume 18 (2023) no. 10, p. e0291944 | DOI:10.1371/journal.pone.0291944
  • W. Methsala Madurangi Wedage; Iresha N. Harischandra; O. V. D. S. Jagathpriya Weerasena; B. G. D. N. K. De Silva; Felipe Dutra-Rêgo Genetic diversity and phylogeography of Phlebotomus argentipes (Diptera: Psychodidae, Phlebotominae), using COI and ND4 mitochondrial gene sequences, PLOS ONE, Volume 18 (2023) no. 12, p. e0296286 | DOI:10.1371/journal.pone.0296286
  • Wei Xu; Jiancheng Wang; Changyan Tian; Wei Shi; Lei Wang Genome-Wide Development of Polymorphic Microsatellite Markers and Genetic Diversity Analysis for the Halophyte Suaeda aralocaspica (Amaranthaceae), Plants, Volume 12 (2023) no. 9, p. 1865 | DOI:10.3390/plants12091865
  • Paula Teixeira Gomes; Izinara Cruz Rosse; Lauro Ângelo Gonçalves Moraes; Evanguedes Kalapothakis; Cristiano Schetini de Azevedo; Danon Clemes Cardoso; Maykon Passos Cristiano Genetic diversity and relatedness in captive collared peccariesDicotyles tajacu(Linnaeus, 1758) (Cetartiodactyla: Tayassuidae) estimated by microsatellite genotyping using high‐throughput sequencing: Implications for their conservation and reintroduction, Zoo Biology, Volume 42 (2023) no. 6, p. 789 | DOI:10.1002/zoo.21796
  • Sergio Jiménez Pinadero; Daniel Fernández Marchán; Alejandro Martínez Navarro; Natasha Tilikj; Marta Novo; Jorge Domínguez; Darío J. Díaz Cosín; Dolores Trigo Comparative phylogeography and integrative systematic revision of Iberian endemic earthworms (Crassiclitellata, Lumbricidae), Zoologica Scripta, Volume 52 (2023) no. 4, p. 345 | DOI:10.1111/zsc.12586
  • Adam Kiersztyn; Krystyna Kiersztyn; Martyna Bieniek-Kobuszewska; Grzegorz Panasiewicz, 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2022), p. 1 | DOI:10.1109/fuzz-ieee55066.2022.9882630
  • Thaíse Ohana Moura Fernandes; Emanuelle Oliveira Araújo; Adson Pereira dos Santos; Júlio Cesar Rodrigues Lopes Silva; Francine Souza Alves da Fonseca; Alcinei Místico Azevedo; Ernane Ronie Martins Variability of individuals from a population Varronia curassavica Jacq. considering volatile compounds, Ciência Rural, Volume 52 (2022) no. 8 | DOI:10.1590/0103-8478cr20210040
  • Marina Reyne; Kara Dicks; Claire McFarlane; Aurélie Aubry; Mark Emmerson; Ferdia Marnell; Neil Reid; Sarah Helyar Population genetic structure of the Natterjack toad (Epidalea calamita) in Ireland: implications for conservation management, Conservation Genetics, Volume 23 (2022) no. 2, p. 325 | DOI:10.1007/s10592-021-01421-7
  • James A. R. Clugston; Markus Ruhsam; Gregory J. Kenicer; Murray Henwood; Richard Milne; Nathalie S. Nagalingum Conservation genomics of an Australian cycad Cycas calcicola, and the Absence of Key Genotypes in Botanic Gardens, Conservation Genetics, Volume 23 (2022) no. 3, p. 449 | DOI:10.1007/s10592-022-01428-8
  • Monlaya Daloh; Sueptrakool Wisessombat; Nadthanan Pinchai; Sirijan Santajit; Phuangthip Bhoopong; Areeya Soaart; Kuntida Chueajeen; Anucha Jitlang; Imran Sama‐ae High prevalence and genetic diversity of a single ancestral origin azole‐resistant Aspergillus fumigatus in indoor environments at Walailak University, Southern Thailand, Environmental Microbiology, Volume 24 (2022) no. 10, p. 4641 | DOI:10.1111/1462-2920.16154
  • Lynne Sheila Sandmeyer; Rebecca Bellone Inherited Ocular Disorders, Equine Ophthalmology (2022), p. 661 | DOI:10.1002/9781119782285.ch11
  • S. D. S. Oliveira; I. B. Gois; A. F. Blank; M. F. Arrigoni-Blank; M. I. Zucchi; J. B. Pinheiro; C. E. Batista; A. Alves-Pereira Genome-wide diversity in native populations of Croton grewioides Baill., a future crop with fungicidal and antioxidant activity, using SNP markers, Genetic Resources and Crop Evolution, Volume 69 (2022) no. 5, p. 1965 | DOI:10.1007/s10722-022-01357-y
  • Ashley D. Walters; Daniel A. Trujillo; David J. Berg Micro-endemic species of snails and amphipods show population genetic structure across very small geographic ranges, Heredity, Volume 128 (2022) no. 5, p. 325 | DOI:10.1038/s41437-022-00521-5
  • Bevin Wiley; Anuradha Batabyal; Ken Lukowiak Fluoride alters feeding in lab-bred pond snails but not in wild snails or their progeny, Journal of Comparative Physiology A, Volume 208 (2022) no. 5-6, p. 537 | DOI:10.1007/s00359-022-01563-0
  • Jacobo Giner; Sergio Villanueva-Saz; Antonio Fernández; María Asunción Gómez; Madis Podra; Patricia Lizarraga; Delia Lacasta; Héctor Ruiz; María del Carmen Aranda; María de los Ángeles Jimenez; Raquel Hernández; Andrés Yzuel; Maite Verde Detection of Anti–Leishmania infantum Antibodies in Wild European and American Mink (Mustela lutreola and Neovison vison) from Northern Spain, 2014–20, Journal of Wildlife Diseases, Volume 58 (2022) no. 1 | DOI:10.7589/jwd-d-21-00027
  • Todd G. B. McLay; Jennifer A. Tate; Chrissen E. C. Gemmill; Avi S. Holzapfel; V. Vaughan Symonds Inferring the biogeography of New Zealand’s only endemic holoparasitic plant, the threatened Dactylanthus taylorii (Mystropetalaceae), New Zealand Journal of Botany, Volume 60 (2022) no. 4, p. 331 | DOI:10.1080/0028825x.2022.2035411
  • Ryudo Uemura; Akira Asakawa; Shinji Fujii; Ayumi Matsuo; Yoshihisa Suyama; Masayuki Maki CanRumex madaio(Polygonaceae) be threatened by natural hybridization with an invasive species in Japan, Nordic Journal of Botany, Volume 2022 (2022) no. 5 | DOI:10.1111/njb.03543
  • Daniel Kleinman-Ruiz; Maria Lucena-Perez; Beatriz Villanueva; Jesús Fernández; Alexander P. Saveljev; Mirosław Ratkiewicz; Krzysztof Schmidt; Nicolas Galtier; Aurora García-Dorado; José A. Godoy Purging of deleterious burden in the endangered Iberian lynx, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 11 | DOI:10.1073/pnas.2110614119
  • Yurong Cao; Yongpeng Ma; Zhenghong Li; Xiongfang Liu; Detuan Liu; Suping Qu; Hong Ma Genetic Diversity and Population Structure of Rhododendron longipedicellatum, an Endangered Species, Tropical Conservation Science, Volume 15 (2022) | DOI:10.1177/19400829221078112
  • Zishan Ahmad Wani; K. V. Satish; Tajamul Islam; Shalini Dhyani; Shreekar Pant Habitat suitability modelling of Buxus wallichiana Bail.: an endemic tree species of Himalaya, Vegetos, Volume 36 (2022) no. 2, p. 583 | DOI:10.1007/s42535-022-00428-w
  • K. Bilgmann; N. Armansin; A.L. Ferchaud; E. Normandeau; L. Bernatchez; R. Harcourt; H. Ahonen; A. Lowther; S.D. Goldsworthy; A. Stow Low effective population size in the genetically bottlenecked Australian sea lion is insufficient to maintain genetic variation, Animal Conservation, Volume 24 (2021) no. 5, p. 847 | DOI:10.1111/acv.12688
  • Li Yiming; Wang Siqi; Cheng Chaoyuan; Zhang Jiaqi; Wang Supen; Hou Xianglei; Liu Xuan; Yang Xuejiao; Li Xianping Latitudinal gradients in genetic diversity and natural selection at a highly adaptive gene in terrestrial mammals, Ecography, Volume 44 (2021) no. 2, p. 206 | DOI:10.1111/ecog.05082
  • Muhammad Azhar Nadeem; Stalin Juan Vasquez Guizado; Muhammad Qasim Shahid; Muhammad Amjad Nawaz; Ephrem Habyarimana; Sezai Ercişli; Fawad Ali; Tolga Karaköy; Muhammad Aasim; Rüştü Hatipoğlu; Juan Carlos Castro Gómez; Jorge Luis Marapara del Aguila; Pedro Marcelino Adrianzén Julca; Esperanza Torres Canales; Seung Hwan Yang; Gyuhwa Chung; Faheem Shehzad Baloch In-Depth Genetic Diversity and Population Structure of Endangered Peruvian Amazon Rosewood Germplasm Using Genotyping by Sequencing (GBS) Technology, Forests, Volume 12 (2021) no. 2, p. 197 | DOI:10.3390/f12020197
  • Yueqi Tao; Bin Chen; Ming Kang; Yongbo Liu; Jing Wang Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of Cycas From China, Frontiers in Genetics, Volume 12 (2021) | DOI:10.3389/fgene.2021.717200
  • Sara Zupan; Jure Jugovic; Tatjana Čelik; Elena Buzan Population genetic structure of the highly endangered butterfly Coenonympha oedippus (Nymphalidae: Satyrinae) at its southern edge of distribution, Genetica, Volume 149 (2021) no. 1, p. 21 | DOI:10.1007/s10709-020-00108-0
  • Muhammad Mukhlis Kamal; Nurlisa A Butet; Endah Sri Rahayu; Agus Alim Hakim Identifikasi Karakterstik Molekuler Gen 16S rRNA Parsial pada Paus Sperma (Physeter macrocephalus Linnaeus, 1758), Habitus Aquatica, Volume 2 (2021) no. 1 | DOI:10.29244/haj.2.1.21
  • Malene Nygaard; Petri Kemppainen; James D. M. Speed; Reidar Elven; Kjell Ivar Flatberg; Leif P. Galten; Narjes Yousefi; Heidi Solstad; Mika Bendiksby Combining population genomics and ecological niche modeling to assess taxon limits between Carex jemtlandica and C. lepidocarpa, Journal of Systematics and Evolution, Volume 59 (2021) no. 4, p. 627 | DOI:10.1111/jse.12743
  • Lauren J. Hale; Kun Shi; Tania C. Gilbert; Kelvin S.-H. Peh; Philip Riordan Social structure and demography of a remnant Asian elephantElephas maximuspopulation and the implications for survival, Oryx, Volume 55 (2021) no. 3, p. 473 | DOI:10.1017/s0030605319000504
  • Full Issue PDF, Phytobiomes Journal, Volume 5 (2021) no. 3, p. 249 | DOI:10.1094/pbiomes-5-3
  • M. K. Chock; B. K. Hoyt; A. S. Amend Mycobiome Transplant Increases Resistance toAustropuccinia psidiiin an Endangered Hawaiian Plant, Phytobiomes Journal, Volume 5 (2021) no. 3, p. 326 | DOI:10.1094/pbiomes-09-20-0065-r
  • Carlos Martel; Giovanni Scopece; Salvatore Cozzolino; Manfred Ayasse; Fabio Pinheiro; Donata Cafasso Genetic diversity in natural populations of the endangered Neotropical orchidTelipogon peruvianus, Plant Species Biology, Volume 36 (2021) no. 1, p. 6 | DOI:10.1111/1442-1984.12291
  • Bismay Ranjan Tripathy; Xuehua Liu; Melissa Songer; Babar Zahoor; W. M. S. Wickramasinghe; Kirti Kumar Mahanta Analysis of Landscape Connectivity among the Habitats of Asian Elephants in Keonjhar Forest Division, India, Remote Sensing, Volume 13 (2021) no. 22, p. 4661 | DOI:10.3390/rs13224661
  • K. Abicair; A. D. Manning; F. Ford; J. Newport; S. C. Banks Habitat selection and genetic diversity of a reintroduced ‘refugee species’, Animal Conservation, Volume 23 (2020) no. 3, p. 330 | DOI:10.1111/acv.12550
  • Roseina Woods; Samuel T. Turvey; Selina Brace; Christopher V. McCabe; Love Dalén; Emily J. Rayfield; Mark J. F. Brown; Ian Barnes Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean “island-shrews”, BMC Evolutionary Biology, Volume 20 (2020) no. 1 | DOI:10.1186/s12862-020-01668-7
  • Vincenzo Penteriani; Mario Melletti Bears of the World, 2020 | DOI:10.1017/9781108692571
  • Tomoko Doko; Wenbo Chen; Reina Uno; Hidetoshi B. Tamate; A.G. Toxopeus; A.K. Skidmore; Hiromichi Fukui Potential Ecological Corridors for Remnant Asiatic Black Bear Populations and its Subpopulations Linked to Management Units in Japan, Bears of the World (2020), p. 356 | DOI:10.1017/9781108692571.026
  • Chao-Nan Liu; Yuan-Yuan Li; Rong Wang; Xiao-Yong Chen Genetic factors are less considered than demographic characters in delisting species, Biological Conservation, Volume 251 (2020), p. 108791 | DOI:10.1016/j.biocon.2020.108791
  • Grover J. Brown; Brian R. Kreiser Characterization of Microsatellite Loci for the Razorback Musk Turtle (Sternotherus carinatus) and Their Cross-Amplification in Five Other Species in the Family Kinosternidae, Chelonian Conservation and Biology, Volume 19 (2020) no. 1, p. 145 | DOI:10.2744/ccb-1424.1
  • Danielle A. Schmidt; Purnima Govindarajulu; Karl W. Larsen; Michael A. Russello Genotyping‐in‐Thousands by sequencing reveals marked population structure in Western Rattlesnakes to inform conservation status, Ecology and Evolution, Volume 10 (2020) no. 14, p. 7157 | DOI:10.1002/ece3.6416
  • Aparna Chandrashekar; Jessica A. Knierim; Sohail Khan; Dominique L. Raboin; Sateesh Venkatesh; Tara A. Clarke; Frank P. Cuozzo; Marni LaFleur; Richard R. Lawler; Joyce A. Parga; Hantanirina R. Rasamimanana; Kim E. Reuter; Michelle L. Sauther; Andrea L. Baden Genetic population structure of endangered ring‐tailed lemurs (Lemur catta) from nine sites in southern Madagascar, Ecology and Evolution, Volume 10 (2020) no. 15, p. 8030 | DOI:10.1002/ece3.6337
  • Shambhu Paudel; John L. Koprowski Factors affecting the persistence of endangered Ganges River dolphins (Platanista gangetica gangetica), Ecology and Evolution, Volume 10 (2020) no. 6, p. 3138 | DOI:10.1002/ece3.6102
  • Vincent N. Naude; Guy A. Balme; Justin O'Riain; Luke T.B. Hunter; Julien Fattebert; Tristan Dickerson; Jacqueline M. Bishop Unsustainable anthropogenic mortality disrupts natal dispersal and promotes inbreeding in leopards, Ecology and Evolution, Volume 10 (2020) no. 8, p. 3605 | DOI:10.1002/ece3.6089
  • Yanwen Deng; Tingting Liu; Yuqing Xie; Yaqing Wei; Zicai Xie; Youhai Shi; Xiaomei Deng High Genetic Diversity and Low Differentiation in Michelia shiluensis, an Endangered Magnolia Species in South China, Forests, Volume 11 (2020) no. 4, p. 469 | DOI:10.3390/f11040469
  • Mariana Degrati; Rocio Loizaga; Mariano A. Coscarella; Nicolás Sueyro; Enrique A. Crespo; Silvana L. Dans Integrating Multiple Techniques to Estimate Population Size of an Impacted Dusky Dolphin’s Population in Patagonia, Argentina, Frontiers in Marine Science, Volume 7 (2020) | DOI:10.3389/fmars.2020.00289
  • Alexandre Mariot; Tiago Montagna; Maurício Sedrez dos Reis Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation, Journal of Forestry Research, Volume 31 (2020) no. 4, p. 1325 | DOI:10.1007/s11676-019-00934-9
  • Adrianna Kilikowska; Monika Mioduchowska; Anna Wysocka; Agnieszka Kaczmarczyk-Ziemba; Joanna Rychlińska; Katarzyna Zając; Tadeusz Zając; Povilas Ivinskis; Jerzy Sell The Patterns and Puzzles of Genetic Diversity of Endangered Freshwater Mussel Unio crassus Philipsson, 1788 Populations from Vistula and Neman Drainages (Eastern Central Europe), Life, Volume 10 (2020) no. 7, p. 119 | DOI:10.3390/life10070119
  • Chen Yang; En-Jiao Zhu; Qiu-Ju He; Chuan-Hui Yi; Xu-Bo Wang; Shao-Ji Hu; Shu-Jun Wei Strong genetic differentiation among populations of Cheirotonus gestroi (Coleoptera: Euchiridae) in its native area sheds lights on species conservation, Mitochondrial DNA Part A, Volume 31 (2020) no. 3, p. 108 | DOI:10.1080/24701394.2020.1741565
  • Zlatko Liber; Boštjan Surina; Toni Nikolić; Danijel Škrtić; Zlatko Šatović Spatial distribution, niche ecology and conservation genetics of Degenia velebitica (Brassicaceae), a narrow endemic species of the north-western Dinaric Alps, Plant Systematics and Evolution, Volume 306 (2020) no. 4 | DOI:10.1007/s00606-020-01695-3
  • Xuelin Lu; Hailing Chen; Sujuan Wei; Xiaoyun Bin; Quanqing Ye; Shaoqing Tang Chloroplast and nuclear DNA analyses provide insight into the phylogeography and conservation genetics of Camellia nitidissima (Theaceae) in southern Guangxi, China, Tree Genetics Genomes, Volume 16 (2020) no. 1 | DOI:10.1007/s11295-019-1390-1
  • Joan Manubens; Oriol Comas; Núria Valls; Lluís Benejam First Captive Breeding Program for the Endangered Pyrenean Sculpin (Cottus hispaniolensis Bacescu-Master, 1964), Water, Volume 12 (2020) no. 11, p. 2986 | DOI:10.3390/w12112986
  • Alejandra L. Goncalves; María V. García; Myriam Heuertz; Santiago C. González-Martínez Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae), Annals of Forest Science, Volume 76 (2019) no. 1 | DOI:10.1007/s13595-019-0797-z
  • Suhadi; Dwi Listyorini; Riri Wiyanti Retnaningtyas; Fima Rizki Eka Putri; Dina Ayu Valentiningrum Genetic identification of Javan hawk-eagle (Nisaetus bartelsi) from Indonesia using mitochondrial COI gene, Asia Pacific Journal of Molecular Biology and Biotechnology (2019), p. 70 | DOI:10.35118/apjmbb.2019.027.2.10
  • Codie Murphy; Scott Burnett; Gabriel C. Conroy; Brett W. A. Howland; Robert W. Lamont; Joanna Sumner; Steven M. Ogbourne Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated population, Conservation Genetics, Volume 20 (2019) no. 2, p. 245 | DOI:10.1007/s10592-018-1127-y
  • Miguel Busarello Lauterjung; Tiago Montagna; Alison Paulo Bernardi; Juliano Zago da Silva; Newton Clóvis Freitas da Costa; Felipe Steiner; Adelar Mantovani; Maurício Sedrez dos Reis Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape, Forest Ecology and Management, Volume 435 (2019), p. 144 | DOI:10.1016/j.foreco.2018.12.058
  • Shannon R. Kjeldsen; Herman W. Raadsma; Kellie A. Leigh; Jennifer R. Tobey; David Phalen; Andrew Krockenberger; William A. Ellis; Emily Hynes; Damien P. Higgins; Kyall R. Zenger Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments, Heredity, Volume 122 (2019) no. 5, p. 525 | DOI:10.1038/s41437-018-0144-4
  • Fernanda de Góes Maciel; Danilo Aqueu Rufo; Alexine Keuroghlian; Anna Carolina Russo; Nathalia Moreschi Brandt; Nataly Fernandes Vieira; Bruna Moura da Nóbrega; Alessandra Nava; Marcello Schiavo Nardi; Anah Tereza de Almeida Jácomo; Leandro Silveira; Mariana Malzoni Furtado; Natália Mundim Tôrres; Cristina Yumi Miyaki; Leandro Reverberi Tambosi; Cibele Biondo Genetic diversity and population structure of white-lipped peccaries (Tayassu pecari) in the Pantanal, Cerrado and Atlantic Forest from Brazil, Mammalian Biology, Volume 95 (2019), p. 85 | DOI:10.1016/j.mambio.2019.03.001
  • Gabriel C. Conroy; Yoko Shimizu-Kimura; Robert W. Lamont; Steven M. Ogbourne; Ricardo Alia A multidisciplinary approach to inform assisted migration of the restricted rainforest tree, Fontainea rostrata, PLOS ONE, Volume 14 (2019) no. 1, p. e0210560 | DOI:10.1371/journal.pone.0210560
  • Alifa Bintha Haque; Sudipta Arka Das; Aparna Riti Biswas; Brian Gratwicke DNA analysis of elasmobranch products originating from Bangladesh reveals unregulated elasmobranch fishery and trade on species of global conservation concern, PLOS ONE, Volume 14 (2019) no. 9, p. e0222273 | DOI:10.1371/journal.pone.0222273
  • Baiba Ieviņa; Nils Rostoks; Naeem H. Syed; Andrew J. Flavell; Gederts Ievinsh Genetic Diversity and Structure of Northern Populations of the Declining Coastal Plant Eryngium maritimum, Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., Volume 73 (2019) no. 5, p. 446 | DOI:10.2478/prolas-2019-0008
  • Yayan Wahyu C. Kusuma; Siti R. Ariati; Rosniati A. Risna; Chika Mitsuyuki; Yoshihisa Suyama; Yuji Isagi Seedling Selection Using Molecular Approach for Ex Situ Conservation of Critically Endangered Tree Species (Vatica bantamensis (Hassk.) Benth. Hook. ex Miq.) in Java, Indonesia, Tropical Conservation Science, Volume 12 (2019) | DOI:10.1177/1940082919849506
  • Marina Lopes Grassi-Sella; Carlos Alberto Garófalo; Tiago Mauricio Francoy Morphological similarity of widely separated populations of two Euglossini (Hymenoptera; Apidae) species based on geometric morphometrics of wings, Apidologie, Volume 49 (2018) no. 2, p. 151 | DOI:10.1007/s13592-017-0536-0
  • Yunjie Tu; Jingting Shu; Gaige Ji; Ming Zhang; Jianmin Zou Monitoring conservation effects on a Chinese indigenous chicken breed using major histocompatibility complex B-G gene and DNA Barcodes, Asian-Australasian Journal of Animal Sciences, Volume 31 (2018) no. 10, p. 1558 | DOI:10.5713/ajas.17.0627
  • Meghan Britt; Sarah E. Haworth; Justin B. Johnson; Daria Martchenko; Aaron B.A. Shafer The importance of non-academic coauthors in bridging the conservation genetics gap, Biological Conservation, Volume 218 (2018), p. 118 | DOI:10.1016/j.biocon.2017.12.019
  • Petra Kaczensky; Ekaterina Kovtun; Rustam Habibrakhmanov; Mahmoud-Reza Hemami; Amirhossein Khaleghi; John D. C. Linnell; Eldar Rustamov; Sergey Sklyarenko; Chris Walzer; Steffen Zuther; Ralph Kuehn Genetic characterization of free-ranging Asiatic wild ass in Central Asia as a basis for future conservation strategies, Conservation Genetics, Volume 19 (2018) no. 5, p. 1169 | DOI:10.1007/s10592-018-1086-3
  • Lenice Souza-Shibatta; Thais Kotelok-Diniz; Dhiego G. Ferreira; Oscar A. Shibatta; Silvia H. Sofia; Lucileine de Assumpção; Suelen F. R. Pini; Sergio Makrakis; Maristela C. Makrakis Genetic Diversity of the Endangered Neotropical Cichlid Fish (Gymnogeophagus setequedas) in Brazil, Frontiers in Genetics, Volume 9 (2018) | DOI:10.3389/fgene.2018.00013
  • E. Anne Hatmaker; Margaret E. Staton; Adam J. Dattilo; Ðenita Hadziabdic; Timothy A. Rinehart; Edward E. Schilling; Robert N. Trigiano; Phillip A. Wadl Population Structure and Genetic Diversity Within the Endangered Species Pityopsis ruthii (Asteraceae), Frontiers in Plant Science, Volume 9 (2018) | DOI:10.3389/fpls.2018.00943
  • Aslak Kappel Hansen; Mathias Just Justesen; Morten Tange Olsen; Alexey Solodovnikov; Laurence Packer; Nusha Keyghobadi Genomic population structure and conservation of the red listed Carabus arcensis (Coleoptera: Carabidae) in island–mainland habitats of Northern Europe, Insect Conservation and Diversity, Volume 11 (2018) no. 3, p. 255 | DOI:10.1111/icad.12268
  • Marcia Sittenthaler; Florian Kunz; Aneta Szymusik; Veronika Grünschachner‐Berger; Susanne Krumböck; Christian Stauffer; Ursula Nopp‐Mayr Fine‐scale genetic structure in an eastern Alpine black grouse Tetrao tetrix metapopulation, Journal of Avian Biology, Volume 49 (2018) no. 5 | DOI:10.1111/jav.01681
  • Maite Zarranz Elso; Pablo Manent; Rafael R. Robaina Zostera noltiiin the Canary Islands: A Genetic Description for Conservation Purposes, Journal of Coastal Research, Volume 345 (2018), p. 1129 | DOI:10.2112/jcoastres-d-17-00025.1
  • Subramani Pandian; Karuppasamy Marichelvam; Lakkakula Satish; Stanislaus Antony Ceasar; Shunmugiah Karutha Pandian; Manikandan Ramesh SPAR Markers-Assisted Assessment of Genetic Diversity and Population Structure in Finger Millet (Eleusine Coracana (L.) Gaertn) Mini-Core Collection, Journal of Crop Science and Biotechnology, Volume 21 (2018) no. 5, p. 469 | DOI:10.1007/s12892-018-0034-0
  • A. A. Trifonova; E. Z. Kochieva; A. M. Kudryavtsev Low Level of Genetic Differentiation among Populations of Rare Species Allium regelianum A.K. Becker ex Iljin from the Volgograd Oblast Detected by ISSR Analysis, Russian Journal of Genetics: Applied Research, Volume 8 (2018) no. 1, p. 52 | DOI:10.1134/s2079059718010136
  • Yuanita Windusari; Laila Hanum; Rizki Wahyudi, Volume 1903 (2017), p. 040011 | DOI:10.1063/1.5011530
  • Sílvia Pérez-Espona Conservation genetics in the European Union – Biases, gaps and future directions, Biological Conservation, Volume 209 (2017), p. 130 | DOI:10.1016/j.biocon.2017.01.020
  • Antonella Soro; J. Javier G. Quezada-Euan; Panagiotis Theodorou; Robin F. A. Moritz; Robert J. Paxton The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity, Conservation Genetics, Volume 18 (2017) no. 3, p. 607 | DOI:10.1007/s10592-016-0912-8
  • Aya A Trifonova; Elena Z Kochieva; Alexander M Kudryavtsev Low level of genetic differentiation among populations of the rare species Allium regelianum A.K. Becker ex Iljin from the Volgograd region detected by ISSR-analysis, Ecological genetics, Volume 15 (2017) no. 1, p. 30 | DOI:10.17816/ecogen15130-37
  • Trent Santonastaso; Jackie Lighten; Cock van Oosterhout; Kenneth L. Jones; Johannes Foufopoulos; Nicola M. Anthony The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii, Ecology and Evolution, Volume 7 (2017) no. 13, p. 4568 | DOI:10.1002/ece3.3022
  • Marco A.A. Schetino; Raphael T.F. Coimbra; Fabrício R. Santos Time scaled phylogeography and demography of Bradypus torquatus (Pilosa: Bradypodidae), Global Ecology and Conservation, Volume 11 (2017), p. 224 | DOI:10.1016/j.gecco.2017.07.002
  • M. Zarranz Elso; P. Manent; A. Luque; M. Ramdani; R.R. Robaina Genetic Description and Remote Sensing Techniques as Management Tools for Zostera noltii Seagrass Populations along the Atlantic Moroccan Coast, Journal of Coastal Research, Volume 33 (2017) no. 1, p. 78 | DOI:10.2112/jcoastres-d-15-00111.1
  • Marcia Patricia Hoeltgebaum; Maurício Sedrez dos Reis Genetic Diversity and Population Structure of Varronia curassavica: A Medicinal Polyploid Species in a Threatened Ecosystem, Journal of Heredity, Volume 108 (2017) no. 4, p. 415 | DOI:10.1093/jhered/esx010
  • F. Gillet; M. T. Cabria Garrido; F. Blanc; C. Fournier-Chambrillon; M. Némoz; E. Sourp; C. Vial-Novella; R. Zardoya; S. Aulagnier; J. R. Michaux Evidence of fine-scale genetic structure for the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees, Journal of Mammalogy, Volume 98 (2017) no. 2, p. 523 | DOI:10.1093/jmammal/gyx002
  • Dariusz Kaczmarczyk; Stefan Dobosz; Aleksandra Kaczor Prediction of Genetic Variation in Stocks of Offspring and Its Correlation with Viability and Growth Rate, Journal of the World Aquaculture Society, Volume 48 (2017) no. 5, p. 802 | DOI:10.1111/jwas.12396
  • Jae Hwan Kim; Ji Hyoun Kang; Ji Eun Jang; Sun Kyeong Choi; Min Ji Kim; Sang Rul Park; Hyuk Je Lee; Tzen-Yuh Chiang Population genetic structure of eelgrass (Zostera marina) on the Korean coast: Current status and conservation implications for future management, PLOS ONE, Volume 12 (2017) no. 3, p. e0174105 | DOI:10.1371/journal.pone.0174105
  • Lauren M. Gardiner; Mijoro Rakotoarinivo; Landy R. Rajaovelona; Colin Clubbe Population genetics data help to guide the conservation of palm species with small population sizes and fragmented habitats in Madagascar, PeerJ, Volume 5 (2017), p. e3248 | DOI:10.7717/peerj.3248
  • Emilio Valbuena-Ureña; Anna Soler-Membrives; Sebastian Steinfartz; Mònica Alonso; Francesc Carbonell; Raquel Larios-Martín; Elena Obon; Salvador Carranza Getting off to a good start? Genetic evaluation of the ex situ conservation project of the Critically Endangered Montseny brook newt (Calotriton arnoldi), PeerJ, Volume 5 (2017), p. e3447 | DOI:10.7717/peerj.3447
  • Jong‐Soo Kang; Byoungyoon Lee; Myounghai Kwak Isolation and characterization of microsatellite markers for Viola mirabilis (Violaceae) using a next‐generation sequencing platform, Plant Species Biology, Volume 32 (2017) no. 4, p. 448 | DOI:10.1111/1442-1984.12159
  • Rurik List; Pilar Rodríguez; Karla Pelz-Serrano; Julieta Benítez-Malvido; Juan Manuel Lobato La conservación en México: exploración de logros, retos y perspectivas desde la ecología terrestre, Revista Mexicana de Biodiversidad, Volume 88 (2017), p. 65 | DOI:10.1016/j.rmb.2017.10.007
  • Beiwei Hou; Jing Luo; Yusi Zhang; Zhitao Niu; Qingyun Xue; Xiaoyu Ding Iteration expansion and regional evolution: phylogeography of Dendrobium officinale and four related taxa in southern China, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/srep43525
  • Jun J. Sato; Yurina Tasaka; Ryoya Tasaka; Kentaro Gunji; Yuya Yamamoto; Yasushi Takada; Yasushi Uematsu; Eiichi Sakai; Takashi Tateishi; Yasunori Yamaguchi Effects of Isolation by Continental Islands in the Seto Inland Sea, Japan, on Genetic Diversity of the Large Japanese Field Mouse, Apodemus speciosus (Rodentia: Muridae), Inferred from the Mitochondrial Dloop Region, Zoological Science, Volume 34 (2017) no. 2, p. 112 | DOI:10.2108/zs160113
  • E A Ukenye; I A Taiwo; O R Oguntade; T O Oketoki; A B Usman Molecular characterization and genetic diversity assessment of Tilapia guineensis from some coastal rivers in Nigeria, African Journal of Biotechnology, Volume 15 (2016) no. 1, p. 20 | DOI:10.5897/ajb2015.14599
  • Baleshwar Meena; Vandana Tiwari; Niraj Singh; Kamalesh Singh Mahar; Yogesh Kumar Sharma; Tikam Singh Rana Estimation of genetic variability and population structure in Ephedra gerardiana Wall. ex Stapf (Ephedraceae): An endangered and endemic high altitude medicinal plant, Agri Gene, Volume 1 (2016), p. 116 | DOI:10.1016/j.aggene.2016.08.002
  • Charlotte C. Germain‐Aubrey; Cory Nelson; Douglas E. Soltis; Pamela S. Soltis; Matthew A. Gitzendanner Are microsatellite fragment lengths useful for population‐level studies? The case of Polygala lewtonii (Polygalaceae), Applications in Plant Sciences, Volume 4 (2016) no. 2 | DOI:10.3732/apps.1500115
  • Stefania Coppa; G. Andrea De Lucia; Giorgio Massaro; Andrea Camedda; Stefano Marra; Paolo Magni; Angelo Perilli; Massimiliano Di Bitetto; José Carlos García‐Gómez; Free Espinosa Is the establishment of MPAs enough to preserve endangered intertidal species? The case of Patella ferruginea in Mal di Ventre Island (W Sardinia, Italy), Aquatic Conservation: Marine and Freshwater Ecosystems, Volume 26 (2016) no. 4, p. 623 | DOI:10.1002/aqc.2579
  • S. Roques; R. Sollman; A. Jácomo; N. Tôrres; L. Silveira; C. Chávez; C. Keller; D. Mello do Prado; P. Carignano Torres; C. Jorge dos Santos; X. Bernardes Garcia da Luz; W. E. Magnusson; J. A. Godoy; G Ceballos; F. Palomares Effects of habitat deterioration on the population genetics and conservation of the jaguar, Conservation Genetics, Volume 17 (2016) no. 1, p. 125 | DOI:10.1007/s10592-015-0766-5
  • Jani Rózsa; Tanja M. Strand; Marc Montadert; Radoslav Kozma; Jacob Höglund Effects of a range expansion on adaptive and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French Alps, Conservation Genetics, Volume 17 (2016) no. 2, p. 401 | DOI:10.1007/s10592-015-0792-3
  • Minami Sasaki; Michael P. Hammer; Peter J. Unmack; Mark Adams; Luciano B. Beheregaray Population genetics of a widely distributed small freshwater fish with varying conservation concerns: the southern purple-spotted gudgeon, Mogurnda adspersa, Conservation Genetics, Volume 17 (2016) no. 4, p. 875 | DOI:10.1007/s10592-016-0829-2
  • Yoshihisa Abe; Kazuki Miura; Hayato Ito; Masaya Yago; Sang‐Kyun Koh; Kouhei Murata; Hideji Yamashita Origins of recently re‐established and newly discovered populations of the endangered butterfly Shijimiaeoides divinus (Lepidoptera: Lycaenidae) in Oita Prefecture, Japan, Entomological Science, Volume 19 (2016) no. 4, p. 458 | DOI:10.1111/ens.12220
  • Lynne Sheila Sandmeyer; Rebecca Bellone Inherited ocular disorders, Equine Ophthalmology (2016), p. 545 | DOI:10.1002/9781119047919.ch13
  • Christine Figgener; Didiher Chacón-Chaverri; Michael P. Jensen; Heike Feldhaar Paternity re-visited in a recovering population of Caribbean leatherback turtles (Dermochelys coriacea), Journal of Experimental Marine Biology and Ecology, Volume 475 (2016), p. 114 | DOI:10.1016/j.jembe.2015.11.014
  • Robert R. Fitak; Ashwin Naidu; Ron W. Thompson; Melanie Culver A New Panel of SNP Markers for the Individual Identification of North American Pumas, Journal of Fish and Wildlife Management, Volume 7 (2016) no. 1, p. 13 | DOI:10.3996/112014-jfwm-080
  • Balsam Al-Janabi; Inken Kruse; Angelika Graiff; Ulf Karsten; Martin Wahl Genotypic variation influences tolerance to warming and acidification of early life-stage Fucus vesiculosus L. (Phaeophyceae) in a seasonally fluctuating environment, Marine Biology, Volume 163 (2016) no. 1 | DOI:10.1007/s00227-015-2804-8
  • Alexander Knight; Hazel M. Chapman; Marie Hale Habitat fragmentation and its implications for Endangered chimpanzeePan troglodytesconservation, Oryx, Volume 50 (2016) no. 3, p. 533 | DOI:10.1017/s0030605315000332
  • Monika Szczecińska; Gabor Sramko; Katarzyna Wołosz; Jakub Sawicki; Dusan Gomory Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe, PLOS ONE, Volume 11 (2016) no. 3, p. e0151730 | DOI:10.1371/journal.pone.0151730
  • Balsam Al-Janabi; Inken Kruse; Angelika Graiff; Vera Winde; Mark Lenz; Martin Wahl; Giacomo Bernardi Buffering and Amplifying Interactions among OAW (Ocean Acidification Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact, PLOS ONE, Volume 11 (2016) no. 4, p. e0152948 | DOI:10.1371/journal.pone.0152948
  • Katarzyna Bilska; Monika Szczecińska Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics ofPulsatilla patenspopulations, PeerJ, Volume 4 (2016), p. e2504 | DOI:10.7717/peerj.2504
  • Animos Lamare; Indrani Baruah; Nayanmoni Borah; Satyawada Rama Rao Analysis of intraspecific genetic variation in Musa balbisiana Colla from Meghalaya as revealed by Single Primer Amplification Reaction approach, The Nucleus, Volume 59 (2016) no. 1, p. 25 | DOI:10.1007/s13237-016-0161-8
  • Fu Qin Wu; Shi Kang Shen; Xin Jun Zhang; Yue Hua Wang; Wei Bang Sun Genetic diversity and population structure of an extremely endangered species: the world's largest Rhododendron, AoB PLANTS, Volume 7 (2015) | DOI:10.1093/aobpla/plu082
  • Akshay Nag; Paramvir Singh Ahuja; Ram Kumar Sharma Genetic diversity of high-elevation populations of an endangered medicinal plant, AoB PLANTS, Volume 7 (2015) | DOI:10.1093/aobpla/plu076
  • Katie O'Connor; Michael Powell; Catherine Nock; Alison Shapcott Crop to wild gene flow and genetic diversity in a vulnerable Macadamia (Proteaceae) species in New South Wales, Australia, Biological Conservation, Volume 191 (2015), p. 504 | DOI:10.1016/j.biocon.2015.08.001
  • E. M. Martins; R. W. Lamont; G. Martinelli; C. F. Lira-Medeiros; A. Quinet; A. Shapcott Genetic diversity and population genetic structure in three threatened Ocotea species (Lauraceae) from Brazil’s Atlantic Rainforest and implications for their conservation, Conservation Genetics, Volume 16 (2015) no. 1, p. 1 | DOI:10.1007/s10592-014-0635-7
  • Xiaoping He; Chris C. Wilson; Kyle W. Wellband; Aimee Lee S. Houde; Bryan D. Neff; Daniel D. Heath Transcriptional profiling of two Atlantic salmon strains: implications for reintroduction into Lake Ontario, Conservation Genetics, Volume 16 (2015) no. 2, p. 277 | DOI:10.1007/s10592-014-0657-1
  • Meaghan L. Rourke; Dean M. Gilligan Complex biogeography and historic translocations lead to complicated phylogeographic structure of freshwater eel-tailed catfish (Tandanus spp.) in south-eastern Australia, Conservation Genetics, Volume 16 (2015) no. 4, p. 777 | DOI:10.1007/s10592-015-0699-z
  • Jefferson Monteiro Henriques; Guilherme José Costa Silva; Fernando Yuldi Ashikaga; Robert Hanner; Fausto Foresti; Claudio Oliveira Use of DNA barcode in the identification of fish species from Ribeira de Iguape Basin and coastal rivers from São Paulo State (Brazil), DNA Barcodes, Volume 3 (2015) no. 1 | DOI:10.1515/dna-2015-0015
  • Giulia Pisa; Valerio Orioli; Giulia Spilotros; Elena Fabbri; Ettore Randi; Luciano Bani Detecting a hierarchical genetic population structure: the case study of the Fire Salamander (Salamandra salamandra) in Northern Italy, Ecology and Evolution, Volume 5 (2015) no. 3, p. 743 | DOI:10.1002/ece3.1335
  • Fernando Yuldi Ashikaga; Mario Luis Orsi; Claudio Oliveira; José Augusto Senhorini; Fausto Foresti The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation, Environmental Biology of Fishes, Volume 98 (2015) no. 7, p. 1845 | DOI:10.1007/s10641-015-0402-8
  • Bilal A. Tali; Aijaz H. Ganie; Irshad A. Nawchoo; Aijaz A. Wani; Zafar A. Reshi Assessment of threat status of selected endemic medicinal plants using IUCN regional guidelines: A case study from Kashmir Himalaya, Journal for Nature Conservation, Volume 23 (2015), p. 80 | DOI:10.1016/j.jnc.2014.06.004
  • Anne‐Laure Ferchaud; Rémy Eudeline; Véronique Arnal; Marc Cheylan; Gilles Pottier; Raphaël Leblois; Pierre‐André Crochet Congruent signals of population history but radically different patterns of genetic diversity between mitochondrial and nuclear markers in a mountain lizard, Molecular Ecology, Volume 24 (2015) no. 1, p. 192 | DOI:10.1111/mec.13011
  • Carol T. Tran; Ania M. Wieczorek; Clifford W. Morden Genetic Structure and Diversity of a Rare Hawaiian Endemic,Lobelia villosa(Campanulaceae: Lobelioideae), Pacific Science, Volume 69 (2015) no. 3, p. 355 | DOI:10.2984/69.3.5
  • M.P. HOELTGEBAUM; A.P. BERNARDI; T. MONTAGNA; M.S REIS Diversidade e estrutura genética de populações de Varronia curassavica Jacq. em restingas da Ilha de Santa Catarina, Revista Brasileira de Plantas Medicinais, Volume 17 (2015) no. 4 suppl 3, p. 1083 | DOI:10.1590/1983-084x/14_120
  • Lia Maris Orth Ritter Antiqueira; Paulo Yoshio Kageyama REPRODUCTIVE SYSTEM AND POLLEN FLOW IN PROGENIES OF Qualea grandiflora Mart., A TYPICAL SPECIES OF THE BRAZILIAN CERRADO, Revista Árvore, Volume 39 (2015) no. 2, p. 337 | DOI:10.1590/0100-67622015000200013
  • S. Ya. Amstislavsky; E. Yu. Brusentsev; K. A. Okotrub; I. N. Rozhkova Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals, Russian Journal of Developmental Biology, Volume 46 (2015) no. 2, p. 47 | DOI:10.1134/s1062360415020022
  • Maria S. Lopes; Duarte Mendonça; Sílvia X. Bettencourt; Ana R. Borba; Catarina Melo; Cláudio Baptista; Artur da Câmara Machado Genetic diversity of an Azorean endemic and endangered plant species inferred from inter-simple sequence repeat markers, AoB PLANTS, Volume 6 (2014) | DOI:10.1093/aobpla/plu034
  • Chin-Shang Ho; Huei-Chuan Shih; Ho-Yih Liu; Shau-Ting Chiu; Mei-Hui Chen; Li-Ping Ju; Ya-Zhu Ko; Yu-Shen Shih; Chaur-Tzuhn Chen; Tsai-Wen Hsu; Yu-Chung Chiang Development and characterization of 16 polymorphic microsatellite markers from Taiwan cow-tail fir, Keteleeria davidiana var. formosana (Pinaceae) and cross-species amplification in other Keteleeria taxa, BMC Research Notes, Volume 7 (2014) no. 1 | DOI:10.1186/1756-0500-7-255
  • Andrew Storfer; Stephen G. Mech; Matthew W. Reudink; Kristen Lew Inbreeding and strong population subdivision in an endangered salamander, Conservation Genetics, Volume 15 (2014) no. 1, p. 137 | DOI:10.1007/s10592-013-0526-3
  • Samuel Boff; Antonella Soro; Robert J. Paxton; Isabel Alves-dos-Santos Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee, Conservation Genetics, Volume 15 (2014) no. 5, p. 1123 | DOI:10.1007/s10592-014-0605-0
  • V. A. Matrosova; L. E. Savinetskaya; O. N. Shekarova; S. V. Pivanova; M. Yu. Rusin; I. A. Volodin; E. V. Volodina; A. V. Tchabovsky Within- and between-population polymorphism of the mtDNA control region of the speckled ground squirrel (Spermophilus suslicus), Doklady Biological Sciences, Volume 455 (2014) no. 1, p. 143 | DOI:10.1134/s0012496614020197
  • Lia Maris Orth Ritter Antiqueira; Paulo Yoshio Kageyama Genetic diversity of four populations of Qualea grandiflora Mart. in fragments of the Brazilian Cerrado, Genetica, Volume 142 (2014) no. 1, p. 11 | DOI:10.1007/s10709-013-9750-5
  • Katharina Homburg; Patric Brandt; Claudia Drees; Thorsten Assmann Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change, Journal of Insect Conservation, Volume 18 (2014) no. 5, p. 781 | DOI:10.1007/s10841-014-9685-x
  • Jun J. Sato; Tsukasa Kawakami; Yurina Tasaka; Masaya Tamenishi; Yasunori Yamaguchi A Few Decades of Habitat Fragmentation has Reduced Population Genetic Diversity: A Case Study of Landscape Genetics of the Large Japanese Field Mouse,Apodemus speciosus, Mammal Study, Volume 39 (2014) no. 1, p. 1 | DOI:10.3106/041.039.0102
  • Amy Lynn Fletcher A Political History of Extinction, Mendel's Ark (2014), p. 15 | DOI:10.1007/978-94-017-9121-2_2
  • K. K. Musammilu; P. M. Abdul-Muneer; A. Gopalakrishnan; V. S. Basheer; Harishankar Gupta; Vindhya Mohindra; Kuldeep K. Lal; A. G. Ponniah Identification and characterization of microsatellite markers for the population genetic structure in endemic red-tailed barb, Gonoproktopterus curmuca, Molecular Biology Reports, Volume 41 (2014) no. 5, p. 3051 | DOI:10.1007/s11033-014-3164-z
  • Sabine Buurgaard Sørensen; Bjarne Larsen; Jihad Orabi; Marian Ørgaard Primula farinosa in Denmark; genetic diversity and population management, Nordic Journal of Botany, Volume 32 (2014) no. 4, p. 503 | DOI:10.1111/j.1756-1051.2013.00362.x
  • Rosane Garcia Collevatti; Raquel Estolano; Marina Lopes Ribeiro; Suelen Gonçalves Rabelo; Elizangela J. Lima; Cássia B. R. Munhoz High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species, Plant Systematics and Evolution, Volume 300 (2014) no. 7, p. 1671 | DOI:10.1007/s00606-014-0993-0
  • Igor J. Chybicki; Barbara Waldon-Rudzionek; Katarzyna Meyza Population at the edge: increased divergence but not inbreeding towards northern range limit in Acer campestre, Tree Genetics Genomes, Volume 10 (2014) no. 6, p. 1739 | DOI:10.1007/s11295-014-0793-2
  • Petra Dieker; Claudia Drees; Thomas Schmitt; Thorsten Assmann Low genetic diversity of a high mountain burnet moth species in the Pyrenees, Conservation Genetics, Volume 14 (2013) no. 1, p. 231 | DOI:10.1007/s10592-012-0424-0
  • Béatrice M. Frank; Philippe V. Baret Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout, Ecological Modelling, Volume 248 (2013), p. 184 | DOI:10.1016/j.ecolmodel.2012.09.017
  • David W. Macdonald; Katherine J. Willis Elephants in the room, Key Topics in Conservation Biology 2 (2013), p. 467 | DOI:10.1002/9781118520178.ch25
  • V. Rodríguez; R. P. Brown; B. Terrasa; V. Pérez‐Mellado; J. A. Castro; A. Picornell; M. M. Ramon Multilocus genetic diversity and historical biogeography of the endemic wall lizard from Ibiza and Formentera, Podarcis pityusensis (Squamata: Lacertidae), Molecular Ecology, Volume 22 (2013) no. 19, p. 4829 | DOI:10.1111/mec.12443
  • R. A. Coleman; A. R. Weeks; A. A. Hoffmann Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, Galaxiella pusilla (Mack) (Pisces: Galaxiidae), Molecular Ecology, Volume 22 (2013) no. 7, p. 1820 | DOI:10.1111/mec.12227
  • N. S. Zvyagina; O. V. Dorogina Genetic differentiation of Altai-Sayan endemic Hedysarum theinum Krasnob. (Fabaceae) evaluated by inter-simple sequence repeat analysis, Russian Journal of Genetics, Volume 49 (2013) no. 10, p. 1030 | DOI:10.1134/s102279541310013x
  • Y. R. Xu; J. H. Li; Y. Zhu; B. H. Sun Development of a microsatellite set for paternity assignment of captive rhesus macaques (Macaca mulatta) from Anhui Province, China, Russian Journal of Genetics, Volume 49 (2013) no. 7, p. 730 | DOI:10.1134/s1022795413070144
  • S. Caballero; V. Islas‐Villanueva; G. Tezanos‐Pinto; S. Duchene; A. Delgado‐Estrella; R. Sanchez‐Okrucky; A. A. Mignucci‐Giannoni; David Reed; Torsten Nygaard Kristensen Phylogeography, genetic diversity and population structure of common bottlenose dolphins in the Wider Caribbean inferred from analyses of mitochondrial DNA control region sequences and microsatellite loci: conservation and management implications, Animal Conservation, Volume 15 (2012) no. 1, p. 95 | DOI:10.1111/j.1469-1795.2011.00493.x
  • Maury Meirelles Gouvêa; Aluizio F.R. Araújo A population dynamics model to describe gene frequencies in evolutionary algorithms, Applied Soft Computing, Volume 12 (2012) no. 5, p. 1483 | DOI:10.1016/j.asoc.2012.01.004
  • José Alexandre Felizola Diniz-Filho; Dayane Borges Melo; Guilherme de Oliveira; Rosane Garcia Collevatti; Thannya Nascimento Soares; João Carlos Nabout; Jacqueline de Souza Lima; Ricardo Dobrovolski; Lázaro José Chaves; Ronaldo Veloso Naves; Rafael Dias Loyola; Mariana Pires de Campos Telles Planning for optimal conservation of geographical genetic variability within species, Conservation Genetics, Volume 13 (2012) no. 4, p. 1085 | DOI:10.1007/s10592-012-0356-8
  • Joaquín Ortego; Maria P. Aguirre; Pedro J. Cordero Landscape genetics of a specialized grasshopper inhabiting highly fragmented habitats: a role for spatial scale, Diversity and Distributions, Volume 18 (2012) no. 5, p. 481 | DOI:10.1111/j.1472-4642.2011.00840.x
  • Alireza Valdiani; Mihdzar Abdul Kadir; Mohd Said Saad; Daryush Talei; Soon-Guan Tan Intra-specific hybridization: Generator of genetic diversification and heterosis in Andrographis paniculata Nees. A bridge from extinction to survival, Gene, Volume 505 (2012) no. 1, p. 23 | DOI:10.1016/j.gene.2012.05.056
  • N. Dolgener; C. Schröder; N. Schneeweiss; R. Tiedemann Genetic population structure of the Fire-bellied toad Bombina bombina in an area of high population density: implications for conservation, Hydrobiologia, Volume 689 (2012) no. 1, p. 111 | DOI:10.1007/s10750-012-1016-1
  • Andrea S. Sequeira; Courtney C. Stepien; Manisha Sijapati; Lázaro Roque Albelo Comparative Genetic Structure and Demographic History in Endemic Galápagos Weevils, Journal of Heredity, Volume 103 (2012) no. 2, p. 206 | DOI:10.1093/jhered/esr124
  • Christiane Schröder; Ina Pokorny; Nicola Dolgener; Christoph Herden; Hauke Drews; Ralph Tiedemann Allochthonous individuals in managed populations of the fire-bellied toad Bombina bombina: Genetic detection and conservation implications, Limnologica, Volume 42 (2012) no. 4, p. 291 | DOI:10.1016/j.limno.2012.08.008
  • Sylvia Hofmann Population genetic structure and geographic differentiation in the hot spring snake Thermophis baileyi (Serpentes, Colubridae): Indications for glacial refuges in southern-central Tibet, Molecular Phylogenetics and Evolution, Volume 63 (2012) no. 2, p. 396 | DOI:10.1016/j.ympev.2012.01.014
  • Rosa Agudo; Martina Carrete; Miguel Alcaide; Ciro Rico; Fernando Hiraldo; José Antonio Donázar Genetic diversity at neutral and adaptive loci determines individual fitness in a long-lived territorial bird, Proceedings of the Royal Society B: Biological Sciences, Volume 279 (2012) no. 1741, p. 3241 | DOI:10.1098/rspb.2011.2606
  • José F. Vázquez; Trinidad Pérez; Francisco Quirós; José R. Obeso; Jesús Albornoz; Ana Domínguez Population genetic structure and diversity of the endangered Cantabrian capercaillie, The Journal of Wildlife Management, Volume 76 (2012) no. 5, p. 957 | DOI:10.1002/jwmg.346
  • M. Andreou; P. Delipetrou; C. Kadis; G. Tsiamis; K. Bourtzis; K. Georghiou An integrated approach for the conservation of threatened plants: The case of Arabis kennedyae (Brassicaceae), Acta Oecologica, Volume 37 (2011) no. 3, p. 239 | DOI:10.1016/j.actao.2011.02.007
  • Tomoko Doko; Hiromichi Fukui; Andre Kooiman; A.G. Toxopeus; Tomohiro Ichinose; Wenbo Chen; A.K. Skidmore Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan, Ecological Modelling, Volume 222 (2011) no. 3, p. 748 | DOI:10.1016/j.ecolmodel.2010.11.005
  • Raquel C. Ferreira; Roberta Piredda; Francesca Bagnoli; Rosanna Bellarosa; Marcella Attimonelli; Silvia Fineschi; Bartolomeo Schirone; Marco C. Simeone Phylogeography and conservation perspectives of an endangered macaronesian endemic: Picconia azorica (Tutin) Knobl. (Oleaceae), European Journal of Forest Research, Volume 130 (2011) no. 2, p. 181 | DOI:10.1007/s10342-010-0420-1
  • Davide M. Reis; Regina L. Cunha; Cláudia Patrão; Rui Rebelo; Rita Castilho Salamandra salamandra (Amphibia: Caudata: Salamandridae) in Portugal: not all black and yellow, Genetica, Volume 139 (2011) no. 9, p. 1095 | DOI:10.1007/s10709-011-9609-6
  • I J Chybicki; A Oleksa; J Burczyk Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data, Heredity, Volume 107 (2011) no. 6, p. 589 | DOI:10.1038/hdy.2011.51
  • Masaki TAKASU; Nana HIRAMATSU; Teruaki TOZAKI; Hironaga KAKOI; Telhisa HASEGAWA; Masami MAEDA; Satoshi KUSUDA; Osamu DOI; Tetsuma MURASE; Harutaka MUKOYAMA Population Statistics and Biological Traits of Endangered Kiso Horse, Journal of Equine Science, Volume 22 (2011) no. 4, p. 67 | DOI:10.1294/jes.22.67
  • JOAQUÍN ORTEGO; GLENN YANNIC; AARON B. A. SHAFER; JULIEN MAINGUY; MARCO FESTA-BIANCHET; DAVID W. COLTMAN; STEEVE D. CÔTÉ Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population, Molecular Ecology, Volume 20 (2011) no. 8, p. 1601 | DOI:10.1111/j.1365-294x.2011.05022.x
  • Jérémy Migliore; Alex Baumel; Marianick Juin; Katia Diadema; Laetitia Hugot; Régine Verlaque; Frédéric Médail Genetic diversity and structure of a Mediterranean endemic plant in Corsica (Mercurialis corsica, Euphorbiaceae), Population Ecology, Volume 53 (2011) no. 4, p. 573 | DOI:10.1007/s10144-011-0266-5
  • Sylvain Ursenbacher; Caren Alvarez; Georg F. J. Armbruster; Bruno Baur High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains, Conservation Genetics, Volume 11 (2010) no. 4, p. 1265 | DOI:10.1007/s10592-009-9956-3
  • A. Barnaud; G. J. Houliston Population genetics of the threatened tree daisy Olearia gardneri (Asteraceae), conservation of a critically endangered species, Conservation Genetics, Volume 11 (2010) no. 4, p. 1515 | DOI:10.1007/s10592-009-9981-2
  • Jennifer K. Schultz; Amy J. Marshall; Monika Pfunder Genome-Wide Loss of Diversity in the Critically Endangered Hawaiian Monk Seal, Diversity, Volume 2 (2010) no. 6, p. 863 | DOI:10.3390/d2060863
  • Vesna MILANKOV; Ljubinka FRANCUSKI; Jasmina LUDOŠKI; Gunilla STÅHLS; Ante VUJIĆ Genetic structure and phenotypic diversity of two northern populations of Cheilosia aff. longula (Diptera: Syrphidae) has implications for evolution and conservation, European Journal of Entomology, Volume 107 (2010) no. 3, p. 305 | DOI:10.14411/eje.2010.039
  • Dong Yibo; Pei Xinwu; Yuan Qianhua; Wu Hongjin; Wang Xujing; Jia Shirong; Peng Yufa Ecological, morphological and genetic diversity in Oryza rufipogon Griff. (Poaceae) from Hainan Island, China, Genetic Resources and Crop Evolution, Volume 57 (2010) no. 6, p. 915 | DOI:10.1007/s10722-009-9523-2
  • Heitor B. Bastos; Evonnildo C. Gonçalves; Stephen F. Ferrari; Artur Silva; Maria Paula C. Schneider Genetic structure of red-handed howler monkey populations in the fragmented landscape of Eastern Brazilian Amazonia, Genetics and Molecular Biology, Volume 33 (2010) no. 4, p. 774 | DOI:10.1590/s1415-47572010000400027
  • Jin Zhou; Zhong-Hua Cai; Xiao-Shan Zhu Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?, Integrated Environmental Assessment and Management, Volume 6 (2010) no. 3, p. 492 | DOI:10.1002/ieam.47
  • Vesna Milankov; Ljubinka Francuski; Jasmina Ludoški; Gunilla Ståhls; Ante Vujić Estimating genetic and phenotypic diversity in a northern hoverfly reveals lack of heterozygosity correlated with significant fluctuating asymmetry of wing traits, Journal of Insect Conservation, Volume 14 (2010) no. 1, p. 77 | DOI:10.1007/s10841-009-9226-1
  • Evonnildo C. Gonçalves; Stephen F. Ferrari; Tibério César T. Burlamaqui; Leonardo Miranda; Marcelo S. Santos; Artur Silva; Maria Paula C. Schneider Genetic diversity and differentiation of three Brazilian populations of Scarlet ibis (Eudocimus ruber), Journal of Ornithology, Volume 151 (2010) no. 4, p. 797 | DOI:10.1007/s10336-010-0515-y
  • MARÍA QUINTELA; SOFIA BERLIN; BIAO WANG; JACOB HÖGLUND Genetic diversity and differentiation among Lagopus lagopus populations in Scandinavia and Scotland: evolutionary significant units confirmed by SNP markers, Molecular Ecology, Volume 19 (2010) no. 12, p. 2380 | DOI:10.1111/j.1365-294x.2010.04648.x
  • W. TYLER McCRANEY; GREG GOLDSMITH; DAVID K. JACOBS; ANDREW P. KINZIGER Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi), Molecular Ecology, Volume 19 (2010) no. 16, p. 3315 | DOI:10.1111/j.1365-294x.2010.04755.x
  • REBECCA LANGE; WALTER DURKA; STEPHANIE I. J. HOLZHAUER; VOLKMAR WOLTERS; TIM DIEKÖTTER Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets, Molecular Ecology, Volume 19 (2010) no. 22, p. 4936 | DOI:10.1111/j.1365-294x.2010.04877.x
  • X.-Y. Chai; S.-L. Chen; W. Xu Using inter-simple sequence repeat markers to analyze the genetic structure of natural Pteroceltis tatarinowii populations and implications for species conservation, Plant Systematics and Evolution, Volume 285 (2010) no. 1-2, p. 65 | DOI:10.1007/s00606-009-0256-7
  • Veronica Nyström; Love Dalén; Sergey Vartanyan; Kerstin Lidén; Nils Ryman; Anders Angerbjörn Temporal genetic change in the last remaining population of woolly mammoth, Proceedings of the Royal Society B: Biological Sciences, Volume 277 (2010) no. 1692, p. 2331 | DOI:10.1098/rspb.2010.0301
  • L. Ruffino; K. Bourgeois; E. Vidal; C. Duhem; M. Paracuellos; F. Escribano; P. Sposimo; N. Baccetti; M. Pascal; D. Oro Invasive rats and seabirds after 2,000 years of an unwanted coexistence on Mediterranean islands, Biological Invasions, Volume 11 (2009) no. 7, p. 1631 | DOI:10.1007/s10530-008-9394-z
  • Andrea Matern; Konjev Desender; Claudia Drees; Eva Gaublomme; Wolfgang Paill; Thorsten Assmann Genetic diversity and population structure of the endangered insect species Carabus variolosus in its western distribution range: Implications for conservation, Conservation Genetics, Volume 10 (2009) no. 2, p. 391 | DOI:10.1007/s10592-008-9606-1
  • S. V. Titov; L. E. Savinetskaya; A. V. Tchabovsky High genetic diversity in the long-tailed ground squirrel (Spermophilus undulatus) population on Olkhon Island: A natural gene bank or the consequences of long-term isolation?, Doklady Biological Sciences, Volume 429 (2009) no. 1, p. 523 | DOI:10.1134/s001249660906012x
  • Kentaro Morita; Shoko H. Morita; Shoichiro Yamamoto Effects of habitat fragmentation by damming on salmonid fishes: lessons from white‐spotted charr in Japan, Ecological Research, Volume 24 (2009) no. 4, p. 711 | DOI:10.1007/s11284-008-0579-9
  • T. U. Berendonk; K. Spitze; W. C. Kerfoot Ephemeral metapopulations show high genetic diversity at regional scales, Ecology, Volume 90 (2009) no. 10, p. 2670 | DOI:10.1890/08-0667.1
  • Patrícia A. Moreira; Geraldo W. Fernandes; Rosane G. Collevatti Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree, Forest Ecology and Management, Volume 258 (2009) no. 12, p. 2690 | DOI:10.1016/j.foreco.2009.09.037
  • Eva Janova; Jan Matiasovic; Jiri Vahala; Roman Vodicka; Enette Van Dyk; Petr Horin Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae, Immunogenetics, Volume 61 (2009) no. 7, p. 513 | DOI:10.1007/s00251-009-0380-0
  • SHANNON C. K. STRAUB; JEFF J. DOYLE Conservation genetics ofAmorpha georgiana(Fabaceae), an endangered legume of the Southeastern United States, Molecular Ecology, Volume 18 (2009) no. 21, p. 4349 | DOI:10.1111/j.1365-294x.2009.04353.x
  • A. Ross Brown; David J. Hosken; François Balloux; Lisa K. Bickley; Gareth LePage; Stewart F. Owen; Malcolm J. Hetheridge; Charles R. Tyler Genetic variation, inbreeding and chemical exposure—combined effects in wildlife and critical considerations for ecotoxicology, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 364 (2009) no. 1534, p. 3377 | DOI:10.1098/rstb.2009.0126
  • PETER SIGAARD; CINO PERTOLDI; AKSEL BO MADSEN; BJARNE SØGAARD; VOLKER LOESCHCKE Patterns of genetic variation in isolated Danish populations of the endangered butterfly Euphydryas aurinia, Biological Journal of the Linnean Society, Volume 95 (2008) no. 4, p. 677 | DOI:10.1111/j.1095-8312.2008.01078.x
  • Joseph D. DiBattista Patterns of genetic variation in anthropogenically impacted populations, Conservation Genetics, Volume 9 (2008) no. 1, p. 141 | DOI:10.1007/s10592-007-9317-z
  • Patrícia Salgueiro; Jorge M. Palmeirim; Manuel Ruedi; M. Manuela Coelho Gene flow and population structure of the endemic Azorean bat (Nyctalus azoreum) based on microsatellites: implications for conservation, Conservation Genetics, Volume 9 (2008) no. 5, p. 1163 | DOI:10.1007/s10592-007-9430-z
  • Marie J. E. Charpentier; Cathy V. Williams; Christine M. Drea Inbreeding depression in ring-tailed lemurs (Lemur catta): genetic diversity predicts parasitism, immunocompetence, and survivorship, Conservation Genetics, Volume 9 (2008) no. 6, p. 1605 | DOI:10.1007/s10592-007-9499-4
  • Vesna MILANKOV; Gunilla STÅHLS; Ante VUJIĆ Genetic characterization of the Balkan endemic species, Merodon desuturinus (Diptera: Syrphidae), European Journal of Entomology, Volume 105 (2008) no. 2, p. 197 | DOI:10.14411/eje.2008.028
  • M X Wang; H L Zhang; D L Zhang; Y W Qi; Z L Fan; D Y Li; D J Pan; Y S Cao; Z E Qiu; P Yu; Q W Yang; X K Wang; Z C Li Genetic structure of Oryza rufipogon Griff. in China, Heredity, Volume 101 (2008) no. 6, p. 527 | DOI:10.1038/hdy.2008.61
  • Liv Wennerberg; Gunnhild Marthinsen; Jan T. Lifjeld Conservation genetics and phylogeography of southern dunlins Calidris alpina schinzii, Journal of Avian Biology, Volume 39 (2008) no. 4, p. 423 | DOI:10.1111/j.0908-8857.2008.04351.x
  • NATALIE D. HALBERT; JAMES N. DERR Patterns of genetic variation in US federal bison herds, Molecular Ecology, Volume 17 (2008) no. 23, p. 4963 | DOI:10.1111/j.1365-294x.2008.03973.x
  • CURT L. ELDERKIN; ALAN D. CHRISTIAN; JANICE L. METCALFE‐SMITH; DAVID J. BERG Population genetics and phylogeography of freshwater mussels in North America, Elliptio dilatata and Actinonaias ligamentina (Bivalvia: Unionidae), Molecular Ecology, Volume 17 (2008) no. 9, p. 2149 | DOI:10.1111/j.1365-294x.2008.03745.x
  • S Amstislavsky; H Lindeberg; J Aalto; MW Kennedy Conservation of the European Mink (Mustela lutreola): Focus on Reproduction and Reproductive Technologies, Reproduction in Domestic Animals, Volume 43 (2008) no. 4, p. 502 | DOI:10.1111/j.1439-0531.2007.00950.x
  • Amy L. Fletcher Mendel's Ark: Conservation Genetics and the Future of Extinction, Review of Policy Research, Volume 25 (2008) no. 6, p. 598 | DOI:10.1111/j.1541-1338.2008.00367_1.x
  • M.J.E. Charpentier; A. Widdig; S.C. Alberts Inbreeding depression in non‐human primates: a historical review of methods used and empirical data, American Journal of Primatology, Volume 69 (2007) no. 12, p. 1370 | DOI:10.1002/ajp.20445
  • C. L. Elderkin; A. D. Christian; C. C. Vaughn; J. L. Metcalfe-Smith; D. J. Berg Population genetics of the freshwater mussel, Amblema plicata (Say 1817) (Bivalvia: Unionidae): Evidence of high dispersal and post-glacial colonization, Conservation Genetics, Volume 8 (2007) no. 2, p. 355 | DOI:10.1007/s10592-006-9175-0
  • Deanna H. Olson; Paul D. Anderson; Christopher A. Frissell; Hartwell H. Welsh; David F. Bradford Biodiversity management approaches for stream–riparian areas: Perspectives for Pacific Northwest headwater forests, microclimates, and amphibians, Forest Ecology and Management, Volume 246 (2007) no. 1, p. 81 | DOI:10.1016/j.foreco.2007.03.053
  • A. R. Malacrida; L. M. Gomulski; M. Bonizzoni; S. Bertin; G. Gasperi; C. R. Guglielmino Globalization and fruitfly invasion and expansion: the medfly paradigm, Genetica, Volume 131 (2007) no. 1, p. 1 | DOI:10.1007/s10709-006-9117-2
  • Rosane G. Collevatti; Kelly C.E. Leite; Guilherme H.B. de Miranda; Flavio H.G. Rodrigues Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil, Genetics and Molecular Biology, Volume 30 (2007) no. 1, p. 112 | DOI:10.1590/s1415-47572007000100020
  • BRENDA MOLANO-FLORES; JASON A. KOONTZ; MARY ANN FEIST Genetic Diversity of the Illinois-threatened Agalinis auriculata (Orobanchaceae) and Two Common Congeners, The American Midland Naturalist, Volume 158 (2007) no. 2, p. 279 | DOI:10.1674/0003-0031(2007)158[279:gdotia]2.0.co;2
  • Ryuji Uesugi; Jun Nishihiro; Yoshihiko Tsumura; Izumi Washitani Restoration of genetic diversity from soil seed banks in a threatened aquatic plant, Nymphoides peltata, Conservation Genetics, Volume 8 (2006) no. 1, p. 111 | DOI:10.1007/s10592-006-9153-6
  • Giuseppe Pellegrino; Maria Elena Noce; Francesca Bellusci; Aldo Musacchio Reproductive biology and conservation genetics ofSerapias vomerace (Orchidaceae), Folia Geobotanica, Volume 41 (2006) no. 1, p. 21 | DOI:10.1007/bf02805259
  • CLINTON W. EPPS; PER J. PALSBØLL; JOHN D. WEHAUSEN; GEORGE K. RODERICK; DALE R. MCCULLOUGH Elevation and connectivity define genetic refugia for mountain sheep as climate warms, Molecular Ecology, Volume 15 (2006) no. 14, p. 4295 | DOI:10.1111/j.1365-294x.2006.03103.x
  • KARINA ACEVEDO‐WHITEHOUSE; TERRY R. SPRAKER; EUGENE LYONS; SHARON R. MELIN; FRANCES GULLAND; ROBERT L. DELONG; WILLIAM AMOS Contrasting effects of heterozygosity on survival and hookworm resistance in California sea lion pups, Molecular Ecology, Volume 15 (2006) no. 7, p. 1973 | DOI:10.1111/j.1365-294x.2006.02903.x
  • M. PABIJAN; W. BABIK Genetic structure in northeastern populations of the Alpine newt (Triturus alpestris): evidence for post‐Pleistocene differentiation, Molecular Ecology, Volume 15 (2006) no. 9, p. 2397 | DOI:10.1111/j.1365-294x.2006.02954.x
  • Wolf-Christian Lewin; Robert Arlinghaus; Thomas Mehner Documented and Potential Biological Impacts of Recreational Fishing: Insights for Management and Conservation, Reviews in Fisheries Science, Volume 14 (2006) no. 4, p. 305 | DOI:10.1080/10641260600886455
  • Michael H. Kohn; William J. Murphy; Elaine A. Ostrander; Robert K. Wayne Genomics and conservation genetics, Trends in Ecology Evolution, Volume 21 (2006) no. 11, p. 629 | DOI:10.1016/j.tree.2006.08.001
  • T. Lodé; D. Peltier Genetic neighbourhood and effective population size in the endangered European mink Mustela lutreola, Biodiversity and Conservation, Volume 14 (2005) no. 1 | DOI:10.1007/s10531-005-5051-3
  • M. Pabijan; W. Babik; J. Rafiński Conservation units in north-eastern populations of the Alpine newt (Triturus alpestris), Conservation Genetics, Volume 6 (2005) no. 2, p. 307 | DOI:10.1007/s10592-004-7825-7
  • Marie Charpentier; Martine Hossaert-McKey; E. Jean Wickings; Patricia Peignot Consequences of a One-male Harem Reproductive System and Inbreeding in a Captive Group of Cercopithecus solatus, International Journal of Primatology, Volume 26 (2005) no. 3, p. 697 | DOI:10.1007/s10764-005-4375-x
  • Fiammetta Berlinguer; Giovanni G. Leoni; Luisa Bogliolo; Daniela Bebbere; Sara Succu; Irma Rosati; Sergio Ledda; Salvatore Naitana In vivo and in vitro fertilizing capacity of cryopreserved European mouflon [Ovis gmelini musimon] spermatozoa used to restore genetically rare and isolated populations, Theriogenology, Volume 63 (2005) no. 3, p. 902 | DOI:10.1016/j.theriogenology.2004.05.006
  • Michael Hofreiter; David Serre; Nadin Rohland; Gernot Rabeder; Doris Nagel; Nicholas Conard; Susanne Münzel; Svante Pääbo Lack of phylogeography in European mammals before the last glaciation, Proceedings of the National Academy of Sciences, Volume 101 (2004) no. 35, p. 12963 | DOI:10.1073/pnas.0403618101
  • Bengt Gunnar Jonsson; Marc-André Villard Setting conservation targets: past and present approaches, Setting Conservation Targets for Managed Forest Landscapes (2001), p. 9 | DOI:10.1017/cbo9781139175388.003

Cité par 242 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: