Version abrégée
1 Introduction
Le soubassement paléozoı̈que du massif de l'Argentera (Alpes occidentales) est constitué par deux complexes polymétamorphiques de degré moyen à élevé, appelés le complexe de la Tinée et le complexe du Malinvern [1]. Les complexes sont séparés par le linéament de Ferrière–Mollières et par le linéament de Fremamorta–Colle del Sabbione, dans les parties occidentale et méridionale respectivement (Fig. 1). Ces deux linéaments tectoniques sont caractérisés par des roches mylonitiques et phyllonitiques (unité de Valetta) de quelques dizaines de mètres à plus d'un kilomètre d'épaisseur [1,7]. Les deux linéaments tectoniques ont été actifs pendant le Paléozoı̈que supérieur et ont été localement réactivés pendant l'orogenèse alpine en faille inverse ou en chevauchement.
2 Le linéament Ferrière–Mollières
Le linéament de Ferrière–Mollières (FML) présente une direction NWSE, se compose de roches mylonitiques d'âge Paléozoı̈que, et est surmonté en discordance par des sédiments triasiques (Fig. 2). Les foliations mylonitiques ont une direction NWSE, verticale ou plongeante vers le sud-ouest ou le nord-est. Dans la partie septentrionale de la FML, les mylonites sont associées à des niveaux ultramylonitiques et phyllonitiques d'épaisseur variable (décimétrique à métrique). Les foliations mylonitiques et phyllonitiques plongent fortement vers le sud-ouest et les linéations minérales sont subhorizontales ou faiblement plongeantes vers le nord-ouest. Les caractères de la déformation et les associations minéralogiques indiquent des conditions métamorphiques de degré faible, tandis que les minéraux métamorphiques, préservés en porphyroclastes, indiquent une origine d'orthogneiss de degré élevé pour les roches mylonitiques [1].
3 Leucogranites mylonitiques du Rocco Verde
En correspondance avec le Becco Verde affleure un leucogranite à muscovite, de direction NWSE, parallèle à la foliation des roches mylonitiques (Fig. 3). La foliation du leucogranite a une direction N145–150E, parallèle au FML, plongeant fortement vers le nord-est. La fabrique est marquée par une structure C–S [6], définie par la surface de foliation (plans S) recoupée, à angle faible (<25°), par des plans de cisaillement fins, espacés de quelques millimètres (plans C, Fig. 4). La forme sigmoı̈dale des foliations entre les plans de cisaillement et la linéation minérale subhorizontale indiquent la dominance d'un cisaillement transcurrent dextre (Fig. 4). Le leucogranite mylonitique est situé dans les roches phyllonitiques, avec une foliation parallèle au plan C du leucogranite. Les rapports entre les leucogranites mylonitiques et les roches phyllonitiques sont caractérisés par une transition progressive, à l'échelle centimétrique, du leucogranite mylonitique aux roches phyllonitiques, en passant par des ultramylonites.
3.1 Caractéristiques microstructurales
À l'échelle de la lame mince, la structure ignée du leucogranite est caractérisée par une texture hétérogranulaire à grain fin. L'association minéralogique est constituée de quartz, de feldspath potassique, de plagioclase et de muscovite (Fig. 5a). Les plans S correspondent à la foliation, avec une orientation préférentielle des minéraux magmatiques montrant une déformation plastique des cristaux (Figs. 5b et 5c). Les plans C sont des plans de cisaillement fins, discontinus, marqués par une réduction intense des grains, une recristallisation du quartz à grains fins et de nouveaux grains d'albite (Figs. 5b et 5d). Les caractéristiques de la déformation mylonitique sont : (i) une rotation des grains, (ii) un microplissement des plans de macle ou de clivage et une structure C–S, qui indiquent une déformation à l'état solide dans les conditions du faciès des schistes verts supérieurs (400–450 °C) [13]. Les leucogranites ultramylonitiques et les roches phyllonitiques ont une texture à grains très fins, qui consiste en du quartz recristallisé et des phyllosilicates, avec des porphyroclastes feldspathiques (Figs. 5e et 5f).
3.2 Datation radiométrique
L'âge d'un échantillon de leucogranite mylonitique a été mesuré par analyse Rb/Sr sur roche totale et sur grains de muscovite magmatique. L'âge Rb/Sr et les valeurs isotopiques sont indiqués dans le Tableau 1. La valeur obtenue à 327±3 Ma représente l'âge de refroidissement de la muscovite magmatique. Cependant, pour une faible épaisseur des dykes leucogranitiques, la vitesse de refroidissement étant rapide, cette valeur peut être considérée comme très voisine de l'âge de mise en place du dyke. En conséquence, un âge Viséen supérieur est proposé pour ces dykes leucogranitiques, tandis qu'une valeur initiale élevée du rapport Sr/Sr (Tableau 1) confirme le caractère crustal du leucogranite.
Rb/Sr age of Rocco Verde mylonitic leucogranite.
Âge Rb/Sr du leucogranite mylonitique de Rocco Verde.
Sample | Rb (ppm) | Sr (ppm) | ()i | Age (Ma) | |||
G 4 | Wrock | 211 | 38.5 | 15.956 | 0.818 248 ± 83 | ||
muscovite | 763 | 5.0 | 557.285 | 3.3397 ± 2 | 0.7439±11 | 327±3 |
4 Discussion et conclusions
Les caractéristiques communes de la déformation partagées par les leucogranites mylonitiques et les roches mylonitiques–phyllonitiques environnantes, qui dérivent des roches métamorphiques de degré élevé du complexe du Malinvern, semblent indiquer un processus de déformation unique, dans des conditions de degré métamorphique faible.
De plus, l'attitude générale du plongement raide des foliations mylonitiques et l'attitude subhorizontale des linéations minérales, conjointement avec un sens de cisaillement dextre dans la structure C–S, indiquent un mouvement en décrochement dextre.
Enfin, l'âge de 327 Ma des leucogranites peut être considéré comme la limite inférieure de la déformation mylonitique. Ceci implique un âge Viséen supérieur pour la déformation mylonitique le long du linéament Ferrière–Mollières (FML).
Ces considérations indiquent que ce dernier représente un décrochement ductile dextre, d'âge Viséen supérieur, marqué par la mise en place des intrusions granitiques syncinématiques. L'activité tectonique du FML peut être mise en relation avec le régime d'extension et de décrochement crustal affectant la chaı̂ne Varisque au Carbonifère moyen et supérieur [2] qui, dans les zones internes de la chaı̂ne Varisque, est marqué par des décrochements ductiles et intrusions syncinématiques d'âge Viséo-Namurien [4,9,14]. En résumé, dans le massif de l'Argentera, les mouvements de décrochement ductile du FML sont associés à la tectonique d'extension tardive Varisque qui, dans les massifs cristallins externes [10,15], permet d'expliquer le métamorphisme de haute température et basse pression, l'intrusion des roches granitiques syncinématiques et l'exhumation des roches métamorphiques profondes.
1 Introduction
The Palaeozoic basement of the Argentera Massif (Western Alps) consists of two wide medium- to high-grade polymetamorphic complexes, namely the Tinée Complex and the Malinvern Complex (Fig. 1) [1,7]. The Tinée complex consists of kyanite–sillimanite-bearing paragneiss with leucocratic gneiss (Igliere metagranodiorite), migmatites, Augen gneiss and amphibolites. In the Malinvern complex, migmatites and biotite–sillimanite-bearing gneiss are crosscut by a large Late Palaeozoic intrusion (Malinvern granite) emplaced at 293±10 Ma [5]. The two complexes have a similar Variscan metamorphic history, which differs for a Mid- to Late Carboniferous high temperature/low pressure event only recorded in the Malinvern Complex [1,10]. They are separated by the Ferrière–Mollières Line and the Fremamorta–Colle del Sabbione Line in the western and southern portion respectively (Fig. 1) [7]. Both tectonic lines are characterised by intense deformation, with development of mylonitic and/or phyllonitic rocks, thereinafter-named Valetta Unit, whose thickness ranges from a few tens of metres to more than 1 km. These tectonic lines were active during the Palaeozoic and have been locally re-activated during the Alpine orogenesis as reverse and/or thrust faults with brittle deformation and a top to the western or southwestern sense of shear.
One of the most compelling features of the pre-Alpine tectono-metamorphic evolution of Argentera massif is the age of the mylonitic deformation along the Ferrière–Mollières Line, for which contrasting Caledonian [7] and Variscan [1,3,11] ages have been proposed on the basis of geological considerations. The unique available radiometric age for the mylonitic rocks corresponds to a muscovite Ar/Ar age of 373±7 Ma [8]. However, this age has been a matter of debate, because it implies that low-grade metamorphic assemblages of mylonitic rocks are older than the high-grade metamorphic peak dated at 375–350 Ma [8].
This paper reports on the discovery of foliated granitoids within the northern portion of the FML, that allows to put additional constraints on the age and kinematics of mylonitic deformation in the FML.
2 Ferrière–Mollières Line
The Ferrière–Mollières Line (FML) represents the main shear zone cutting the Palaeozoic basement in the western portion of the Argentera massif. It strikes NWSE and extends from Ferrière to the north, to Mollières to the south. Mylonitic rocks, discordantly covered by the Triassic sedimentary rocks in the Ferrière area, almost continuously crop out along the FML with a thickness ranging from 100 to 1000 m (Fig. 2). These rocks have been interpreted as a sequence of metasedimentary rocks (Micaschistes de La Valetta) partly derived by mylonitisation of high-grade metamorphic rocks belonging to both Tinée and Malinvern complexes [1]. Mylonitic foliations strike NWSE, parallel to FML, and have upright attitude or dip steeply toward southwest and/or northeast (Fig. 2). However, northeastward dipping foliations are confined to the portions of the shear zone that were reactivated as NE-dipping thrusts during the Alpine orogenesis.
In the northern portion of the FML, mylonites are strictly interleaved with ultramylonitic and phyllonitic layers of variable thickness (decimetre to metre size). All these rocks show medium to fine-grained textures, with diffuse occurrence of porphyroclasts, whose abundance strongly decreases in the ultramylonitic and phyllonitic layers. The latter show fine or very fine-grained textures. The mylonitic and phyllonitic foliations dip strongly toward the southwest and mineral lineations or slickensides striae are subhorizontal or gently dipping toward northwest. Deformation features and mineral assemblages are indicative of low-grade metamorphic conditions and metamorphic mineral preserved as porphyroclasts indicate a derivation of the mylonitic rocks from high-grade gneiss. These features are recognizable on the eastern boundary of Valetta Unit, where the mylonitic fabrics and foliation overprint the high-grade metamorphic rocks of the Malinvern Complex. Moreover, in the Mt Pebrun area, well-foliated quartzites are in contact with the mylonites and/or occur as lenticular bodies. These rocks correspond to the Quarziti del Pebrun, of Carboniferous age, characterised by well-developed foliations, parallel to the mylonitic foliations and by local transition to mylonitic and ultramylonitic host rocks [12].
3 Rocco Verde mylonitic leucogranite
Mylonitic rocks crop out extensively along a cross-section between Colle di Stau and Rocco Verde, reaching in this area a thickness of nearly 1 km. Foliations strike N140–150E and show upright attitude or dip strongly toward northeast or southwest. Mineral lineations are defined by elongated grains of quartz or feldspar, which have a dominant subhorizontal attitude, or gently plunge (20°) toward northwest (Fig. 3). Small bodies of foliated micaceous quarzites (Quarziti del Pebrun), amphibolites and marbles occur within the mylonites. In correspondence of the Becco Verde, a foliated muscovite-bearing leucogranite crops out as thin sheet-like body, which strikes NWSE parallel to the foliation in the host mylonitic rocks (Fig. 3). At the outcrop scale, the leucogranite shows a well-developed foliation, which strikes N145–150E, parallel to the FML, and dips strongly toward northeast. The foliated fabric is marked by the occurrence of C–S structures [6], defined by foliation surfaces (S-planes), crosscut at low angle (<25°) by thin millimetre-spaced shear bands (C-planes) (Fig. 4). The sigmoidal shape of foliations between the shear bands indicates a dextral sense of shear, which, coupled with subhorizontal mineral lineations, plunging gently toward northwest, indicates a dominant right lateral strike-slip movement (Fig. 4). The mylonitic leucogranites are hosted within phyllonitic rocks, whose foliation is parallel to the C-planes in the leucogranite. The relationships between mylonitic leucogranites and host phyllonitic rocks are characterised by progressive transition from mylonitic leucogranite through ultramylonites to phyllonitic rocks on a scale of few centimetres, as shown in Fig. 4.
3.1 Microstructural features
At the thin section scale, the original igneous fabric of leucogranite, recognisable in the weakly deformed portions, is characterised by fine-grained disequigranular texture and the mineral assemblage consists of: quartz, K-feldspar, plagioclase and muscovite (Fig. 5a). In the foliated fabric the S-planes correspond to a continuous foliation characterised by preferred orientation of magmatic minerals which show a crystal plastic deformation (Fig. 5b). Quartz grains have elongated shapes parallel to the foliation, undulose extinction and subgrain domains. The igneous feldspars (K-feldspar and plagioclase) occur as subhedral grains, often surrounded by fine-grained recrystallised quartz grains, and show undulose extinction, bending or kinking of twin planes and microfaulting (Fig. 5c). Undulose extinction and bending of (001) cleavage planes characterise the muscovite grains, which have a mica-fish shape. The C-planes are thin discontinuous shear planes marked by intense grain size reduction and recrystallisation of fine-grained quartz and albite newgrains (Figs. 5b and 5d). Strain features of mylonitic fabric, namely: (i) subgrain rotation, (ii) kinking of twin planes and discrete C–S fabrics are indicative of solid-state deformation under upper greenschist condition (400–450 °C) [13]. Ultramylonitic leucogranite and host phyllonitic rocks have fine-grained textures, consisting of recrystallised quartz and phyllosilicates with feldspar porphyroclasts (Figs. 5e and 5f).
3.2 Radiometric dating
The age of one sample of mylonitic leucogranite, which position is reported in Fig. 3, was measured by performing Rb/Sr analyses on the whole rock and magmatic muscovite grains, at the CNR Institute of Geochronology and Isotope Geochemistry in Pisa. Rb and Sr concentrations and Sr isotopic ratios for muscovite were determined by ID-analyses using single 87Rb and 84Sr spikes. For whole rock, Rb and Sr contents were determined using mixed 87Rb–84Sr spikes and Sr isotope analyses were performed on unspiked solutions. Rb was analysed on a single-collector Varian MAT TH5 mass spectrometer; Sr isotope analyses were carried out by a VG-Micromass 54E single-collector mass spectrometer.
The Rb–Sr age and isotopic values for the analysed sample are reported in the Table 1. The obtained value of 327±3 Ma represents the cooling age for the magmatic muscovite. However, considering the small thickness of leucogranite dike, which implies a fast cooling rate, this value can be likely regarded as to be very close to the emplacement age of the dike. Therefore, a Late Visean age can be suggested for the emplacement and cooling of muscovite-bearing peraluminous leucogranite dikes in northern portion of FML. The high initial value of ratio (Table 1) confirms the crustal origin of the leucogranite.
4 Discussion and conclusions
The discovery of sheared mylonitic leucogranite within the Ferrière–Mollières Line, and the muscovite–Wr age of 327 Ma allow us to make the following considerations for the FML:
- • the common deformation features shared by mylonitic leucogranites and host mylonitic–phyllonitic rocks, which mainly derive from Malinvern Complex high-grade metamorphic rocks, indicate a unique process of deformation under low-grade metamorphic conditions;
- • the overall steeply dipping attitude of mylonitic foliations and subhorizontal attitude of mineral lineations coupled with dextral sense of shear shown by the C–S fabrics, are consistent with a dextral strike-slip movement;
- • the leucogranite age of 327 Ma can be regarded as the lower limit of the mylonitic deformation and implies a Late Visean age for ductile shearing along the FML.
These data allow us to regard the FML as a Late Variscan strike-slip shear zone injected by synkinematic intrusions, which post-dated the Late Devonian–Early Carboniferous phase of nappe-stacking and amphibolite facies metamorphism. The development of FML can be related to the regime of crustal extension affecting the Variscan belt in the Middle and Late Carboniferous [2]. Particularly, in the inner zones of the chain, orogen-parallel extension of Visean–Westphalian age was associated with Visean–Namurian synkinematic intrusions emplaced within strike-slip or transtensional shear zones, which accommodated crustal extension in an oblique wrench tectonics [4,9,14]. From this arise that post-collisional evolution of the Argentera Massif can be likely interpreted in terms of ductile extension, which likely accounts for Late Variscan high temperature/low pressure metamorphism, intrusive magmatism and exhumation of deep metamorphic rocks [10,15].
Acknowledgements
The authors are grateful to A. Del Moro (IGGI–CNR Pisa), who performed the Rb/Sr isotopic analyses. S. Guillot and B. Lombardo are thanked for their helpful comments and suggestions.