Plan
Comptes Rendus

Tectonics
A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia
[Une suture sans racines et la perte des racines d’une chaîne montagneuse : la chaîne varisque du Nord-Ouest de l’Ibérie]
Comptes Rendus. Géoscience, Mécanique de l'orogénie varisque : Une vision moderne de le recherche dans le domaine de l'orogénie, Volume 341 (2009) no. 2-3, pp. 114-126.

Résumés

Ophiolites of different Paleozoic ages occur in North-West (NW) Iberia in a rootless suture representing the remnants of the Rheic Ocean. Associated allochthonous terranes in the hanging- and foot-walls of the suture derive from the former margins, whereas the relative autochthon corresponds to the Paleozoic passive margin of northern Gondwana. The Paleozoic tectonic evolution of this part of the circum-Atlantic region is deduced from the stratigraphical, petrological, structural and metamorphic evolution of the different units and their ages. The tectonic reconstruction covers from Cambro-Ordovician continental rifting and the opening of the Rheic Ocean to its Middle to Upper Devonian closure. Then, the Variscan Laurussia–Gondwana convergence and collision is briefly described, from its onset to the late stages of collapse associated with the demise of the orogenic roots.

Des ophiolites d’âges différents affleurent dans le Nord-Ouest de l’Ibérie dans une suture sans racines, témoin de l’océan Rhéïque. Les terrains allochtones sur et sous la suture dérivent de ses deux marges, tandis que l’autochtone relatif appartient à la marge passive du Nord de Gondwana. On peut déduire l’évolution des plaques dans cette partie de la région circum-Atlantique à partir des données stratigraphiques, pétrologiques, structurales, métamorphiques et géochronologiques. Cette évolution inclut le développement d’un rift continental et l’ouverture de l’océan Rhéïque pendant le Cambro-Ordovicien ainsi que sa fermeture au Dévonien moyen à supérieur. On décrit aussi l’évolution de la convergence et collision varisque entre Laurussia et Gondwana, du début jusqu’aux derniers stades d’un effondrement associé à la perte des racines orogéniques.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2008.11.004
Keywords: Oceanic suture, Rheic Ocean, Variscan evolution, NW Iberia
Mots-clés : Suture océanique, Océan Rhéïque, Évolution varisque, Nord-Ouest de l’Ibérie

José R. Martínez Catalán 1 ; Ricardo Arenas 2 ; Jacobo Abati 2 ; Sonia Sánchez Martínez 2 ; Florentino Díaz García 3 ; Javier Fernández Suárez 2 ; Pablo González Cuadra 4 ; Pedro Castiñeiras 2 ; Juan Gómez Barreiro 2 ; Alejandro Díez Montes 5 ; Emilio González Clavijo 5 ; Francisco J. Rubio Pascual 6 ; Pilar Andonaegui 2 ; Teresa E. Jeffries 7 ; James E. Alcock 8 ; Rubén Díez Fernández 1 ; Alicia López Carmona 2

1 Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
2 Departamento de Petrología y Geoquímica and Instituto de Geología Económica (CSIC), Universidad Complutense, 28040 Madrid, Spain
3 Departamento de Geología, Universidad de Oviedo, 33005 Oviedo, Spain
4 Área de Geodinámica Externa, Universidad de León, 24007 León, Spain
5 Instituto Geológico y Minero de España, Azafranal, 48, 37001 Salamanca, Spain
6 Instituto Geológico y Minero de España, La Calera, 1, 28760 Tres Cantos, Spain
7 Department of Mineralogy, The Natural History Museum, London SW7 5BD, UK
8 Department of Geosciences, Abington College, Pennsylvania State University, Abington, PA 19001, USA
@article{CRGEOS_2009__341_2-3_114_0,
     author = {Jos\'e R. Mart{\'\i}nez Catal\'an and Ricardo Arenas and Jacobo Abati and Sonia S\'anchez Mart{\'\i}nez and Florentino D{\'\i}az Garc{\'\i}a and Javier Fern\'andez Su\'arez and Pablo Gonz\'alez Cuadra and Pedro Casti\~neiras and Juan G\'omez Barreiro and Alejandro D{\'\i}ez Montes and Emilio Gonz\'alez Clavijo and Francisco J. Rubio Pascual and Pilar Andonaegui and Teresa E. Jeffries and James E. Alcock and Rub\'en D{\'\i}ez Fern\'andez and Alicia L\'opez Carmona},
     title = {A rootless suture and the loss of the roots of a mountain chain: {The} {Variscan} belt of {NW} {Iberia}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {114--126},
     publisher = {Elsevier},
     volume = {341},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crte.2008.11.004},
     language = {en},
}
TY  - JOUR
AU  - José R. Martínez Catalán
AU  - Ricardo Arenas
AU  - Jacobo Abati
AU  - Sonia Sánchez Martínez
AU  - Florentino Díaz García
AU  - Javier Fernández Suárez
AU  - Pablo González Cuadra
AU  - Pedro Castiñeiras
AU  - Juan Gómez Barreiro
AU  - Alejandro Díez Montes
AU  - Emilio González Clavijo
AU  - Francisco J. Rubio Pascual
AU  - Pilar Andonaegui
AU  - Teresa E. Jeffries
AU  - James E. Alcock
AU  - Rubén Díez Fernández
AU  - Alicia López Carmona
TI  - A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia
JO  - Comptes Rendus. Géoscience
PY  - 2009
SP  - 114
EP  - 126
VL  - 341
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crte.2008.11.004
LA  - en
ID  - CRGEOS_2009__341_2-3_114_0
ER  - 
%0 Journal Article
%A José R. Martínez Catalán
%A Ricardo Arenas
%A Jacobo Abati
%A Sonia Sánchez Martínez
%A Florentino Díaz García
%A Javier Fernández Suárez
%A Pablo González Cuadra
%A Pedro Castiñeiras
%A Juan Gómez Barreiro
%A Alejandro Díez Montes
%A Emilio González Clavijo
%A Francisco J. Rubio Pascual
%A Pilar Andonaegui
%A Teresa E. Jeffries
%A James E. Alcock
%A Rubén Díez Fernández
%A Alicia López Carmona
%T A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia
%J Comptes Rendus. Géoscience
%D 2009
%P 114-126
%V 341
%N 2-3
%I Elsevier
%R 10.1016/j.crte.2008.11.004
%G en
%F CRGEOS_2009__341_2-3_114_0
José R. Martínez Catalán; Ricardo Arenas; Jacobo Abati; Sonia Sánchez Martínez; Florentino Díaz García; Javier Fernández Suárez; Pablo González Cuadra; Pedro Castiñeiras; Juan Gómez Barreiro; Alejandro Díez Montes; Emilio González Clavijo; Francisco J. Rubio Pascual; Pilar Andonaegui; Teresa E. Jeffries; James E. Alcock; Rubén Díez Fernández; Alicia López Carmona. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus. Géoscience, Mécanique de l'orogénie varisque : Une vision moderne de le recherche dans le domaine de l'orogénie, Volume 341 (2009) no. 2-3, pp. 114-126. doi : 10.1016/j.crte.2008.11.004. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2008.11.004/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The North-West (NW) of the Iberian Massif is located at the hinge zone of the Ibero-Armorican Arc (Fig. 1) and preserves relicts of oceanic domains that once separated the Paleozoic continents [50,51]. A suture occurring in the hanging-wall of a large thrust system is rootless, which makes its interpretation difficult. However, the excellent exposure of the ophiolitic and associated allochthonous terranes permits the establishment of a sequence of emplacement, crosscutting relationships, and metamorphic gradients. In the absence of continental-scale strike–slip shear zones and faults, the Galician–northern Portugal section is retrodeformable, permitting qualitative palinspastic reconstructions of the Gondwana–Laurussia convergence.

Fig. 1

Location of Iberia in relation to the Paleozoic orogenic belts at the end of Variscan convergence. Modified after Martínez Catalán et al. [46].

Fig. 1. Situation de l’Ibérie par rapport aux ceintures orogéniques paléozoïques, à la fin de la convergence varisque. D’après Martínez Catalán et al. [46], modifiée.

These characteristics make of NW Iberia a key site to unravel the history of the Paleozoic plate evolution of the circum-Atlantic region, and specially that of the Rheic Ocean. This contribution aims to be a synthesis of the research carried out during the last 25 years, when the geology of NW Iberia has been considered in a plate tectonics and terrane perspective. It is based on previously published syntheses [38,48], and on data published elsewhere, being presented here in a very concise way together with the key references.

2 Geological setting

The NW Iberian basement consists of plutonic and metamorphic rocks, the latter ranging from very low- to very high-grade. The structural fabric (Fig. 2) alternates linear trends due to thrust faults and narrow folds, with closed structures corresponding to open domes and basins that are a product of late orogenic collapse and extension [48]. A distinction is made between the autochthon and allochthonous terranes. The autochthon consists of a thick metasedimentary and volcanic sequence and includes a foreland thrust belt, the Cantabrian Zone (CZ), and more internal zones where the Paleozoic succession is thicker and rather more complete (Figs. 1 and 2). The autochthonous sequence was deposited in northern Gondwana during the Late Proterozoic and Paleozoic, as indicated by sedimentary and faunal evidence [63] and by detrital zircon age populations [47].

Fig. 2

Geological map and cross sections of North-West (NW) Iberia showing the allochthonous complexes and their units. For location, see Fig. 1. Modified after Dallmeyer et al. [21].

Fig. 2. Carte et coupes géologiques du Nord-Ouest de l’Ibérie montrant les complexes allochtones et leur unités. Pour la situation, voir Fig. 1. D’après Dallmeyer et al. [21], modifiée.

The allochthonous units (Fig. 2) are the remnant of a large nappe stack formed by exotic terranes cropping out in the complexes of Cabo Ortegal, Órdenes, Malpica-Tui, Bragança and Morais. Many are derived from peri-Gondwana, and many bear the imprint of Paleozoic subduction. They include fragments of a Cambro-Ordovician ensialic island arc (upper units) [8,18,71], and distal parts of the Gondwana continental margin (basal units) [44,72]. Ophiolitic units sandwiched between the upper and basal units include remnants of a Cambro-Ordovician back-arc [14,69], possible evidence of Ordovician oceanic crust [60], and suprasubduction type, Early–Middle Devonian ophiolites [60,70].

A thrust sheet several kilometres thick separates the basal, ophiolitic and upper units from the autochthon. It consists of Ordovician and Silurian metasediments and volcanics, and is known variously as the parautochthon [62], the Schistose Domain [26,77], and the lower allochthon [48], this last term describes well the superposition of older over younger rocks, the imbricate character, and the large displacement involved. The lower allochthon has stratigraphic and igneous affinities with the Iberian autochthon [26,77], and represents a distal part of the Gondwana continental margin.

3 Creation of a peri-Gondwana, ensialic island arc

The upper allochthonous units occupy the core of the allochthonous complexes (Fig. 2), and two different tectonometamorphic histories support a subdivision into intermediate-P upper units above, and high-P and high-T upper units below, but with both groups belonging to the same coherent terrane.

3.1 Intermediate-P upper units

These units occupy the highest structural position and consist of terrigenous sediments intruded by Late Cambrian gabbros and granitoids (Fig. 2). The metamorphic grade ranges from top to bottom between the greenschist and the granulite facies, and shows abrupt changes at extensional detachments [1,40]. High-grade rocks occur as large massifs of metaigneous rocks in the Órdenes Complex (Fig. 2). The Monte Castelo gabbro is similar in composition to modern island-arc basalts [8]. The Corredoiras orthogneiss is granodioritic to tonalitic [40], whereas a minor gabbroic intrusion in the Cabo Ortegal Complex is calc-alkaline and characteristic of a volcanic arc setting [18]. The Corredoiras and Monte Castelo massifs have yielded U–Pb ages of 500 Ma [3], and were affected by granulite-facies shear zones at ca. 480 Ma [3,5].

Mesozonal metasediments represent a Barrovian pile with metamorphic zones ranging from almandine to sillimanite [18]. Kyanite replacing andalusite indicates burial after heating, as in the Monte Castelo gabbro and the Corredoiras orthogneiss. Monazites from the sillimanite zone have yielded 493–496 Ma [3], reflecting Cambro-Ordovician, intermediate-P regional metamorphism.

Epizonal metasediments occupy the uppermost structural position and consist of metapelite and greywacke of turbiditic character, with alternations of quartzite and conglomerate. When considered together with the chemistry of the Monte Castelo gabbro, these terrigenous sediments, rich in volcanic components, suggest a volcanic arc environment, although the absence of truly volcanic rocks points to a dissected magmatic arc [31]. Detrital zircon ages in metagreywackes yielded three age populations of 2.5–2.4 Ga, 2.1–1.9 Ga and 610–480 Ma [31], establishing an Early–Middle Ordovician maximum depositional age.

3.2 High-P and high-T upper units

These units, in the complexes of Bragança, Cabo Ortegal and Órdenes, include paragneisses and ultrabasic metaigneous rocks, but the most characteristic are garnet–clinopyroxene granulites and eclogites retrograded to the amphibolite facies. Gabbros occur in several stages of transformation, from relatively little metamorphosed rocks to coronitic metagabbros, high-P granulites and amphibolites [10]. Subophitic and diabase textures indicate emplacement at relatively shallow levels. The basic rocks are tholeiitic metagabbros with a MORB geochemical signature [35], but geochemical studies of the ultramafic rocks are consistent with generation in an arc setting [71].

U–Pb data in metabasic rocks have yielded 520–480 Ma, viewed as protolith ages [54], but could also reflect the imprint of nearly contemporaneous metamorphism [30,32,57]. However, the high-P granulite and eclogite facies metamorphism is dated, by U–Pb and 40Ar/39Ar methods, between 425 and 390 Ma [30,32,37,54,66,73]. This event involved subduction [36], and was successively followed by decompression, partial melting, penetrative amphibolite-facies mylonitization, which was dated at 390–380 Ma [20,21,37], recumbent folding, and thrusting [35,42,52].

3.3 The island arc and its fate

The geochemistry of the plutonic and ultramafic rocks, and the abundance of volcanic components in the metasediments are features consistent with generation of the upper units in an arc setting. The metamorphic evolution of the intermediate-P units points in the same direction, as the P–T paths include isobaric heating related to the intrusion of large plutons, followed by isothermal burial implying crustal thickening [4,18,40]. Pressurization in the sillimanite field and a subsequent anticlockwise evolution are linked to active plate margins.

Late Cambrian–Early Ordovician (500–460 Ma) magmatism is widespread in the upper and basal allochthonous units and the autochthon, whereas inherited zircon ages from orthogneisses of all of them are similar, and suggest derivation from the West African craton [57,72]. Detrital zircon ages, from low-grade metasediments in the upper units, also record the major events in NW Africa [31]: this evidence points to a common basement and suggests that the island arc was ensialic (Fig. 3a) and may represent a peri-Gondwanan fragment drifted away to open the Rheic Ocean (Fig. 3b).

Fig. 3

Proposed stages in the tectonic evolution of North-West (NW) Iberia. CZ: Cantabrian Zone; LAT: lower allochthon thrust; LD: Lugo dome; LFT: Lalín-Forcarei thrust; MBT: Mondoñedo basal thrust; OST: out-of-sequence thrusts; PSD: Pico Sacro detachment; PTSZ: Porto-Tomar shear zone; VF: Viveiro fault. Modified after Martínez Catalán et al. [48].

Fig. 3. Stades proposés pour l’évolution tectonique du Nord-Ouest de l’Ibérie. CZ : Zone Cantabrique ; LAT : chevauchement de l’allochtone inférieur ; LD : dôme de Lugo ; LFT : chevauchement de Lalín-Forcarei ; MBT : chevauchement de Mondoñedo ; OST : chevauchements «hors séquence » ; PSD : détachement de Pico Sacro ; PTSZ : zone de cisaillement de Porto-Tomar ; VF : faille de Viveiro. D’après Martínez Catalán et al. [48], modifié.

The ensialic arc later became involved in the Variscan collision. The Cambro-Ordovician arc-related metamorphism was preserved in the intermediate-P units, but was overprinted by a Silurian–Early Devonian (425–390 Ma) tectonometamorphic event in the high-P and high-T units [30,32,37]. This event involved subduction of part of the arc, and resulted from accretion to Laurussia [37,38,45,48] while the Rheic Ocean was still open (Fig. 3c).

4 Cambro-Ordovician rifting

4.1 Paleozoic succession of the autochthon

Two facts support Early Paleozoic extension:

  • • the high rates of subsidence deduced from the thick preorogenic succession;
  • • the voluminous Early Ordovician magmatism.

The dominant sediments are pelite, sandstone, quartzite, and limestone in formations and groups of large lateral extent. Lithologic associations and facies indicate deposition in a passive continental margin, which succeeded the Cadomian Andean-type activity [27]. Differences in thickness in Middle Cambrian to Late Ordovician deposits indicate extensional activity in the margin (Fig. 3b).

Basic to acid volcanism spans from the Cambrian to the Silurian, but is voluminous in the Early Ordovician, when the Ollo de Sapo Formation (Fm.) rocks erupted. It includes a volcaniclastic sequence, rhyolitic–dacitic tuffs, coarse-grained tuffs, welded ignimbrites, and augengneisses [24]. In the Sanabria region, two large volcanic domes have been identified, suggesting that the Ollo de Sapo Fm. includes several volcanic edifices replacing each other along the 570 km of outcrop [24]: it has yielded Early Ordovician ages of 495–472 Ma [24,53]. Granitoids with ages of 500–465 Ma were intruded in Early Cambrian and Neoproterozoic successions [15,76].

The Ollo de Sapo and the granitic orthogneiss are peraluminous and of calc-alkaline affinity, plotting into the field of the volcanic-arc granites. However, the apparent stability of the margin indicated by the contemporaneous deposits suggests that their geochemistry could have been inherited from the source rocks. The Early Ordovician felsic magmatism has been interpreted as the result of extension in northern Gondwana (Fig. 3b), where the crust and mantle, previously hydrated by long-lasting Cadomian subduction, would have molten during decompression [24].

4.2 Continental rifting in the lower allochthon

Metavolcanic rocks of basic to acid types are common in the Schistose Domain, although never voluminous. Metadacites derived from subaerial lavas and metarhyolites derived from ignimbrite eruptions have been described, as well as syenite intrusions and rhyolitic domes [7,9,33]. An alkaline rhyolite in the Cabo Ortegal Complex yielded an U–Pb age of 475 Ma [77]. That age and the chemistry of the lower volcanic levels compare with the Ollo de Sapo Fm., and the presence of alkaline and basic rocks here are additional arguments for Cambro-Ordovician rifting.

4.3 The continental rifting in the allochthonous complexes

Good evidence for Early Paleozoic continental rifting comes from the basal units, which include terrigenous metasediments and igneous rocks. In Portugal, the igneous rocks form a bimodal suite of rhyolitic tuffs, intrusive porphyries, metadiabases and metabasalts [61]. In Galicia, amphibolites of tholeiitic composition, some corresponding to alkali basalts [43], alternate with granitic orthogneisses showing meta- to peraluminous character, and calc-alkaline, alkaline and peralkaline compositions. The latter are A-type granitoids derived from the mantle and are genetically linked to alkali basalts [58]. The orthogneisses yielded U–Pb ages of 490–460 Ma [72], and the ensemble reflects the Early Ordovician rifting episode [58] associated with the separation of a peri-Gondwanan fragment and the creation a new continental margin in northern Gondwana (Fig. 3a).

5 Birth of the Rheic Ocean: witnesses of initial back-arc spreading

Ophiolitic units occupy an intermediate position in the allochthonous complexes (Fig. 2). The oldest Paleozoic units of ophiolitic affinity include metabasites, metapelitic phyllites and schists, with some serpentinites, metacherts and granitic orthogneisses dated at 497 Ma [14]. The dominant lithology is greenschist-facies metabasites with relict igneous textures indicating a metabasaltic and, to a lesser extent, gabbroic origin. These units are viewed as a thick oceanic sequence of basalts and interbedded pelitic and siliceous sediments, overlying in tectonic contact, serpentinized ultramafic rocks which represent the suboceanic mantle.

The basic rocks include island-arc tholeiites and suprasubduction basalts [14,69]. The orthogneisses plot into the field of volcanic arc granitoids. Both mark the opening of a back-arc behind the ensialic peri-Gondwanan island arc during the Latest Cambrian, possibly by slab roll-back linked to oceanic subduction (Fig. 3b). The subsequent spreading of the back-arc created the Rheic Ocean, but these units remained close to Gondwana during its opening, as indicated by their structural position, above the basal units, and with a comparable metamorphic evolution.

6 Closure of the Rheic Ocean

Two of the ophiolitic units bear the imprint of oceanic closure in their suprasubduction zone geochemical fingerprints and ages. Moreover, the high-P metamorphism of the basal allochthonous units also points to the closure of the Rheic Ocean.

6.1 Early Devonian intraoceanic, suprasubduction zone ophiolite

The Careón Unit is an ophiolitic sequence exposed in the Southeast of the Órdenes Complex. A harzburgitic composition can be inferred for the ultramafic section [22], whereas the gabbroic section is a complex network of multiple intrusions of gabbro, wehrlite, and diabasic to pegmatoid dikes. The metabasites have transitional characteristics between N-MORB and island-arc tholeiites. Their immobile trace element pattern bears a diagnostic negative Nb anomaly indicating a suprasubduction zone setting [22,70].

U–Pb geochronology in two gabbros yielded an age of 395 Ma [22,59], whereas ages of 405–396 Ma were obtained in a gabbro of the equivalent Morais–Talhinhas Unit of the Morais Complex [60], bringing evidence for oceanic crust generation by the Early Devonian. Initial ɛNd values, ranging between +7.1 and +9.2, obtained for a crystallization age of 395 Ma, from Sm–Nd isotopic data [59], indicate that the rocks were derived from the depleted mantle reservoir at the time of their formation. Thermobaric estimates on a metamorphic sole unit within the Careón Unit yielded T ≈ 650 °C and P ≈ 1.15 GPa, pointing to a subduction environment for ophiolite imbrication [22]. A well-foliated amphibolite was dated at 377 Ma [21], interpreted as a cooling age following the metamorphic thermal peak.

6.2 Metamorphic evolution of the basal units

Early Variscan, high-P metamorphism in the basal units is demonstrated by eclogites, jadeite-bearing orthogneisses, and blueschists, and is interpreted as the result of subduction [9,12,13,34,41,64,65,67]. Peak pressure ranges between 1–1.65 GPa in the Órdenes Complex, where P–T gradients along a large recumbent anticline indicate a west-directed polarity (in present coordinates for the subduction [44]). The paleo-dip of the subduction zone has been estimated from the P–T conditions and thermal modeling between 15 and 20 °C [6]. According to isotopic data, subduction started before 370 Ma ago and ended at ca. 365 Ma [64], being followed by a strong decompression, related to thrusting and tectonic denudation.

6.3 Landmarks of oceanic closure

While the Careón and Morais–Talhinhas ophiolites witness a stage of consumption of the Rheic Ocean by intraoceanic subduction (Fig. 3d), subduction of the basal units marks its final closure (Fig. 3e). Deformation and metamorphism progressed eastward and their imprint is reflected in the progressive younging of metamorphic ages from the upper to the basal allochthonous units. In the upper units, 425–390 Ma ages reflect Silurian to Early Devonian compression that created a thick metamorphic pile whose deep parts registered pressures of 1.8 GPa [35,52]. An accretionary wedge, developed at the Laurussia margin (Fig. 3c–e), involved thickening, underthrusting and subduction of the upper units. This orogenic event is pre-Variscan and linked to spreading of the Rheic Ocean, rather than Laurussia–Gondwana convergence [38].

Amphibolite facies metamorphism dated at 390–380 Ma was retrogressive in the high-P and high-T upper units, and prograde in the underlying ophiolites, where it reflects the imbrication of oceanic lithosphere during the closure of the ocean. Thrusts formed at that time (ca. 380 Ma) found the 395 Ma old oceanic lithosphere still hot, and produced metamorphic soles [22]. These thrusts are seen as the first manifestation of early Variscan convergence.

The Cambro-Ordovician ophiolites, that were present during back-arc spreading and which remained on the margin of Gondwana, were the next to enter the accretionary wedge [14]. Afterward, the Gondwana continental margin went into the trench and its edge became subducted between 375 and 365 Ma [64,72]. This Late Devonian event, that reached peak pressures of 1.5–1.7 GPa, marks the last stage of subduction-related early Variscan convergence (Fig. 3e).

7 Variscan collision

Laurussia–Gondwana convergence continued during the Carboniferous in a collisional regime considered, in a strict sense, to be the Variscan Orogeny.

7.1 Continuous shortening of the Gondwana continental platform

The first deformation event (D1) produced east-vergent recumbent folds (Fig. 3f) [49]. 40Ar/39Ar dating of the S1 cleavage yielded 359 Ma, close to the allochthonous complexes, and 336 Ma to the east [21], showing that shortening was diachronous and younger toward the external zones. D1 was the result of the stacked allochthonous terranes pushing against Gondwana as a backstop limited, at its bottom, by a west-dipping sole thrust. Once continental subduction became locked, shortening began in the inner parts of the continental platform, giving rise first to recumbent folds (D1), and then to large thrust sheets (D2).

7.2 Thrust propagation and loss of the suture root

Three large thrust systems are responsible for the emplacement of the allochthonous complexes. First, the Lalín-Forcarei thrust (LFT) (Fig. 3f) carried the basal units over the lower allochthon. Then, the upper and ophiolitic units moved over the basal units and the lower allochthon, becoming strongly imbricated in a new thrust system, which was developed out-of-sequence (OST) (Fig. 3g). During thrust emplacement, large recumbent folds developed in the upper units [38,42], the ophiolites [14], and the basal units [23,44].

The OST thrusts cut and dismembered the suture, which was steeper [46]. So, a part of it was emplaced over the lower allochthon and subsequently over the autochthon, whereas its deeper, inner parts were left behind, disconnected and hidden (Fig. 3g). Shortly after, the Schistose Domain was emplaced along the lower allochthon thrust (LAT) (Fig. 3g) carrying the allochthonous units piggy-back and using the weak Silurian carbonaceous slates to detach [26,39].

The LFT moved after 346 Ma, which was the age of migmatization in one of the basal units [2]. The S2 cleavage in the underlying Schistose Domain, dated at 340 Ma [21], was developed during emplacement of the LFT. The LAT is constrained between 340 Ma and 323 ± 11 or 317 ± 15 Ma, age of crosscutting Variscan granitoids [16,55]. The Mondoñedo basal thrust (MBT) (Fig. 3h) developed subsequently in the autochthon, and more thrusts developed progressively toward the foreland.

7.3 Extensional collapse, removal of the orogenic roots, and late shortening

Crustal thickening was followed by thermal relaxation causing increase in temperature and partial melting, and facilitating viscous flow that accommodated gravitational extension of the whole crust (Fig. 3i). Extension is marked by a pervasive flat-lying foliation, by thinning and disappearance of previous metamorphic zones at ductile detachments, and by gneiss domes [11,25]. Kinematic criteria indicate a noncoaxial component of deformation and extension normal, oblique and parallel to the orogenic trend. High-T and low-P rocks crop out in the domes, accompanied by many Variscan granitoids.

Extension, mid- and lower crustal flow and partial melting were responsible for the disappearance of the orogenic roots and the establishment of a new Moho. The amount of extension was important, given the high strains registered and the abundance of normal detachments. The apparently large displacement shown by the thrusts involved in the suture, ca. 200 km, may, to a large extent, be a consequence of orogenic extension [17], being less important in origin (Fig. 3h). The main phase of collapse and extension occurred between 320 and 310 Ma, which is the age of most of the synkinematic granitoids [28].

Extensional collapse was late but not postorogenic, as extension in the internal zones was coeval with the development between 312 and 300 Ma of a thin-skinned foreland thrust belt in the CZ (Fig. 3j), where large thrusts developed piggy-back, with a total displacement of around 200 km [56]. Moreover, extensional domes in the internal zones were overprinted by upright folds: these late upright folds (D3) interfere with early recumbent folds and fold the regional metamorphic isograds. The largest folds nucleated in domes and basins developed previously, although the Lugo (LD) (Fig. 3k) and Sanabria domes developed later [24,48]. Folds are associated with strike–slip ductile shear zones which moved at between 315 and 305 Ma [75], and displaced the suture [48], further contributing to its rootless character.

8 Summary of terrane dispersal, accretion and continental collision

The European Variscides are partly situated to the south of Baltica in a reconstruction (Fig. 1) that postdates Carboniferous dextral strike–slip movement between Laurussia and Gondwana [48,74]. Before dextral motion, the Variscan belt was situated more to the upper right corner of Fig. 1 lying perhaps entirely to the South of Baltica. This implies that the Variscides formed by collision of northern Gondwana with eastern Avalonia and Baltica, and further suggests that their ophiolitic units are relicts of the eastern branch of the Rheic Ocean, also that the upper allochthonous units were accreted to Avalonia and Baltica during the closure of the Tornquist Ocean.

A cartoon map reconstruction of continents and oceans during the Paleozoic, based on Winchester et al. [79] is shown on Fig. 4. Detrital zircon age populations in Neoproterozoic and Paleozoic sediments of NW Iberia are typical of the West African craton and the Avalonian–Cadomian–Pan-African belts, but also include a Mesoproterozoic population which could suggest proximity to the Amazonian craton [29], or NE Africa [38]. An oceanic terrane dated at 1120–1170 Ma is involved in the NW Iberian suture [68], suggesting the presence of Mesoproterozoic rocks in the northern margin of Gondwana prior to Cambro-Ordovician terrane dispersal. The peri-Gondwana arc preserved in the upper allochthonous units has been placed in the periphery of NW Africa, halfway between the two possible known sources of Mesoproterozoic zircons, in agreement with the apparent lack of zircons of that age [31]. The upper units would represent the lateral equivalent, or a continuation of Avalonia and the Gander Arc where, as in the upper units, separation took place around the Cambro-Ordovician boundary [48,79] and accretion occurred in the Early Silurian [19].

Fig. 4

Distribution of continental masses during the Paleozoic, showing the suggested paleopositions of the European Variscides and the ensialic arc preserved in the upper allochthonous units. Modified after Gómez Barreiro et al. and Winchester et al. [38,79].

Fig. 4. Distribution de masses continentales pendant le Paléozoïque montrant les positions suggérées du Variscides européennes et de l’arc préservé dans les unités allochtones supérieures. D’après Gómez Barreiro et al. et Winchester et al. [38,79], modifié.

Once separated, the ensialic arc drifted away from Gondwana during the Ordovician, leaving behind the Rheic Ocean, and was in collision with Laurussia during Silurian to Early Devonian times. Although this lithospheric fragment drifted away from Gondwana and later became emplaced on it, the site of derivation probably differs from that of emplacement (Fig. 4). This may explain inconsistencies in the ages of magmatism and metamorphism as rifting, drifting, accretion and collision were likely to have been diachronous along the continental margins.

9 Discussion: importance of the Rheic Ocean

Pre-Variscan and Variscan orogenic events in the Iberian Massif are comparable with those in the Armorican, Massif Central and Bohemian massifs. However, the importance of the Rheic Ocean has not always been recognized in central Europe, and other oceanic realms separating Gondwana-derived microplates have been proposed to account for ophiolites and subduction-related metamorphism. The NW Iberian Peninsula is less affected by large strike–slip shear zones, permitting a qualitative palinspastic reconstruction that yields a simplified interpretation valid for this part of the Variscan belt, and which can shed light on the understanding of other areas.

According to sedimentary and faunal evidence [63], and on the evidence of inherited zircon population ages [47], the Iberian allotochthon was always part of the northern margin of Gondwana. Furthermore, the NW Iberian suture corresponds to a single major ocean, the Rheic, because:

  • • the protolith ages of the involved ophiolitic units span a time interval of 105 Ma, similar to that of existence of the Rheic Ocean [79];
  • • arc-related magmatism and metamorphism is 125 Ma older than oceanic closure, which supports the Rheic option, because the development of an arc inside the Rheic Ocean, when it was starting to open, is unrealistic. Arc development during the Ordovician was widespread in the Iapetus Ocean [78,79], and correlation of the upper units with an arc occurring outside of Gondwana and facing the Iapetus or Tornquist oceans is much more reasonable (Fig. 3b).

Our model shows the influence of the Rheic Ocean in the Paleozoic evolution of Iberia, an influence that can be extended to other realms of the Variscan belt. For instance, Woodcock et al. [80] link the Acadian deformation (400–390 Ma) in England and Wales, with subduction of the Rheic Ocean to the north beneath the Avalonian lithosphere. This is coherent with our hypothesis that the arrival of the island arc to the margin of Laurussia was followed by its accretion and partial subduction, dated at 425–390 Ma in the high-P and high-T upper units (Fig. 3c). Woodcock et al. [80] even suggest that the upper allochthonous units of NW Iberia are the best candidate for the missing segment of the Laurussian margin of England and Wales. However, discrepancies arise concerning the type of subduction of the Rheic lithosphere at 400-380 Ma, either flat subduction beneath Laurussia [80], or intraoceanic subduction (Fig. 3d). Assuming large strike–slip displacements between Laurussia and Gondwana [48,80], these differences simply represent slightly different scenarios taking place in areas separated by hundreds or thousands of kilometres.

Acknowledgements

This work was funded by the projects CGL2004-04306-C02/BTE and CGL2007-65338-C02/BTE of the Spanish Ministerio de Educación y Ciencia, and is a contribution to the IGCP 497: The Rheic Ocean: Its Origin, Evolution and Correlatives. Two reviewers, J.-P. Burg and M. Sintubin, have contributed to improve the manuscript, and their efforts are kindly acknowledged.


Bibliographie

[1] J. Abati, Petrología metamórfica y geocronología de la unidad culminante del Complejo de Órdenes en la región de Carballo (Galicia, NW del Macizo Ibérico), Serie Nova Terra 20, 2002, Lab. Xeol. Laxe, A Coruña, Spain, p. 269.

[2] J. Abati; G.R. Dunning Edad U–Pb en monacitas y rutilos de los paragneises de la Unidad de Agualada (Complejo de Órdenes, NW del Macizo Ibérico), Geogaceta, Volume 32 (2002), pp. 95-98

[3] J. Abati; G.R. Dunning; R. Arenas; F. Díaz García; P. González Cuadra; J.R. Martínez Catalán; P. Andonaegui Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex, Earth Planet. Sci. Lett., Volume 165 (1999), pp. 213-228

[4] J. Abati; R. Arenas; J.R. Martínez Catalán; F. Díaz García Anticlockwise PT path of granulites from the Monte Castelo Gabbro (Órdenes Complex, NW Spain), J. Petrol., Volume 44 (2003), pp. 305-327

[5] J. Abati; P. Castiñeiras; R. Arenas; J. Fernández-Suárez; J. Gómez Barreiro; J.L. Wooden Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The Early Palaeozoic arc of NW Iberia revisited, Terra Nova, Volume 19 (2007), pp. 432-439

[6] J. Alcock; R. Arenas; J.R. Martínez Catalán Shear stress in subducting continental margin from high-pressure, moderate-temperature metamorphism in the Ordenes Complex, Galicia, NW Spain, Tectonophysics, Volume 397 (2005), pp. 181-194

[7] E. Ancochea; R. Arenas; J.L. Brandle; M. Peinado; J. Sagredo Caracterización de las rocas metavolcánicas silúricas del Noroeste del Macizo Ibérico, Geociências, Aveiro, Volume 3 (1988), pp. 23-34

[8] P. Andonaegui, J. González del Tánago, R. Arenas, J. Abati, J.R. Martínez Catalán, M. Peinado, F. Díaz García, Tectonic setting of the Monte Castelo gabbro (Ordenes Complex, northwestern Iberian Massif): Evidence for an arc-related terrane in the hanging wall to the Variscan suture, in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan–Appalachian Dynamics: the Building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Paper 364, 2002, pp. 37–56.

[9] R. Arenas, Evolución petrológica y geoquímica de la unidad alóctona inferior del complejo metamórfico básico–ultrabásico de Cabo Ortegal (Unidad de Moeche) y del Silúrico paraautóctono, Cadena Hercínica Ibérica (NW de España), Corpus Geologicum Gallaeciae 4, Lab. Xeol. Laxe, A Coruña, Spain, 1988, p. 543.

[10] R. Arenas, J.R. Martínez Catalán, Prograde development of corona textures in metagabbros of the Sobrado window (Ordenes Complex, NW Iberian Massif), in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan-Appalachian Dynamics: the Building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Paper 364, 2002, pp. 73–88.

[11] R. Arenas; J.R. Martínez Catalán Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondoñedo thrust sheet (NW Iberian Massif), Tectonophysics, Volume 365 (2003), pp. 143-164

[12] R. Arenas; F.J. Rubio Pascual; F. Díaz García; J.R. Martínez Catalán High-pressure microinclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression, J. Metam. Geol., Volume 13 (1995), pp. 141-164

[13] R. Arenas; J. Abati; J.R. Martínez Catalán; F. Díaz García; F.J. Rubio Pascual PT evolution of eclogites from the Agualada Unit (Ordenes Complex, NW Iberian Massif, Spain): Implications for crustal subduction, Lithos, Volume 40 (1997), pp. 221-242

[14] R. Arenas; J.R. Martínez Catalán; S. Sánchez Martínez; J. Fernández-Suárez; P. Andonaegui; J.A. Pearce; F. Corfu The Vila de Cruces Ophiolite: A remnant of the early Rheic Ocean in the Variscan suture of Galicia (NW Iberian Massif), J. Geol., Volume 115 (2007), pp. 129-148

[15] F. Bea; P. Montero; C. Talavera; T. Zinger A revised Ordovician age for the Miranda do Douro orthogneiss, Portugal. Zircon U–Pb ion-microprobe and LA-ICPMS dating, Geol. Acta, Volume 4 (2006), pp. 395-401

[16] F. Bellido; J.L. Brandle; M. Lasala; J. Reyes Consideraciones petrológicas y cronológicas sobre las rocas graníticas hercínicas de Galicia, Cuad. Lab. Xeol. Laxe, Volume 17 (1992), pp. 241-261

[17] J.-P. Burg; J. Van Den Driessche; J.P. Brun Syn- to postthickening extension in the Variscan Belt of western Europe: Modes and structural consequences, Geol. Fr., Volume 3 (1994), pp. 33-51

[18] P. Castiñeiras, Origen y evolución tectonotermal de las unidades de O Pino y Cariño (Complejos Alóctonos de Galicia), Lab. Xeol. Laxe, Serie Nova Terra, 28, A Coruña, Spain, 2005, p. 279.

[19] P.A. Cawood, J.A.M. Van Gool, G.R. Dunning, Collisional tectonics along the Laurentian margin of the Newfoundland Appalachians, in: J.P. Hibbard, C.R. van Staal, P.A. Cawood (Eds.), Current perspectives in the Appalachian–Caledonian Orogen, Geol. Assoc. Canada Spec. Paper 41, 1995, pp. 283–301.

[20] R.D. Dallmeyer; A. Ribeiro; F. Marques Polyphase Variscan emplacement of exotic terranes (Morais and Bragança Massifs) onto Iberian successions: Evidence from 40Ar/39Ar mineral ages, Lithos, Volume 27 (1991), pp. 133-144

[21] R.D. Dallmeyer; J.R. Martínez Catalán; R. Arenas; J.I. Gil Ibarguchi; G. Gutiérrez Alonso; P. Farias; J. Aller; F. Bastida Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics, Tectonophysics, Volume 277 (1997), pp. 307-337

[22] F. Díaz García; R. Arenas; J.R. Martínez Catalán; J. González del Tánago; G. Dunning Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt, J. Geol., Volume 107 (1999), pp. 587-605

[23] R. Díez Fernández; J.R. Martínez Catalán; J. Abati Gómez Recumbent folding in Serra do Galiñeiro (Pontevedra, NW España), Geogaceta, Volume 40 (2006), pp. 3-6

[24] A. Díez Montes, La Geología del Dominio “Ollo de Sapo” en las comarcas de Sanabria y Terra do Bolo, PhD Thesis, Univ. Salamanca, Spain, 2006, p. 496.

[25] J. Escuder Viruete; R. Arenas; J.R. Martínez Catalán Tectonothermal evolution associated with Variscan crustal extension in the Tormes Gneiss Dome (NW Salamanca, Iberian Massif, Spain), Tectonophysics, Volume 238 (1994), pp. 117-138

[26] P. Farias; G. Gallastegui; F. González-Lodeiro; J. Marquínez; L.M. Martín Parra; J.R. Martínez Catalán; J.G. de Pablo Maciá; L.R. Rodríguez Fernández Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central, Mem. Fac. Ciências, Univ. Porto, Portugal, Volume 1 (1987), pp. 411-431

[27] J. Fernández-Suárez; G. Gutiérrez-Alonso; G.A. Jenner; S.E. Jackson Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain). Their bearing on the Cadomian/Avalonian evolution of NW Iberia, Can. J. Earth Scien., Volume 35 (1998), pp. 1439-1453

[28] J. Fernández-Suárez; G.R. Dunning; G.A. Jenner; G. Gutiérrez-Alonso Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids, J. Geol. Soc. Lond., Volume 157 (2000), pp. 565-576

[29] J. Fernández-Suárez; G. Gutiérrez-Alonso; G.A. Jenner; M.N. Tubrett New ideas on the Proterozoic–Early Paleozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages, Precambrian Res., Volume 102 (2000), pp. 185-206

[30] J. Fernández-Suárez; F. Corfu; R. Arenas; A. Marcos; J.R. Martínez Catalán; F. Díaz García; J. Abati; F.J. Fernández U–Pb evidence for a polyorogenic evolution of the HP–HT units of the NW Iberian Massif, Contr. Mineral. Petrol., Volume 143 (2002), pp. 236-253

[31] J. Fernández-Suárez; F. Díaz García; T.E. Jeffries; R. Arenas; J. Abati Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: Inferences from detrital zircon U–Pb ages, Terra Nova, Volume 15 (2003), pp. 138-144

[32] J. Fernández-Suárez, R. Arenas, J. Abati, J.R. Martínez Catalán, M.J. Whitehouse, T.E. Jeffries, U–Pb chronometry of polymetamorphic high-pressure granulites: An example from the allochthonous terranes of the NW Iberian Variscan belt, in: R.D. Hatcher Jr., M.P. Carlson, J.H. McBride, J.R. Martínez Catalán (Eds.), 4–D framework of continental crust, Geol. Soc. Am. Mem. 200, 2007, pp. 469–488.

[33] G. Gallastegui; L.M. Martín Parra; J.G. de Pablo Maciá; L.R. Rodríguez Fernández Las metavulcanitas del Dominio Esquistoso de Galicia-Tras-os-Montes: petrografía, geoquímica y ambiente geotectónico (Galicia, NO de España), Cuad. Lab. Xeol. Laxe, Volume 12 (1988), pp. 127-139

[34] J.I. Gil Ibarguchi Petrology of jadeite–metagranite and associated orthogneiss from the Malpica-Tuy allochthon (Northwest Spain), Europ. J. Min., Volume 7 (1995), pp. 403-415

[35] J.I. Gil Ibarguchi; M. Mendia; J. Girardeau; J.J. Peucat Petrology of eclogites and clinopyroxene–garnet metabasites from the Cabo Ortegal Complex (northwestern Spain), Lithos, Volume 25 (1990), pp. 133-162

[36] J.I. Gil Ibarguchi; B. Abalos; J. Azcárraga; P. Puelles Deformation, high-pressure metamorphism and exhumation of ultramafic rocks in a deep subduction/collision setting (Cabo Ortegal, NW Spain), J. Metam. Geol., Volume 17 (1999), pp. 747-764

[37] J. Gómez-Barreiro; J.R. Wijbrans; P. Castiñeiras; J.R. Martínez Catalán; R. Arenas; F. Díaz García; J. Abati 40Ar/39Ar laser probe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia, J. Geol. Soc. Lond., Volume 163 (2006), pp. 61-73

[38] J. Gómez Barreiro, J.R. Martínez Catalán, R. Arenas, P. Castiñeiras, J. Abati, F. Díaz García, J.R. Wijbrans, Tectonic evolution of the upper allochthon of the Órdenes Complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane, in: U. Linnemann, R.D. Nance, P. Kraft, G. Zulauf (Eds.), The evolution of the Rheic Ocean: From Avalonian–Cadomian active margin to Alleghenian–Variscan collision, Geol. Soc. Am. Spec. Paper 423, 2007, pp. 315–332.

[39] E. González Clavijo, J.R. Martínez Catalán, Stratigraphic record of preorogenic to synorogenic sedimentation, and tectonic evolution of imbricate units in the Alcañices synform (northwestern Iberian Massif), in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan–Appalachian Dynamics: the Building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Paper 364, 2002, pp. 17–35.

[40] P. González Cuadra, La Unidad de Corredoiras (Complejo de Órdenes, Galicia): Evolución estructural y metamórfica, Serie Nova Terra 33, 2002, Lab. Xeol. Laxe, A Coruña, Spain, p. 254.

[41] A. López Carmona; J. Abati; J. Reche Metamorphic evolution of the HP/LT Ceán schists (Malpica-Tui Unit, NW Iberian Massif), Geogaceta, Volume 43 (2008), pp. 3-6

[42] A. Marcos; J. Marquínez; A. Pérez-Estaún; J.A. Pulgar; F. Bastida Nuevas aportaciones al conocimiento de la evolución tectonometamórfica del Complejo de Cabo Ortegal (NW de España), Cuad. Lab. Xeol. Laxe, Volume 7 (1984), pp. 125-137

[43] J.L. Marquínez García, La geología del área esquistosa de Galicia Central (Cordillera Herciniana, NW de España), Mem. Inst. Geol. Min. España 100, 1984, p. 231.

[44] J.R. Martínez Catalán; R. Arenas; F. Díaz García; F.J. Rubio Pascual; J. Abati; J. Marquínez Variscan exhumation of a subducted Paleozoic continental margin: The basal units of the Ordenes Complex, Galicia, NW, Spain, Tectonics, Volume 15 (1996), pp. 106-121

[45] J.R. Martínez Catalán; R. Arenas; F. Díaz García; J. Abati Variscan acretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events, Geology, Volume 25 (1997), pp. 1103-1106

[46] J.R. Martínez Catalán, F. Díaz García, R. Arenas, J. Abati, P. Castiñeiras, P. González Cuadra, J. Gómez Barreiro, F. Rubio Pascual, Thrust and detachment systems in the Ordenes Complex (northwestern Spain): Implications for the Variscan–Appalachian geodynamics, in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan–Appalachian Dynamics: the Building of the Late Paleozoic Basement. Geol. Soc. Am. Spec. Paper 364, 2002, pp. 163–182.

[47] J.R. Martínez Catalán; J. Fernández-Suárez; G.A. Jenner; E. Belousova; A. Díez Montes Provenance constraints from detrital zircon U–Pb ages in the NW Iberian Massif: implications for Paleozoic plate configuration and Variscan evolution, J. Geol. Soc. Lond., Volume 161 (2004), pp. 461-473

[48] J.R. Martínez Catalán, R. Arenas, F. Díaz García, J. Gómez-Barreiro, P. González Cuadra, J. Abati, P. Castiñeiras, J. Fernández-Suárez, S. Sánchez Martínez, P. Andonaegui, E. Gónzalez Clavijo, A. Díez Montes, F.J. Rubio Pascual, B. Valle Aguado, Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the Variscan belt, in: R.D. Hatcher Jr., M.P. Carlson, J.H. McBride, J.R. Martínez Catalán (Eds.), 4–D framework of continental crust, Geol. Soc. Am. Mem. 200, 2007, pp. 403–423.

[49] Ph. Matte La structure de la virgation hercynienne de Galice (Espagne), Rev. Geol. Alp., Volume 44 (1968), pp. 1-128

[50] Ph. Matte Tectonics and plate tectonics model for the Variscan belt of Europe, Tectonophysics, Volume 126 (1986), pp. 329-374

[51] Ph. Matte Accretionary history and crustal evolution of the Variscan belt in western Europe, Tectonophysics, Volume 196 (1991), pp. 309-337

[52] M.S. Mendia Aranguren, Petrología de la Unidad Eclogítica del Complejo de Cabo Ortegal, (NW de España), Serie Nova Terra 16, 2000, Lab. Xeol. Laxe, A Coruña, Spain, p. 424.

[53] P. Montero; F. Bea; F. González Lodeiro; C. Talavera; M.J. Whitehouse Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia, Geol. Mag., Volume 144 (2007), pp. 963-976

[54] B. Ordóñez Casado; D. Gebauer; H.J. Schäfer; J.I. Gil Ibarguchi; J.J. Peucat A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif, Tectonophysics, Volume 332 (2001), pp. 359-385

[55] L.A. Ortega Cuesta, Estudio petrogenético del granito sincinemático de dos micas de A Espenuca (A Coruña), Serie Nova Terra 14, 1998, Lab. Xeol. Laxe, A Coruña, Spain, p. 377.

[56] A. Pérez-Estaún; F. Bastida; J.L. Alonso; J. Marquínez; J. Aller; J. Alvarez-Marrón; A. Marcos; J.A. Pulgar A thin-skinned tectonics model for an arcuate fold and thrust belt: The Cantabrian Zone (Variscan Ibero-Armorican Arc), Tectonics, Volume 7 (1988), pp. 517-537

[57] J.J. Peucat, J. Bernard-Griffiths, J.I. Gil Ibarguchi, R.D. Dallmeyer, R.P. Menot, J. Cornichet, M. Iglesias Ponce de León, Geochemical and geochronological cross-section of the deep Variscan crust: The Cabo Ortegal high-pressure nappe (northwestern Spain), Tectonophysics 177 (1990) 263–292.

[58] C. Pin; L.A. Ortega Cuesta; J.I. Gil Ibarguchi; Mantle-derived Early Paleozoic A-type metagranitoids from the NW Iberian Massif: Nd isotope and trace-element constraints, Bull. Soc. geol. France, Volume 163 (1992), pp. 483-494

[59] C. Pin, J.L. Paquette, J.F. Santos Zalduegui, J.I. Gil Ibarguchi, Early Devonian suprasubduction zone ophiolite related to incipient collisional processes in the western Variscan Belt: The Sierra de Careón unit, Ordenes Complex, Galicia, in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan–Appalachian Dynamics: the Building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Paper 364, 2002, pp. 57–71.

[60] C. Pin; J.L. Paquette; B. Ábalos; F.J. Santos; J.I. Gil Ibarguchi Composite origin of an early Variscan transported suture: Ophiolitic units of the Morais Nappe Complex (north Portugal), Tectonics, Volume 25 (2006), pp. 1-19

[61] A. Ribeiro, Contribution à l’étude tectonique de Trás-os-Montes Oriental, Mem. Serv. Geol. Portugal 24, 1974, p. 179.

[62] A. Ribeiro; J. Munha; R. Dias; A. Mateus; E. Pereira; L. Ribeiro; P. Fonseca; A. Araujo; T. Oliveira; J. Romao; H. Chamine; C. Coke; J. Pedro Geodynamic evolution of the SW Europe Variscides, Tectonics, Volume 26 (2007), pp. 1-24

[63] M. Robardet The Armorica “microplate”: fact or fiction? Critical review of the concept and contradictory paleobiogeographical data, Palaeogeogr. Palaeoclimatol. Palaeoecol., Volume 195 (2003), pp. 125-148

[64] J. Rodríguez; M.A. Cosca; J.I. Gil Ibarguchi; R.D. Dallmeyer Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica-Tui complex, NW Spain), Lithos, Volume 70 (2003), pp. 111-139

[65] J. Rodríguez Aller, Recristalización y deformación de litologías supracorticales sometidas a metamorfismo de alta presión (Complejo de Malpica-Tuy, NO del Macizo Ibérico), Serie Nova Terra, 29, 2005, Lab. Xeol. Laxe, A Coruña, Spain, p. 572.

[66] F. Roger; Ph. Matte Early Variscan HP metamorphism in the western Iberian Allochthon: A 390 Ma U–Pb age for the Braganca eclogite (NW Portugal), Int. J. Earth Sci., Volume 94 (2005), pp. 173-179

[67] F.J. Rubio Pascual, R. Arenas, F. Díaz García, J.R. Martínez Catalán, J. Abati, Eclogites and eclogite–amphibolites from the Santiago Unit (Ordenes Complex, NW Iberian Massif, Spain): a case study of contrasting high-pressure metabasites in a context of crustal subduction, in: J.R. Martínez Catalán, R.D. Hatcher Jr., R. Arenas, F. Díaz García (Eds.), Variscan–Appalachian Dynamics: the Building of the Late Paleozoic Basement, Geol. Soc. Am. Spec. Paper 364, 2002, pp. 105–124.

[68] S. Sánchez Martínez; T. Jeffries; R. Arenas; J. Fernández-Suárez; R. García-Sánchez A pre-Rodinian ophiolite involved in the Variscan suture of Galicia (Cabo Ortegal Complex, NW Spain), J. Geol. Soc., Lond., Volume 163 (2006), pp. 737-740

[69] S. Sánchez Martínez, R. Arenas, P. Andonaegui, J.R. Martínez Catalán, J.A. Pearce, 2007, Geochemistry of two associated ophiolites from the Cabo Ortegal complex (Variscan belt of northwest Spain), in: R.D. Hatcher Jr., M.P. Carlson, J.H. McBride, J.R. Martínez Catalán (Eds.), 4–D framework of continental crust, Geol. Soc. Am. Mem. 200, 2007, pp. 445–467.

[70] S. Sánchez Martínez; R. Arenas; F. Díaz García; J.R. Martínez Catalán; J. Gómez-Barreiro; J.A. Pearce Careón Ophiolite, NW Spain: Suprasubduction zone setting for the youngest Rheic Ocean floor, Geology, Volume 35 (2007), pp. 53-56

[71] J.F. Santos; U. Schärer; J.I. Gil Ibarguchi; J. Girardeau Genesis of pyroxenite-rich peritotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data, J. Petrol., Volume 43 (2002), pp. 17-43

[72] J.F. Santos Zalduegui; U. Schärer; J.I. Gil Ibarguchi Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica-Tuy allochthon, Galicia, NW-Spain, Chem. Geol., Volume 121 (1995), pp. 91-103

[73] J.F. Santos Zalduegui; U. Schärer; J.I. Gil Ibarguchi; J. Girardeau Origin and evolution of the Paleozoic Cabo Ortegal ultramafic–mafic complex (NW Spain): U–Pb, Rb–Sr and Pb–Pb isotope data, Chem. Geol., Volume 129 (1996), pp. 281-304

[74] D. Shelley; G. Bossière A new model for the Hercynian Orogen of Gondwanan France and Iberia, J. Struct. Geol., Volume 22 (2000), pp. 757-776

[75] B. Valle Aguado; M.R. Azevedo; U. Schaltegger; J.R. Martínez Catalán; J. Nolan U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in central northern Portugal, Lithos, Volume 82 (2005), pp. 169-184

[76] P. Valverde-Vaquero; G.R. Dunning New U–Pb ages for Early Ordovician magmatism in Central Spain, J. Geol. Soc. Lond., Volume 157 (2000), pp. 15-26

[77] P. Valverde-Vaquero; A. Marcos; P. Farias; G. Gallastegui U–Pb dating of Ordovician felsic volcanism in the Schistose Domain of the Galicia-Trás-os-Montes Zone near Cabo Ortegal (NW Spain), Geol. Acta, Volume 3 (2005), pp. 27-37

[78] C.R. van Staal The northern Appalachians (R.C. Selley; L.R.M. Cocks; I.R. Plimer, eds.), Encyclopedia of Geology, Elsevier, Oxford, 2005, pp. 81-91

[79] J.A. Winchester, T.C. Pharaoh, J. Verniers, Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations, in: J.A. Winchester, T.C Pharaoh, J. Verniers (Eds.), Palaeozoic Amalgamation of central Europe, Geol. Soc. Spec. Publ. 201, 2002, pp. 1–18.

[80] N.H. Woodcock, N.J. Soper, R.A. Strachan, A Rheic cause for the Acadian deformation in Europe. J. Geol. Soc. Lond. 164 (1997) 1023–1036.


Cité par

  • Carmen Rodríguez; Manuel Francisco Pereira; Joan Martí; Núria Bach; Noah Scahmuells Ultra-high temperatures recorded in parental magmas from hybrid zones, Geological Society of America Bulletin, Volume 137 (2025) no. 5-6, p. 2784 | DOI:10.1130/b37789.1
  • Michel Faure; Eric Marcoux; Marc Poujol; Clément Masson How Stiff Was Armorica During the Variscan Orogeny? A Reappraisal of the “Bretonian” Phase in Central Brittany, Geosciences, Volume 15 (2025) no. 2, p. 60 | DOI:10.3390/geosciences15020060
  • Diana Moreno-Martín; Rubén Díez Fernández; Richard Albert; Sonia Sánchez Martínez; Esther Rojo-Pérez; Axel Gerdes; Ricardo Arenas Cuartel Ophiolite: Structure, timing and exhumation mechanisms for a Cadomian suture zone in the peri-Gondwanan Realm (SW Iberia), Gondwana Research, Volume 137 (2025), p. 255 | DOI:10.1016/j.gr.2024.10.002
  • Mahmoud K. Alawy; Juan Gómez-Barreiro; Zakaria Hamimi; Abdel-Kader M. Moghazi; Mohammed Hassan Younis; Inés Puente Orench; Santos Barrios Sánchez Tectonic reworking in the Arabian-Nubian Shield: An analysis of the textural record of the exhumation of the Meatiq Gneiss dome (Egypt), Gondwana Research, Volume 143 (2025), p. 64 | DOI:10.1016/j.gr.2025.03.008
  • Irene Novo-Fernández; Núria Pujol-Solà; Ricardo Arenas; Rubén Díez Fernández; Joaquín A. Proenza; Esther Rojo-Pérez; Aitor Cambeses; Sonia Sánchez Martínez; Gabriel Iglesias; Antonio Garcia-Casco From onset of Cadomian subduction to forearc-arc-continent collision: Insights from the Neoproterozoic Calzadilla Metaophiolite (SW Iberia), International Geology Review, Volume 67 (2025) no. 3, p. 257 | DOI:10.1080/00206814.2024.2389566
  • António João Teixeira Oliveira; Helena Sant’Ovaia; Helena Cristina Brites Martins; Eric Claude Font Low-field magnetic fabrics and mineralogy of subvolcanic dykes from northern Portugal: Magma flow and petrogenetic implications, Journal of Iberian Geology (2025) | DOI:10.1007/s41513-024-00276-4
  • B. Oliva-Urcia; T. Román-Berdiel; P. Clariana; R. Soto; E. Izquierdo-Llavall; A. Casas-Sainz Deformation and magnetic fabrics in isoclinal folds of the Variscan Pyrenees, Journal of Structural Geology, Volume 199 (2025), p. 105495 | DOI:10.1016/j.jsg.2025.105495
  • Javier Rodríguez; Christian Pin; Saioa Suárez; Luis Ángel Ortega; Jean-Louis Paquette; Benito Ábalos; José Ignacio Gil Ibarguchi Hybridization of crustal magmas and direct evidence for two mantle sources during Early-Ordovician magmatism at the NW Gondwana margin, Lithos (2025), p. 108171 | DOI:10.1016/j.lithos.2025.108171
  • I. Novo-Fernández; R. Albert; R. Arenas; J.I. Gil Ibarguchi; S. Sánchez Martínez; A. Gerdes; R. Díez Fernández; A. Beranoaguirre; A. Garcia-Casco P-T evolution and refined U Pb geochronology of the giant eclogite layer of the Cabo Ortegal Complex (NW Iberian Massif), Lithos, Volume 496-497 (2025), p. 107952 | DOI:10.1016/j.lithos.2025.107952
  • José Roseiro; Noel Moreira; Daniel de Oliveira; Marcelo Silva; Luis Eguiluz; Pedro Nogueira Ranked Mappable Criteria for Magmatic Units: Systematization of the Ossa-Morena Zone Rift-Related Alkaline Bodies, Minerals, Volume 15 (2025) no. 2, p. 174 | DOI:10.3390/min15020174
  • Luís Portela; Maria Rosário Azevedo; Beatriz Valle Aguado; Maria Mafalda Costa; Jorge Medina Petrogenesis and U–Pb Dating of Variscan S-Type Granites from the Junqueira Batholith (Central Iberian Zone), Minerals, Volume 15 (2025) no. 5, p. 481 | DOI:10.3390/min15050481
  • Daniel Bermejo; Lorena Ortega; Santos Barrios Sánchez; Lorenzo Tavazzani; Pedro Castiñeiras; Cyril Chelle-Michou; Elena Crespo; Kelvin dos Santos Alves; Juan Gómez-Barreiro Late variscan tectonic orogenic collapse as a trigger of Sn-W mineralizing systems. U-Pb ore geochronology across the martinamor gneissic dome (Salamanca, Spain), Ore Geology Reviews (2025), p. 106762 | DOI:10.1016/j.oregeorev.2025.106762
  • Emma Losantos; Iñigo Borrajo; Iván Losada; Lluís Boixet; José M. Castelo Branco; Fernando Tornos Sn and W mineralisation in the Iberian Peninsula, Ore Geology Reviews, Volume 179 (2025), p. 106542 | DOI:10.1016/j.oregeorev.2025.106542
  • Chris Timoner; Ricardo Arenas; José M. Fuenlabrada; Juan A. Moreno; Esther Rojo-Pérez Alkaline Devonian magmatism of the Menorca Island: Tracking the mantle isotopic sources in the realm of the western Paleo-Tethys Ocean, Chemical Geology, Volume 669 (2024), p. 122362 | DOI:10.1016/j.chemgeo.2024.122362
  • Bryan COCHELIN; Charles GUMIAUX; Benjamin LE BAYON; Yoann DENÈLE; Thierry BAUDIN Tectonics and Geodynamics of the Variscan Cycle in the Pyrenees, Evolution of the Pyrenees during the Variscan and Alpine Cycles 1 (2024), p. 1 | DOI:10.1002/9781394306534.ch1
  • P. Cachapuz; M. Chichorro; T. Bento dos Santos Critical analysis between the Ossa-Morena Zone and the Galicia-Trás-os-Montes Zone, Iberian Massif: Geochemical and geochronological comparison and geodynamic implications, Geochemistry, Volume 84 (2024) no. 3, p. 126168 | DOI:10.1016/j.chemer.2024.126168
  • Ricardo Arenas; Christian Vérard; Richard Albert; Esther Rojo-Pérez; Sonia Sánchez Martínez; Irene Novo-Fernández; Diana Moreno-Martín; Axel Gerdes; Antonio Garcia-Casco; Rubén Díez Fernández Cadomia origins: paired Ediacaran ophiolites from the Iberian Massif, the opening and closure record of peri-Gondwanan basins, Geological Society, London, Special Publications, Volume 542 (2024) no. 1, p. 507 | DOI:10.1144/sp542-2022-328
  • Ícaro Dias da Silva; Manuel Francisco Pereira; Cristina Gama; Lourenço Steel Hart; Santos Barrios Sánchez; Kelvin dos Santos Alves; Juan Gómez Barreiro; Colombo Celso Gaeta Tassinari; Kei Sato The influence of synorogenic extension on the crustal architecture of North Gondwana during the assembly of Pangaea (Ossa–Morena Zone, SW Iberia), Geological Society, London, Special Publications, Volume 542 (2024) no. 1, p. 549 | DOI:10.1144/sp542-2023-9
  • Ricardo Arenas; José M. Fuenlabrada; Cristian Timoner; Rubén Díez Fernández; Esther Rojo-Pérez Frontier of the Paleo-Tethys Ocean in the western Mediterranean: Isotopic (Sm-Nd) constraints on sources of Devonian units from Menorca Island, Geoscience Frontiers, Volume 15 (2024) no. 5, p. 101865 | DOI:10.1016/j.gsf.2024.101865
  • Irene Novo-Fernández; Ricardo Arenas; Rubén Díez Fernández; Antonio Garcia-Casco A complex accretionary assembly of Pangea developed in the range c. 400–340 Ma: the four successive events of high-P/ultra-high-P metamorphism of the Variscan Orogen, International Geology Review, Volume 66 (2024) no. 1, p. 336 | DOI:10.1080/00206814.2022.2127126
  • Francisco J. Rubio Pascual; Luis M. Martín Parra; Rubén Díez Fernández; Pablo Valverde-Vaquero; Alejandro Díez-Montes; Manuel P. Hacar Rodríguez; Justo Iglesias; Gloria Gallastegui; L. Roberto Rodríguez Fernández; Aratz Beranoaguirre Tectonics and geothermal gradients from subduction to collision in the NW Variscan Iberian Massif, International Geology Review, Volume 66 (2024) no. 1, p. 380 | DOI:10.1080/00206814.2022.2073569
  • Esther Rojo-Pérez; José M Fuenlabrada; Rubén Díez Fernández; Ricardo Arenas Origin and evolution of Cadomian magmatism in SW Iberia: from subduction onset and arc building to a tectonic switching, International Geology Review, Volume 66 (2024) no. 10, p. 1885 | DOI:10.1080/00206814.2023.2258394
  • Jérémie Malecki; Stephen Collett; José R. Martínez Catalán; Pedro Castiñeiras; Karel Schulmann; Nikol Novotná; Jitka Míková; Juan Gómez Barreiro The mid-Variscan suture in the Morais complex of Trás-os-Montes (Portugal): insights from geochemistry and geochronology of oceanic rocks, International Geology Review, Volume 66 (2024) no. 22, p. 3882 | DOI:10.1080/00206814.2024.2411534
  • Joana M. Dias; Ricardo Vianez; Cláudia Cruz; Eric Font; Helena Sant’Ovaia; Joana Ferreira; Alexandra Guedes Magnetic properties of iron ores from two Ordovician deposits in Northern Portugal: Marão and Moncorvo, Journal of Iberian Geology (2024) | DOI:10.1007/s41513-024-00267-5
  • Ana Gonçalves; Helena Sant’Ovaia; Fernando Noronha Anisotropy of magnetic susceptibility as the key to understand the ascending and emplacement mechanisms of granitic plutons: a review, Journal of Iberian Geology (2024) | DOI:10.1007/s41513-024-00272-8
  • Ícaro Dias da Silva; Manuel Francisco Pereira; Emílio González Clavijo; José Brandão Silva Mississippian olistostromes of Iberia revisited: tectonic drivers of synorogenic carbonate platform/reef destruction, Journal of the Geological Society, Volume 181 (2024) no. 2 | DOI:10.1144/jgs2023-187
  • José R. Martínez Catalán; Karel Schulmann; Puy Ayarza; Jean-Bernard Edel; Manuela Durán Oreja Oroclinal arcs of the Variscan Belt: a consequence of transpression during the consolidation of Pangaea, Journal of the Geological Society, Volume 181 (2024) no. 5 | DOI:10.1144/jgs2024-007
  • Pablo Nuñez; Alvaro Rubio; Daniel Arias; Jorge Fuertes-Blanco; Fernando Cortés; Fernando Díaz-Riopa; Agustin Martin-Izard Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula, Minerals, Volume 14 (2024) no. 11, p. 1159 | DOI:10.3390/min14111159
  • Helena Sant’Ovaia; Cláudia Cruz; Ana Gonçalves; Pedro Nogueira; Fernando Noronha Deciphering Iberian Variscan Orogen Magmatism Using the Anisotropy of Magnetic Susceptibility from Granites, Minerals, Volume 14 (2024) no. 3, p. 309 | DOI:10.3390/min14030309
  • Violeta Ramos; Fernando Noronha; Reimar Seltmann; Alla Dolgopolova; Alexandra Guedes; Jens Andersen; Liene Spruženiece; Beth Simons; Gavyn Rollinson; Joe Pickles; Robin Armstrong; Chris Stanley; Wolfgang Reimer São Pedro das Águias skarn: A W-(Sn) deposit from the Douro Scheelite Belt, Northern Portugal, Ore Geology Reviews, Volume 175 (2024), p. 106348 | DOI:10.1016/j.oregeorev.2024.106348
  • Fabrice Jouffray; Jean-Marc Lardeaux; Anne-Sophie Tabaud; Michel Corsini; Julie Schneider Deciphering the nature and age of the protoliths and peakP−Tconditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides, BSGF - Earth Sciences Bulletin, Volume 194 (2023), p. 10 | DOI:10.1051/bsgf/2023006
  • Luís Albardeiro; Igor Morais; João X. Matos; Rita Solá; Rute Salgueiro; Zélia Pereira; Márcia Mendes; Maria J. Batista; Daniel de Oliveira; Alejandro Díez-Montes; Carlos Inverno; Nelson Pacheco; Vítor Araújo Time-space evolution of Iberian Pyrite Belt igneous activity: Volcanic and plutonic lineaments, geochronology, ore horizons and stratigraphic constraints, Gondwana Research, Volume 121 (2023), p. 235 | DOI:10.1016/j.gr.2023.05.004
  • A. S. Tabaud; J. M. Lardeaux; M. Corsini A vestige of an Ediacaran magmatic arc in southeast France and its significance for the northern Gondwana margin, International Journal of Earth Sciences, Volume 112 (2023) no. 3, p. 925 | DOI:10.1007/s00531-022-02277-z
  • Luizemara Soares Alves Szameitat; Monica Heilbron; Maria Alice Nascimento Fagundes de Aragão; Gianreto Manatschal; Francisco José Fonseca Ferreira; Alessandra de Barros e Silva Bongiolo; Anderson Costa dos Santos; Webster Ueipass Mohriak Geophysical evidence for lithospheric scale asymmetry and inherited mantle in the SE Brazilian-Angola and Newfoundland-Iberia rifted margins, Journal of South American Earth Sciences, Volume 123 (2023), p. 104214 | DOI:10.1016/j.jsames.2023.104214
  • Aina Margalef Porcar; Pablo Granado; Josep Maria Casas Superimposed Variscan and Alpine deformation in the basement rocks of southern Andorra, central Pyrenees, Journal of the Geological Society, Volume 180 (2023) no. 6 | DOI:10.1144/jgs2023-099
  • Byron Solís-Alulima; Alicia López-Carmona; Jacobo Abati; Yamirka Rojas-Agramonte; Romain Bousquet; José González del Tánago Polycyclic metamorphic evolution of the Sierra Albarrana Schists (SW Iberian Massif): From low-pressure Ordovician rifting to medium-pressure Variscan overprint, Lithos, Volume 444-445 (2023), p. 107092 | DOI:10.1016/j.lithos.2023.107092
  • Jorge Pamplona; Benedito C. Rodrigues; Mark Peternell; Alex Lorenz; Alex Schimdt; Melissa Mengert; Thomas Altmeyer; Jonas Köpping Structures Associated with the Dynamics of Granitic Rock Emplacement (NW Portugal), Structural Geology and Tectonics Field Guidebook—Volume 2 (2023), p. 61 | DOI:10.1007/978-3-031-19576-1_2
  • Diana Moreno‐Martín; Rubén Díez Fernández; Ricardo Arenas; Esther Rojo‐Pérez; Irene Novo‐Fernández; Sonia Sánchez Martínez Building and Collapse of the Cadomian Orogen: A Plate‐Scale Model Based on Structural Data From the SW Iberian Massif, Tectonics, Volume 42 (2023) no. 12 | DOI:10.1029/2023tc007990
  • Manuela Durán Oreja; Pablo Calvín; Juan José Villalaín; Puy Ayarza; José R. Martínez Catalán Paleomagnetism in the Cambrian Urda-Los Navalucillos Limestone (Montes de Toledo, Spain): Implications for late-Variscan kinematics and oroclinal bending in the Central Iberian Zone, Tectonophysics, Volume 852 (2023), p. 229781 | DOI:10.1016/j.tecto.2023.229781
  • Juan Ramón Vidal Romaní Introduction to the Geology of Galicia, The Environment in Galicia: A Book of Images (2023), p. 21 | DOI:10.1007/978-3-031-33114-5_3
  • Jean‐Marc LARDEAUX; Karel SCHULMANN Paleogeographical and Paleo‐Geodynamic Context of the Variscan Belt, The Variscan Belt of Western Europe 1 (2023), p. 47 | DOI:10.1002/9781394228966.ch2
  • Karel Schulmann; Jean-Bernard Edel; José R. Martínez Catalán; Stanislaw Mazur; Alexandra Guy; Jean-Marc Lardeaux; Puy Ayarza; Imma Palomeras Tectonic evolution and global crustal architecture of the European Variscan belt constrained by geophysical data, Earth-Science Reviews, Volume 234 (2022), p. 104195 | DOI:10.1016/j.earscirev.2022.104195
  • Carmen Rodríguez; Manuel Francisco Pereira; Antonio Castro; Gabriel Gutiérrez-Alonso; Carlos Fernández Variscan intracrustal recycling by melting of Carboniferous arc-like igneous protoliths (Évora Massif, Iberian Variscan belt), GSA Bulletin, Volume 134 (2022) no. 5-6, p. 1549 | DOI:10.1130/b36111.1
  • Michel Faure; Jacky Ferrière Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline, Geosciences, Volume 12 (2022) no. 2, p. 65 | DOI:10.3390/geosciences12020065
  • Rubén Díez Fernández; Ricardo Arenas; Esther Rojo-Pérez; Sonia Sánchez Martínez; José Manuel Fuenlabrada Tectonostratigraphy of the Mérida Massif reveals a new Cadomian suture zone exposure in Gondwana (SW Iberia), International Geology Review, Volume 64 (2022) no. 3, p. 405 | DOI:10.1080/00206814.2020.1858355
  • Ana Gonçalves; Helena Sant’Ovaia; Helena Cristina Brites Martins; Fernando Noronha Magnetic fabrics and emplacement mechanisms of Valpaços and Freixo de Numão Variscan granites (Northern Portugal), International Journal of Earth Sciences, Volume 111 (2022) no. 5, p. 1437 | DOI:10.1007/s00531-022-02187-0
  • G. Ortolano; M. Pagano; R. Visalli; G. Angì; A. D’Agostino; F. Muto; V. Tripodi; S. Critelli; R. Cirrincione Geology and structure of the Serre Massif upper crust: a look in to the late-Variscan strike–slip kinematics of the Southern European Variscan chain, Journal of Maps, Volume 18 (2022) no. 2, p. 314 | DOI:10.1080/17445647.2022.2057876
  • Tamás Spránitz; José Alberto Padrón‐Navarta; Csaba Szabó; Ábel Szabó; Márta Berkesi Abiotic passive nitrogen and methane enrichment during exhumation of subducted rocks: Primary multiphase fluid inclusions in high‐pressure rocks from the Cabo Ortegal Complex, NW Spain, Journal of Metamorphic Geology, Volume 40 (2022) no. 8, p. 1291 | DOI:10.1111/jmg.12666
  • Josep Maria Casas; Joan Guimerà; Joaquina Alvarez-Marron; Ícaro Días da Silva Is the Ibero-Armorican Arc primary or secondary? An analysis of the contraction required to form it by rotation around a vertical axis, Journal of the Geological Society, Volume 179 (2022) no. 4 | DOI:10.1144/jgs2021-065
  • M. Francisco Pereira; Carlos Fernández; Carmen Rodríguez; António Castro Ordovician tectonics and crustal evolution at the Gondwana margin (Central Iberian Zone), Journal of the Geological Society, Volume 179 (2022) no. 5 | DOI:10.1144/jgs2021-168
  • Byron Solís-Alulima; Jacobo Abati; Alicia López-Carmona; Gabriel Gutiérrez-Alonso; Javier Fernández-Suárez; Daniel F. Stockli Detrital zircon ages and provenance of a Cambrian succession in the Sierra Albarrana Domain (SW Iberian Massif), Lithos, Volume 408-409 (2022), p. 106542 | DOI:10.1016/j.lithos.2021.106542
  • Uwe Kroner*; Tobias Stephan; Rolf L. Romer Paleozoic orogenies and relative plate motions at the sutures of the Iapetus-Rheic Ocean, New Developments in the Appalachian-Caledonian-Variscan Orogen (2022), p. 1 | DOI:10.1130/2021.2554(01)
  • Rolf L. Romer; Uwe Kroner Provenance control on the distribution of endogenic Sn-W, Au, and U mineralization within the Gondwana-Laurussia plate boundary zone, New Developments in the Appalachian-Caledonian-Variscan Orogen (2022), p. 25 | DOI:10.1130/2021.2554(02)
  • Hossein Azizi; Scott A. Whattam Does Neoproterozoic-Early Paleozoic (570–530 Ma) basement of Iran belong to the Cadomian Orogeny?, Precambrian Research, Volume 368 (2022), p. 106474 | DOI:10.1016/j.precamres.2021.106474
  • Jorge Acevedo; Gabriela Fernández-Viejo; Sergio Llana-Fúnez; Carlos López-Fernández; Javier Olona; Diego Pérez-Millán Radial anisotropy and S-wave velocity depict the internal to external zone transition within the Variscan orogen (NW Iberia), Solid Earth, Volume 13 (2022) no. 3, p. 659 | DOI:10.5194/se-13-659-2022
  • G. de Vicente; R. Díez Fernández; A. Olaiz; A. Muñoz‐Martín Variscan Inheritance Induces Alpine Upper Crustal Delamination in East Spanish‐Portuguese Central System, Tectonics, Volume 41 (2022) no. 8 | DOI:10.1029/2022tc007315
  • António João Teixeira Oliveira; Helena Cristina Brites Martins; Helena Maria Sant’Ovaia Mendes da Silva Petrogenetic constraints on the felsic vein magmatism in northern Portugal based on petrological and geochemical data, Comptes Rendus. Géoscience, Volume 353 (2021) no. 1, p. 377 | DOI:10.5802/crgeos.100
  • José R. Martínez Catalán; Karel Schulmann; Jean-François Ghienne The Mid-Variscan Allochthon: Keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt, Earth-Science Reviews, Volume 220 (2021), p. 103700 | DOI:10.1016/j.earscirev.2021.103700
  • Qiuli Li; Wei Lin; Yin Wang; Michel Faure; Lingtong Meng; Hao Wang; Vuong Van Nguyen; Hoai Luong Thi Thu; Claude Lepvrier; Yang Chu; Wei Wei; Tich Van Vu Detrital zircon U Pb age distributions and Hf isotopic constraints of the Ailaoshan-Song Ma Suture Zone and their paleogeographic implications for the Eastern Paleo-Tethys evolution, Earth-Science Reviews, Volume 221 (2021), p. 103789 | DOI:10.1016/j.earscirev.2021.103789
  • Lei Wu; J. Brendan Murphy; Cecilio Quesada; Zheng-Xiang Li; John W.F. Waldron; Simon Williams; Sergei Pisarevsky; William J. Collins The amalgamation of Pangea: Paleomagnetic and geological observations revisited, GSA Bulletin, Volume 133 (2021) no. 3-4, p. 625 | DOI:10.1130/b35633.1
  • Ricardo Arenas; Sonia Sánchez Martínez; Richard Albert; Faouziya Haissen; Javier Fernández-Suárez; Núria Pujol-Solà; Pilar Andonaegui; Rubén Díez Fernández; Joaquín A. Proenza; Antonio Garcia-Casco; Axel Gerdes 100 myr cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic–Devonian ophiolites from the NW African–Iberian margin of Gondwana and the Variscan Orogen, Geological Society, London, Special Publications, Volume 503 (2021) no. 1, p. 169 | DOI:10.1144/sp503-2020-3
  • Sonia Sánchez Martínez; Ricardo Arenas; Richard Albert; Axel Gerdes; Javier Fernández-Suárez Updated geochronology and isotope geochemistry of the Vila de Cruces Ophiolite: a case study of a peri-Gondwanan back-arc ophiolite, Geological Society, London, Special Publications, Volume 503 (2021) no. 1, p. 497 | DOI:10.1144/sp503-2020-8
  • Manuel Francisco Pereira; Cristina Gama; Ícaro Dias da Silva; José Manuel Fuenlabrada; José Brandão Silva; Jorge Medina Isotope geochemistry evidence for Laurussian-type sources of South Portuguese Zone Carboniferous turbidites (Variscan Orogeny), Geological Society, London, Special Publications, Volume 503 (2021) no. 1, p. 619 | DOI:10.1144/sp503-2019-163
  • Sebastián Oriolo; Bernhard Schulz; Silvana Geuna; Pablo D. González; Juan E. Otamendi; Jiří Sláma; Elena Druguet; Siegfried Siegesmund Early Paleozoic accretionary orogens along the Western Gondwana margin, Geoscience Frontiers, Volume 12 (2021) no. 1, p. 109 | DOI:10.1016/j.gsf.2020.07.001
  • Bruno Daniel Leite Mendes; Daniel Pastor-Galán; Mark J. Dekkers; Wout Krijgsman Avalonia, get bent! – Paleomagnetism from SW Iberia confirms the Greater Cantabrian Orocline, Geoscience Frontiers, Volume 12 (2021) no. 2, p. 805 | DOI:10.1016/j.gsf.2020.07.013
  • R. Arenas; I. Novo-Fernández; A. Garcia-Casco; R. Díez Fernández; J.M. Fuenlabrada; M.F. Pereira; J. Abati; S. Sánchez Martínez; F.J. Rubio Pascual A unique blueschist facies metapelite with Mg-rich chloritoid from the Badajoz-Córdoba Unit (SW Iberian Massif): correlation of Late Devonian high-pressure belts along the Variscan Orogen, International Geology Review, Volume 63 (2021) no. 13, p. 1634 | DOI:10.1080/00206814.2020.1789509
  • Ícaro Dias da Silva; Emilio González Clavijo; Alejandro Díez-Montes The collapse of the Variscan belt: a Variscan lateral extrusion thin-skinned structure in NW Iberia, International Geology Review, Volume 63 (2021) no. 6, p. 659 | DOI:10.1080/00206814.2020.1719544
  • José Manuel Fuenlabrada; Ricardo Arenas; Rubén Díez Fernández; José González del Tánago; Luis Miguel Martín-Parra; Jerónimo Matas; Esther Rojo-Pérez; Sonia Sánchez Martínez; Pilar Andonaegui; Byron Solis Alulima Tectonic setting and isotopic sources (Sm–Nd) of the SW Iberian Autochthon (Variscan Orogen), Journal of Iberian Geology, Volume 47 (2021) no. 1-2, p. 121 | DOI:10.1007/s41513-020-00148-7
  • Jean‐Baptiste Jacob; Stéphane Guillot; Daniela Rubatto; Emilie Janots; Jérémie Melleton; Michel Faure; Julia Baldwin Carboniferous high‐P metamorphism and deformation in the Belledonne Massif (Western Alps), Journal of Metamorphic Geology, Volume 39 (2021) no. 8, p. 1009 | DOI:10.1111/jmg.12600
  • Dominique Jacques; Philippe Muchez; Manuel Sintubin Late- to post-Variscan tectonics and the kinematic relationship with W–Sn vein-type mineralization: evidence from Late Carboniferous intramontane basins (Porto–Sátão syncline, Variscan Iberian belt), Journal of the Geological Society, Volume 178 (2021) no. 5 | DOI:10.1144/jgs2020-223
  • Irene Novo-Fernández; Ricardo Arenas; Christian de Capitani; Manuel Francisco Pereira; Rubén Díez Fernández; Sonia Sánchez Martínez; Antonio Garcia-Casco Tracking the Late Devonian high-P metamorphic belt in the Variscan Orogen: New constraints on the PT evolution of eclogites from the Cubito-Moura Unit (SW Iberian Massif), Lithos, Volume 386-387 (2021), p. 106015 | DOI:10.1016/j.lithos.2021.106015
  • Mónica Arias; Pablo Nuñez; Daniel Arias; Pablo Gumiel; Cesar Castañón; Jorge Fuertes-Blanco; Agustin Martin-Izard 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula, Minerals, Volume 11 (2021) no. 1, p. 85 | DOI:10.3390/min11010085
  • Rubén Díez Fernández*; Jerónimo Matas; Ricardo Arenas; Luis Miguel Martín-Parra; Sonia Sánchez Martínez; Irene Novo-Fernández; Esther Rojo-Pérez Two-step obduction of the Porvenir serpentinites: A cryptic Devonian suture in SW Iberian Massif (Ossa-Morena Complex), Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores (2021), p. 113 | DOI:10.1130/2021.2552(07)
  • Emilio González Clavijo; Ícaro Dias da Silva; José R. Martínez Catalán; Juan Gómez Barreiro; Gabriel Gutiérrez-Alonso; Alejandro Díez Montes; Mandy Hofmann; Andreas Gärtner; Ulf Linnemann A tectonic carpet of Variscan flysch at the base of a rootless accretionary prism in northwestern Iberia: U–Pb zircon age constrains from sediments and volcanic olistoliths, Solid Earth, Volume 12 (2021) no. 4, p. 835 | DOI:10.5194/se-12-835-2021
  • Rubén Díez Fernández; Carlos Fernández; Ricardo Arenas; Irene Novo‐Fernández On the Rootless Nature of a Devonian Suture in SW Iberia (Ossa‐Morena Complex, Variscan Orogen): Geometry and Kinematics of the Azuaga Fault, Tectonics, Volume 40 (2021) no. 6 | DOI:10.1029/2021tc006791
  • José Manuel Fuenlabrada; Ricardo Arenas; Sonia Sánchez Martínez; Rubén Díez Fernández; Agustín P. Pieren; M. Francisco Pereira; Martim Chichorro; José B. Silva Geochemical and isotopic (Sm Nd) provenance of Ediacaran-Cambrian metasedimentary series from the Iberian Massif. Paleoreconstruction of the North Gondwana margin, Earth-Science Reviews, Volume 201 (2020), p. 103079 | DOI:10.1016/j.earscirev.2019.103079
  • José R. Martínez Catalán; Stephen Collett; Karel Schulmann; Pawel Aleksandrowski; Stanislaw Mazur Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt, International Journal of Earth Sciences, Volume 109 (2020) no. 4, p. 1105 | DOI:10.1007/s00531-019-01800-z
  • Fabrice Jouffray; Maria Iole Spalla; Jean Marc Lardeaux; Marco Filippi; Gisella Rebay; Michel Corsini; Davide Zanoni; Michele Zucali; Guido Gosso Variscan eclogites from the Argentera–Mercantour Massif (External Crystalline Massifs, SW Alps): a dismembered cryptic suture zone, International Journal of Earth Sciences, Volume 109 (2020) no. 4, p. 1273 | DOI:10.1007/s00531-020-01848-2
  • G. Ortolano; R. Visalli; E. Fazio; P. Fiannacca; G. Godard; A. Pezzino; R. Punturo; V. Sacco; R. Cirrincione Tectono-metamorphic evolution of the Calabria continental lower crust: the case of the Sila Piccola Massif, International Journal of Earth Sciences, Volume 109 (2020) no. 4, p. 1295 | DOI:10.1007/s00531-020-01873-1
  • Jacek Szczepański; Krzysztof Turniak; Robert Anczkiewicz; Paulina Gleichner Dating of detrital zircons and tracing the provenance of quartzites from the Bystrzyckie Mts: implications for the tectonic setting of the Early Palaeozoic sedimentary basin developed on the Gondwana margin, International Journal of Earth Sciences, Volume 109 (2020) no. 6, p. 2049 | DOI:10.1007/s00531-020-01888-8
  • Parisa Gharibnejad; Philippe Agard; Claudio L. Rosenberg; Jafar Omrani; Ali Kananian Fossil thermal structure of the southern Sanandaj-Sirjan zone (SW Iran): Implications for regional-scale tectonics, Journal of Asian Earth Sciences, Volume 200 (2020), p. 104488 | DOI:10.1016/j.jseaes.2020.104488
  • Irene Novo‐Fernández; Richard Albert; Ricardo Arenas; Antonio Garcia‐Casco; Rubén Díez Fernández; Sonia Sánchez Martínez; Axel Gerdes; Christian De Capitani Reconstruction of the prograde PT history of high‐P migmatitic paragneisses via melt‐reintegration approach and thermodynamic modelling (Allochthonous Complexes, NW Iberian Massif), Journal of Metamorphic Geology, Volume 38 (2020) no. 6, p. 629 | DOI:10.1111/jmg.12533
  • C Lotout; M Poujol; P Pitra; R Anczkiewicz; J Van Den Driessche From Burial to Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained Through Multimethod Petrochronology, Case Study from the Lévézou Massif (French Massif Central, Variscan Belt), Journal of Petrology, Volume 61 (2020) no. 4 | DOI:10.1093/petrology/egaa046
  • Ana Gonçalves; Helena Sant'Ovaia; Maria dos Anjos Ribeiro; Fernando Noronha The Esmolfe-Matança granite (Penalva do Castelo, central Portugal): A keystone to understand the ascent and emplacement of magmas under low tectonic stress, Journal of Structural Geology, Volume 139 (2020), p. 104143 | DOI:10.1016/j.jsg.2020.104143
  • Romain Tilhac; Beñat Oliveira; William L. Griffin; Suzanne Y. O'Reilly; Bruce F. Schaefer; Olivier Alard; Georges Ceuleneer; Juan Carlos Afonso; Michel Grégoire Reworking of old continental lithosphere: Unradiogenic Os and decoupled Hf Nd isotopes in sub-arc mantle pyroxenites, Lithos, Volume 354-355 (2020), p. 105346 | DOI:10.1016/j.lithos.2019.105346
  • Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; Arlo B. Weil The enigmatic curvature of Central Iberia and its puzzling kinematics, Solid Earth, Volume 11 (2020) no. 4, p. 1247 | DOI:10.5194/se-11-1247-2020
  • José Manuel Benítez-Pérez; Pedro Castiñeiras; Juan Gómez-Barreiro; José R. Martínez Catalán; Andrew Kylander-Clark; Robert Holdsworth Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry, Solid Earth, Volume 11 (2020) no. 6, p. 2303 | DOI:10.5194/se-11-2303-2020
  • Rubén Díez Fernández; Ricardo Arenas; Sonia Sánchez Martínez; Irene Novo‐Fernández; Richard Albert Single subduction zone for the generation of Devonian ophiolites and high‐P metamorphic belts of the Variscan Orogen (NW Iberia), Terra Nova, Volume 32 (2020) no. 4, p. 239 | DOI:10.1111/ter.12455
  • Luizemara S. A. Szameitat; Gianreto Manatschal; Michael Nirrengarten; Francisco J. F. Ferreira; Monica Heilbron Magnetic characterization of the zigzag shaped J‐anomaly: Implications for kinematics and breakup processes at the Iberia–Newfoundland margins, Terra Nova, Volume 32 (2020) no. 5, p. 369 | DOI:10.1111/ter.12466
  • Fábio Martins; M. Rosário Azevedo; Beatriz Valle Aguado; Elisa P. Gomes; Colombo Tassinari; José Nogueira Neto SHRIMP U-Pb ages and REE patterns for zircon from an anatectic Variscan two-mica granite from the Bemposta Migmatite Complex (Central Iberian Zone), The Canadian Mineralogist, Volume 58 (2020) no. 6, p. 847 | DOI:10.3749/canmin.2000015
  • Byron Ernesto Solís-Alulima; Alicia López-Carmona; Gabriel Gutiérrez-Alonso; Antonio M. Álvarez-Valero Petrologic and thermobarometric study of the Riás schists (NW Iberian Massif), Boletín Geológico y Minero, Volume 130 (2019) no. 3, p. 445 | DOI:10.21701/bolgeomin.130.3.004
  • Tobias Stephan; Uwe Kroner; Rolf L. Romer; Delia Rösel From a bipartite Gondwanan shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana, Earth-Science Reviews, Volume 192 (2019), p. 491 | DOI:10.1016/j.earscirev.2019.03.012
  • A. López-Carmona; B.E. Solís-Alulima; G. Gutiérrez-Alonso; A.M. Álvarez-Valero; P. A. Tishin; I. F. Gertner Contrasting metamorphic gradients: Barrovian-type vs. high-pressure metamorphism. An example on the northern margin of Gondwana (NW Iberia), IOP Conference Series: Earth and Environmental Science, Volume 319 (2019) no. 1, p. 012015 | DOI:10.1088/1755-1315/319/1/012015
  • Ana M. R. Neiva; António Moura; Carlos A. Leal Gomes; Manuel Francisco Pereira; Fernando Corfu The granite-hosted Variscan gold deposit from Santo António mine in the Iberian Massif (Penedono, NW Portugal): constraints from mineral chemistry, fluid inclusions, sulfur and noble gases isotopes, Journal of Iberian Geology, Volume 45 (2019) no. 3, p. 443 | DOI:10.1007/s41513-019-00103-1
  • A. Gonçalves; H. Sant'Ovaia; F. Noronha Emplacement mechanism of Caria-Vila da Ponte Pluton (Northern Portugal): Building and internal magmatic record, Journal of Structural Geology, Volume 124 (2019), p. 91 | DOI:10.1016/j.jsg.2019.04.009
  • P. Puelles; J.I. Gil Ibarguchi; S. García de Madinabeitia; F. Sarrionandia; M. Carracedo-Sánchez; S. Fernández-Armas Granulite-facies gneisses and meta-igneous xenoliths from the Campo de Calatrava volcanic field (Spain): Implications for the tectonics of the Variscan lower crust, Lithos, Volume 342-343 (2019), p. 114 | DOI:10.1016/j.lithos.2019.05.031
  • Jon Errandonea-Martin; Fernando Sarrionandia; Vojtěch Janoušek; Manuel Carracedo-Sánchez; José Ignacio Gil Ibarguchi Origin of cordierite-bearing monzogranites from the southern Central Iberian Zone – Inferences from the zoned Sierra Bermeja Pluton (Extremadura, Spain), Lithos, Volume 342-343 (2019), p. 440 | DOI:10.1016/j.lithos.2019.06.009
  • Wei Lin; Michel Faure; Xian-Hua Li; Wenbin Ji Pre-Variscan tectonic setting of the south margin of Armorica: Insights from detrital zircon ages distribution and Hf isotopic composition of the St-Georges-sur-Loire Unit (S. Armorican Massif, France), Tectonophysics, Volume 766 (2019), p. 340 | DOI:10.1016/j.tecto.2019.06.015
  • J. Brendan Murphy; Shoufa Lin; Alexandre Zagorevski Development of accretionary orogens: Preface, Tectonophysics, Volume 767 (2019), p. 128067 | DOI:10.1016/j.tecto.2019.03.011
  • J. F. Simancas Variscan Cycle, The Geology of Iberia: A Geodynamic Approach (2019), p. 1 | DOI:10.1007/978-3-030-10519-8_1
  • T. Sánchez-García; M. Chichorro; A. R. Solá; J. J. Álvaro; A. Díez-Montes; F. Bellido; M. L. Ribeiro; C. Quesada; J. C. Lopes; Í. Dias da Silva; E. González-Clavijo; J. Gómez Barreiro; A. López-Carmona The Cambrian-Early Ordovician Rift Stage in the Gondwanan Units of the Iberian Massif, The Geology of Iberia: A Geodynamic Approach (2019), p. 27 | DOI:10.1007/978-3-030-10519-8_2
  • A. Azor; Í. Dias da Silva; J. Gómez Barreiro; E. González-Clavijo; J. R. Martínez Catalán; J. F. Simancas; D. Martínez Poyatos; I. Pérez-Cáceres; F. González Lodeiro; I. Expósito; J. M. Casas; P. Clariana; J. García-Sansegundo; A. Margalef Deformation and Structure, The Geology of Iberia: A Geodynamic Approach (2019), p. 307 | DOI:10.1007/978-3-030-10519-8_10
  • M. L. Ribeiro; J. Reche; A. López-Carmona; C. Aguilar; T. Bento dos Santos; M. Chichorro; Í. Dias da Silva; A. Díez-Montes; E. González-Clavijo; G. Gutiérrez-Alonso; N. Leal; M. Liesa; F. J. Martínez; A. Mateus; M. H. Mendes; P. Moita; J. Pedro; C. Quesada; J. F. Santos; A. R. Solá; P. Valverde-Vaquero Variscan Metamorphism, The Geology of Iberia: A Geodynamic Approach (2019), p. 431 | DOI:10.1007/978-3-030-10519-8_12
  • J. R. Martínez Catalán; J. Gómez Barreiro; Í. Dias da Silva; M. Chichorro; A. López-Carmona; P. Castiñeiras; J. Abati; P. Andonaegui; J. Fernández-Suárez; P. González Cuadra; J. M. Benítez-Pérez Variscan Suture Zone and Suspect Terranes in the NW Iberian Massif: Allochthonous Complexes of the Galicia-Trás os Montes Zone (NW Iberia), The Geology of Iberia: A Geodynamic Approach (2019), p. 99 | DOI:10.1007/978-3-030-10519-8_4
  • Jean Bernard Edel; Karel Schulmann; Ondrej Lexa; Jean Marc Lardeaux Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt, Earth-Science Reviews, Volume 177 (2018), p. 589 | DOI:10.1016/j.earscirev.2017.12.007
  • A.G. Borrego; A. López García; O. Merino-Tomé Petrographic and geochemical characterization of organic-rich Mississippian black shales in the north of Spain: Vegamián Formation, Cantabrian Zone, International Journal of Coal Geology, Volume 190 (2018), p. 126 | DOI:10.1016/j.coal.2017.08.012
  • M. F. Pereira; R. Díez Fernández; C. Gama; M. Hofmann; A. Gärtner; U. Linnemann S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny), International Journal of Earth Sciences, Volume 107 (2018) no. 1, p. 251 | DOI:10.1007/s00531-017-1488-3
  • James A. Braid; J. Brendan Murphy; Cecilio Quesada; Evan R. Gladney; Nicolle Dupuis Progressive magmatism and evolution of the Variscan suture in southern Iberia, International Journal of Earth Sciences, Volume 107 (2018) no. 3, p. 971 | DOI:10.1007/s00531-017-1540-3
  • Michel Faure; Van Vuong Nguyen; Luong Thi Thu Hoai; Claude Lepvrier Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina Blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam), Journal of Asian Earth Sciences, Volume 166 (2018), p. 162 | DOI:10.1016/j.jseaes.2018.07.015
  • M. Francisco Pereira; Antonio Castro; Carlos Fernández; Carmen Rodríguez Multiple Paleozoic magmatic-orogenic events in the Central Extremadura batholith (Iberian Variscan belt, Spain), Journal of Iberian Geology, Volume 44 (2018) no. 2, p. 309 | DOI:10.1007/s41513-018-0063-5
  • T.M. Will; E. Schmädicke; X.-X. Ling; X.-H. Li; Q.-L. Li New evidence for an old idea: Geochronological constraints for a paired metamorphic belt in the central European Variscides, Lithos, Volume 302-303 (2018), p. 278 | DOI:10.1016/j.lithos.2018.01.008
  • Caroline Lotout; Pavel Pitra; Marc Poujol; Robert Anczkiewicz; Jean Van Den Driessche Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif, Lithos, Volume 308-309 (2018), p. 381 | DOI:10.1016/j.lithos.2018.03.022
  • Pedro A. Dinis; Paulo Fernandes; Raul C.G.S. Jorge; Bruno Rodrigues; David M. Chew; Colombo G. Tassinari The transition from Pangea amalgamation to fragmentation: Constraints from detrital zircon geochronology on West Iberia paleogeography and sediment sources, Sedimentary Geology, Volume 375 (2018), p. 172 | DOI:10.1016/j.sedgeo.2017.09.015
  • José R. Martínez Catalán; Puy Ayarza; Fernando Álvarez Lobato; Juan José Villalaín; Manuela Durán Oreja; Manuel Martín Paramio; Silvia Rodríguez Gómez Magnetic Anomalies in Extensional Detachments: The Xistral Tectonic Window of the Lugo Dome (NW Spain), Tectonics, Volume 37 (2018) no. 11, p. 4261 | DOI:10.1029/2017tc004887
  • M. Druet; A. Muñoz‐Martín; J. L. Granja‐Bruña; A. Carbó‐Gorosabel; J. Acosta; P. Llanes; G. Ercilla Crustal Structure and Continent‐Ocean Boundary Along the Galicia Continental Margin (NW Iberia): Insights From Combined Gravity and Seismic Interpretation, Tectonics, Volume 37 (2018) no. 5, p. 1576 | DOI:10.1029/2017tc004903
  • Josep M. Casas; J. Brendan Murphy Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe, Tectonophysics, Volume 736 (2018), p. 47 | DOI:10.1016/j.tecto.2018.04.012
  • Ícaro Dias da Silva; Manuel Francisco Pereira; José Brandão Silva; Cristina Gama Time-space distribution of silicic plutonism in a gneiss dome of the Iberian Variscan Belt: The Évora Massif (Ossa-Morena Zone, Portugal), Tectonophysics, Volume 747-748 (2018), p. 298 | DOI:10.1016/j.tecto.2018.10.015
  • Jürgen F. von Raumer; Gérard M. Stampfli Ollo de Sapo Cambro‐Ordovician volcanics from the Central Iberian basement—A multiphase evolution, Terra Nova, Volume 30 (2018) no. 5, p. 350 | DOI:10.1111/ter.12350
  • Bryan Cochelin; Dominique Chardon; Yoann Denèle; Charles Gumiaux; Benjamin Le Bayon Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax, Bulletin de la Société géologique de France, Volume 188 (2017) no. 6, p. 39 | DOI:10.1051/bsgf/2017206
  • Hadrien Henry; Romain Tilhac; William L. Griffin; Suzanne Y. O'Reilly; Takako Satsukawa; Mary-Alix Kaczmarek; Michel Grégoire; Georges Ceuleneer Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain, Earth and Planetary Science Letters, Volume 472 (2017), p. 174 | DOI:10.1016/j.epsl.2017.05.028
  • Romain Tilhac; Michel Grégoire; Suzanne Y. O'Reilly; William L. Griffin; Hadrien Henry; Georges Ceuleneer Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain, Earth and Planetary Science Letters, Volume 474 (2017), p. 490 | DOI:10.1016/j.epsl.2017.07.017
  • André Pouclet; J. Javier Álvaro; Jacques-Marie Bardintzeff; Andrés Gil Imaz; Eric Monceret; Daniel Vizcaïno Cambrian–early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: Continental break-up and rifting of the northern Gondwana margin, Geoscience Frontiers, Volume 8 (2017) no. 1, p. 25 | DOI:10.1016/j.gsf.2016.03.002
  • G Gutiérrez-Alonso; A López-Carmona; G García Acera; J Martín Garro; J Fernández-Suárez; A Gärtner; M Hofmann Episodic melting and magmatic recycling along 50 Ma in the Variscan belt linked to the orogenic evolution in NW Iberia, IOP Conference Series: Earth and Environmental Science, Volume 110 (2017), p. 012008 | DOI:10.1088/1755-1315/110/1/012008
  • Caroline Lotout; Pavel Pitra; Marc Poujol; Jean Van Den Driessche Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications, International Journal of Earth Sciences, Volume 106 (2017) no. 2, p. 501 | DOI:10.1007/s00531-016-1387-z
  • V. Peřestý; O. Lexa; R. Holder; P. Jeřábek; M. Racek; P. Štípská; K. Schulmann; B. Hacker Metamorphic inheritance of Rheic passive margin evolution and its early‐Variscan overprint in the Teplá‐Barrandian Unit, Bohemian Massif, Journal of Metamorphic Geology, Volume 35 (2017) no. 3, p. 327 | DOI:10.1111/jmg.12234
  • Botao Li; Hans-Joachim Massonne; Joachim Opitz Clockwise and Anticlockwise P–T Paths of High-pressure Rocks from the ‘La Pioza’ Eclogite Body of the Malpica–Tuy Complex, NW Spain, Journal of Petrology, Volume 58 (2017) no. 7, p. 1363 | DOI:10.1093/petrology/egx057
  • Rubén Díez Fernández; José Manuel Fuenlabrada; Martim Chichorro; M. Francisco Pereira; Sonia Sánchez-Martínez; José B. Silva; Ricardo Arenas Geochemistry and tectonostratigraphy of the basal allochthonous units of SW Iberia (Évora Massif, Portugal): Keys to the reconstruction of pre-Pangean paleogeography in southern Europe, Lithos, Volume 268-271 (2017), p. 285 | DOI:10.1016/j.lithos.2016.10.031
  • M.F. Pereira; G. Gutíerrez-Alonso; J.B. Murphy; K. Drost; C. Gama; J.B. Silva Birth and demise of the Rheic Ocean magmatic arc(s): Combined U–Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata, Lithos, Volume 278-281 (2017), p. 383 | DOI:10.1016/j.lithos.2017.02.009
  • Botao Li; Hans-Joachim Massonne Contrasting metamorphic evolution of metapelites from the Malpica-Tuy unit and the underlying so-called parautochthon at the coast of NW Spain, Lithos, Volume 286-287 (2017), p. 92 | DOI:10.1016/j.lithos.2017.06.003
  • Rubén Díez Fernández; Manuel Francisco Pereira Strike-slip shear zones of the Iberian Massif: Are they coeval?, Lithosphere, Volume 9 (2017) no. 5, p. 726 | DOI:10.1130/l648.1
  • J. Alves Ribeiro; F. A. Monteiro‐Santos; M. F. Pereira; R. Díez Fernández; Í. Dias da Silva; C. Nascimento; J. B. Silva Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia), Tectonics, Volume 36 (2017) no. 12, p. 3065 | DOI:10.1002/2017tc004593
  • Rubén Díez Fernández; Luis Miguel Martín Parra; Francisco J. Rubio Pascual Extensional flow produces recumbent folds in syn-orogenic granitoids (Padrón migmatitic dome, NW Iberian Massif), Tectonophysics, Volume 703-704 (2017), p. 69 | DOI:10.1016/j.tecto.2017.03.010
  • Ícaro Dias da Silva; Juan Gómez-Barreiro; José R. Martínez Catalán; Puy Ayarza; Jorg Pohl; Enrique Martínez Structural and microstructural analysis of the Retortillo Syncline (Variscan belt, Central Iberia). Implications for the Central Iberian Orocline, Tectonophysics, Volume 717 (2017), p. 99 | DOI:10.1016/j.tecto.2017.07.015
  • Antonio Sánchez-Navas; Antonio García-Casco; Stefano Mazzoli; Agustín Martín-Algarra Polymetamorphism in the Alpujarride Complex, Betic Cordillera, South Spain, The Journal of Geology, Volume 125 (2017) no. 6, p. 637 | DOI:10.1086/693862
  • T. Ferriday; M. Montenari Chemostratigraphy and Chemofacies of Source Rock Analogues, Volume 1 (2016), p. 123 | DOI:10.1016/bs.sats.2016.10.004
  • Jessica Shaw; Stephen T. Johnston Terrane wrecks (coupled oroclines) and paleomagnetic inclination anomalies, Earth-Science Reviews, Volume 154 (2016), p. 191 | DOI:10.1016/j.earscirev.2016.01.003
  • Ricardo Arenas; Sonia Sánchez Martínez; Rubén Díez Fernández; Axel Gerdes; Jacobo Abati; Javier Fernández-Suárez; Pilar Andonaegui; Pablo González Cuadra; Alicia López Carmona; Richard Albert; José Manuel Fuenlabrada; Francisco J. Rubio Pascual Allochthonous terranes involved in the Variscan suture of NW Iberia: A review of their origin and tectonothermal evolution, Earth-Science Reviews, Volume 161 (2016), p. 140 | DOI:10.1016/j.earscirev.2016.08.010
  • JOSÉ R. MARTÍNEZ CATALÁN; EMILIO GONZÁLEZ CLAVIJO; CARLOS MEIRELES; RUBÉN DÍEZ FERNÁNDEZ; JAMES BEVIS Relationships between syn-orogenic sedimentation and nappe emplacement in the hinterland of the Variscan belt in NW Iberia deduced from detrital zircons, Geological Magazine, Volume 153 (2016) no. 1, p. 38 | DOI:10.1017/s001675681500028x
  • J. Brendan Murphy; James A. Braid; Cecilio Quesada; Dustin Dahn; Evan Gladney; Nicolle Dupuis An eastern Mediterranean analogue for the Late Palaeozoic evolution of the Pangaean suture zone in SW Iberia, Geological Society, London, Special Publications, Volume 424 (2016) no. 1, p. 241 | DOI:10.1144/sp424.9
  • Mathew Domeier A plate tectonic scenario for the Iapetus and Rheic oceans, Gondwana Research, Volume 36 (2016), p. 275 | DOI:10.1016/j.gr.2015.08.003
  • Daniel Pastor-Galán; Mark J. Dekkers; Gabriel Gutiérrez-Alonso; Daniël Brouwer; Thomas Groenewegen; Wout Krijgsman; Javier Fernández-Lozano; Mariano Yenes; Fernando Álvarez-Lobato Paleomagnetism of the Central Iberian curve's putative hinge: Too many oroclines in the Iberian Variscides, Gondwana Research, Volume 39 (2016), p. 96 | DOI:10.1016/j.gr.2016.06.016
  • P. Andonaegui; S. Sánchez-Martínez; P. Castiñeiras; J. Abati; R. Arenas Reconstructing subduction polarity through the geochemistry of mafic rocks in a Cambrian magmatic arc along the Gondwana margin (Órdenes Complex, NW Iberian Massif), International Journal of Earth Sciences, Volume 105 (2016) no. 3, p. 713 | DOI:10.1007/s00531-015-1195-x
  • Ícaro Dias da Silva; Rubén Díez Fernández; Alejandro Díez-Montes; Emilio González Clavijo; David A. Foster Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean—evidence from the Upper Parautochthon of the Galicia-Trás-os-Montes Zone and from the Central Iberian Zone (NW Iberian Massif), International Journal of Earth Sciences, Volume 105 (2016) no. 4, p. 1127 | DOI:10.1007/s00531-015-1232-9
  • I. Novo‐Fernández; A. Garcia‐Casco; R. Arenas; R. Díez Fernández The metahyaloclastitic matrix of a unique metavolcanic block reveals subduction in the Somozas Mélange (Cabo Ortegal Complex, NW Iberia): tectonic implications for the assembly of Pangea, Journal of Metamorphic Geology, Volume 34 (2016) no. 9, p. 963 | DOI:10.1111/jmg.12216
  • Romain Tilhac; Georges Ceuleneer; William L. Griffin; Suzanne Y. O’Reilly; Norman J. Pearson; Mathieu Benoit; Hadrien Henry; Jacques Girardeau; Michel Grégoire Primitive Arc Magmatism and Delamination: Petrology and Geochemistry of Pyroxenites from the Cabo Ortegal Complex, Spain, Journal of Petrology, Volume 57 (2016) no. 10, p. 1921 | DOI:10.1093/petrology/egw064
  • M. F. Pereira Discussion on ‘Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); constraints on the provenance and geodynamic evolution of the South Portuguese Zone’, Journal of the Geological Society , 172, 294–308, Journal of the Geological Society, Volume 173 (2016) no. 2, p. 398 | DOI:10.1144/jgs2015-040
  • J.F. Simancas; A. Azor; D.J. Martínez Poyatos; I. Expósito; I. Pérez-Cáceres; F. González Lodeiro Comment on “The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia. Tectonophysics 654, 96–100" by R. Fernández and R. Arenas, Tectonophysics, Volume 666 (2016), p. 281 | DOI:10.1016/j.tecto.2015.07.040
  • Rubén Díez Fernández; Ricardo Arenas Reply to Comment on “The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia”, Tectonophysics, Volume 670 (2016), p. 155 | DOI:10.1016/j.tecto.2015.11.033
  • A. Mateus; J. Munhá; A. Ribeiro; C.C.G. Tassinari; K. Sato; E. Pereira; J.F. Santos U–Pb SHRIMP zircon dating of high-grade rocks from the Upper Allochthonous Terrane of Bragança and Morais Massifs (NE Portugal); geodynamic consequences, Tectonophysics, Volume 675 (2016), p. 23 | DOI:10.1016/j.tecto.2016.02.048
  • Wei Lin; Michel Faure; Xian-hua Li; Yang Chu; Wenbin Ji; Zhenhua Xue Detrital zircon age distribution from Devonian and Carboniferous sandstone in the Southern Variscan Fold-and-Thrust belt (Montagne Noire, French Massif Central), and their bearings on the Variscan belt evolution, Tectonophysics, Volume 677-678 (2016), p. 1 | DOI:10.1016/j.tecto.2016.03.032
  • Ricardo Arenas; Rubén Díez Fernández; Francisco J. Rubio Pascual; Sonia Sánchez Martínez; Luis Miguel Martín Parra; Jerónimo Matas; José González del Tánago; Alberto Jiménez-Díaz; Jose M. Fuenlabrada; Pilar Andonaegui; Antonio Garcia-Casco The Galicia–Ossa-Morena Zone: Proposal for a new zone of the Iberian Massif. Variscan implications, Tectonophysics, Volume 681 (2016), p. 135 | DOI:10.1016/j.tecto.2016.02.030
  • Francisco J. Rubio Pascual; Alicia López-Carmona; Ricardo Arenas Thickening vs. extension in the Variscan belt: P–T modelling in the Central Iberian autochthon, Tectonophysics, Volume 681 (2016), p. 144 | DOI:10.1016/j.tecto.2016.02.033
  • José Manuel Fuenlabrada; Agustín P. Pieren; Rubén Díez Fernández; Sonia Sánchez Martínez; Ricardo Arenas Geochemistry of the Ediacaran–Early Cambrian transition in Central Iberia: Tectonic setting and isotopic sources, Tectonophysics, Volume 681 (2016), p. 15 | DOI:10.1016/j.tecto.2015.11.013
  • Emilio González Clavijo; Ícaro Fróis Dias da Silva; Gabriel Gutiérrez-Alonso; Alejandro Díez Montes U/Pb age of a large dacitic block locked in an Early Carboniferous synorogenic mélange in the Parautochthon of NW Iberia: New insights on the structure/sedimentation Variscan interplay, Tectonophysics, Volume 681 (2016), p. 159 | DOI:10.1016/j.tecto.2016.01.001
  • Javier Fernández-Lozano; Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; Piedad Franco New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain, Tectonophysics, Volume 681 (2016), p. 195 | DOI:10.1016/j.tecto.2016.02.019
  • J. Brendan Murphy; Cecilio Quesada; Gabriel Gutiérrez-Alonso; Stephen T. Johnston; Arlo Weil Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe, Tectonophysics, Volume 681 (2016), p. 209 | DOI:10.1016/j.tecto.2016.01.006
  • Bonnie J. Henderson; William Joseph Collins; James Brendan Murphy; Gabriel Gutierrez-Alonso; Martin Hand Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes, Tectonophysics, Volume 681 (2016), p. 278 | DOI:10.1016/j.tecto.2015.11.020
  • T. Sánchez-García; C. Quesada; F. Bellido; G.R. Dunning; Ch. Pin; E. Moreno-Eiris; A. Perejón Age and characteristics of the Loma del Aire unit (SW Iberia): Implications for the regional correlation of the Ossa-Morena Zone, Tectonophysics, Volume 681 (2016), p. 58 | DOI:10.1016/j.tecto.2016.02.043
  • Kassandra Del Greco; Stephen T. Johnston; Jessica Shaw Tectonic setting of the North Gondwana margin during the Early Ordovician: A comparison of the Ollo de Sapo and Famatina magmatic events, Tectonophysics, Volume 681 (2016), p. 73 | DOI:10.1016/j.tecto.2016.02.034
  • Rubén Díez Fernández; Manuel Francisco Pereira Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and UPb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif), Tectonophysics, Volume 691 (2016), p. 290 | DOI:10.1016/j.tecto.2016.10.023
  • M.F. Pereira; A. Castro; C. Fernández The inception of a Paleotethyan magmatic arc in Iberia, Geoscience Frontiers, Volume 6 (2015) no. 2, p. 297 | DOI:10.1016/j.gsf.2014.02.006
  • R. Albert; R. Arenas; A. Gerdes; S. Sánchez Martínez; J. Fernández-Suárez; J.M. Fuenlabrada Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif), Gondwana Research, Volume 28 (2015) no. 4, p. 1434 | DOI:10.1016/j.gr.2014.10.016
  • Jürgen F. von Raumer; Gérard M. Stampfli; Ricardo Arenas; Sonia Sánchez Martínez Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation, International Journal of Earth Sciences, Volume 104 (2015) no. 5, p. 1107 | DOI:10.1007/s00531-015-1142-x
  • R. Albert; R. Arenas; A. Gerdes; S. Sánchez Martínez; L. Marko Provenance of the HP–HT subducted margin in the Variscan belt (Cabo Ortegal Complex, NW Iberian Massif), Journal of Metamorphic Geology, Volume 33 (2015) no. 9, p. 959 | DOI:10.1111/jmg.12155
  • Ícaro Dias da Silva; Ulf Linnemann; Mandy Hofmann; Emilio González-Clavijo; Alejandro Díez-Montes; José R. Martínez Catalán Detrital zircon and tectonostratigraphy of the Parautochthon under the Morais Complex (NE Portugal): implications for the Variscan accretionary history of the Iberian Massif, Journal of the Geological Society, Volume 172 (2015) no. 1, p. 45 | DOI:10.1144/jgs2014-005
  • G. Gutiérrez-Alonso; J. Fernández-Suárez; D. Pastor-Galán; S. T. Johnston; U. Linnemann; M. Hofmann; J. Shaw; J. R. Colmenero; P. Hernández Significance of detrital zircons in Siluro-Devonian rocks from Iberia, Journal of the Geological Society, Volume 172 (2015) no. 3, p. 309 | DOI:10.1144/jgs2014-118
  • Gabriele Cruciani; Marcello Franceschelli; Antonio Langone; Mariano Puxeddu; Massimo Scodina Nature and age of pre-Variscan eclogite protoliths from the Low- to Medium-Grade Metamorphic Complex of north–central Sardinia (Italy) and comparisons with coeval Sardinian eclogites in the northern Gondwana context, Journal of the Geological Society, Volume 172 (2015) no. 6, p. 792 | DOI:10.1144/jgs2015-011
  • Li-Yun Zhang; Lin Ding; Alex Pullen; Paul Kapp Reply to comment by W. Liu and B. Xia on “Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean”, Lithos, Volume 212-215 (2015), p. 457 | DOI:10.1016/j.lithos.2014.11.016
  • Rubén Díez Fernández; M. Francisco Pereira; David A. Foster Peralkaline and alkaline magmatism of the Ossa-Morena zone (SW Iberia): Age, source, and implications for the Paleozoic evolution of Gondwanan lithosphere, Lithosphere, Volume 7 (2015) no. 1, p. 73 | DOI:10.1130/l379.1
  • José R. Martínez Catalán; Domingo G. A. M. Aerden; Jordi Carreras The “Castilian bend” of Rudolf Staub (1926): historical perspective of a forgotten orocline in Central Iberia, Swiss Journal of Geosciences, Volume 108 (2015) no. 2-3, p. 289 | DOI:10.1007/s00015-015-0202-3
  • Rubén Díez Fernández; Ricardo Arenas The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia, Tectonophysics, Volume 654 (2015), p. 96 | DOI:10.1016/j.tecto.2015.05.001
  • James E. Alcock; José R. Martínez Catalán; Francisco J. Rubio Pascual; Alejandro Díez Montes; Rubén Díez Fernández; Juan Gómez Barreiro; Ricardo Arenas; Ícaro Dias da Silva; Emilio González Clavijo 2-D thermal modeling of HT–LP metamorphism in NW and Central Iberia: Implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution, Tectonophysics, Volume 657 (2015), p. 21 | DOI:10.1016/j.tecto.2015.05.022
  • Alicia López-Carmona; Jacobo Abati; Pavel Pitra; James K. W. Lee Retrogressed lawsonite blueschists from the NW Iberian Massif: P–T–t constraints from thermodynamic modelling and 40Ar/39Ar geochronology, Contributions to Mineralogy and Petrology, Volume 167 (2014) no. 3 | DOI:10.1007/s00410-014-0987-5
  • Ícaro Dias Da Silva; Pablo Valverde-Vaquero; Emilio González-Clavijo; Alejandro Díez-Montes; José R. Martínez Catalán Structural and stratigraphical significance of U–Pb ages from the Mora and Saldanha volcanic complexes (NE Portugal, Iberian Variscides), Geological Society, London, Special Publications, Volume 405 (2014) no. 1, p. 115 | DOI:10.1144/sp405.3
  • José R. Martínez Catalán; Francisco J. Rubio Pascual; Alejandro Díez Montes; Rubén Díez Fernández; Juan Gómez Barreiro; Ícaro Dias Da Silva; Emilio González Clavijo; Puy Ayarza; James E. Alcock The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution, Geological Society, London, Special Publications, Volume 405 (2014) no. 1, p. 225 | DOI:10.1144/sp405.1
  • Michel Faure; Alain Cocherie; Julien Gaché; Chloé Esnault; Catherine Guerrot; Philippe Rossi; Lin Wei; Li Qiuli Middle Carboniferous intracontinental subduction in the Outer Zone of the Variscan Belt (Montagne Noire Axial Zone, French Massif Central): multimethod geochronological approach of polyphase metamorphism, Geological Society, London, Special Publications, Volume 405 (2014) no. 1, p. 289 | DOI:10.1144/sp405.2
  • Michel Ballèvre; José R. Martínez Catalán; Alicia López-Carmona; Pavel Pitra; Jacobo Abati; Rubén Díez Fernández; Céline Ducassou; Ricardo Arenas; Valérie Bosse; Pedro Castiñeiras; Javier Fernández-Suárez; Juan Gómez Barreiro; Jean-Louis Paquette; Jean-Jacques Peucat; Marc Poujol; Gilles Ruffet; Sonia Sánchez Martínez Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project, Geological Society, London, Special Publications, Volume 405 (2014) no. 1, p. 77 | DOI:10.1144/sp405.13
  • Ricardo Arenas; Rubén Díez Fernández; Sonia Sánchez Martínez; Axel Gerdes; Javier Fernández-Suárez; Richard Albert Two-stage collision: Exploring the birth of Pangea in the Variscan terranes, Gondwana Research, Volume 25 (2014) no. 2, p. 756 | DOI:10.1016/j.gr.2013.08.009
  • R. Arenas; S. Sánchez Martínez; A. Gerdes; R. Albert; R. Díez Fernández; P. Andonaegui Re-interpreting the Devonian ophiolites involved in the Variscan suture: U–Pb and Lu–Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia), International Journal of Earth Sciences, Volume 103 (2014) no. 5, p. 1385 | DOI:10.1007/s00531-013-0880-x
  • Michel Faure; Philippe Rossi; Julien Gaché; Jérémie Melleton; Dirk Frei; Xianhua Li; Wei Lin Variscan orogeny in Corsica: new structural and geochronological insights, and its place in the Variscan geodynamic framework, International Journal of Earth Sciences, Volume 103 (2014) no. 6, p. 1533 | DOI:10.1007/s00531-014-1031-8
  • Eric Gloaguen; Yannick Branquet; Alain Chauvet; Vincent Bouchot; Luc Barbanson; Jean-Louis Vigneresse Tracing the magmatic/hydrothermal transition in regional low-strain zones: The role of magma dynamics in strain localization at pluton roof, implications for intrusion-related gold deposits, Journal of Structural Geology, Volume 58 (2014), p. 108 | DOI:10.1016/j.jsg.2013.11.006
  • M.M. Costa; A.M.R. Neiva; M.R. Azevedo; F. Corfu Distinct sources for syntectonic Variscan granitoids: Insights from the Aguiar da Beira region, Central Portugal, Lithos, Volume 196-197 (2014), p. 83 | DOI:10.1016/j.lithos.2014.02.023
  • Antonio M. Álvarez-Valero; Juan Gómez Barreiro; Ann Alampi; Pedro Castiñeiras; José Ramón Martínez Catalán Local isobaric heating above an extensional detachment in the middle crust of a Variscan allochthonous terrane (Órdenes complex, NW Spain), Lithosphere, Volume 6 (2014) no. 6, p. 409 | DOI:10.1130/l369.1
  • Daniel Pastor-Galán; Germán Martín-Merino; Diego Corrochano Timing and structural evolution in the limb of an orocline: The Pisuerga–Carrión Unit (southern limb of the Cantabrian Orocline, NW Spain), Tectonophysics, Volume 622 (2014), p. 110 | DOI:10.1016/j.tecto.2014.03.004
  • J. Brendan Murphy Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma, Earth-Science Reviews, Volume 119 (2013), p. 35 | DOI:10.1016/j.earscirev.2013.02.002
  • Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; J. Brendan Murphy; Javier Fernández-Suárez; Mandy Hofmann; Ulf Linnemann Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development, Gondwana Research, Volume 23 (2013) no. 3, p. 1089 | DOI:10.1016/j.gr.2012.06.015
  • Chris Klootwijk Middle–Late Paleozoic Australia–Asia convergence and tectonic extrusion of Australia, Gondwana Research, Volume 24 (2013) no. 1, p. 5 | DOI:10.1016/j.gr.2012.10.007
  • Rubén Díez Fernández; David A. Foster; Juan Gómez Barreiro; Montserrat Alonso-García Rheological control on the tectonic evolution of a continental suture zone: the Variscan example from NW Iberia (Spain), International Journal of Earth Sciences, Volume 102 (2013) no. 5, p. 1305 | DOI:10.1007/s00531-013-0885-5
  • A. LÓPEZ‐CARMONA; P. PITRA; J. ABATI Blueschist‐facies metapelites from the Malpica–Tui Unit (NW Iberian Massif): phase equilibria modelling and H2O and Fe2O3 influence in high‐pressure assemblages, Journal of Metamorphic Geology, Volume 31 (2013) no. 3, p. 263 | DOI:10.1111/jmg.12018
  • Rubén Díez Fernández; Juan Gómez Barreiro; José R. Martínez Catalán; Puy Ayarza Crustal thickening and attenuation as revealed by regional fold interference patterns: Ciudad Rodrigo basement area (Salamanca, Spain), Journal of Structural Geology, Volume 46 (2013), p. 115 | DOI:10.1016/j.jsg.2012.09.017
  • Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; Javier Fernández-Suárez; J. Brendan Murphy; Fernando Nieto Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone, Lithos, Volume 182-183 (2013), p. 211 | DOI:10.1016/j.lithos.2013.09.007
  • César Arango; Rubén Díez Fernández; Ricardo Arenas Large-scale flat-lying isoclinal folding in extending lithosphere: Santa María de la Alameda dome (Central Iberian Massif, Spain), Lithosphere, Volume 5 (2013) no. 5, p. 483 | DOI:10.1130/l270.1
  • Francisco J. Rubio Pascual; Jerónimo Matas; Luis M. Martín Parra High-pressure metamorphism in the Early Variscan subduction complex of the SW Iberian Massif, Tectonophysics, Volume 592 (2013), p. 187 | DOI:10.1016/j.tecto.2013.02.022
  • G.M. Stampfli; C. Hochard; C. Vérard; C. Wilhem; J. vonRaumer The formation of Pangea, Tectonophysics, Volume 593 (2013), p. 1 | DOI:10.1016/j.tecto.2013.02.037
  • Joan Campanyà; Juanjo Ledo; Pilar Queralt; Alex Marcuello; Montserrat Liesa; Josep A. Muñoz New geoelectrical characterisation of a continental collision zone in the West-Central Pyrenees: Constraints from long period and broadband magnetotellurics, Earth and Planetary Science Letters, Volume 333-334 (2012), p. 112 | DOI:10.1016/j.epsl.2012.04.018
  • D. Pastor-Galan; G. Gutierrez-Alonso; G. Zulauf; F. Zanella Analogue modeling of lithospheric-scale orocline buckling: Constraints on the evolution of the Iberian-Armorican Arc, Geological Society of America Bulletin, Volume 124 (2012) no. 7-8, p. 1293 | DOI:10.1130/b30640.1
  • R. Damian Nance; Gabriel Gutiérrez-Alonso; J. Duncan Keppie; Ulf Linnemann; J. Brendan Murphy; Cecilio Quesada; Rob A. Strachan; Nigel H. Woodcock A brief history of the Rheic Ocean, Geoscience Frontiers, Volume 3 (2012) no. 2, p. 125 | DOI:10.1016/j.gsf.2011.11.008
  • Rubén Díez Fernández; Pedro Castiñeiras; Juan Gómez Barreiro Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin, Gondwana Research, Volume 21 (2012) no. 4, p. 1066 | DOI:10.1016/j.gr.2011.07.028
  • Rubén Díez Fernández; José R. Martínez Catalán; Ricardo Arenas; Jacobo Abati The onset of the assembly of Pangaea in NW Iberia: Constraints on the kinematics of continental subduction, Gondwana Research, Volume 22 (2012) no. 1, p. 20 | DOI:10.1016/j.gr.2011.08.004
  • M.F. Pereira; M. Chichorro; S.T. Johnston; G. Gutiérrez-Alonso; J.B. Silva; U. Linnemann; M. Hofmann; K. Drost The missing Rheic Ocean magmatic arcs: Provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia, Gondwana Research, Volume 22 (2012) no. 3-4, p. 882 | DOI:10.1016/j.gr.2012.03.010
  • José R. Martínez Catalán The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt, International Journal of Earth Sciences, Volume 101 (2012) no. 5, p. 1299 | DOI:10.1007/s00531-011-0715-6
  • F. Martín-González; L. Barbero; R. Capote; N. Heredia; G. Gallastegui Interaction of two successive Alpine deformation fronts: constraints from low-temperature thermochronology and structural mapping (NW Iberian Peninsula), International Journal of Earth Sciences, Volume 101 (2012) no. 5, p. 1331 | DOI:10.1007/s00531-011-0712-9
  • Daniel Pastor-Galán; Gabriel Gutiérrez-Alonso; Kieran F. Mulchrone; Pedro Huerta Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan Belt of NW Iberia), Journal of Structural Geology, Volume 39 (2012), p. 210 | DOI:10.1016/j.jsg.2012.02.010
  • Juan Díaz-Alvarado; Carlos Fernández; Manuel Díaz-Azpiroz; Antonio Castro; Ignacio Moreno-Ventas Fabric evidence for granodiorite emplacement with extensional shear zones in the Variscan Gredos massif (Spanish Central System), Journal of Structural Geology, Volume 42 (2012), p. 74 | DOI:10.1016/j.jsg.2012.06.012
  • Rubén Díez Fernández; José R. Martínez Catalán Stretching lineations in high-pressure belts: the fingerprint of subduction and subsequent events (Malpica–Tui complex, NW Iberia), Journal of the Geological Society, Volume 169 (2012) no. 5, p. 531 | DOI:10.1144/0016-76492011-101
  • Rubén Díez Fernández; José R. Martínez Catalán; Ricardo Arenas; Jacobo Abati; Axel Gerdes; Javier Fernández-Suárez U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons, Journal of the Geological Society, Volume 169 (2012) no. 6, p. 655 | DOI:10.1144/jgs2011-146
  • P. Andonaegui; P. Castiñeiras; P. González Cuadra; R. Arenas; S. Sánchez Martínez; J. Abati; F. Díaz García; J.R. Martínez Catalán The Corredoiras orthogneiss (NW Iberian Massif): Geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc, Lithos, Volume 128-131 (2012), p. 84 | DOI:10.1016/j.lithos.2011.11.005
  • José R. Martínez Catalán; Fernando Álvarez Lobato; Victor Pinto; Juan Gómez Barreiro; Puy Ayarza; Juan José Villalaín; Albert Casas Gravity and magnetic anomalies in the allochthonous Órdenes Complex (Variscan belt, northwest Spain): Assessing its internal structure and thickness, Tectonics, Volume 31 (2012) no. 5 | DOI:10.1029/2011tc003093
  • Sonia S. Martínez; Axel Gerdes; Ricardo Arenas; Jacobo Abati The Bazar Ophiolite of NW Iberia: a relic of the Iapetus–Tornquist Ocean in the Variscan suture, Terra Nova, Volume 24 (2012) no. 4, p. 283 | DOI:10.1111/j.1365-3121.2012.01061.x
  • Rubén Díez Fernández; José R. Martínez Catalán; Juan Gómez Barreiro; Ricardo Arenas Extensional Flow during Gravitational Collapse: A Tool for Setting Plate Convergence (Padrón Migmatitic Dome, Variscan Belt, NW Iberia), The Journal of Geology, Volume 120 (2012) no. 1, p. 83 | DOI:10.1086/662735
  • S. Sánchez Martínez; R. De la Horra; R. Arenas; A. Gerdes; A. B. Galán-Abellán; J. López-Gómez; J. F. Barrenechea; A. Arche U-Pb Ages of Detrital Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of Variable Provenance during Rift Propagation, The Journal of Geology, Volume 120 (2012) no. 2, p. 135 | DOI:10.1086/663983
  • B. Abalos; D. M. Fountain; J. I. G. Ibarguchi; P. Puelles Eclogite as a seismic marker in subduction channels: Seismic velocities, anisotropy, and petrofabric of Cabo Ortegal eclogite tectonites (Spain), Geological Society of America Bulletin, Volume 123 (2011) no. 3-4, p. 439 | DOI:10.1130/b30226.1
  • G. Gutierrez-Alonso; J. B. Murphy; J. Fernandez-Suarez; A. B. Weil; M. P. Franco; J. C. Gonzalo Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle, Geology, Volume 39 (2011) no. 2, p. 155 | DOI:10.1130/g31468.1
  • Céline Ducassou; Michel Ballèvre; Hubert Lardeux; Cécile Robin Evidence for pre-orogenic, Early Devonian rifting in the Variscan belt: stratigraphy and structure of the Palaeozoic cover of the Mauges Unit (Upper Allochthon, Armorican massif, France), International Journal of Earth Sciences, Volume 100 (2011) no. 7, p. 1451 | DOI:10.1007/s00531-010-0605-3
  • Sonia Sánchez Martínez; Ricardo Arenas; Axel Gerdes; Pedro Castiñeiras; Alain Potrel; Javier Fernández-Suárez Isotope geochemistry and revised geochronology of the Purrido Ophiolite (Cabo Ortegal Complex, NW Iberian Massif): Devonian magmatism with mixed sources and involved Mesoproterozoic basement, Journal of the Geological Society, Volume 168 (2011) no. 3, p. 733 | DOI:10.1144/0016-76492010-065
  • J. Fernández-Suárez; G. Gutierrez-Alonso; S.T. Johnston; T.E. Jeffries; D. Pastor-Galán; G.A. Jenner; J.B. Murphy Iberian late-Variscan granitoids: Some considerations on crustal sources and the significance of “mantle extraction ages”, Lithos, Volume 123 (2011) no. 1-4, p. 121 | DOI:10.1016/j.lithos.2010.09.010
  • Rubén Díez Fernández; José Ramón Martínez Catalán; Ricardo Arenas Martín; Jacobo Abati Gómez Tectonic evolution of a continental subduction‐exhumation channel: Variscan structure of the basal allochthonous units in NW Spain, Tectonics, Volume 30 (2011) no. 3 | DOI:10.1029/2010tc002850
  • Gabriel Gutiérrez‐Alonso; Javier Fernández‐Suárez; Teresa E. Jeffries; Stephen T. Johnston; Daniel Pastor‐Galán; J. Brendan Murphy; M. Piedad Franco; J. Carlos Gonzalo Diachronous post‐orogenic magmatism within a developing orocline in Iberia, European Variscides, Tectonics, Volume 30 (2011) no. 5 | DOI:10.1029/2010tc002845
  • José R. Martínez Catalán Are the oroclines of the Variscan belt related to late Variscan strike‐slip tectonics?, Terra Nova, Volume 23 (2011) no. 4, p. 241 | DOI:10.1111/j.1365-3121.2011.01005.x
  • Helena Sant’Ovaia; Philippe Olivier; Narciso Ferreira; Fernando Noronha; Denis Leblanc Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas), Journal of Structural Geology, Volume 32 (2010) no. 10, p. 1450 | DOI:10.1016/j.jsg.2010.09.003
  • Juan Gómez Barreiro; José R. Martínez Catalán; Rubén Díez Fernández; Ricardo Arenas; Florentino Díaz García Upper crust reworking during gravitational collapse: the Bembibre–Pico Sacro detachment system (NW Iberia), Journal of the Geological Society, Volume 167 (2010) no. 4, p. 769 | DOI:10.1144/0016-76492009-160
  • P. Castiñeiras; F. Díaz García; J. Gómez Barreiro REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: Constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes, Lithos, Volume 116 (2010) no. 1-2, p. 153 | DOI:10.1016/j.lithos.2010.01.013
  • J. Gómez Barreiro; J. R. Martínez Catalán; D. Prior; H.‐R. Wenk; S. Vogel; F. Díaz García; R. Arenas; S. Sánchez Martínez; I. Lonardelli Fabric Development in a Middle Devonian Intraoceanic Subduction Regime: The Careón Ophiolite (Northwest Spain), The Journal of Geology, Volume 118 (2010) no. 2, p. 163 | DOI:10.1086/649816

Cité par 223 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: