Outline
Comptes Rendus

Tectonics
Albian extrusion evidences of the Triassic salt and clues of the beginning of the Eocene atlasic phase from the example of the Chitana-Ed Djebs structure (N.Tunisia): Implication in the North African Tethyan margin recorded events, comparisons
Comptes Rendus. Géoscience, Volume 341 (2009) no. 7, pp. 547-556.

Abstracts

In the northern part of Tunisia, close to Testour/Slouguia, new observations and updated biostratigraphy make it possible to highlight the relation between the Triassic saliferous mass and the surrounding Mesozoic beds (T. M.). Near the (T. M.) boundary, the formations observed consist dominantly of Triassic evaporites reworked in the Early and Late Albian deep-water sedimentary deposits. Throughout the studied area, Jurassic rocks are absent. We propose to interpret the Chitana-Ed Djebs structure originally emplaced as gravitational stretch masses in a passive margin in the same way as the salt bodies of widespread salt province in the Gulf of Mexico. A reconstructed schematic position of the Chitana-Ed Djebs salt body displays a scenario of setting of the salt mass on a submarine palaeo-slope. Moreover, the starting clues of the paroxysmal event of the Late Mesozoic tectonic inversion clearly fossilized through the discordance of the Middle Eocene–Early Lutetian limestone on the Albian series.

Au Nord de la Tunisie, près de Testour/Slouguia, nous avons collecté de nouvelles observations et données biostratigraphiques. À la lumière de ces apports, il est possible de mieux interpréter la relation entre le sel triasique et les séries mésozoïques encaissantes (T.M.). Auprès de la limite (T.M.), on trouve du matériel salifère remanié dans la série marno-argileuse de l’Albien inférieur. Dans tout le secteur, le Jurassique est absent. Nous proposons d’interpréter la mise en place du sel triasique de la structure de Chitana-Ed Djebes, d’une manière gravitationnelle dans une marge passive à l’Albien, à l’image des corps salifères de la province salifère du Golf Coast du Mexique. Un schéma rétro-tectonique de la structure salifère Chitana-Ed Djebs montre que cette mise en place s’est effectuée sur une paléo-pente sous-marine. En outre, on établit les indices de l’amorce de l’inversion tectonique post-Campanien et son paroxysme de l’Éocène moyen à supérieur. Cette dernière est clairement fossilisée par la discordance de l’Eocène moyen-Lutétien sur les séries albiennes.

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crte.2009.04.007
Keywords: Tunisia, Triassic, Salt “glacier”, Albian, Medjarda valley, Eocene phase, Garamantians
Mots-clés : Tunisie, Trias, « glacier » de sel, Albien, Vallée de Medjerda, Phase éocène, Garamantes

Mohamed-Montassar Ben Slama 1; Amara Masrouhi 2; Mohamed Ghanmi 1; Mohamed Ben Youssef 3; Fouad Zargouni 1

1 Unité de recherche géologie structurale et appliquée, département de géologie, faculté des sciences de Tunis, campus universitaire, 2092 Tunis, Tunisia
2 Unité de recherche « hydrosciences appliquées », faculté des sciences de Gabès, cité Erriadh, 6072 Gabès, Tunisia
3 Laboratoire géoressources, centre de recherches et technologies des eaux, BP 273, 8020 Soliman, Tunisia
@article{CRGEOS_2009__341_7_547_0,
     author = {Mohamed-Montassar Ben Slama and Amara Masrouhi and Mohamed Ghanmi and Mohamed Ben Youssef and Fouad Zargouni},
     title = {Albian extrusion evidences of the {Triassic} salt and clues of the beginning of the {Eocene} atlasic phase from the example of the {Chitana-Ed} {Djebs} structure {(N.Tunisia):} {Implication} in the {North} {African} {Tethyan} margin recorded events, comparisons},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {547--556},
     publisher = {Elsevier},
     volume = {341},
     number = {7},
     year = {2009},
     doi = {10.1016/j.crte.2009.04.007},
     language = {en},
}
TY  - JOUR
AU  - Mohamed-Montassar Ben Slama
AU  - Amara Masrouhi
AU  - Mohamed Ghanmi
AU  - Mohamed Ben Youssef
AU  - Fouad Zargouni
TI  - Albian extrusion evidences of the Triassic salt and clues of the beginning of the Eocene atlasic phase from the example of the Chitana-Ed Djebs structure (N.Tunisia): Implication in the North African Tethyan margin recorded events, comparisons
JO  - Comptes Rendus. Géoscience
PY  - 2009
SP  - 547
EP  - 556
VL  - 341
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crte.2009.04.007
LA  - en
ID  - CRGEOS_2009__341_7_547_0
ER  - 
%0 Journal Article
%A Mohamed-Montassar Ben Slama
%A Amara Masrouhi
%A Mohamed Ghanmi
%A Mohamed Ben Youssef
%A Fouad Zargouni
%T Albian extrusion evidences of the Triassic salt and clues of the beginning of the Eocene atlasic phase from the example of the Chitana-Ed Djebs structure (N.Tunisia): Implication in the North African Tethyan margin recorded events, comparisons
%J Comptes Rendus. Géoscience
%D 2009
%P 547-556
%V 341
%N 7
%I Elsevier
%R 10.1016/j.crte.2009.04.007
%G en
%F CRGEOS_2009__341_7_547_0
Mohamed-Montassar Ben Slama; Amara Masrouhi; Mohamed Ghanmi; Mohamed Ben Youssef; Fouad Zargouni. Albian extrusion evidences of the Triassic salt and clues of the beginning of the Eocene atlasic phase from the example of the Chitana-Ed Djebs structure (N.Tunisia): Implication in the North African Tethyan margin recorded events, comparisons. Comptes Rendus. Géoscience, Volume 341 (2009) no. 7, pp. 547-556. doi : 10.1016/j.crte.2009.04.007. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2009.04.007/

Original version of the full text

1 Introduction

Located within Medjarda valley straddling the main road G.P.5 leading to Teboursouk, the Chitana-ed Djebs outcrops is a well-known field Triassic salt body from the salt province (Fig. 1). It is traditionally considered as a diapiric body started in the Late Aptian-Early Albian compression episode [11,48,49,55,57] and has been the focus of numerous studies over the last 30 years [7,10,22–25,57]. It is also a classical destination for petroleum excursions [6,43].

Fig. 1

Summary sketch map of Triassic evaporites in northern Tunisia.

Fig. 1. Esquisse sommaire des affleurements triasiques du Nord de la Tunisie.

However, several controversial issues regarding the structural dynamics of salt systems, in the northeastern African margin, were discussed in the literature [35,50,52,53,60,63–65]. The Triassic contact and related salt/surrounding Mesozoic strata in the area were still devoid of detailed cartographic revision based on tight sampling and of accurate observations due to the complexity of these structures and the influence of the anterior interpretations.

Remarkably, salt masses from the Chitana-ed Djebs area were initially mapped more than an 80 years ago: in 1925, Solignac documented a Triassic/Mesozoic limit as thrust nappe contact with a normal succession strata dipping under salt rocks [56] while in 1973 Bajanik and Biely mapped the same area as an inverted series [2].

However, no reliable new detailed cartograph was ever produced on the area in spite of several attempts [19,22,23].

As an additional effort, we chose to apply specific detailed cartographic investigation previously developed on numerous salt structures disrupted in northern Tunisia salt province [28,29,39,54,55,66], an approach which eventually led to the recovery of one structural diagnostic assemblage.

The corresponding interpretations will be compared with local salt structures data. These data will then be discussed within a broader northern African Tethyan margin setting and compared with the salt bodies from Golf coast of Mexico, Northern America salt province [20,29,34,46,58].

2 Geological setting

The studied area is composed of two main sedimentary series. The Mesozoic strata comprise Triassic material including salt mass. The Jurassic and the Lower Cretaceous deposits display no outcrops in the area. The Early Cretaceous strata are composed of Late Aptian–Early Albian sediments such as black clayey marls (sedimentary nodules with carbonate matrix); the Upper Albian consists of alternate black marly and bright brown limestone series. These later are covered by platy limestone with P. buxtorfi. These series are overlaid by Cenomanian marls. Turonian sediment corresponds to clear limestone beds. Coniacian-Santonian marls overlie the previous sequence. The Upper Senonian deposit is represented by the Abiod Fm with alternate bright limestones and marls. The Cenozoic deposits are composed of Paleocene marls rich in pelagic microfauna, Eocene limestones rich in Nummulites; the Oligocene formation is composed of deltaic deposits such as siliceous sandstones sedimentary features (sandstone nodules). The Neogene formation is caracterized by thick Miocene marls. The Pliocene-Quatenary deposit is composed of conglomeratic beds on the base and of sandy clay ones on the top [19,23,56].

3 Observations

3.1 Distinguished locality

The Triassic saliferous complex overlies via clear “apparent sedimentary” contacts on the different Lower Cretaceous series (Fig. 2, Fig. 3, P2 + P3). It is devoid of well-developed sedimentary cover due to its peristaltic movements during several geological episodes. This observation does not exclude posterior tectonic activity or salt movement in compression context.

Fig. 2

Geological map of the study area.

Fig. 2. Carte géologique du secteur d’étude.

Fig. 3

The correlation panel across the area showing visible cross sections. 1: lower limit of the composite submarine salt “glacier” of Chitana-Ed Djebs; 2: upper limit of the latter.

Fig. 3. Corrélation des coupes visibles. 1 : contacts inférieurs du matériel salifère triasique du « glacier de sel » sous-marin composite Chitana-Ed Djebs ; 2 : contacts supérieurs de ce dernier.

In the J. Tellet Mabrouka area (Fig. 3B), this complex covers precisely a marly bed of Albian age as attested by a pelagic foraminiferal association among which Ticinella primula.

Within the J. Sene Ed Jemel, the overburden consists of Upper Albian (Vraconian) in which is observed a platy limestone/marls alternation exhibiting slumps and septaria as indicated by the association of Rotalipora and the index microfossil Planomalina buxtorfi.

The same Triassic deposits are covered, through an erosional surface, by Cenomanian and/or Early Campanian deposits as confirmed by the association: Rotalipora greeborvensis and Rotalipora Cushmani/G. elevata, G. stuartiformis, G. buloides, G. arca and Rosita fornicata. In addition into W. el Blidha, we examine a clearly “apparent sedimentary” limit in a substratum strata dipping under the salt rocks (Fig. 3A).

Inside W. el Begi fold (Fig. 3D, Fig. 4 X-X’), the Triassic rocks are included within the Late Aptian/Lower Albian and Late Albian formations and show, underneath and on top, tow originally “apparent sedimentary” limits. From southeast to northwest, we check up on the underside of the Triassic mass, the Early Albian marls; the core of the fold is occupied by Late Aptian marls. Then the same salt mass is covered by Late Albian marls via clearly “apparent sedimentary” contact. This succession was repeated because of the existence of transversal faults.

Fig. 4

Geological cross-sections in the W. bou Kralfa, J. Chitana and W. El Begi.

Fig. 4. Coupes géologiques dans l’oued bou Kralfa, J. Chitana et oued. El Begi.

4 The Eocene phase clues

The North-East Moghrebian passive margin was considered in a rifting regime during Aptian and Early Albian times [9,10,12,18,28,31,32,41,61]. Its inverted basins that were in compression regime began to form in the transition between Lower and Upper Senonian [15,32,40,61] and its paroxysmal event started in the Middle–Late Eocene episode. This event is well documented in the North Moghrebian margin [3,15,21,26,27,30,37,40,44,61].

Within Jebel Chitana (Fig. 5Y, Fig. 4 Y-Y’) above the Paleocene marly levels and a conglomeratic bed a sandstone bar is observed which is rich in glauconite and phosphates. This bar is covered by the Ypresian carbonates that are elongated in a NW–SE band forming the major topographic altitude points in the area. The succession is followed by massive Nummulites-rich limestone beds alternating with sandstone levels. These later show a metric thickness with shaly and marly joints intercalations; they bear Echinid remnants, small Nummulites specimens, Globigerina, Lepidocyclina, Globorotalia and Algae.Eastward of J. Chitana (Fig. 5Z), the cross-section shows from the base to the top: Campanian-Maatrichtian carbonate displaying planktonic microfaunal association that characterizes the Abiod Formation. A polygenic conglomeratic horizon with an erosional surface separates this Formation from the adjacent Eocene Nummulites carbonates.

Fig. 5

West–east correlation panel across the area showing the Middle Eocene–Early Lutetian deposits discordance on various substratums.

Fig. 5. Le panneau de corrélation oust–est à travers le secteur montrant la discordance de l’Éocène moyen–Lutétien inférieur sur divers substratums.

Inside W. Bou Kralfa (Fig. 5V, Fig. 4 Z-Z’), we observe a 20 m-thick limestone succession with disseminated chert nodules. These sediments were dated to the Albian. These later are covered by 1m-thick conglomeratic horizon. On these series lie the Middle Eocene–Early Lutetian limestones composed of Nummulites, Rotalia, Discocyclines, glaucaunites and organic remnants, as observed on thin-section. This transgressive Upper Eocene limestone overlay many Cretaceous deposits outcropping in the area.Thus, it appears that various Triassic rocks, Cretaceous strata and Palaeocene marls are unconformably overlain by Middle Eocene-Early Lutetian limestones. This discordance was observed also in the W. Bou Kralfa, J. Tellet Mabroka and J. Chitana outcrops (Fig. 5).

From east to west, the Oligocene lumachellic sandstone beds overlie, with a low angle unconformity, various substratums (from Triassic to Eocene). This discordance too is observed in several localities in the studied area such as in the West of J. Sene ed Jemel on Triassic rocks as well as on eastern edge of the W. Blidha anticline. Indeed, many authors have noticed that [29,39,42,47,54,66].

5 Basin fault systems

The described Lower Cretaceous is either limited by N45, a left strike-slip often coexists with N130 Late Quaternary faults, which indicates a right lateral movement [51]. These variations could be related to pre-existing faults. These later control the thickness of sedimentary deposits (Fig. 3, Fig. 4). The observed geomorphologic features (offsets of valleys, etc.) testify to the late oblique left-lateral strike-slip movement. Moreover, they reveal several evidences of instable sea floor, consequence of an extensive regime in the Mesozoic subsidence episode. Nevertheless, the major inherited Early Cretaceous extensional faults trends N40-50, N 110-120 [8,13,28] and folds of this studied area show a N40E trend.

In the investigated area, inherited normal faults (I.N.F.) were the cause of the first Triassic salt extrusion N40-50 and N 110-120 trends. This later shows a disposition of tilted blocks developing first in Upper Aptian [18,38]. The next major phase in the area was dated to the end of the Santonian time [32] marked by the transgressive cycle of Early Campanian marls bearing G. elevata, G.ventricosa, G. stuatiformis, on numerous substratums as observed on the Triassic sheet of W. Bou Kralfa (Fig. 3 P3). We considered the incipient of the positive tectonic inversion approximately at the transition between the Lower and Upper Senonian [40]: beginning of the true graben inversion. In fact, these structures were complicated by the Tertiary folding.

The salt structure born in the graben basin has been subjected to asymmetric thrusting, possibly enhanced by gravitational gliding due to: (1) the slight, Late Eocene compression phase; (2) the latest salt stock coming from the mother salt probably belonging to the Oligocene episode. This later characterized by many extensive features in outcrops (grainstones, septarias etc.); (3) the orientation of the major inherited normal faults opposed to the direction of the principal oblique compression (NW–SE) (for example, Fig. 3 and Plate 1 of ref. [16]).

6 Interpretation

These updated biostratigraphic and observations data confirm the hypotheses of an interbeded Triassic material as previously announced on field [8,28,39,42,66] and in subsurface study [4,5,36,61]. Within the southern part of the studied area, the evaporitic Triassic and red beds form a melange with only Early Albian limestone dipping under the Triassic mass (Fig. 4). In addition, the evidence of Paleocene exiguous scarps as well as the unconformity of Lower Eocene deposits on Albian strata attest the bottom instability during deposition.

The most spectacular discordance of the described Lower Eocene limestone is that of W. Bou Kralfa where a gentil angle (about 20°) with the adjacent Albian series is observed (Fig. 4 Z-Z’, Fig. 5V, and Fig. 5 P1). This unconformity fossilizes the beginning of the Late Eocene folding followed by a regressive-transgressive cycle.

The collected data on regional scale as well as the North-African literature confirm these observations [17,27,37,39,44,66,68]. The extracted data from field study are included in the North Africa's margin framework evolution [12,15,27,32,61].

The updated data presented in this paper support an interstratified Triassic salt in Albian time. Besides, the Oligocene unconformity on the salt rocks does not correspond to erosional activity that affected the Triassic in its original position, to the Early Mesozoic bottom. After straightening the two Tertiary foldings, the Oligocene units do not allow one to find “an intrusive Triassic structure” rather than a “horizontal” emplacement of salt mass.

Furthermore, the unconformity of Eocene deposits on subjacent series excludes the thrust position of the Triassic complex. In addition, according to the structural restoration of the Tertiary folding, we showed the Middle Eocene–Early Lutetian limestone deposed with a gentle angle (20°) on the substratum of the Triassic mass (Fig. 5 P1). These observations confirm the salt “glacier” hypothesis rather than an intruded structure. During folding, salt rocks may therefore be remobilized from extensional fracturing of the overburden rather than from overall lateral compression.

In fact, the Triassic salt rocks emplaced in Albian times over a previously marine slope, within a hot rifted setting, following a scenario similar to those of the Kebbouche, Ben Gasseur and Fej el Adoum salt “glacier” (N. Tunisia) [1,4,5,14,18,29,62,66,67] as well as a submarine salt “glacier” of Golf Coast of Mexico and Northern America [20,34,58,59].

7 Conclusion

The studied area, as for the neighbouring region, has undergone a moderate ante-Oligocene compression, the initiation of the Eocene phase [45].

The lower erosion contact Triassic/Albian and the Triassic variegated debris reworked by Albian limestone indicate that the lateral extrusion of the Triassic material took place during the Albian in a shallow marine environment on a gentle slope.

Our study suggests that the Chitana-J. Sene Ed Jemel area is a submarine composite salt «glacier» extruded during Lower Albian and then laterally expanded rapidly till the Uppermost Albian (Vraconian) and the J. ed Djebs was considered as a simple salt «glacier» installed during Early Albian or an detached open toe of sheet during overthrust episodes (Fig. 6).

Fig. 6

Hypothetical restoration of mechanism evolution of Triassic mass during Albian time, inspired from Talbot [59], Hudec and Jackson [33].

Fig. 6. Restauration hypothétique de l’évolution de la masse triasique pendant l’Albien, inspirée de Talbot [59], de Hudec et de Jackson [33].

We considered the paroxysm of the Late Mesozoic tectonic inversion has begun in the Middle Eocene–Early Lutetian. This setting is attested by many recent publications in neighbouring areas as well as Africa's northern margin [3,15,27,37,39,44,61].

As summary, the results attest the existence of a widespread salt province and the coexistence of all types of salt structures in Africa's margin as well as the generalization of the Eocene compressive episode throughout the Moghrebian margin.

Acknowledgements

We express our gratitude to the anonymous reviewers for their helpful reviews contributed to the improvement of the first manuscript.


References

[1] A.W. Baird; J. Grocot; G.G. Grant; R.T.J. Moody; R. Sandman Structural Evolution of the Mejerda Zone, Northern Tunisia, AAPG Bull., Volume 75 (1991) no. 8, p. 1403

[2] S. Bajanik, Et Biely J., 1973. Geolgical map of Tunisia, Oued Zargua. Tunisian geological Survey, Tunis, pp. Quadrangle Map n° 26.

[3] W. Beauchamp; R.W. Allmendinger; M. Baranzagi; A. Demnati; M. El Alji; M. Dahmani Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological-geophysical transect, Tectonics, Volume 8 (1999), pp. 163-185

[4] M. Bédir; N. Boukadi; S. Tlig; F. Ben Timzal; L. Zitouni; R. Alouani; F. Slimane; C. Bobier; F. Zargouni Subsurface Mesozoic basins in the central Atlas of Tunisia: Tectonics, sequence deposit distribution, and hydrocarbon potential, AAPG Bull., Volume 85 (2001) no. 5, pp. 885-907

[5] M. Bédir; L. Zitouni; N. Boukadi; J. Saadi; R. Alouani; F. Ben Timzal; S. Tlig; C. Bobier Rifting, halocinèse et structuration des bassins péri-tethysiens Jurassique et Crétacé inférieur de subsurface du domaine atlasique central de la Tunisie (région de Gafsa-Sidi Ali Ben Aoun), Africa Geosci. Rev., Volume 7 (2000) no. 3, pp. 289-306

[6] H. Belayouni; H. Chandoul; R. M’Rad Oil seeps and associated phenomena in northern Tunisia, IlIèmes Jour. Explor. Pétrol. Tunisie, Field Trip Guidebook, ETAP, 1992 (pp. 33–36)

[7] N. Ben Ayed, 1993. Évolution tectonique de l’Avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel, Ann. Min. Geol., Serv. Geol. Tunisie, Tunis, 286 pp.

[8] M. Ben Chelbi; F. Melki; F. Zargouni Mode de mise en place des corps salifères dans l’Atlas septentrional de Tunisie. Exemple de l’appareil de Bir Afou, C.R. Geosci., Volume 338 (2006), pp. 349-358

[9] M.M. Ben Slama Etude Géologique des Régions de J. ed Djebs, J. Chitana et Sene ed Djemel (environs de Testour, Tunisie septentrionale) relation structurale Trias et séries encaissantes, University Tunis El ManarII, Tunis, 2004 116 p (book deposited at the S.G.F.)

[10] M.M. Ben Slama; A. Masrouhi; M. Ghanmi; M. Ben Youssef; F. Zarguouni The Medjerda Valley (N. Tunisia) Triassic complex: updated Biostratigraphy and Geodynamics revisited, Algiers (2004)

[11] J. Bolze Diapirs triasiques et phases orogéniques dans les Monts de Teboursouk, C.R. Acad. Sci. Paris, Volume 231 (1950) no. 8, pp. 480-482

[12] S. Bouaziz; E. Barrier; M. Soussi; M.M. Turki; H. Zouari Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record, Tectonophysics, Volume 357 (2002), pp. 227-253

[13] N. Boukadi; M. Bedir L’halocinèse en Tunisie: contexte tectonique et chronologique des événements, C.R. Acad. Sci. Paris, Ser. IIa, Volume 322 (1996), pp. 587-594

[14] L. Boutib; F. Melki; F. Zargouni Tectonique synsédimentaire d’âge Crétacé supérieur en Tunisie nord orientale: blocs basculés et réorganisation d’aires de subsidences, Bull. Soc. geol. France, Volume 171 (2000) no. 4, pp. 431-440

[15] R. Bracène; D. Frizon de Lamotte The origin of intraplate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic–Quaternary inversion, Tectonophysics, Volume 357 (2002), pp. 207-226

[16] J.-P. Brun; T. Nalpas Graben inversion in nature and experiments, Tectonics, Volume 15 (1996) no. 2, pp. 677-687

[17] P.-F. Burollet, 1956. Contribution à l’étude stratigraphique de la Tunisie centrale, 18. Ann. Min. Geol., Tunis, 352 p.

[18] M. Chikhaoui; A.-L. Maamouri; J. Salaj; M.M. Turki; J. Saadi; M. Ben Youssef; M. Ghanmi; M. Zarbout Tilted blocks during the Early Cretaceous in the Le Kef area (north-westernTunisia), C.R. Acad. Sci. Paris Ser. IIa, Volume 327 (1998), pp. 265-270

[19] K. Daly Étude tectonique tangentielle dans les monts de Mejez El Bab, Premier congrès National des sciences de la Terre Tunis, 1981, pp. 321-331

[20] F.A. Diegel; J.F. Karlo; D.C. Schuster; R.C. Shoup; P.R. Tauvers Cenozoic structural evolution and tectonostratigraphic framework of the northern Gulf Coast continental margin (A.D.G.R.M.P. Jackson; S. Snelson, eds.), Salt Tectonics: A Global Perspective, AAPG, 1995, pp. 109-151

[21] A. El Ghali; N. Ben Ayed; C. Bobier; F. Zargouni; A. Krima Les manifestations tectoniques synsédimentaires associées à la compression éocène en Tunisie, implications paléogéographiques et structurales sur la marge Nord-Africaine, C. R. Geoscience, Volume 335 (2003), pp. 763-771

[22] H. El Ouardi Halocinèse et rôle des décrochements dans l’évolution géodynamique de la partie médiane de la zone des dômes, Univ. of El Manar II Tunis, 1996 (242 p)

[23] H. El Ouardi Origine des variations latérales des dépôts yprésiens dans la zone des dômes en Tunisie septentrionale, C.R. Geoscience, Volume 334 (2002), pp. 141-146

[24] H. El Ouardi; M.-M. Turki Tectonique salifère polyphasée dans la région de Mejez el Bab–Testour (zone des dômes, Tunisie septentrionale): contrôle de la sédimentation méso-cénozoïque, Geol. Mediterr., Volume 22 (1995) no. 2, pp. 73-84

[25] H. El Ouardi; M.-M. Turki Discution sur l’âge et le cadre structural de la sédimentation néogène dans la zone des dômes en Tunisie septentrionale, Geol. Mediterr., Volume 27 (2000) no. 1, pp. 47-55

[26] D. Frizon De Lamotte About the Cenozoic inversion of the Atlas domain in North Africa, C. R. Geoscience, Volume 337 (2005), pp. 475-476

[27] D. Frizon De Lamotte; B. Saint Bezar; R. Barcene; E. Mercier The two main steps of the Atlas building and geodynamics of the western Mediterranean, Tectonics, Volume 19 (2000) no. 4, pp. 740-761

[28] M. Ghanmi Géodynamique de la plate-forme saharienne et de sa marge septentrionale au Crétacé. Son évolution vers l’Atlas septentrional, interférences du rifting et de l’halocinèse, Univ. Tunis El Manar II, Tunis, 2003 (347 p)

[29] M. Ghanmi; M. Ben Youssef; M. Jouirou; F. Zargouni; J.-M. Vila Halocinèse crétacée au Jebel Kebbouch (Nord-Ouest tunisien): mise en place à fleur d’eau et évolution d’un « glacier de sel » albien, comparaisons, Eclog. Geol. Helv., Volume 94 (2001), pp. 153-160

[30] R. Guiraud Évolution post-triasique de l’avant-pays de la chaîne alpine en Algérie, d’après l’étude du bassin du Hodna et des régions voisines, Univ. Nice, Nice, 1973 (270 p)

[31] R. Guiraud Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview (D.S. Macgregor; R.T.J. Moody; D.D. Clark-Lowes, eds.), Petroleum Geology of North Africa Geological Society, London, 1998, pp. 217-229

[32] R. Guiraud; W. Boswrth Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics, Tectonophysics, Volume 282 (1997), pp. 39-82

[33] M.R. Hudec; M.P.A. Jackson Advance of allochthonous salt sheets in passive margins and orogens, AAPG, Volume 90 (2006), pp. 1535-1564

[34] M.P.A. Jackson; J.C. Harrison An allochthonous salt canopy on Axel Heiberg Island, Sverdrup Basin, Arct. Canada Geol., Volume 34 (2006), pp. 1045-1048

[35] C. Jallouli; M. Chikhaoui; A. Braham; M-.M. Turki; K. Mickus; R. Benassi Reply to the discussion by C.J. Talbot on “Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data” by C. Jallouli et al.,[Tectonophysics 396 (2005) 209-225], Tectonophysics, Volume 406 (2005), pp. 249-254

[36] A. Jlailia; A. Maazaoui Opportunities for Hydrocarbon potential in the Deep Objectives Sub-salt Plays; Not-Explored in Tunisia Case Studies: Triassic & Jurassic Reservoirs Exploring deep targets & new areas for more reserves, E.T.A.P, The 10th Tunisian Petroleum Exploraton & Production, Tunis, 2006

[37] S. Khomsi; M. Bédir; M. Soussi; G.-M. Ben Jemia; K. Ben Ismail-Lattrache Mise en évidence en subsurface d’événements compressifs Éocène moyen–supérieur en Tunisie orientale (Sahel): généralité de la phase atlasique en Afrique du Nord, C.R. Geoscience, Volume 338 (2006), pp. 41-49

[38] M.F. Ladeb; J.-C. Horrenberger; Y. Cailleux; F. Zargouni Structures mésoscopiques associées à la distension aptienne en Tunisie centrale (dj. Semmama), C. R. Acad. Sci. Paris, Ser. IIa, Volume 321 (1995), pp. 333-338

[39] A. Masrouhi Les appareils salifères des régions de Mateur, Tébourba et de Medjez-el-Bab (Tunisie du Nord), Univ. Tunis el Manar II, Tunis, 2006 (258 p)

[40] A. Masrouhi; M. Ghanmi; M.-M. Ben Slama; M. Ben Youssef; J.-M. Vila; F. Zargouni New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: Implication for the North African paleo-margin evolution, C. R. Geoscience, Volume 340 (2008), pp. 771-778

[41] A. Masrouhi; M. Ghanmi; M. Ben Youssef; J.-M. Vila; F. Zargouni Mise en évidence d’une nappe de charriage à deux unités paléogènes au plateau de Lansarine (Tunisie du nord): définition d’un nouvel élément structural de l’Atlas tunisien et réévaluation du calendrier des serrages tertiaires, C. R. Geoscience, Volume 339 (2007), pp. 441-448

[42] A. Masrouhi; M. Ghanmi; M. Ben Youssef; F. Zargouni; J.-M. Vila Mise en évidence d’un dais de sel (Salt Canopy) au Jebel Lansarine (Tunisie du Nord): implication sur la diversité des Appareils salifères de la marge passive du Nord-Est du Maghreb, Laghouat, Algérie (2007)

[43] R. Moody; A. Brown; B. Loucks Programme and Field Localities (J. Grocott; R. Moody; A. Brown; R. Loucks, eds.), Tertiary to Recent Larger Foraminifera: Their Depositional Environments and Importance as Petroleum Reservoirs: Fieldtrip: February 19–24th, 1998 Central and North-West Tunisia, ARCO-BG plc-Carthago oil- Cheveron, Tunis, 1998, p. 84

[44] H. Mzali; H. Zouari Caractérisation géométrique et cinématique des structures liées aux phases compressives de l’Éocène au Quaternaire inférieur en Tunisie: exemple de la Tunisie nord-orientale, C.R. Geoscience, Volume 338 (2006), pp. 742-749

[45] M.-A. Ould Bagga; S. Abdeljaoued; E. Mercier La « zone des nappes » de Tunisie, une marge méso-cénozoïque en blocs basculés modérément inversée (région de Taberka/Jendouba; Tunisie nord-occidentale), Bull. Soc. geol. France, Volume 177 (2006) no. 3, pp. 145-154

[46] F.J. Peel; C.J. Travis; J.R. Hossack Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico: A preliminary analysis (D.G.R.M.P.A. Jackson; S. Snelson, eds.), Salt Tectonics: A Global Perspective, AAPG, 1995, pp. 153-175

[47] V. Perthuisot Dynamique et Pétrogenèse des Extrusions Triasiques en Tunisie Septentrionale, École Normale Supérieure Paris, Paris, 1978 (312 p)

[48] V. Perthuisot Diapirism in northern Tunisia, J. Struct. Geol., Volume 3 (1981) no. 3, pp. 231-235

[49] V. Perthuisot; A. Bouzenoune; N. Hatira; B. Henry; E. Laatar; A. Mansouri; H. Rouvier; A. Smati; J. Thibiéroz Les diapirs du Maghreb oriental: part des déformations alpines est des structures initiales crétacées et éocènes dans les formes actuelles, Bull. Soc. geol. France, Volume 170 (1999) no. 1, pp. 57-65

[50] V. Perthuisot; H. Rouvier; A. Bouzenoune; N. Hatira; B. Henry; M. Aoudjehane; E. Laatar; M. Le Goff; A. Mansouri; A. Smati; J. Thibiéroz Réponse aux commentaires de Vila et al, Bull. Soc. geol. France, Volume 170 (1999) no. 3, p. 420

[51] S. Rebaï Recent tectonics in Northern Tunisia: coexistence of compressive and extensional structures, Ann. Tecton., Volume VII (1993) no. 2, pp. 129-141

[52] H. Rouvier, B. Henry, M. Le Goff, 1999. Réponse à la note de Jean-Marie Vila, Mohamed Ben Youssef, Salah Bouhlel, Mohamed Ghanmi, Fekri Kamoun, Bernard Peybernès « Le paléomagnéisme est-il un meilleur outil que la biostratigraphie et la sédimentologie pour fixer la polarité de I’Albien du Nord-Ouest tunisien ? » C. R. Acad. Sci. Paris, Ser. IIa 32 (1999) pp. 219–226. C. R.Acad. Sci. Paris Ser. IIa 329 (1999) 845–846.

[53] H. Rouvier, B. Henry, M. Le Goff, A. Smati, N. Hatira, A. Mansouri, E. Laatar, J. Thibiéroz, V. Perthuisot, 1999. Commentaire à la note de Jean-Marie Vila, Mohamed Ben Youssef, Salah Bouhlel, Mohamed Ghanmi, Samia Kassai et Fethi Miaadi « Tectonique en radeaux au toit d’un « glacier de Sel » sous-marin albien de Tunisie du Nord-Ouest: exemple du secteur minier de Gueurn Halfaya », C. R. Acad. Paris Ser. IIa 327 (1998) 563–570, C. R.Acad. Sci. Paris Ser. IIa 328 (1999) 565–566.

[54] P. Sainfeld, Les gites plombo-zincifères de Tunisie, Ann. Min. Geol., Tunis, 1952, 285 p.

[55] W. Snoke; S. Schamel; R.M. Karasek Structural evolution of Djebel Debadib anticline: A clue to the regional tectonic style of the Tunisian Atlas, Tectonics, Volume 7 (1988) no. 3, pp. 497-516

[56] M. Solignac Les recherches de pétrole en Tunisie, Rev. Petrol, Paris, 1925 (59 pp)

[57] M. Solignac Etude géologique de la Tunisie septentrionale, Serv. Mines Dir. Gén. Trav. Publ., Tunis, 1927 (756 p)

[58] J. Steven; W. John A New Conceptual Model for Scotian Margin Salt detachment on the Northeast Scotian margin,offshore eastern Canada, AAPG Bull., Volume 90 (2006), pp. 1407-1423

[59] C.J. Talbot Spreading of salt structures in the Gulf of Mexico, Tectonophysics, Volume 228 (1993), pp. 151-166

[60] C.J. Talbot Discussion on “Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data” by C. Jallouli et al, Tectonophysics, Volume 396 (2005), pp. 209-225 Tectonophysics, 406 (2005) 249–254

[61] R. Vially; J. Letouzey; F. Benard; N. Haddadi; G. Desforges; H. Askri; A. Boudjema Basin inversion along the North-African Margin the Saharan Atlas (Algeria) (F. Roure, ed.), Peri-tethyan Platforms, Technip Edition, Paris, 1994, pp. 79-118

[62] J.M. Vila; M. Ben Youssef; M. Chikhaoui; M. Ghanmi Deuxième étude de surface d’un grand « glacier de sel » sous-marin albien (250 km2 ?) : les masses triasiques du « diapir » de Ben Gasseur et de l’anticlinal du Kef (Nord-Ouest tunisien), Bull. Soc. geol. France, Volume 167 (1996), pp. 235-246

[63] J.-M. Vila, Ben Youssef, M., Bouhlel, S., Charrière, A., Chikhaoui, M., Dali, T., Ghanmi, M., Kamoun, F., Kassaa, S., Kechid-Benkherouf, F., Saadi, J., Sami, L., Souquet, P., Peybernes, B. Commentaire sur la note de V. Perthuisot et al.  : « Les corps triasiques des monts du Mellègue (confins algérotunisiens) sont-ils des diapirs ou des « glaciers de sel ? », Bull. Soc. Geol. France, 169 (1998) 53–61. Bull. Soc. Geol. France 170 (3) (1999)413–419.

[64] J.-M. Vila; M. Ben Youssef; S. Bouhlel; M. Ghanmi; F. Kamoun; B. Peybernès Is palaeomagnetism a better tool than biostratigrapby and sedimentology to define the polarity of the Albian deposits from northwestern Tunisia?, C. R. Acad. Sci. Paris Ser. IIa, Volume 329 (1999), pp. 219-226

[65] J.-M. Vila; M. Ben Youssef; S. Bouhlel; M. Ghanmi; S. Kassaa; F. Miaadi Réponse aux commentaires de H. Rouvier et al. à la note « Tectonique en radeaux au toit d’un « glacier de sel » sous-marin albien de Tunisie du Nord Ouest : exemple du secteur minier de Gueurn Halfaya », C.R. Acad. Sci. Paris Ser. IIa, Volume 327 (1998), pp. 563-570 328 (1999) 567-568

[66] J.-M. Vila; M. Ghanmi; M. Ben Youssef; M. Jouirou Les “glaciers de sel” sous-marins des marges continentales passives du nord-est du Maghreb (Algérie-Tunisie) et de la Gulf Coast (USA) : comparaisons, nouveau regard sur les « glaciers de sel » composites, illustré par celui de Fedj el Adoum (Nord-Ouest tunisien) et revue globale, Eclog. Geol. Helv., Volume 95 (2002), pp. 347-380

[67] J.-M. Vila; S. Kassaa; S. Bouhlel; M. Ben Youssef; T. Dali; M. Ghanmi Inversion tectonique de structures halocinétiques et localisation des minéralisations (Zn, Sr) : émergence au Jebel Bou Khil (Nord-Ouest tunisien) d’un chevauchement entre un domaine nord à «glaciers de sel» sous-marins et un domaine sud à « diapirs typiques », Bull. Soc. geol. France, Volume 170 (1999) no. 2, pp. 161-172

[68] F. Zargouni Etude des mouvements ascensionnels du complexe triasique dans la chaîne de Lansarine (Atlas Tunisien-Zone des “Diapirs”, Notes Serv. Geol. Tunisie, Volume 43 (1977), pp. 13-21


Comments - Policy