Outline
Comptes Rendus

Expanding the observational foundation for climate studies
Comptes Rendus. Géoscience, Volume 337 (2005) no. 12, pp. 1023-1025.
Metadata
Published online:
DOI: 10.1016/j.crte.2005.05.016

Michel Petit 1

1 Académie des sciences, 23, quai de Conti, 75270 Paris cedex 06, France
@article{CRGEOS_2005__337_12_1023_0,
     author = {Michel Petit},
     title = {Expanding the observational foundation for climate studies},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {1023--1025},
     publisher = {Elsevier},
     volume = {337},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crte.2005.05.016},
     language = {en},
}
TY  - JOUR
AU  - Michel Petit
TI  - Expanding the observational foundation for climate studies
JO  - Comptes Rendus. Géoscience
PY  - 2005
SP  - 1023
EP  - 1025
VL  - 337
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crte.2005.05.016
LA  - en
ID  - CRGEOS_2005__337_12_1023_0
ER  - 
%0 Journal Article
%A Michel Petit
%T Expanding the observational foundation for climate studies
%J Comptes Rendus. Géoscience
%D 2005
%P 1023-1025
%V 337
%N 12
%I Elsevier
%R 10.1016/j.crte.2005.05.016
%G en
%F CRGEOS_2005__337_12_1023_0
Michel Petit. Expanding the observational foundation for climate studies. Comptes Rendus. Géoscience, Volume 337 (2005) no. 12, pp. 1023-1025. doi : 10.1016/j.crte.2005.05.016. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2005.05.016/

Original version of the full text

The capacity of theoretical models for faithfully simulating real phenomena is generally checked by comparing their outcomes with experimental data corresponding to the modelled situation. Natural phenomena are controlled by a large variety of unknown or unidentified parameters. When dealing with such phenomena, the only way to overcome this imperfect knowledge is through using multiple observations in various conditions. A typical example is the climate models on which the projections of future dangerous climate changes are based. They can be checked against reliable observations of past climate over large periods of time at various locations only. However, the network of meteorological observatories has evolved in time, even in the recent past. Sometimes, they have been moved from one location to another. Moreover the environment may have changed as well, mainly due to urbanisation. Lastly, the measuring devices have been improved to correct errors identified when analysing their data and to take advantage of the technical developments. Quite often, even the definition of the recorded parameter has been modified. The present sunshine-duration definition has been adopted in 1981 only. It is based on a threshold of the energy received per square metre. The very first definition was based on visibility of the solar-disk boarders. Later, the existence of shadows clear cut boarders was a preferred criterion. A full methodology has been developed within Meteo France to properly detect and correct such discontinuities and to homogenize the data.

The paper by Moisselin and Canellas [24] deals with the homogenization and the analysis of sunshine-duration series recorded in eighteen French stations over the period 1931–2000. The behaviour of water vapour is a major source of uncertainty in the projection of future climates and the cloud cover is a sensible test of the capacity of models for accurately simulating the actual meteorological phenomena. To that extent, this study relative to France follows the IPCC recommendations aiming at ‘expanding the observational foundation for climate studies’. There is a need for consistent data to validate the models used for projecting the climate warming induced by the anthropogenic emissions of greenhouse gases. This global change is a source of great concern for future generations and has been discussed in several thematic issues of Comptes rendus Geoscience: in December 2001, Énergies et Climat [2,5,8–11,20,22,27,33], in June–July 2003, Effet de serre, impacts et solutions : quelle crédibilité ? [3,4,6,7,13–15,17–19,21,28–32,34], and in March 2005, Incertitudes scientifiques et risques climatiques [1,12,16,25,26], which is part of the preparation of the IPCC Fourth Assessment Report to be released in 2007 [23].

This study is important from a domestic point of view, as the impacts of climate change on populations depend on the phenomena they will experience at their local scale. From 1931 to 2000, the sunshine duration exhibits a progressive evolution from a decrease in the northern half of France to an increase in southern France. The sunshine duration decreased by 0.6 to 1% per decade to the north of the Loire River. On the contrary, in Marseilles, it increased by 0.7% per decade. The seasonal behaviour has been investigated as well. The spring data exhibit the most striking evolution, a significant decrease everywhere but in the southeast of the country. Those findings are consistent with temperature measurements, which have been homogenized through an independent processing. It is well established that clouds limit the night-time cooling and reduce during day time the solar energy absorbed by the Earth. It is therefore nice to check that the observed behaviour of the daily temperature variation exhibits, over the same period of time 1931–2000, the same north–south gradient as the sunshine duration. However, the temperature variations are controlled not only by the cloud cover, but also by phenomena such as plants evapotranspiration and soil water content. Therefore, the observation in the southwest of the country of both an increase of the sunshine duration and a decrease of the daily temperature variation is not really disturbing.

Moisselin and Canellas' paper [24] contributes significantly to increase the observational foundation against which numerical models can be checked and to assess more precisely the impacts of the global climate change on the French territory.


References

[1] W.N. Adger; K. Vincent Uncertainty in adaptative capacity, C. R. Geoscience, Volume 337 (2005), pp. 399-410

[2] J.-C. André Réflexions sur le calendrier du débat Énergies et climat, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 835-839

[3] J.-C. André Sur la crédibilité des conséquences de l'effet de serre, C. R. Geoscience, Volume 335 (2003), pp. 503-505

[4] P. Bacher L'énergie nucléaire : obstacles et promesses, C. R. Geoscience, Volume 335 (2003), pp. 603-610

[5] J.-L. Bal; B. Chabot Les énergies renouvelables. État de l'art et perspectives de développement, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 827-834

[6] D. Bourg Le défi climatique : les limites des politiques publiques, C. R. Geoscience, Volume 335 (2003), pp. 637-641

[7] Y. Coppens Postface, C. R. Geoscience, Volume 335 (2003), pp. 657-658

[8] R. Dautray Les perspectives de l'énergie nucléaire dans le cadre des changements climatiques, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 811-826

[9] D. Decrocq Économies d'énergie et émissions de CO2 dans le traitement–utilisation des hydrocarbures, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 797-810

[10] J. Dercourt Préface. Énergies et climat : faits et pistes de recherche, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 757-760

[11] J.-C. Duplessy État des connaissances et incertitudes sur le changement climatique induit par les activités humaines, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 765-773

[12] J.-P. Dupuy; A. Grinbaum Living with uncertainty: from the precautionary principle to the methodology of ongoing normative assessment, C. R. Geoscience, Volume 337 (2005), pp. 457-474

[13] J.-Y. Georges Yvon le Maho, Réponses des écosystèmes marins et insulaires aux changements climatiques, C. R. Geoscience, Volume 335 (2003), pp. 551-560

[14] P. Jean-Baptiste; R. Ducroux Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serre, C. R. Geoscience, Volume 335 (2003), pp. 611-625

[15] J. Jouzel Climat du passé (400 000 ans) : des temps géologiques à la dérive actuelle, C. R. Geoscience, Volume 335 (2003), pp. 509-524

[16] M. Kandlikar; J. Risbey; S. Dessai Representing and communicating deep uncertainty in climate-change assessments, C. R. Geoscience, Volume 337 (2005), pp. 443-455

[17] L. Laubier Changement et vulnérabilité des peuplements marins côtiers, C. R. Geoscience, Volume 335 (2003), pp. 561-568

[18] H. Léridon Certitudes et incertitudes de la prévision démographique, C. R. Geoscience, Volume 335 (2003), pp. 627-635

[19] H. Le Treut Les scénarios globaux de changement climatique et leurs incertitudes, C. R. Geoscience, Volume 335 (2003), pp. 525-533

[20] C. Lorius Énergies et climat : quels enseignements pour le futur ?, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 841-843

[21] C. Lorius Effet de serre : les lacunes du savoir et de la perception, C. R. Geoscience, Volume 335 (2003), pp. 545-549

[22] C. Lorius; B. Tissot Présentation. Énergies et climat : faits et pistes de recherche, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 761-763

[23] M. Manning; M. Petit A Concept Paper for the AR4 Cross-Cutting Theme. Uncertainties and Risk http://www.ipcc.ch (IPCC web site)

[24] J.-M. Moisselin; C. Canellas Longues séries d'insolation homogénéisées en France, C. R. Geoscience, Volume 335 (2005), pp. 729-734

[25] A. Patt; S. Dessai Communicating uncertainty: lessons learned and suggestions for climate change assessment, C. R. Geoscience, Volume 337 (2005), pp. 425-441

[26] A. Patt; R.T. Klein; A. de la Veiga-Leinert Addressing uncertainty in climate change vulnerability assessment, C. R. Geoscience, Volume 337 (2005), pp. 411-424

[27] M. Petit L'humanité face à l'effet de serre additionnel qu'elle crée, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 775-786

[28] M. Petit Avant-propos : Effet de serre, impacts et solutions : quelle crédibilité ?, C. R. Geoscience, Volume 335 (2003), pp. 497-501

[29] M. Petit Développement durable à l'échelle de la planète et gestion des ressources en eau et en bois, C. R. Geoscience, Volume 335 (2003), pp. 643-656

[30] S. Planton À l'échelle des continents : le regard des modèles, C. R. Geoscience, Volume 335 (2003), pp. 535-543

[31] M. Robert; B. Saugier Contribution des écosystèmes continentaux à la séquestration du carbone, C. R. Geoscience, Volume 335 (2003), pp. 577-595

[32] B. Seguin Adaptation des systèmes de production agricole au changement climatique, C. R. Geoscience, Volume 335 (2003), pp. 569-575

[33] B. Tissot Quel avenir pour les combustibles fossiles ? Les avancées scientifiques et technologiques permettront-elles la poursuite d'un développement soutenable avec les énergies carbonées ?, C. R. Acad. Sci. Paris, Ser. IIa, Volume 333 (2001), pp. 787-796

[34] B. Tissot Sources d'énergie primaire et effet de serre, C. R. Geoscience, Volume 335 (2003), pp. 597-601


Comments - Policy