Plan
Comptes Rendus

Article de recherche
From subduction to collision and subduction again, the drivers of crustal-scale deformation in the Hellenides-Aegean region
[De la subduction à la collision et à la subduction à nouveau, les moteurs de la déformation à l’échelle crustale dans la région des Hellénides et de la mer Égée]
Comptes Rendus. Géoscience, Online first (2024), pp. 1-43.

Résumés

In the 60s, the Hellenic belt was taken as the “Geosyncline model”. Here we take a modern look at this Hellenic/Aegean region which as a concentrate encompasses all the main geodynamic processes known in orogens. This region documents the fundamental characteristics of the geodynamic processes related to mountain building, namely continental rifting, oceanic spreading, oceanic then continental subduction, collision i.e., closure of oceanic basins. In particular, the Mesozoic obduction events in northern Hellenides, and the effects of a still ongoing major extension linked to the active subduction under the Aegean domain.

Dans les années 60, la chaîne hellénique était considérée comme le «  modèle géosynclinal  ». Nous jetons ici un regard moderne sur cette région hellénique/égéenne qui englobe tous les principaux processus géodynamiques connus dans les orogènes. Cette région présente les caractéristiques fondamentales des processus géodynamiques liés à l’édification des chaînes de montagnes, à savoir : le rifting continental, l’expansion océanique, la subduction océanique puis continentale, la collision, c’est-à-dire la fermeture des bassins océaniques. En particulier, les événements d’obduction mésozoïques dans les Hellénides du Nord, et les effets d’une extension majeure encore en cours liée à la subduction active sous le domaine égéen.

Métadonnées
Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crgeos.238
Keywords: Hellenides, Aegean sea, Subduction, Obduction, Collision, Detachments
Mot clés : Hellénides, Mer Égée, Subduction, Obduction, Collision, Détachements
Jacky Ferriere 1 ; Laurent Jolivet 2 ; Frank Chanier 1

1 Université de Lille, ULCO, CNRS, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F59000 Lille, France
2 Sorbonne Université, UMR 7193 CNRS-UPMC, Institut des Sciences de la Terre, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRGEOS_2024__356_S2_A11_0,
     author = {Jacky Ferriere and Laurent Jolivet and Frank Chanier},
     title = {From subduction to collision and subduction again, the drivers of crustal-scale deformation in the {Hellenides-Aegean} region},
     journal = {Comptes Rendus. G\'eoscience},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crgeos.238},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Jacky Ferriere
AU  - Laurent Jolivet
AU  - Frank Chanier
TI  - From subduction to collision and subduction again, the drivers of crustal-scale deformation in the Hellenides-Aegean region
JO  - Comptes Rendus. Géoscience
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crgeos.238
LA  - en
ID  - CRGEOS_2024__356_S2_A11_0
ER  - 
%0 Journal Article
%A Jacky Ferriere
%A Laurent Jolivet
%A Frank Chanier
%T From subduction to collision and subduction again, the drivers of crustal-scale deformation in the Hellenides-Aegean region
%J Comptes Rendus. Géoscience
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crgeos.238
%G en
%F CRGEOS_2024__356_S2_A11_0
Jacky Ferriere; Laurent Jolivet; Frank Chanier. From subduction to collision and subduction again, the drivers of crustal-scale deformation in the Hellenides-Aegean region. Comptes Rendus. Géoscience, Online first (2024), pp. 1-43. doi : 10.5802/crgeos.238.

Version originale du texte intégral (Proposez une traduction )

1. Introduction

Tethyan mountain belts such as the Alps and the Hellenides served as key-sites for defining new tectonic concepts such as the notion of nappes derived from isopic zones, defined as domains with coherent stratigraphy and paleogeography. They were reinterpreted in the framework of “new global tectonics” in the early 70s. Presently, they are now the center of attention of a large community working on the interaction between subduction dynamics and crustal deformation. The evolution of Mediterranean back-arc basins, such as Alboran, Tyrrhenian, and Aegean seas is nowadays explained by new concepts of subduction dynamics that have flourished since the development of seismic tomography, seismic anisotropy, analog and numerical modelling, but also the improvement of field tectonic and metamorphic studies. The Aegean Sea is emblematic of this evolution and several schools have developed evolutionary models based on new concepts and observations.

Strangely, the Hellenic mountain belt has not been given the same attention in the recent period. On the other hand, the early part of the tectonic history of the Aegean region, before the change in subduction dynamics leading to back-arc extension some 30–35 Ma ago, is rather poorly documented despite the emblematic character of this large alpine-type Hellenic belt, including the Aegean back-arc.

Jean Aubouin was a prominent figure among those who developed the early concepts on the Hellenides, since his thesis [Aubouin 1959], followed by many collaborative works [references in Jacobshagen 1986 and Ferriere and Faure 2024]. Jean Aubouin’s school unraveled a large part of the External Hellenides while Jan Brunn and his students were mainly working in the Internal Zones. Both schools worked in detail on the Pelagonian domain located in the most external part of the Internal Zones, particularly well-known for the occurrence of huge volumes of ophiolitic material. Consequently, important ophiolitic complexes from the Eastern Hellenides have been the subject of multiple studies. One of the first ophiolite models corresponding to a massive submarine magmatic outflow (“Ophiolitic balloon model”) has been proposed by the studies carried out in northern Greece [Brunn 1956; Aubouin 1959].

The development of the concept of obduction developed in the early 70s [Coleman 1971; Dewey and Bird 1971] reinforced the interest in the study of Hellenic ophiolites that served as new models such as the Vourinos, North-Pindos and Othris ophiolitic units [e.g. Smith et al. 1975; Beccaluva et al. 1984].

A large part of the current knowledge was established during this initial period (60s–70s), when field geologists mapped the Greek territory as well as the Dinarides in former Yugoslavia. Yet, although it may be less visible than the many projects developed in the back-arc region, the geological knowledge has since considerably improved in the continental part of the Hellenides but the consequences on the recent evolution have not been fully explored. One symptomatic observation of a certain lack of attention drawn to the Hellenides is the absence of crustal-scale cross-sections similar to those proposed in the Alps or the Betic-Rif. Nevertheless, one can mention recent work providing detailed kinematic reconstructions [van Hinsbergen et al. 2020] or correlations between tectonic units [Schmid et al. 2020] published on the evolution of the Alps and the Balkans/Hellenides. A different approach was used by Menant et al. [2016a, b] who reconstructed the magmatic and metallogenic evolution of the Hellenides and Taurides from the Late Cretaceous to the Present and discussed the implications in terms of subduction dynamics.

In this contribution we summarise the most recent findings, mainly stemming from the Internal Hellenides, and show their implications for the geodynamic evolution of this wide region. Moreover, we show how the Hellenides can be used as a general model for Mediterranean mountain belts.

2. Geological setting

The Hellenides and the Aegean domain cover the entire Greece and extends eastward onto the Anatolian side of the Aegean Sea in the Taurides and the Menderes massif. The western Hellenides form a rather continuous massif at high altitude resting on a ca. 40–45 km thick continental crust [Makris et al. 2013]. In the eastern part of the belt, NW–SE striking reliefs, including Mount Olympos (2918 m) alternate with recent sedimentary basins. Further east, the Aegean back-arc basin is characterised by the Cyclades, Dodecanese, Eastern Aegean Islands, or Crete. The continental crust is progressively thinned toward the Aegean domain.

This spatial organisation results from the superimposition of several orogenic events: (i) the Jurassic obduction of the Tethyan (Maliac) oceanic lithosphere [e.g. Bernoulli and Laubscher 1972; Dercourt 1970; Ferriere 1972, 1982; Hynes et al. 1972; Jacobshagen 1986; Smith et al. 1975]; (ii) an Eocene collision between the Adria (Apulia) to the SW and the European domain to the NE (Figures 1 and 2) [Aubouin 1959; Jacobshagen 1986; Schmid et al. 2020]; (iii) A more recent, mainly Miocene extension with a stretching amount increasing toward the east, reworking the structural pattern inherited from the collision.

Figure 1.

Tectonic map of the Hellenides and of the Aegean region [modified after Jolivet et al. 2021, references within]. (A–D) location of cross-sections Figure 2; FF′: upper cross-section Figure 6. The light colours at the top of the cartouches represent the recent sedimentary levels deposited on the concerned basement in darker colours.

Figure 2.

Cross-sections across the Hellenic belt. (A–D) Location Figure 1. (A) In northern Greece from Rhodope to Pindos-Ionian Zones through the Vardar and Pelagonian Internal Zones; (B) cross-section in the Pelagonian domain and Plio-Quaternary basins within the Internal Zones with the Ossa window showing External units underneath; (C) cross-section in the Internal Zones showing the Jurassic syn-obduction Maliac units; (D) cross-section across the Pelagonian and Parnassus Zones to the current subduction zone of the eastern Mediterranean Sea.

This late tectonic episode results from the change in subduction dynamics and the beginning of slab retreat in the Late Eocene [Jolivet and Faccenna 2000]. The western Hellenides, corresponding to External Zones of the belt, were tectonized only during the Tertiary while the eastern Hellenides, where the obduction episode is recorded, form the Internal Zones [Brunn 1956].

2.1. Regarding the Hellenides

The western Hellenides or External Zones are made up of a stack of nappes derived from the eastern margin of the Adria block. This apparent simplicity made this sector ideal for the first important tectonic syntheses. The main isopic zones and nappes were deciphered as early as in the 50–60s, notably by Aubouin [1959] (Figures 1 and 3). Going from west to east, we first find the pre-Apulian Zone, a carbonate platform followed by the Ionian Zone comprising subsiding basin since the Lias-Dogger, and the Gavrovo-Tripolitza Zone, a platform until the Middle-Late Eocene. Further east, the Pindos Zone represents a deep basin from the Triassic onward, including syn-rift lavas and finally an Eocene flysch [Brunn 1956; Aubouin 1959] (Figure 3). Later on, numerous stratigraphic and structural features were recognised [Degnan and Robertson 1998; Doutsos et al. 2006; Faupl et al. 1998; Fleury 1980; IGRS-IFP 1966; Konstantopoulos and Zelilidis 2012; Pe-Piper and Piper 1984; Thiébault 1982]. Uncertainties persist on the nature of the Pindos Zone, whether a continental crust, more or less thinned [Bortolotti et al. 2013; van Hinsbergen et al. 2020; Schmid et al. 2020; Thiébault 1982], or an oceanic crust [Bonneau 1982; Menant et al. 2016a, b] interpreted as the root of the supra-Pelagonian ophiolites [Dercourt 1970; Dilek et al. 2007; Rassios and Smith 2000; Jones and Robertson 1991; Saccani and Photiades 2004; Smith et al. 1975].

Figure 3.

Stratigraphic logs related to the Hellenic isopic zones. (1–6) Limestones (lmst); (1) benthic (platform), (2) oolithic (down) to conglomerates (up); (3) fine-grained (down) and siliceous (up); (4) Ammonitico Rosso (Peonias); (5) alternating calcarenites (up, triangles) and siliceous lmst (down, dashes); (6) siliceous fine-grained lmst and calcarenites (up), marls and sandstones (down); (7) radiolarites (down: pelitic); (8) argillaceous beds (down), argillaceous sandstones (up); (9) sandstones with siliceous conglomerates (triangles, down); (10) conglomerates (MHB); (11) flyschs; (12) ophiolitic mélanges; (13–16) volcanism; (13) rhyolites; (14) basaltes; (15) andesites; (16) Triassc syn-rift pillow-lavas (violet); (17–19) ophiolites (green); (17) pillow-lavas; (18) gabbros, dolerites; (19) peridotites; (20) metamorphic basements; (21) main unconformities; (22) Thrusts.

Nappe stacking in the Hellenides exhibits quite a regular NW–SE strike that can be followed northward up to the Dinarides [Aubouin 1959]. This simple pattern is locally perturbed by the presence of the Parnassus Zone, an additional platform sandwiched between the Pindos and the Internal Zones, observed between the Corinth and Sperchios rifts (Figures 1 and 2D) [Celet 1962]. Similarly, this Hellenic strike is disturbed in Crete and Peloponnese due to the presence of tectonic windows revealing the substratum made of the Gavrovo-Tripolitza Nappe [Jolivet et al. 1996; Jolivet and Brun 2010; Jolivet et al. 2010b; Seidel et al. 1982; Theye and Seidel 1991; Theye et al. 1992; Thiébault 1982]. These windows are metamorphic core complexes formed during syn-orogenic exhumation and post-orogenic extension, accommodated by the north-dipping Cretan Detachment. Crete and the Peloponnese are underthrust by the subducting oceanic lithosphere of the Eastern Mediterranean located south of the Adria block. Further to the NW, in the Hellenides, continental collision is still active. The transition from oceanic subduction to continental collision is accommodated by the dextral Kephalonia transfer fault [Özbakır et al. 2020] (Figure 1).

To the NE, the Serbo-Macedonian and Rhodope massifs belong to the European continental plate. The area used to be referred to as the “Zwischengebirge” [Kossmat 1924].

At present, the Rhodope massif is a large metamorphic core complex (MCC) reworking a nappe stack emplaced during the Tertiary Alpine orogeny with a HT-LP metamorphism locally reaching melting conditions [Burg 2011; Burg et al. 1996; Gautier et al. 2017; Wawrzenitz et al. 2015]. Units showing HP-LT metamorphism are present [Liati and Mposkos 1990; Liati and Seidel 1996], even remnants of UHP-LT metamorphism with the preservation of coesite [Kostopoulos et al. 2000]. Several low-angle detachments have been found within the Rhodope such as the Nestos shear zone [Brun and Sokoutis 2007; Burg 2011]. In contrast, the same structure has been interpreted as a thrust by Gautier et al. [2010, 2017]. The MCC was exhumed underneath several SW-dipping detachments, including the Strymon Valley Detachment [Dinter and Royden 1993] and the Kerdilion Detachment further to the west, active from the Eocene (42 Ma) to the Late Oligocene (24 Ma) [Brun and Sokoutis 2007]. For a more exhaustive description of metamorphic units in the Rhodope, see [Brun and Sokoutis 2007; Burg 2011; Kounov et al. 2015; Krenn et al. 2010; Kydonakis et al. 2014; Liati and Seidel 1996; Schmid et al. 2020].

The Internal Zones of Pelagonian and Vardar domains develop between the Pindos Zone and the Rhodopes (Figure 1). The Pelagonian is a fundamental unit in the Hellenides, bounded by major Tertiary thrusts. It extends northward across Albania and to ex-Yugoslavia [Aubouin et al. 1970]. This domain is rich in metamorphic rocks assumed of Paleozoic or older ages [Anders et al. 2006; Schenker et al. 2014, 2015]. The Pelagonian calcareous cover, paleontologically dated from Triassic to Jurassic [Brunn 1956; Celet and Ferriere 1978 and references therein; Ferriere 1982], is overthrusted by ophiolitic nappes among which the well-known Vourinos unit is unconformably overlain by Late Jurassic–Cretaceous deposits (Figure 3). As an isopic zone, the Pelagonian is only defined for the Triassic–Mid-Jurassic, before obduction [Celet and Ferriere 1978]. This domain bordering the Pindos Zone was initially considered in Aubouin’s [1959] Geosyncline model as the “eugeoanticline”, an undeformed tectonic unit during the Alpine orogenic cycle.

A first revolution came with the discovery of the Olympos tectonic window within the Pelagonian domain [Godfriaux 1962, 1968] witnessing a major Alpine thrust above a platform sequence attributed to the Gavrovo-Tripolitza (GT) Zone [Fleury and Godfriaux 1974]. Similar structures were described further south such as the Ossa window [Derycke and Godfriaux 1978] and the Almyropotamos one in Evia [Dubois and Bignot 1978; Katsikatsos et al. 1976]. The Olympos window shows additional tectonic units between the Upper Pelagonian nappe and the lower GT limestones, the Infra-Pierian Unit, locally containing ophiolites, and just below, the blueschist-facies Ambelakia unit attributed to the Pindos Zone partly because of its structural position [Hinshaw et al. 2023; Schmitt 1983; Schermer 1990]. The analyses of metamorphic terranes present in the Olympos window have revealed consistent Eocene ages of the blueschists as well as in the Pelagonian, corresponding to the period of subduction and stacking of these nappes [Lips et al. 1998; Schermer 1990, 1993; Schermer et al. 1990]. Other blueschist-facies units have been described in an equivalent structural position below the Pelagonian, the Makrinitsa Unit in the Pelion [Ferriere 1982] and the Styra–Ochi Unit in Evia [Katsikatsos et al. 1976].

These HP-LT units are the lateral equivalent of the Cycladic Blueschists [Jolivet et al. 2004a, b]. Outcrops of platform deposits similar to the GT series in the Cyclades (Tinos, Samos, Naxos), sometimes attributed to the so-called Basal Unit [e.g., Ring et al. 2010, 2011] are probably the equivalent of these tectonic windows in the Internal Zones of the Hellenides [references in Jacobshagen 1986; Avigad and Garfunkel 1989; Jolivet et al. 2004b; Schmid et al. 2020].

A large sedimentary basin, the Mesohellenic molassic basin (MHB) developed in a piggy-back mode on top of the Pelagonian–Ophiolitic domain [Ferriere et al. 2004] from the Late Eocene to the Middle Miocene [Brunn 1956; Aubouin 1959; Doutsos et al. 1994; Zelilidis et al. 2002; Ferriere et al. 1998, 2004, 2013]. The subduction of the Pindos and GT zones underneath the Pelagonian was coeval with the successive sedimentary sequences of the MHB. After the Miocene, the Pelagonian was reworked by a major phase of extension observed on the continent (i.e., Trikala and Larissa basins) or in the Aegean domain where extension scattered the Upper Cycladic Nappe from the Northern Cyclades to Crete [Bonneau 1984; Jolivet et al. 2004b].

The concept of obduction [Coleman 1971], a second revolution, changed the interpretation of the Pelagonian domain. It led to consider the ophiolites as nappes remnants of oceanic lithosphere instead of mere intruding magmatic bodies later overthrust as postulated by the Geosyncline model.

Brunn [1956] and Moores [1969] published pioneer observations of the petrology of these ophiolites in the northern Pindos and the Vourinos massifs with a complete succession from basal harzburgites, then gabbros and dolerite dykes, to lavas and finally pelagic sediments.

Before the onset of Plate tectonics, Brunn [1959] compared these ophiolites with an ocean floor. He further noticed the presence of a reverse metamorphic gradient with lenses of amphibolites on top of greenschists underneath the ophiolites.

The Othris ophiolites (Figures 1 and 2) allow reconstructing the Maliac Ocean, a major part of the Tethys Ocean located between the Pelagonian and the Rhodope continental domains [Ferriere 1976b]. Between the ophiolitic nappes and the parautochtonous Pelagonian domain, several syn-obduction units represent the Triassic–Mid Jurassic western passive margin of the Maliac Ocean [Ferriere 1972, 1974, 1982, 1985; Ferriere et al. 2016 and references therein, Hynes et al. 1972; Smith et al. 1975], including the proximal margin, also present in Argolid [Ferriere 1974; Baumgartner 1985; Ferriere et al. 2016] and mostly the distal margin is not observed in other sectors of the Hellenides [Ferriere 1974, 1982] (Figure 3). Tithonian–Early Cretaceous Beotian Flysch [Celet et al. 1976a, b; Nirta et al. 2018], deposited to the west of the ophiolite units, is interpreted as a syn-obduction foreland basin, supporting the rooting of the ophiolites to the east of the Pelagonian, i.e., in the Maliac Ocean, instead of postulating a Pindos origin as formally proposed [see discussion in Ferriere et al. 2012, 2016, and references therein].

The Vardar Zone is a complex domain, that underthrusts the Serbo-Macedonian domain to the east and overthrusts the Pelagonian to the west (Figures 1 and 2). Mercier [1968] distinguished several isopic/tectonic zones, namely from SW to NE: the Almopias and Peonias units, deep basins separated by the Paikon platform. An additional pre-Peonian unit, containing the Guevgueli ophiolites, is sandwiched between the Paikon and Peonias units (Figure 1). Kauffmann et al. [1976] elaborated the content of the Peonias series and Kockel [1986] replaced the Pre-Peonias and Peonias by the “Guevgueli-Stip Axios ophiolites” respectively; and defined the “Circum Rhodope Belt”. Mercier [1968] soon pointed out to the imprint of Tertiary tectonics in the Vardar domain. Various structural interpretations of the Paikon (cf. infra Section 4.5.2) have been proposed [Brown and Robertson 2003; Ferriere et al. 2001; Mercier 1968; Vergely and Mercier 2000].

The interpretation of the Vardar domain and its ophiolites benefited from the obduction model, too. Indeed, Bernoulli and Laubscher [1972] located the origin of the supra-Pelagonian ophiolites in the Central Tethys to the east that’s to say from the Vardar domain. They were then joined by Dercourt [1972], first in favour of a Pindos origin [Dercourt 1970], then by numerous authors [Baumgartner 1985; Bortolotti et al. 2013; Ferriere 1982; Ferriere et al. 2012, 2016; Schmid et al. 2008] with the notable exception of most Anglo-Saxon authors. The Tethyan (Maliac) suture, where these ophiolites come from, would thus be located in the Almopias domain with its highly diversified series (Figure 3) [Mercier and Vergely 1984; Migiros and Galeos 1990; Saccani et al. 2015; Sharp and Robertson 2006; Stais et al. 1990]. Triassic pre-obduction radiolarites, witnessing a deep basin (probably oceanic) have indeed been observed in the Almopias sector [Unité de Vryssi, Stais et al. 1990; Stais and Ferriere 1991]. An important issue remains debated: the width of the oceanic domain left after obduction in this domain. Some authors draw a wide residual ocean in this region [e.g., Menant et al. 2016a, b; Stampfli and Borel 2002].

Middle and Late Jurassic rhyolites and andesites in the Paikon zone led several authors to consider the existence of a volcanic arc related to the eastward subduction of the Tethys Ocean (Maliac) [Bortolotti et al. 2013; Ferriere and Stais 1995; Ferriere et al. 2012, 2015, 2016; Mercier et al. 1975; Robertson 2012]. Hence, these authors conclude that the Middle and Late Jurassic Guevgueli ophiolites [Danelian et al. 1996; Kukoc et al. 2015], east of the Paikon, originated as a back-arc basin. Geochemical data confirm this attribution [Saccani et al. 2008]. Additional studies integrating data obtained from zircons sampled in the metamorphic sectors further to the SE, led authors [Bonev et al. 2015] to propose the involvement of several subduction zones in the evolution of the Paikon arc, the Guevgueli ophiolites and their equivalents. The Peonias series have been described in detail, including those of the Chalkidiki Peninsula [Bonev et al. 2015; Ferriere and Stais 1995; Kauffmann et al. 1976; Mercier 1968; Stais and Ferriere 1991]. They represent the Triassic–Jurassic eastern margin of the Maliac ocean, inverted during Cenzoic tectonics [Ferriere and Stais 1995; Ferriere et al. 2016]. Within the Peonias series, Triassic lavas and facies transitions witness the syn-rift period [Asvesta and Dimitriadis 1992; Ferriere and Stais 1995] coeval with the syn-rift of the west-Maliac margin, one argument in favour of these two domains being the conjugate margins of that ocean [cf. Ferriere et al. 2016].

2.2. Aegean domain

The first-order structure of the Aegean domain results from a change in subduction dynamics some 30–35 Ma ago when slab retreat started as a result of the Africa–Eurasia collision [Jolivet and Faccenna 2000]. The consequence was the opening of several back-arc basins, among them the Tyrrhenian Sea and the Aegean Sea [e.g., Jolivet et al. 2013; Le Pichon and Angelier 1979, 1981].

The first observations in this last region showed some similarities with the Internal Zones of the Hellenides and postulated possible correlations [Bonneau 1984; Jacobshagen 1986]. The definition of the Cycladic Blueschists Nappe [Blake et al. 1981] was an important milestone to integrate this region into the regional tectonic framework, showing tectonic units exhumed from the depth of the subduction interface [Altherr et al. 1979; Bonneau 1982, 1984; Bonneau and Kienast 1982; Bonneau et al. 1980; Hecht 1984; Okrusch et al. 1978] but finding a regional logic was difficult. A synthetic account of available observations at that time in the Attic-Cycladic massif can be found in Bonneau [1984] and Jacobshagen [1986]. The same pile of nappes observed in the continental Hellenides is recognised at this period with the Pelagonian Unit at the top [e.g., Laskari et al. 2022] with basement lithologies and ophiolites, locally named the Upper Cycladic Unit, devoid of any evidence of Eocene HP-LT metamorphism.

This unit overlies the Cycladic Blueschists (Figures 46), equivalent to the Ambelakia Unit observed near Mount Olympos, and the basal platform series similar to the External Zones (Gavrovo-Tripolitza), with either HP-LT metamorphic parageneses reaching the blueschist-facies or the eclogite facies (Syros, Sifnos, Tinos, Samos) or HT-LP ones locally reaching anatexis (Paros, Naxos, Mykonos) [Altherr et al. 1979, 1982; Andriessen et al. 1979; Blake et al. 1981; Bonneau and Kienast 1982; Hecht 1984; Jansen and Schuilling 1976; Okrusch et al. 1978; Papanikolaou 1977, 1980].

Figure 4.

Metamorphic core complexes in the Aegean region from the Rhodope to Crete and the Menderes. The main detachments accommodating their exhumation are represented with different colours depending upon their timing of activity. Red arrows represent the kinematics of ductile and brittle deformation in the shear zones observed in the footwalls. NCDS: North Cycladic Detachment System, NPFS: Naxos–Paros Fault System, WCDS: West Cycladic Detachment System, SCD: South Cycladic Detachment, CR D: Cretan Detachment, UCSB: Upper Cycladic Blueschists, LCSB: Lower Cycladic Blueschists.

Figure 5.

Detailed map of the Cycladic MCC and the Menderes Massif. NCDS: North Cycladic Detachment System, NPFS: Naxos–Paros Fault System, WCDS: West Cycladic Detachment System, SCD: South Cycladic Detachment, CR D: Cretan Detachment, UCSB: Upper Cycladic Blueschists, LCSB: Lower Cycladic Blueschists. IBTZ: Izmir-Bornova Transfer Zone, Ev: Evia, An: Andros, Ti: Tinos, My: Mykonos–Delos–Rhenia, IK: Ikaria, Sa: Samos, Sy: Syros, Pa: Paros, Na: Naxos, Ke: Kea, Ky: Kythnos, Se: Serifos, Si: Sifnos, Fol: Folegandros, Si: Sikinos, Io: Ios, Fo: Fourni, Ar: Arki: Li: Lipsi, Le: Leros, Ka: Kalimnos, Ko: Kos, Mi: Milos, Sa: Santorini, An: Anafi, As: Astipalea. AA′, BB′ and CC′: cross-sections Figure 6.

Figure 6.

Cross-sections through the Aegean region and zoom on the Cycladic MCC. Upper: a simplified N–S section through the entire back-arc region after Jolivet and Brun [2010]; location on Figure 1 (FF′); the orange domain represents the part of the crust partially molten during extension. Lower: AA′, BB′, CC′, three sections through the main Aegean MCC and corresponding detachments after Jolivet et al. [2015]; location on Figure 5.

The structural position of the Cycladic Blueschists and their Eocene metamorphic ages (50–35 Ma) make them lateral equivalents of the Pindos Nappe [Bonneau 1984; Jolivet et al. 2004a, b].

Later works were devoted to the detailed description of the HP-LT parageneses in the Cycladic Blueschists and associated deformation and time constraints [Bröcker and Enders 1999; Bröcker et al. 2013; Laurent et al. 2016; Parra et al. 2002; Trotet et al. 2001a, b; Uunk et al. 2022; Wijbrans and McDougall 1988; Wijbrans et al. 1993]. Recent studies in the HP-LT units also evidenced the existence of two main units with distinct PT evolution. The eclogite-bearing Cycladic Blueschists of Syros, Tinos and Sifnos belong to the Upper Cycladic Blueschists Nappe, while the blueschists of Kea or Kythnos, that never reached the eclogite facies belong to the Lower Cycladic Blueschists Nappe, the contact going across the basement of Milos [Grasemann et al. 2017; Roche et al. 2019] (Figure 5).

The seminal paper by Lister et al. [1984] changed the game. In Naxos, these authors recognised a cordilleran-type metamorphic core complex (MCC) that they related to the extension leading to the formation of the Aegean Sea. This was the first of a long series of studies systematically describing the Aegean MCCs and their detachments. These low-angle normal faults and the associated ductile and brittle deformation in the footwalls were studied in great detail by several teams. The main detachments (Figures 4 and 5) are the NE-dipping North Cycladic Detachment System (NCDS) [Avigad and Garfunkel 1989; Jolivet et al. 2010a] fringing the northern Cyclades and Eastern Aegean Islands (Andros, Tinos, Mykonos, Ikaria) and extending to the NW all the way to offshore Olympos and to NE into the Simav Detachment, the SW-dipping West Cycladic Detachment System (WCDS) observed on the SW Cyclades (Kea, Kythnos, Serifos) [Grasemann et al. 2012], the S-dipping South Cycladic Detachment or Santorini Detachment mainly observed on Santorini [Ring et al. 2011; Schneider et al. 2018] and the N-dipping Paros–Naxos Fault System (NPFS) [Bargnesi et al. 2013; Gautier et al. 1993; Buick 1991; Urai et al. 1990].

The kinematics of these detachments and of the ductile-to-brittle deformation in the footwall show a simple pattern with N–S extension in the south changing to NE–SW toward the NE [Faure and Bonneau 1988; Faure et al. 1991; Gautier and Brun 1994; Gautier et al. 1993; Grasemann et al. 2012; Jolivet et al. 2004a, b, 2013; Roche et al. 2019]. These major detachments are the main structures accommodating crustal thinning in the Aegean Sea in the Oligocene and Miocene, with typical offsets reaching several tens of kilometers or even 70–100 for the NCDS [Brichau et al. 2006, 2007, 2008; Jolivet et al. 2010a, b; Menant et al. 2016a, b].

The Aegean Sea is one of the key regions where the activity of detachments formed at a low-angle was demonstrated [Jolivet et al. 2010a; Lacombe et al. 2013; Mehl et al. 2005]. The late stages of extension were accompanied by the intrusion of granitic plutons or dykes in Tinos, Mykonos, Delos, Rhenia, Ikaria, Samos, Paros, Naxos, Serifos and in Lavrion on south Attica. These plutons interacted with the activity of the detachments [Faure and Bonneau 1988; Faure et al. 1991; Lee and Lister 1992]. Detailed studies of these interactions showed that the internal geometry of these plutons, from the flow of magma to the sub-solidus deformation in the vicinity of the detachments, were controlled by the detachment and the associated stress regime [Rabillard et al. 2018; Jolivet et al. 2021]. The detachments and the MCCs are also observed outside the Aegean Sea, in the Rhodope massif to the north [Brun and Sokoutis 2007; Burg 2011] and in the Menderes massif to the east [Bozkurt and Park 1994; Bozkurt and Oberhänsli 2001; Bozkurt and Satir 2000; Gessner et al. 2001; Hetzel et al. 1995; Ring et al. 1999] showing the imprint of back-arc extension over a wide region (Figures 1 and 4). Extension was recorded as far south as the island of Crete where the exhumation of the HP-LT Phyllites–Quartzites and Plattenkalk (Ionian nappes) was accommodated by syn-orogenic detachments (the Cretan Detachment) obeying to the same simple pattern of N–S extension during the Miocene as further north in the Cyclades [Jolivet et al. 1994a, b, 1996; Fassoulas et al. 2004; Seidel et al. 2007; Grasemann et al. 2019].

Synthetic models were proposed at various stages of the progressive understanding of the geological context. Bonneau and Kienast [1982] described the progressive formation of the Cycladic Blueschists; Jolivet et al. [2003], van Hinsbergen et al. [2005a, b] and Grasemann et al. [2017] showed the progressive stacking of nappes during the northward subduction of Apulia and then the eastern Mediterranean oceanic lithosphere. Jolivet and Brun [2010], Ring et al. [2010] and Grasemann et al. [2012] described the progressive subduction and exhumation of the Cycladic Blueschists from underneath the detachments; Menant et al. [2016a, b] did the same but in 3D. At a large scale, the Hellenides and the Aegean region were integrated in paleogeographic reconstructions of the Tethys Ocean from the Triassic to the Present [Laubscher and Bernoulli 1977; Biju-Duval et al. 1977; Dercourt et al. 1986; van Hinsbergen et al. 2020; Stampfli and Borel 2002].

3. Mediterranean period

Since this paper is mainly a synthesis of the evolution of the Hellenides and its geodynamic drivers, we only focused on the main observations that constrain the origin of forces driving back-arc extension in the Aegean region. As presented above, the Aegean extension and resulting crustal thinning were coeval with subduction and formation of HP-LT metamorphic parageneses in subducted units during the Oligocene and Miocene, followed by their exhumation in the plates interface of the Hellenic subduction after 35 Ma [van Hinsbergen et al. 2005a, b; Jolivet and Brun 2010; Jolivet et al. 1996, 2010b; Seidel et al. 1982; Theye and Seidel 1991; Theye et al. 1992]. The HP-LT units of the Phyllite–Quartzite nappe (Nappe des Phyllades in French) and the underlying Plattenkalk Nappe (Ionian Nappe in French) were parts of the southern margin of the Adria (Apulia) block, which also includes the Upper and Lower Cycladic Blueschists Units subducted and accreted earlier during the Eocene. They were exhumed underneath the Cretan Detachment at the same time as the Aegean detachments were active [Jolivet et al. 1996, 2013] during the southward retreat of the African slab. This behavior is typical of the Neogene Mediterranean subduction and collision zones, from the Gibraltar arc, the Apennines all the way to the Hellenic subduction. The same Cretan Detachment has been recognised in the Peloponnese (Figures 1 and 4), as far north as the Zarouchla window just south of the Corinth Rift [Jolivet et al. 2010b; Trotet et al. 2006]. The PT conditions and paths recorded by the Phyllite–Quartzite Nappe in Crete and the Peloponnese show a gradient from east to west, with a colder P/T gradient in the east and a warmer one in the west, with a difference of about 100 °C for the pressure peak. This has been attributed to differences in kinematic boundary conditions of the subduction zone by Jolivet et al. [2010b]. Crete, where the P/T gradient is the coldest, is located along the transect of the Aegean domain that has seen the largest and fastest extension, because of fast slab retreat. This would have created a more opened subduction channel where crustal rocks are first subducted and then exhumed. This, in turn facilitated the two-way circulation of rock material and thus avoided substantial heating. This mechanism was probably active also during the Tethyan period, before 35 Ma, when the Cycladic Blueschists were subducted and exhumed further north. Slab retreat was slower during this period [Jolivet and Brun 2010] and the metamorphic parageneses show warmer conditions than in Crete with a differential of about 100 °C.

Further north, in the Cyclades, in the Internal Zones of the Hellenides, in the southern part of the Rhodope massif and in the Menderes Massif (Figures 1 and 4), extension was accommodated by the activity of the detachments reported above and the exhumation of MCCs [Gautier and Brun 1994; Jolivet and Patriat 1999; Jolivet et al. 2004a, b; Ring and Layer 2003; Bargnesi et al. 2013; Grasemann et al. 2012; Roche et al. 2019]. Two types of MCCs (Figures 5 and 6) are recognised, depending on the PT conditions of deformation [Jolivet et al. 2004a, b]. Cold MCC are those where the Eocene HP-LT parageneses of the Cycladic Blueschists are best preserved, Andros, Tinos, Syros, Sifnos, Kea, Kythnos, Amorgos, Samos. Hot MCC are those where the Eocene HP-LT parageneses have been almost totally erased by later high-temperature imprint, Naxos, Paros, Mykonos–Delos–Rhenia, Ikaria. The shapes of PT paths are drastically different with a clear excursion toward high temperature along the retrograde path in hot MCC, reaching the conditions of anatexis. The two extreme behaviors can be illustrated by the examples of Syros (or Sifnos) on the cold side and Naxos on the hot side. In the best-preserved units of Syros, the retrograde path traveled along a cold gradient, parallel to the prograde path, without any loop toward high temperature. Intermediate shapes of PT paths have been retrieved from the MCCs of Andros and Tinos, as well as from the deepest units of Syros, that show some strong retrogression in the greenschist-facies. The retrograde path starts along a cold gradient during the Eocene until the pressure of 9–10 kbar reached at approximately 37 Ma. An isothermal heating is then observed until ∼35 Ma and exhumation resumes along a warmer path. These two different gradients in fact correspond to the succession of the Tethyan and Mediterranean periods. In the Eocene, the Cycladic Blueschists were exhumed within the subduction channel. This process is referred to syn-orogenic exhumation, just like it occurred in Crete later on, in the Oligocene and Miocene. From the Late Eocene to the Miocene, exhumation was accommodated by post-orogenic detachments, responsible for crustal thinning in the back-arc regions associated with a higher heat flow. Syn-orogenic exhumation had then migrated southward in Crete and the Peloponnese, following slab retreat [Jolivet et al. 1994b; Jolivet and Brun 2010].

Recent studies by Lamont et al. [2020] and Searle and Lamont [2020] present a different interpretation where post-orogenic extension is more recent and is mostly a low-temperature process. In their interpretation these authors consider that most of the deformation in the deep parts of the Naxos MCC are related to the shortening period, before the Aegean extension that would not have started before 15 Ma. In that sense they join the interpretation of Ring et al. [2010] dating the inception of extension at ∼21 Ma, which is the age of the first marine sediments deposited in the Aegean Sea. Answering this debate would necessitate more detailed studies, but we can already state that the 35 Ma age we propose for the transition from syn-orogenic to post-orogenic tectonics is based upon the fast southward migration of the magmatic arc, which imposes a component of back-arc extension at that period. It is also based upon the ages of the greenschist-facies shearing deformation underneath the NCDS in Tinos and Andros [Laurent et al. 2017]. The study of the deep core of the Mykonos–Delos–Rhenia MCC shows that the migmatites observed there were molten and deformed at the same time as the Middle Miocene granite plutons intruded [Jolivet et al. 2021]. The Naxos pluton intruded the high-temperature dome once it had already been exhumed and cooled from the depth of anatexis [Jansen and Schuilling 1976; Urai et al. 1990; Gautier et al. 1993; Bessiere et al. 2018] by the activity of the top-to-north Paros–Naxos detachment, which was thus active before, while the core rocks were partially molten and sheared toward the north. One can observe in all these MCC a continuum of shearing and exhumation, either top-north or top-south [Jolivet et al. 2013; Grasemann et al. 2012; Roche et al. 2019].

Slab retreat is thus independently documented by the southward migration of magmatic products from the Late Eocene to the present [Fytikas et al. 1984; Jolivet et al. 2004b]. Another trend of migration is observed regarding Miocene granitic intrusions. The oldest Aegean plutons are found in Ikaria [16 Ma, Bolhar et al. 2010, 2012] associated with migmatites [Beaudoin et al. 2015]. During about 8 Ma, younger plutons were emplaced further to the southwest and south, the youngest being found in the Lavrion MCC some 8 Ma ago [Jolivet et al. 2015, and references therein]. This migration has been interpreted as a consequence of a slab tear below the eastern Aegean and western Anatolia evidenced by seismic tomography [Biryol et al. 2011; de Boorder et al. 1998; Salaün et al. 2012]. The slab tear is thought to have occurred between 15 and 8 Ma by van Hinsbergen et al. [2005a, b] based on paleomagnetic data showing a fast clockwise rotation of continental Greece at that time [see also Kissel and Laj 1988 for the first evidence of this rotation].

3D numerical modelling indeed shows the migration of magmatism and rotations in the crust during the propagation of the tear [Sternai et al. 2014; Menant et al. 2016a, b].

The progresses of seismic studies led to the publication of maps of seismic anisotropy underneath the Aegean region [Hatzfeld et al. 2001; Endrun et al. 2008; Paul et al. 2014]. The comparison of these maps with the long-term extensional strain observed in the crust of the overriding plate [Jolivet et al. 2009; Kreemer et al. 2004] led to the idea that the asthenospheric flow produced by slab retreat was one of the main drivers of extension observed in MCC.

3-D numerical models have also shown that slab tearing and retreat are essential ingredients of the present kinematics observed in the Anatolian region. Elaborating on the original ideas that slab retreat and progressive narrowing by tearing concentrate the slab-pull forces controlling slab retreat and associated mantle flow, 3-D fully coupled thermo-mechanical models with original setups were tested on the eastern Mediterranean contexts [Capitanio 2014; Funiciello et al. 2003; Govers and Wortel 2005; Piromallo et al. 2006; Wortel et al. 2009]. These studies showed that the lateral evolution from continental collision in the east (Arabia–Eurasia collision) and subduction with slab retreat in the west (Hellenic subduction) lead to a rotational extrusion of the overriding continental lithosphere and that slab retreat is an essential component. Mapping the instantaneous strain field in the models [Sternai et al. 2014] shows the formation of a dextral shear zone similar to the North Anatolian Fault and an extensional domain similar to the Aegean. The modelled velocity field is very similar to that measured with GPS satellites [Le Pichon et al. 1995; McClusky et al. 2000; Reilinger et al. 1995, 2006].

The most recent part of the Mediterranean period is thus characterized by the progressive establishment of the current dynamics and the localisation of deformation along a few major structures, the North Anatolian Fault [Armijo et al. 1999; Le Pichon et al. 2003] and the Kephalonia Fault [Özbakır et al. 2020] as dextral strike-slip faults, active extension in the Corinth Rift [Armijo et al. 1996; Briole et al. 2000; Jackson et al. 1982; King et al. 1985; Lyon-Caen et al. 2004] and the Menderes Massif [Aktug et al. 2009; Gessner et al. 2001]. Active extension is also observed in the southern Aegean in the Amorgos graben and toward Santorini [Nomikou et al. 2018], in Crete and the Peloponnese [Armijo et al. 1999; Lyon-Caen et al. 1988]. This late localisation of deformation has left the Cyclades almost undeformed since the Late Miocene.

4. Tethyan period

The Tethyan period is characterized by the involvement of several basins belonging to the Tethyan realm (i.e. Maliac Ocean, Pindos Basin). These paleogeographic elements that appear in the Mid Triassic (rifting) were stacked during the Tertiary collision and were partly affected by the Jurassic obduction (Maliac). Later extension belongs to the Mediterranean period described above. For the Tethyan period, we have chosen to focus on the regions situated north of the Corinth Rift and more specifically to the north of the Sperchios. The characteristics of the main isopic zones (paleogeographic domains) are summarised on Figure 3.

4.1. Initial rifting (duration ca. 10 Ma)

The Triassic rifting episode is recorded in a large portion of the Hellenic zones. One example of such a syn-rift evolution, the western margin of the Maliac Ocean, is proposed on Figure 7.

Figure 7.

(A–C) The Rifting period. (A) Early Triassic to Early Anisian (stretching): platform limestones; (B) Middle Anisian (thinning): volcanism, pelagic facies on the proximal (and distal ?) margin; (C) Late Anisian: oldest Maliac oceanic crust; beginning of the post-rift period but the “syn-rift” volcanism reaches the Late Ladinian.

The pre-rift Mesozoic series, well known in the Internal Zones, are generally represented by a Lower Triassic-Anisian carbonate platform, resting on detrital metamorphic and non-metamorphic Palaeozoic formations. The rifting period is characterized in the Mid-Triassic by volcanism and changing facies in the Internal and Pindos Zones (Figure 3). This period lasts for approximately 10 Ma (ca. 247–237 Ma). In Othris, in the Maliac proximal margin, the Anisian benthic limestones are overlain by a syn-rift succession of calcareous breccias, radiolarites, black pelites and yellowish sandstones, associated with pillow-lavas and dolerites. In the distal Maliac margin, Late Ladinian and Carnian radiolarites directly overlain the lavas [Ferriere 1982].

Magmatism is well developed in the Pelagonian and the deep basins (Maliac Ocean and Pindos Zone). It is represented by basaltic pillow-lavas, dolerites and rare alkaline trachytes, like in Othris, or by porphyric andesites like in the Pindos or in Evia [Bortolotti et al. 2008; Celet et al. 1976a, b, 1980; Ferriere 1982; Lefevre et al. 1993; Monjoie et al. 2008; Pe-Piper 1998; Pe-Piper and Piper 2002]. In Othris, the upper part of the distal margin pillow-lavas is dated as late Ladinian by microfossils present in inter-pillow sediments [Ferriere 1982; Ferriere et al. 2015]. This volcanic formation is truncated at its bottom by a tectonic contact making an Anisian age possible for the initiation of the syn-rift volcanism, as demonstrated further north, in the Dinarides [Celet et al. 1976a, b; Sudar et al. 2013].

Two main geochemical trends are observed: (i) alkaline volcanism rich in pillow-lavas and basaltic flows evoking generalised extension. This is the case of the Triassic volcanism in Othris [Barth and Gluhak 2009; Bortolotti et al. 2008; Ferriere 1982; Hynes 1974] although more diversified affinities have been described with some supra-Subduction Zone (SSZ) lavas [Monjoie et al. 2008]; (ii) SSZ volcanism rich in basaltic lavas and andesites erupted in the context of active or extinct subductions with deep slabs inherited from the Paleotethys subduction. The consumption of the Paleotethys by these subduction zones would then be the cause of the opening of the Neotethys as a back-arc basin [van Hinsbergen et al. 2020; Maffione and van Hinsbergen 2018; Stampfli and Borel 2002]. An alternative interpretation excluding subduction and involving instead the partial melting of peculiar mantle compositions have been proposed [Pe-Piper 1998; Saccani et al. 2015]. Bonev et al. [2019] describe Triassic lavas of MORB and OIB type linked with the Volvi rift complex in the Serbo-Macedonian massif, then the margin of the Neotethys. Upper Mid-Triassic (U–Pb ages on zircon) metagranitoids have also been reported in association with the Cycladic Blueschists such as in Evia where they are possibly related to an anorogenic rift setting [Chatzaras et al. 2013]. Some older metagranitoids, Carboniferous in age (U–Pb on zircon) in the Cycladic Basement in Ios island have been attributed to subduction processes [Flansburg et al. 2019].

Syn-rift tectonic structures are almost unknown because of later deformation, early normal faults being reworked as syn-obduction nappe contacts during the Jurassic (Figures 7 and 8; and Section 4.3.3) [Ferriere et al. 2016; Ferriere and Chanier 2020, 2021].

Figure 8.

(D–F) The post-Rift period: oceanic drifting (Maliac ocean): (D) Carnian: subsidence (thick black arrows), siliceous limestones and radiolarites (thick blackdashes) on the margin; (E) Early Jurassic: deep-sea fan with siliceous fine-grained limestones and calcarenites, calciturbidites (black triangles); (F) Middle Jurassic: convergence giving rise to the subduction–obduction processes. The Triassic syn-rift normal faults guide the Jurassic syn-obduction tectonic contacts.

The data summarised above indicate that the Triassic rifting creating the main paleogeographic domains corresponds to the Anisian and Ladinian periods. Syn-rift volcanism was locally active until the Late Ladinian and continued after the formation of the Maliac Oceanic crust (late Anisian) considered as the beginning of the Post-Rift period.

4.2. Oceanic spreading: the post-rift period (duration ∼ 70 Ma)

This period that sees the development of the main Hellenic paleogeographic domains, especially the Tethyan Maliac Ocean [Ferriere 1976b] lasted approximately 70 Ma, from 240 (Middle Triassic) to 170 Ma (Dogger pp) (Figure 8). Lavas of the ophiolitic units are dated from the Dogger in the Vourinos or Mega Isoma in Othris [Chiari et al. 2003; Ferriere et al. 2015; Liati et al. 2004]. On the other hand, the Fourka ophiolitic unit made of MORB-type pillow-lavas underlying the peridotitic units, is dated from the Triassic [Bortolotti et al. 2013], and locally more precisely from the Late Anisian with radiolarites in direct contact with the lavas [Ferriere et al. 2015], the oldest age for the Maliac oceanic crust.

The series deposited on the oceanic crust and on the margins record a thermal subsidence from the Middle Triassic to the Middle Jurassic. The margins of the main basins, notably the Maliac and Pindos Zones, are rich in calcarenites, sometimes turbiditic, with elements supplied by the bordering platforms where subsidence was compensated by an intense carbonate productivity. The distal margin of the Maliac Ocean, well characterized in Othris, is rich in lavas, radiolarites and pelites, making these units difficult to distinguish from the Middle Jurassic of the syn-obduction underlying units [Ferriere 1974, 1982]. The most distal formations are rich in Early Jurassic siliceous pelites, but, as in the entire Hellenides, the absence of Liassic determinable radiolarian does not permit to date precisely this period [cf. Chiari et al. 2013]. The transition from the post-rift divergence to the first convergence (Dogger subduction and obduction) is marked by a fast subsidence in some of the Internal Zones (Figure 8F).

4.3. Early convergence: Jurassic subduction(s) and obduction(s)

4.3.1. The Hellenic ophiolites

Obduction characteristics are nicely illustrated in the Hellenides, whether for the petrology of ophiolites (e.g., Vourinos and N-Pindos) or the syn-obduction tectonic units originated from the Maliac Ocean and its margins in Argolid and Othris. Recent synthetic publications develop various hypotheses for this obduction event. Most geologists consider that the concerned ocean was located on the eastern side of the Pelagonian continental domain [e.g. Bortolotti et al. 2013; Ferriere and Chanier 2020; Schmid et al. 2020; Ferriere et al. 2012, 2015, 2016, therein references].

Three main ophiolitic nappes coming from the Maliac Ocean are present in the Pelagonian domain [e.g., Brunn 1956; Ferriere et al. 2012]. Two thick nappes with complete succession from peridotites to lavas: the Mega Isoma Unit in W-Othris and the N-Pindos Unit (N-Hellenides) mainly with MORB lavas and the more eastern Metalleion Unit in W-Othris and the Vourinos Unit (N-Hellenides) with SSZ lavas [e.g., Brunn 1956; Beccaluva et al. 1984; Ferriere 1982]. The lavas of the Vourinos and Mega Isoma nappes are dated by radiolarian as Late Bajocian and Bathonian [Chiari et al. 2003; Ferriere et al. 2015]. The third supra-Pelagonian ophiolitic nappe [Fourka unit, Celet et al. 1980], located just below the main ones is very different. It consists of pillow-lavas of MORB affinities dated as Middle Triassic [Bortolotti et al. 2008], locally Late Anisian immediately above the lavas [Ferriere et al. 2015].

In the Internal Zones, the Guevgueli ophiolites are considered as back-arc ophiolites on the eastern side of the Jurassic Paikon volcanic arc [Bebien 1983; Ferriere and Stais 1995; Mercier 1968; Mercier et al. 1975; Saccani et al. 2008]. The origin of the Rhodope ophiolites is discussed [Froitzheim et al. 2014].

4.3.2. The first evidence of convergence: Jurassic subduction(s)

Magmatic witnesses are the main arguments concerning the existence of one or two Jurassic subduction(s) in the Maliac Ocean: (i) In the supra-Pelagonian Vourinos ophiolites, the characteristics of the peridotites, mainly harzburgites and of the overlying Middle-Jurassic lavas indicate a supra-Subduction Zone (SSZ) environment [Beccaluva et al. 1984]. Boninitic dykes and SSZ-type lavas are also reported above MORB-type lavas from the N-Pindos ophiolites [Saccani and Photiades 2004; Saccani et al. 2004] (Figure 9). Evidence of subduction extends in Albania where one can distinguish the same framework with a western unit rich in MORB lavas and an eastern one with SSZ andesites and rhyolites [Dilek et al. 2008; Dilek and Furnes 2009]; (ii) The interpretation of the Paikon as a volcanic arc associated with the Guevgueli back-arc basin is also a convincing argument for the existence of a Jurassic subduction on the Maliac eastern margin [Bortolotti et al. 2013; Danelian et al. 1996; Ferriere and Stais 1995; Ferriere et al. 2012, 2015, 2016; Kukoc et al. 2015; Mercier et al. 1975; Robertson 2012; Saccani et al. 2008].

Figure 9.

Jurassic Obduction. (A–E) The obduction process and its consequences (Beotian Basin). (A) Initial state; (B,C) west-verging Maliac obduction toward the Pelagonian domain; (C1,C2) two hypotheses concerning the subduction(s), (C1) the supra-Pelagonian SSZ ophiolites (Vourinos, Metalleion) and the Paikon arc to the east, are linked to the same subduction; (C2) two different subductions are responsible for the western SSZ ophiolites and for the Paikon arc and Guevgueli back-arc basin; (D) East Maliac obduction toward the East; (E) Foreland Boeotian sedimentary domain.

Metamorphic data also document the subduction and obduction history in the Hellenides.

High-temperature amphibolite-facies units resting on top of lower temperature (greenschist-facies) lenses are present below the ophiolitic nappes in the Hellenides Brunn [1956], Spray et al. [1984]. In the Albanides, the thick metamorphic sole associated with the Mirdita ophiolites gave thermobarometric constraints: 800–860 °C and 1 GPa [Dimo-Lahitte et al. 2001], but the main amphibolite units show temperatures ranges from 624 ± 9° to 796 ± 50 °C with pressures always lower than 0.7 GPa [Gaggero et al. 2009] (Figure 9B). These metamorphic soles, made of metabasites and pelagic sediments are classically interpreted as metamorphosed and deformed at the onset of the subduction and dragged at the base of the ophiolitic nappes while obduction advances [Agard et al. 2016, 2020; Plunder et al. 2016].

Taking into account the location of the Tethyan Maliac Ocean on the eastern side of the Pelagonian block, an eastward dipping intra-oceanic subduction has to be considered to explain the emplacement to the west of the Jurassic supra-Pelagonian ophiolites.

Two possibilities arise for the number of subductions: In the first hypothesis (Figure 9, C1) the subduction below the Maliac eastern margin with the Paikon arc is also responsible for the development of the Vourinos SSZ Unit, and partly of the N-Pindos one. The Bathonian ages of some radiolarites deposited on lavas of the Guevgueli back-arc basin [Kukoc et al. 2015] similar or close to the Middle Jurassic ages of the Vourinos SSZ lavas (Figure 3) are not opposed to such a single subduction in the Maliac ocean. In the second hypothesis, more likely (Figure 9, C2), a second subduction zone, further west, would be responsible for the Vourinos SSZ oceanic lithosphere. The subduction under the Paikon arc would be due to blocking during the obduction of the ophiolites onto the Pelagonian continental domain. In the Hellenides, the similarities of the obduction history from Greece to former Yugoslavia imply localisation within a zone that ran parallel to the earlier paleogeographic domains. The Mid-Jurassic ages of the MORB-type ophiolitic lavas of the N-Pindos and those of the Mega Isoma lavas (Othris), very close to the age of the obduction events, indicate that they were formed near the active Maliac Mid-Oceanic ridge (Figure 9), thus far from the active eastern margin of the 70 Ma old Triassic–Jurassic Maliac ocean. Maffione [2015] and van Hinsbergen et al. [2015] partly based on numerical modelling, propose an initiation of subduction near the mid-ocean ridge by the reactivation of a detachment fault similar to those observed in slow accretion contexts. Assuming the existence of such an east-dipping detachment, on the western side of the Maliac ridge, this hypothesis allows the evolution of the former ridge in a forearc domain with a thin lithosphere and its magmatic consequences. The origin of the Middle Jurassic Vourinos lithosphere could be the result of such a geodynamic context. The more western N-Pindos ophiolites corresponding to a MORB-type oceanic crust would have been trapped in the upper plate of the subduction zone, then covered or crossed by SSZ pillow-lavas and dykes [e.g., Saccani and Photiades 2004].

By contrast with the main peridotitic ophiolite units, the Triassic Fourka oceanic unit, located near the continental-oceanic transition (between Pelagonian distal margin and the early Maliac oceanic crust), was part of the lower plate of the intra-oceanic subduction before the continental subduction of the Pelagonian domain (see infra Section 4.3.3).

4.3.3. Development of obduction on the West-Maliac continental margin

The evolution from a young intra-oceanic subduction to obduction corresponds to the overthrusting of the oceanic lithosphere on the continental crust that starts to subduct; the case of the Hellenides is rich in examples of this process [Bortolotti et al. 2013; Ferriere 1985; Ferriere et al. 2012, 2015, 2016; Papanikolaou 2009; Rassios and Moores 2006; Robertson 2012; Saccani et al. 2011; Smith and Rassios 2003].

The first signs of convergence are characterized by a massive subsidence of the Pelagonian continental domain and its margin. Radiolarites are deposited on the different domains, including the benthic limestones of the Pelagonian Zone (Figure 10D). The Tourla-Trilofon (TT) Unit, locally showing Triassic benthic limestone blocks, makes the transition between the Maliac distal margin and the ophiolitic nappes (Figures 7 and 10).

Figure 10.

Caption continued on next page. Jurassic Obduction. This figure exposes: (i) the thrusting of the Triassic Fourka ophiolitic unit located on the lower plate (A–D) and, (ii) the obduction development taking into account the different ophiolitic mélanges (D–G). (A) Pre-convergence initial state; (B) Mid-Jurassic intra-oceanic Subduction development; (C) Obduction upon the distal margin of the Fourka unit (oceanic pillow-lavas unit) located on the oceanic lower Plate; (D) obduction of the main peridotitic ophiolitic nappes coming from the oceanic upper Plate and fast underthrusting of the thin continental crust distal margin (ca. no mélanges); (E,F) development of mélanges in areas with thick continental crust (Proximal margin and Pelagonian zone; low underthrusting) in front of the upper syn-obduction nappes (ophiolitic and distal margin units); (G) Boeotian foreland basin development.

This intensely deformed TT Unit is the first domain of the margin overthrust by the ophiolitic nappes, in this case the Triassic Fourka ophiolites [Ferriere 1982]. The expected fate of such an oceanic lithosphere of the Continent–Ocean Transition, furthermore, belonging to the oceanic lithosphere of the downgoing plate of the oceanic subduction zone, is that it underthrusts the continental lithosphere, while the opposite is observed here (Figures 9 and 10).

Two additional processes accompany the overthrusting of the Fourka unit (Figure 10C): (i) the subsidence of the continental margin, attested by the deposition of radiolarites on top of all the margin series; (ii) the progression of the thick intra-oceanic nappes of peridotites inducing a tilting of the oceanic crust of the Fourka Unit and then a decollement of its upper part allowed by the presence of serpentinites.

The nature and distribution of mélanges at the front of the syn-obduction Maliac units provide insights on the emplacement of these nappes in Greece or in Albania [Celet et al. 1977; Ferriere 1982; Ferriere and Chanier 2020; Gawlick et al. 2008] (Figure 10D–F). For instance, in Othris, the thin distal margin crust soon underthrusts the ophiolites, preventing the massive formation of syn-obduction mélanges on the top of these units, while mélanges are widely observed on the proximal margin units because of their thicker crust, the underthrusting of which creates relief and erosion during a long period. The Pelagonian platform behaves the same way with mélanges fed by the ophiolites and distal margin units while the proximal Maliac margin units are overrun and dragged under the overriding nappes (Figure 10F).

Possible inheritance of early faults exists in syn-obduction nappes. The reconstitution of the West-Maliac margin shows fast sedimentation jumps between units supposedly close to each other on the margin. We have attributed these fast changes to normal faults, within the margin [Ferriere 1982; Ferriere and Chanier 2020]. The reactivation of such faults, mostly dipping oceanward, have facilitated the formation of nappes from the margin. During the progression of these nappes, a decollement localized within or underneath the Middle Triassic syn-rift lavas (distal margin) or deeper in the series, mainly the base of the Early Triassic Ansian limestones (proximal margin). In Othris, in the proximal margin units, tectonic structures are organised with pluri-kilometric fault-bend folds overturned toward the west. Cretaceous deposits, locally unconformable on one of these syn-obduction major structures, support the hypothesis of a Maliac Ocean east of the Pelagonian [Ferriere 1982].

Concerning syn-obduction metamorphism, different cases have to be distinguished. The metamorphic transformations observed within the ophiolites are linked to their evolution within the ocean. The case of the metamorphic soles with amphibolites and greenschists was discussed above (Section 4.3.1). In the Hellenides, in Argolid and Othris, syn-obduction sedimentary units do not show any metamorphic overprint of that age. In other sectors, further east or northeast [e.g., Pelion, Ferriere 1976b, 1982], Tertiary metamorphisms mask possible earlier metamorphic events. In a few sectors, however, Late Jurassic–Early Cretaceous metamorphic ages have been obtained in the basement [Kilias et al. 2010; Most 2003; Mposkos et al. 2010]. For instance, Kilias et al. [2010] describe within the Pelagonian basement in the northern Hellenides, a succession of tectonic events with local evidence of HP-LT metamorphism attributed to the obduction at 160–150 Ma, locally preserved in a greenschist to amphibolite-facies event at 150–130 Ma. Anyhow, such syn-obduction HP-LT metamorphic events coeval with Jurassic obduction seem to be rare in the Hellenides.

Some sediments allow us to precise the duration of the obduction processes in Argolid [Baumgartner 1985; Ferriere et al. 2016]. There, spinels reworked in sediments deposited at the Callovian–Oxfordian limit (ca. 163 Ma) on the West Maliac margin, are the first witnesses of the proximity of the ophiolitic nappe. The ages of the syn-obduction mélanges and clastic formations deposited on the Pelagonian domain are latest Oxfordian p.p.–Kimmeridgian (ca. 158–154 Ma) and Late Kimmeridgien–Early Tithonian (ca. 153–150 Ma). The Tithonian deposits rest unconformably on the syn-obduction units, implying a duration of the order of 10 Ma.

4.3.4. Obduction on the East-Maliac margin

Another obduction event recorded on the East-Maliac margin is temporally close to the west-Maliac ophiolites emplacement (Middle Late Jurassic). As described above, the East-Maliac margin is associated with a back-arc basin with a Middle–Upper Jurassic oceanic crust (Guevgueli domain) between the Paikon and Peonias Units in the west and east, respectively (Figure 9). When restoring the situation before the Cenozoic deformations, one observes that the back-arc ophiolites were overthrusted on top of the Peonias margin units, i.e., eastward, a situation opposite to that of the supra-Pelagonian ophiolites [Ferriere and Stais 1995; Ferriere et al. 2012, 2016]. Obduction on the East-Maliac margin dates back to the Jurassic as shown by the Bathonian to Oxfordian ages of deformed radiolarites deposited on the Guevgueli ophiolitic lavas (cf. Section 4.3.1) and the Tithonian age of unconformable conglomerates [Mercier 1968]. A set of granites and migmatites dated around 150 Ma intruded the ophiolitic complex [Mercier 1968], confirming this conclusion.

4.4. The post-obduction and pre-collision period: the Latest Jurassic and Cretaceous

Well-dated series spanning the Upper Jurassic and the Early Cretaceous are locally observed on the ophiolites in Theopetra, close to Meteora, [Ferriere 1982; Surmont et al. 1991] or further north, in the Vourinos area [Mavridis et al. 1993; Fazzuoli and Carras 2007]. Unfortunately, these series are not observed resting on the thrust contacts between the ophiolites and the Pelagonian substratum, the question is whether these layers, or part of them, were deposited during or after the obduction. The end of the obduction period is characterized by a large reworking of the paleogeography of the Internal Zones and their external rim where the Beotian basin developed (Figures 9 and 10) as a flexural foreland basin in the front of the obduction chain, hosting a flysch rich in ophiolitic elements as soon as the Tithonian [Celet et al. 1976a, b]. South of Sperchios (Figure 1), this important Beotian basin develops on top of a single large platform domain, at the boundary between the Pelagonian platform covered with ophiolitic nappes in the east and the Parnassus platform in the west, untouched by the obduction (Figures 1, 9 and 10).

Several Cretaceous reconstructions show a remnant post-obduction ocean in the Almopias area, between Paikon and Pelagonian, sometimes named “Vardar Ocean” [van Hinsbergen et al. 2020; Menant et al. 2016a, b; Stampfli and Borel 2002]. In this Almopias sector, along the western border of the Paikon, the Kranies–Mavrolakkos series, made of MORB pillow-lavas and rare depleted lavas covered with Late Jurassic–Early Cretaceous radiolarites and a flysch-type detrital formation (Figure 3, kr) could testify for a deep oceanic environment [Bechon 1981; Ferriere and Stais 1995; Mercier 1968; Saccani et al. 2015; Sharp and Robertson 2006; Stais et al. 1990].

Two interpretations can be envisaged: either the remains of the eastern part of the Maliac oceanic crust obducted toward the west during the Middle-Late Jurassic, or the neoformation of an oceanic basin during the late stages of obduction or just after. The imprecise age of the radiolarites renders the choice between these two hypotheses difficult.

The period that can undoubtedly be considered as post-obduction, starts in the Barremian–Aptian (ca. 125 Ma). Due to the Albian–Turonian eustatic transgression, marine formations develop on the already emerged Internal Zones. Calcareous fine-grained formations are deposited in the deep regions such as the Pindos and the Beotian basins (Figure 3). A mid-Cretaceous formation called “premier flysch du Pinde” [Aubouin 1959; Fleury 1980] testifies for vertical movements along the rims of that basin. Chaotic formations in the Almopias domain have been attributed to Early Cretaceous strike-slip movements [Vergely 1984; Mercier and Vergely 1972]. According to Schenker et al. [2014], an Early Cretaceous blueschist facies event in the Pelagonian was followed by an amphibolite-facies overprint (116 ± 8 Ma). Lips et al. [1998] proposed HP-LT metamorphic ages ranging from 100–85 Ma to about 54 Ma in the Pelagonian of the Ossa Massif, thus characterizing an “early–middle Alpine cycle”. Cretaceous ages were also obtained in the Cycladic Blueschists [Altherr et al. 1994; Bröcker et al. 2014]. Foliated amphibolites interpreted as the sole of an ophiolitic nappe were dated from the Late Cretaceous (70–75 Ma) in Syros [Maluski et al. 1987] or Tinos [Patzak et al. 1994; Searle and Lamont 2022]. A Late Cretaceous obduction is widely recognised along the Izmir–Ankara suture zone further east [Okay and Tuysuz 1999]. A first-order question then arises about the relationships between the Late Jurassic obduction on the Pelagonian zone and the Late Cretaceous obduction observed in the Cyclades and further east. Finally, at the Cretaceous–Tertiary boundary, the deposition of the flysch deposits in the Internal Zones is the first evidence of the Hellenic collision (Figure 3) [Aubouin 1959].

4.5. Tertiary Collision

The notion of collision is partly debatable. Does it correspond to the moment when the last oceanic space has been consumed by subduction or to the period of strong mechanical coupling between the two continental crusts and consequential shortening of the downgoing one? In the Alps, a clear distinction is usually made between the two periods, the first one being described as a continental subduction and the second one, after 32 Ma, as real collision [Bellahsen et al. 2014].

In the Hellenides, the disappearance of the last Tethyan oceanic space between Apulia (Adria) and Eurasia (Rhodope s.l.) is dated to 70–65 Ma [Menant et al. 2016a, b], even to 40–35 Ma considering the Pindos zone uncertainty (Figures 1 and 11).

Figure 11.

Tertiary Collision; example of the northern Hellenides. (1) Recent sedimentary basins (Oligocene to present); (2) Ionian units (U.) on the western Adria continental block; (3) Gavrovo-Tripolitza platform and U.; (4) Pindos basin and U.; (5,6) Pelagonian basement (5) and Triassic–Jurassic limestones (6); (7) Maliac margin U.; (8) ophiolites; (9) unconformable Cretaceous cover (Pelagonian); (10) flyschs; (11) western (W) and central (C) Almopias U.; (12) eastern Almopias U. (M: Mavrolakkos; Kr: Kranies); (13) Paikon U.; (14) granits through Guevgueli ophiolites; (15) Peonias U.; (16) unconformable Tithonian–Lower Cretaceous sedimentary cover above the Peonias-Guevgueli U.; (17,18) Serbo-Macedonian and Rhodopian upper (17) and lower (18) units. (A) Late Cretaceous state with several deep basins (Peonias-Guevgueli, Almopias, Pindos and Ionian basin on a more eastern area) between elevated domains; (B) beginning of the Eocene compressive deformation in the eastern domain (Collision s.l.); (C) Late Eocene: beginning of the underthrusting of the Pindos zone below the Internal Zone; the compressive tectonic goes on in the eastern Internal Zones (from Paikon area with two superposed units); (D) Oligocene: underthrusting of the Gavrovo-Tripolitza domain and Extensional deformation in the Serbo-Macedonian–Rhodopian domain; (E,F) Early to Late Miocene: deformation of the Ionian and more external zones and Olympos-Ossa uplift (black arrow); (G) Pliocene-Quaternary extensional deformation in the eastern Hellenides and compressive deformation in the western Hellenides.

4.5.1. Sedimentary markers of collision

In the Hellenides, collision, or continental subduction, is characterized by the deposition of thick flysch series invading the Internal Zones and the Pindos Basin, as soon as the Maastrichtian or Paleocene. The space–time evolution of the ages of these flysch formations, more recent westward (Figure 3), illustrates the idea of “orogenic wave” [Aubouin 1959]. The source, of the sediments, sometimes attributed to islands in the Pelagonian domain is more likely to be found further east, notably in the Serbo-Macedonian-Rhodope block, as the Almopias series are also onlapped by a flysch as soon as the Maastrichtian pp [Mercier 1968; Sharp and Robertson 2006].

The age and localisation of the piggy-back Mesohellenic Molassic Basin (MHB) (Figures 2B and 3) have recorded some of the tectonic events affecting the Hellenides from the Late Eocene to the Middle Miocene (ca. 40 Ma to 15–10 Ma) (Figure 2B) [Brunn 1956; Doutsos et al. 1994; Ferriere et al. 1998, 2004, 2013; Vamvaka et al. 2006; Zelilidis et al. 2002].

In the Late Eocene, the subduction of the Pindos basin led to the formation of limited basins in the upper unit of the Internal Zones, as the deep flysch basin of Krania. From the Oligocene, the subduction of the Gavrovo-Tripolitza platform determines the development of the real MHB of 300 km × 30 to 40 km, striking NW–SE, which rests unconformably on the late Eocene basins but also on the “Frontal Thrust of the Internal Zones” developed on the External Zones [Ferriere et al. 2004, 2013]. Further east, the extension controlling the formation of the Rhodope MCC may also have started during the Late Eocene [Brun and Sokoutis 2007; Sokoutis and Brun 2018] (Figure 11), but alternative interpretations make compressional tectonics last until the Early Oligocene, at about 33 Ma [Gautier et al. 2010, 2017].

Close to the Oligocene–Miocene boundary, a new major event is attested by the thick sandstones and conglomerates deposited in shallow marine environments (Meteora Gilbert-type deltas) [Brunn 1956; Ori and Roveri 1987; Ferriere et al. 2011]. The detrital elements are linked to the uplift of the eastern Pelagonian sector of the MHB probably due to the development of ramps and duplexes within the underthrust Gavrovo-Tripolitza Zone, which also explains the eastward propagation of depocenters starting at the end of the Oligocene. Thermochronological studies (apatite and zircon fission-tracks) provide some more precision of the timing of the exhumation of the Pelagonian domain [Schenker et al. 2015]. A fast exhumation in the Eocene and slower exhumation in the Oligocene and Miocene have been proposed [Vamvaka et al. 2010]. Along a transect running from the Pelagonian to Mt Olympos, fast exhumational cooling occurred between 12 and 8 Ma at rates of 15–35 °C/Ma and decreased to <3 °C/Ma by 8–6 Ma [Coutand et al. 2014]. Numerous normal faults exist until the recent Plio-Quaternary extension.

Once sedimentation stopped in the MHB, near the Miocene–Pliocene boundary, a new basin developed further east with the same Hellenic strike, the Larissa-Ptolemais Basin. This process leads to the morphology in continental Greece, characterized in the Internal Zones by a succession of ridges and basins, with a wavelength of ∼30 km (Figure 2B).

4.5.2. Tectonic structures and metamorphic events related to the Tertiary collision

The structures related to collision are easy to recognise in the Hellenides External Zones as they have not been affected by the Jurassic obduction: a Tertiary “fold-and-thrust belt” developed, associated with the formation of major nappes. The NW–SE striking structures are SW verging [Aubouin 1959; Doutsos et al. 1993, 2006; van Hinsbergen et al. 2005a, b; Skourlis and Doutsos 2003]. NE-dipping previous syn-rift normal faults (i.e., SW margin of Pindos Basin) were inverted to form major thrusts, while on the opposite where the normal faults dip to the SW (i.e., NE Pindos margin), tectonic units are verticalized (i.e. Koziakas and Vardoussia units, Figure 1). Compared to northern Hellenides, the large-scale structure seems more complex in the Peloponnese where major tectonic windows are recognised in the Taygetos and Parnon (Figure 1) showing external units including the Ionian series (Palttenkalk), underneath the Pindos and Gavrovo nappes [Doutsos et al. 2006; Jolivet et al. 1996, 2010a, b; Thiébault 1982]. The importance of the shortening is attested by these tectonic windows in the Peloponnese but also in the northern Hellenides where such windows (e.g., the Olympos window) are known in the Internal Zones (Figure 1).

Two Tertiary belts of HP-LT metamorphism are observed: In the north-eastern Hellenides, Eocene blueschists are found in the Olympos-Ossa and Almyropotamos tectonic windows below the Pelagonian units [e.g., Godfriaux 1968; Katsikatsos et al. 1976; Schmid et al. 2020; Xypolias et al. 2012] (Figure 1).

The Ambelakia unit, attributed to the Pindos zone, shows blueschist-facies parageneses. The underlying Gavrovo-Tripolitza (GT) unit locally shows HP-LT parageneses with the occurrence of lawsonite in the Eocene flysch topping this unit and relict glaucophane and phengite in some layers [Shaked et al. 2000]. These tectonic windows are also observed in the Cyclades where they are reworked by the Oligo-Miocene extension. The Cycladic Blueschists are lateral equivalents of the Ambelakia unit, part of the Pindos Basin [Bonneau 1984; Jolivet et al. 2004a, b; Hinshaw et al. 2023]. The underlying so-called Basal Unit observed on Tinos or Samos is similar to the Gavrovo-Tripolitza [Jolivet et al. 2004a, b; Ring et al. 1999]. Two compatible solutions can be proposed for the uplift of the Olympos window: (i) the uplift of the shoulder of the Thermaikos Gulf rift is controlled by the large normal faults bounding the Olympos massif to the east [e.g., Schmid et al. 2020]; (ii) the uplift is due to the backthrusting of the GT series against a ramp corresponding to the Pelagonian/Vardar boundary (Figure 11) [Ferriere et al. 2004, 2013]. The confirmation by zircon and apatite fission-tracks [Vamvaka et al. 2010; Coutand et al. 2014] of the west-to-east migration of uplifts within the Pelagonian domain is in favour of this second mechanism, but in any case, the uplift was exacerbated during the recent extension.

The second HP-LT belt observed in the Peloponnese tectonic windows (Figures 1 and 4), in Kythira and in Crete [Bonneau 1973; Creutzburg 1977; Greilling 1982] is more recent with peak-pressure ages ranging from the Oligocene to the Early Miocene [Brix et al. 2002; Jolivet et al. 1996, 2010b; Seidel 1978; Seidel et al. 1982; Ring et al. 2001; Theye and Seidel 1991; Theye et al. 1992; Thomson et al. 1998]. There, the external Phyllite–Quartzite Nappe (PQ) and the underlying Plattenkalk (PK) Nappe (or Ionian Nappe) show HP-LT parageneses characterized by the occurrence of Fe–Mg carpholite, lawsonite ± chloritoid and garnet in the metapelites. Fe–Mg carpholite is also observed in metabauxites found in the Plattenkalk, as well as aragonite in the marbles [Jolivet et al. 1996, 2010a, b; Seidel et al. 1982; Theye and Seidel 1991; Theye et al. 1992]. The PQ nappe, which shows considerable thickness variations, probably resulting from large-scale boudinage [Jolivet et al. 1996, 2010a, b] is made of a sequence of metapelites of Triassic age, with also conglomerates, quartzites and limestones, as well as slices of Paleozoic basement in Kythira and Crete [Romano et al. 2004; Seidel et al. 2007]. Because of these ages, the PQ nappe has often been confused with the overlying Tyros Beds, the lowermost part of the GT stratigraphy, in the Zaroukla–Feneos window, for instance [see a discussion in Jolivet et al. 2010b]. However, as the GT Nappe does not show any HP-LT overprint, a clear metamorphic gap is observed between the PQ Nappe and the overlying Tyros beds. The low-angle contact between this unmetamorphosed GT nappe and the metamorphic units underneath is a former thrust reactivated as a major detachment, the Cretan Detachment [Fassoulas et al. 2004; Grasemann et al. 2019; Jolivet et al. 1994a, b, 1996, 2010b].

The presence of HP-LT parageneses in the PQ and PK Nappes shows that they have been subducted to large depth during the Oligocene and the Early Miocene, which corresponds to the collision and shortening of the External Zones in the Hellenides.

The subduction and exhumation of these continental units were also coeval with the extension developing in the back-arc region and the exhumation of hot and cold metamorphic core complexes [Jolivet et al. 1994a, b, 2010b]. These metamorphic external units (PQ and PK) do not crop out north of the Corinth Rift. They probably continue at depth below the Parnassus, Pindos and GT nappes of the External Hellenides, but the deep geometry there is unknown. Their exhumation in the Peloponnese and Crete results from the kinematics imposed by slab retreat and the PT conditions are in part dictated by the velocity of that retreat, with colder conditions in Crete than in the Peloponnese [Jolivet et al. 2010b]. If the amount of shortening is about 300 km by the addition of the horizontal displacements of the Pindos and GT nappes present in the Olympos window, in the Peloponnese, as the significance of the Phyllite–Quartzite (PQ) Nappe remains to be ascertained, the amount of shortening cannot be specified.

Structures observed in the Internal Zones, already deformed during the Jurassic obduction, are different from those of the External Zones.

East of the Vardar, Peonias units overthrusting toward the east in the Late Jurassic obduction, are overturned toward the SW, locally leading to inverted series (Figures 2A and 11) [Ferriere and Stais 1995]. Further west, in the Paikon domain, several interpretations of the Tertiary structures were proposed: (i) the Paikon is a single unit between two west-verging thrusts [Mercier 1968] or two thrusts with opposite vergence [Brown and Robertson 2003; Vergely and Mercier 2000]; (ii) one or two windows may exist, either a window opened on Pelagonian units [Godfriaux and Ricou 1991; Katrivanos and Kilias 2013; Ricou and Godfriaux 1995], or a window opened on Paikon type-series, below a nappe consisting of the upper part of the same Paikon type-series [Ferriere et al. 2001]. Finally, in the Almopias area, the previous Maliac Tethys oceanic suture, numerous thrust units with SW vergence have developed, the lowermost of which overthrust the Pelagonian domain [Mercier and Vergely 1984] (Figure 2A).

The Pelagonian, limited on each side by two major Tertiary thrusts, or more precisely the Pelagonian domain with the Ophiolitic/Maliac syn-obduction units, is a large Tertiary unit, overthrusting the Pindos and the Gavrovo (Figures 1, 2 and 11). This domain may consist of two superposed Pelagonian units, the lower unit in the east, mainly represented by its crystalline basement and the upper one further west with the classical Pelagonian Mesozoic series [e.g., Kilias et al. 2010]. In some parts of this Pelagonian domain, for example in Attica [Clément 1983], Tertiary thrusts are observed within little or non-metamorphosed Cretaceous series. Mercier and Vergely [1977] and Vergely [1984] have described and mapped several Cretaceous and Tertiary phases in the Internal Zones: CT1 and CT3 have Dinaric/Hellenic directions (i.e., NW–SE) while CT2 corresponds to transverse structures (NE–SW).

Tertiary syn-metamorphic structures have been observed in the Eastern Pelagonian domain around the Olympos-Ossa tectonic windows [Schmitt 1983; Schermer 1990, 1993] and in Thessalia [Walcott 1998]. These syn-metamorphic structures show various structural directions, associated with greenschist or low blueschist-facies. Metamorphic Cretaceous layers are also present in the Pelion and Sporades [Ferriere 1976a, b, 1982; Jacobshagen and Wallbrecher 1984] locally with blue crossitic amphiboles coeval with folds overturned toward the SW. Schermer [1990, 1993] described two phases of blueschist-facies metamorphism (61–53 Ma and 42–36 Ma) in the Pierian (Pelagonian) Units and the Ambelakia (Pindos) Unit coeval with southwestward thrusting, attributed by Godfriaux et al. [1988] and Schermer [1990] to the subduction of the continental crust. These phases are associated with abundant NE–SW stretching lineations and mainly top-SW kinematic indicators [Walcott 1998]. However, large transverse NE–SW, with NW or more often SE-verging structures, frequently overlooked, also exist in non-metamorphic or schistose domains, for instance, in northern (folds and associated schistosity) and eastern Othris (thrusts) [Ferriere 1982]. In the latter case, backthrusts are observed with Pelagonian thrust over Maliac Units. A similar situation is observed in the Olympos-Ossa sector, where Infra-Pierian units, locally with ophiolites and unconformable Cretaceous deposits attributed to the Maliac domain, are overthrusted by the Pelagonian-Pierian units (Figure 2B). These Infra-Pierian Units show abundant, more or less metamorphic N40-N80 striking structures, that could be responsible for the inversion of the units emplaced during the Jurassic obduction [Schmitt 1983]. This peculiar structural pattern, clearly demonstrated at the scale of a large region, should be integrated in regional interpretations.

The western limit of the Pelagonian corresponds to the “Frontal Thrust of the Internal Zones” (FTIZ), which is an Eocene feature. This front, with a general Hellenic strike (NW–SE), marks the contact between two drastically different paleogeographic domains, the Internal Zones that have been obducted during the Jurassic and the External Zones, only deformed during the Tertiary. North of the Sperchios, the FTIZ corresponds to the overthrust of ophiolitic units without their Pelagonian-Maliac substratum, on top of the Pindos eastern margin units (Koziakas) and/or Pindos flysch. South of the Sperchios, instead, the FTIZ corresponds to the overthrust of klippes of the Pelagonian Mesozoic formations on top of the Parnassus zone (Figure 2D). North and south, the FTIZ also rests on top of the Beotian units with the Malm-Cretaceous flysch resulting from the Jurassic obduction. The FTIZ is finally reactivated during the Plio-Quaternary extension as a detachment, the Main Pelagonian Detachment (MPD) [Chanier et al. 2024]. The eastern limit of the Pelagonian, or Vardar Front, is less clear than the FTIZ. Its present position mostly results from the late exhumation (Neogene-Quaternary) of the Olympos-Ossa-Pelion orogenic axis. The overthrusting of the Pelagonian domain by Vardar units is significant as the Pelagonian Cretaceous–Eocene units are often metamorphosed. This metamorphism could however also be partly explained by the transverse Eocene phase, which involves intra-Pelagonian thrusting (cf. supra). On the opposite, overthrusting of the Vardar on the Pelagonian is underestimated because of the presence of normal faults and detachments. Such is the case of the eastern border of the Olympos massif or in the Pelion, where klippen of non-metamorphic Cretaceous terranes of Vardar origin rest on top of Pelagonian units, and also directly on top of the Makrinitsa blueschists, normally situated underneath the Pelagonian nappe [e.g., Ferriere 1982].

5. Conclusions

After a period when the “Geosyncline model” [Aubouin 1959] was favoured, the Hellenic belt was soon interpreted in the framework of plate tectonics and became one natural laboratory ideal to analyse most of the fundamental geodynamic and orogenic processes governing the evolution of Alpine-type orogens. The Hellenic chain reveals a fairly classical evolution of a Tethyan Alpine chain with a period of divergence (rifting and oceanic spreading), followed by convergence from the Middle Jurassic, marked by major tectonic phases (subduction/obduction then collision), presenting compressional but also extensional deformations. Nevertheless, the study of the Hellenides provides many original data concerning these processes.

Rifting, accompanied by significant volcanism, affected almost the entire Hellenic domain in the Middle Triassic initiating the major Tethyan basins, the Maliac Ocean on the eastern side of the Pelagonian zone and the Pindos Basin on the western side. The geochemistry of some syn-rift lavas suggests a link with the subduction of the Paleotethys, but a partial melting of a particular mantle without subduction, is also conceivable. In Othris, on the West-Maliac, syn-obduction units we can recognise a very deep “distal margin”, rich in volcanism and siliceous beds, very different from the “proximal margin”. On this distal margin, the rifting-related volcanism ended in the Late Ladinian while oceanic accretion began a few million years before in the Late Anisian.

The Triassic–Middle Jurassic oceanic spreading lasted some 70 Ma and was followed by an important convergence period, first marked within the Maliac Ocean by the development of one or two subduction zones, attested by the occurrence of typical SSZ lavas in the supra-Pelagonian ophiolites and also by the presence of the Paikon volcanic arc on the eastern Maliac margin.

The Middle Jurassic age of the Maliac ophiolites is close to the age of their obduction on the Pelagonian domain, suggesting that the subduction zone driving the obduction developed close to and along an oceanic ridge, either from the central oceanic rift or from an oceanic detachment fault located on the western side of the ridge.

The main Maliac supra-Pelagonian Ophiolites (SPO) with peridotitic basement, are thought to originate from the upper plate of an east-dipping intra-oceanic subduction zone. The western SPO nappes, i.e., N-Pindos and Mega Isoma in Othris, with lherzolites and MORB-type lavas overlain by SSZ-type lavas, are ante-subduction oceanic lithospheric elements trapped in the upper plate of the intra-oceanic subduction. The SPO units located further east (Vourinos and Metalleion in Othris), with harzburgites and SSZ-type lavas, could correspond to a Middle-Jurassic neo-formation of an oceanic lithosphere in a sector becoming a forearc domain just after the growth of a volcanic arc.

The subduction that affects the East-Maliac margin in the Middle-Late Jurassic (Paikon Arc and Guevgueli back-arc basin) corresponds either to the same subduction forming the SPO, but more probably to a second subduction located further east.

The study of the Hellenides provides indications regarding the emplacement and origin of the obducted units:

  1. In Othris, five syn-obduction Middle-Late Jurassic nappes: three of them corresponding to the proximal West-Maliac margin and two to the distal margin are present below two major ophiolitic units and above the Pelagonian continental block;
  2. a thick nappe of ophiolitic pillow-lavas of MORB-type (Fourka Unit) of Middle and Late Triassic age (an age close to the rifting event) represents the oldest witness of the Maliac Ocean crust. Despite its initial position in the lower plate during subduction and obduction, this old Fourka unit was obducted onto the adjacent Pelagonian continental domain. A mechanism has been proposed to explain this apparent anomaly (see text).

During the Cretaceous, between the obduction and collision periods, a major transgression developed. Radiometric ages retrieved from metamorphic rocks testify to significant compressional and/or extensional events during this period, e.g., Early Cretaceous continuation of obduction in the Pelagonian zone and Late Cretaceous obduction, ca. 70–75 Ma, attested by amphibolites and ophiolites in the Aegean domain. These ophiolites emplaced much later than the Vourinos, coeval with the large-scale obduction observed along the Izmir–Ankara suture zone further east. The geometrical and kinematic relations between the Greek and Turkish obduction events are far from clearly understood.

The Tertiary Collision is at the origin of the main Hellenic belt presently observed in western Greece. The first stage corresponds to the disappearance of the main oceanic basins between the continental Adria and Rhodope blocks, i.e., the Cretaceous Vardar oceanic basin and the Pindos basin, subducted below the Pelagonian continental domain. A second stage is the development of nappes in the “Thrust and Fold Belt” of the External Zones.

Large horizontal displacements of the Tertiary nappes are attested by the existence of the Olympos-Ossa and Almyropotamos tectonic windows, showing the external Gavrovo-Tripolitza and Pindos series underneath the Internal Zones. Eocene HP-LT blueschist-facies in the underlying units further attests for the subduction of the lower units including the carbonate platform.

Similar windows also exist further southwest in the Peloponnese and Crete where Oligocene–Miocene blueschists-facies is observed in more external units (Phyllites–Quartzites and Plattenkalk zones) underneath the non-metamorphosed Gavrovo-Tripolitza nappes. The underthrusting/subduction of the External Zones under the Internal ones, was followed in the Miocene by the subduction of the Eastern Mediterranean lithosphere belonging to the Africa Plate.

This succession of subduction episodes affecting tectonic units belonging to Adria left a heritage in the subsequent evolution of the Hellenides. The extensional reactivation of the “Frontal Thrust of the Internal Zones” gave rise to the ‘Main Pelagonian Detachment” as well as to the development in the Internal Zones of large Plio-Quaternary extensional basins (Trikala, Larissa, Kifissos) above this detachment fault. In the Aegean domain, the effects are even more spectacular: the structure of the Tertiary nappes pile was profoundly modified by the formation of major detachment faults at the scale of the Aegean domain (e.g., West and North Cycladic Detachment Systems), the final exhumation of Eocene blueschist units and the development of metamorphic core-complexes showing Miocene migmatites and granites.

The lateral transition from the continental Hellenides where the Eocene nappe stack is best preserved, to the Aegean Sea where it was deeply reworked by the Oligo-Miocene extension in the back-arc region of the Hellenic subduction, offers the possibility to read the full Wilson cycle from the Triassic rifting to the Oligo-Miocene post-orogenic extension and collapse of the Eocene nappe stack. The quality of the outcrops makes it an irreplaceable example and natural laboratory for the study of Alpine-type orogens. It however lacks geophysical studies focused on the crustal structure of the continental Hellenides. Passive seismic experiments along seriated long profiles would enlighten the deep parts of the orogen and its post-orogenic evolution.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization that could benefit from this article, and have declared no affiliations other than their research organizations.

Acknowledgements

This review paper is dedicated to the late Professor Jean Aubouin who animated and led a large team of young geologists exploring the Hellenides and the Dinarides in the 60s and 70s, revealing the first order structures and describing the evolution of an emblematic mountain belt and subduction zone. The recent evolutions of tectonic and geodynamic studies in convergence zones would not have been possible without the patient field work and innumerable observations of these pioneers. We warmly thank the guest-editor Michel FAURE, and reviewers Stephan SCHMID and Konstantinos SOUKIS who provided constructive comments that greatly helped to improve the paper.


Bibliographie

[Agard et al., 2016] P. Agard; P. Yamato; M. Soret; C. Prigent; S. Guillot; A. Plunder; B. Dubacq; A. Chauvet; P. Monie Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation, Earth Planet. Sci. Lett., Volume 451 (2016), pp. 208-220 | DOI

[Agard et al., 2020] P. Agard; C. Prigent; M. Soret; B. Dubach; S. Guillot; D. Deldicque Slabitization: mechanisms controlling subduction development and viscous coupling, Earth Sci. Rev., Volume 207 (2020), 103259

[Aktug et al., 2009] B. Aktug; J. M. Nocquet; A. Cingöz; B. Parsons; Y. Erkan; P. England; O. Lenk; M. A. Gürdal; A. Kilicoglu; H. Akdeniz; A. Tekgül Deformation of western Turkey from a combination of permanent and campaign GPS data: limits to block-like behavior, J. Geophys. Res., Volume 114 (2009), B10404 | DOI

[Altherr et al., 1979] R. Altherr; M. Schliestedt; M. Okrusch; E. Seidel; H. Kreuzer; W. Harre; H. Lenz; I. Wendt; G. A. Wagner Geochronology of high-pressure rocks on Sifnos (Cyclades, Greece), Contrib. Mineral. Petrol., Volume 70 (1979), pp. 245-255 | DOI

[Altherr et al., 1982] R. Altherr; H. Kreuzer; I. Wendt; H. Lenz; G. A. Wagner; J. Keller; W. Harre; A. Hohndorf A Late Oligocene/Early Miocene high temperature belt in the anti-cycladic crystalline complex (SE Pelagonian, Greece), Geol. Jahrb., Volume 23 (1982), pp. 97-164

[Altherr et al., 1994] R. Altherr; H. Kreuzer; H. Lenz; I. Wendt; W. Harre; S. Dürr Further evidence for a Late Cretaceous low-pressure/high-temperature terrane in the Cyclades, Greece, Chem. Erde, Volume 54 (1994), pp. 319-328

[Anders et al., 2006] B. Anders; T. Reischmann; D. Kostopoulos; U. Poller The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone, Geol. Mag., Volume 143 (2006), pp. 41-58 | DOI

[Andriessen et al., 1979] P. Andriessen; N. Boelrijk; E. Hebeda; H. Priem; E. Verdurmen; R. Verschure Dating the events of metamorphism and granitic magmatism in the Alpine orogen of Naxos (Cyclades, Greece), Contrib. Mineral. Petrol., Volume 69 (1979), pp. 215-225 | DOI

[Armijo et al., 1996] R. Armijo; B. Meyer; G. C. P. King; A. Rigo; D. Papanastassiou Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophys. J. Int., Volume 126 (1996), pp. 11-53 | DOI

[Armijo et al., 1999] R. Armijo; B. Meyer; A. Hubert; A. Barka Westward propagation of the North Anatolian into the northern Aegean: timing and kinematics, Geology, Volume 27 (1999) no. 3, pp. 267-270 | DOI

[Asvesta and Dimitriadis, 1992] A. Asvesta; S. Dimitriadis Sedimentation and magmatism related to the opening of a Mesozoic oceanic basin in the Axios (Vardar) zone, 6th Congress of the Geological Society, Athens, Greece, 1992, pp. 10-11

[Aubouin et al., 1970] J. Aubouin; R. Blanchet; J.-P. Cadet; P. Celet; J. Charvet; J. Chorowicz; M. Cousin; J.-P. Rampnoux Essai sur la géologie des Dinarides, Bull. Soc. Géol. Fr., Volume 12 (1970) no. 6, pp. 1060-1095 | DOI

[Aubouin, 1959] J. Aubouin Contribution à l’étude géologique de la Grèce septentrionale : les confins de l’Epire et de la Thessalie, Ann. Géol. Pays Helléniques, Volume 10 (1959), pp. 1-484

[Avigad and Garfunkel, 1989] D. Avigad; Z. Garfunkel Low-angle faults above and below a blueschist belt: Tinos Island, Cyclades, Greece, Terra Nova, Volume 1 (1989), pp. 182-187 | DOI

[Bargnesi et al., 2013] E. A. Bargnesi; D. F. Stockli; N. Mancktelow; K. Soukis Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry, Tectonophysics, Volume 595–596 (2013), pp. 165-182 | DOI

[Barth and Gluhak, 2009] M. G. Barth; M. T. Gluhak Geochemistry and tectonic setting of mafic rocks from the Othris Ophiolite, Greece, Contrib. Mineral. Petrol., Volume 157 (2009), pp. 23-40 | DOI

[Baumgartner, 1985] P. O. Baumgartner Jurassic Sedimentary Evolution and Nappe Emplacement in the Argolis Peninsula (Peloponnesus, Greece), 99, Birkhauser, Basel, 1985 | DOI

[Beaudoin et al., 2015] A. Beaudoin; R. Augier; V. Laurent; L. Jolivet; A. Lahfid; V. Bosse; L. Arbaret; A. Rabillard; A. Menant The Ikaria high-temperature Metamorphic Core Complex (Cyclades, Greece): Geometry, kinematics and thermal structure, J. Geodynam., Volume 92 (2015), pp. 18-41 | DOI

[Bebien, 1983] J. Bebien L’association ignée de Guevgueli, Ofioliti, Volume 8 (1983), pp. 293-302

[Beccaluva et al., 1984] L. Beccaluva; D. Ohnenstetter; M. Ohnenstetter; A. Paupy Two magmatic series with island arc affinities within the Vourinos ophiolite, Contrib. Mineral. Petrol., Volume 85 (1984), pp. 253-271 | DOI

[Bechon, 1981] F. Bechon Caractères de tholeites abyssales des formations magmatiques basiques des unités orientales de la zone d’Almopias (Macedoine grecque), C. R. Acad. Sci., Volume 292 (1981), pp. 105-108

[Bellahsen et al., 2014] N. Bellahsen; F. Mouthereau; A. Boutoux; M. Bellanger; O. Lacombe; L. Jolivet; Y. Rolland Collision kinematics in the western external Alps, Tectonics, Volume 33 (2014) no. 6, pp. 1055-1088 (First published: 04 April 2014) | DOI

[Bernoulli and Laubscher, 1972] D. Bernoulli; H. Laubscher The palinspastic problem of the Hellenides, Eclogae Geol. Helv., Volume 65 (1972), pp. 107-118

[Bessiere et al., 2018] E. Bessiere; A. Rabillard; J. Précigout; L. Laurent Arbaret; L. Jolivet; R. Augier; A. Menant; N. Mansard Strain Localization Within a Syntectonic Intrusion in a Back-Arc Extensional Context: The Naxos Monzogranite (Greece), Tectonics, Volume 37 (2018) no. 2, pp. 558-587 | DOI

[Biju-Duval et al., 1977] B. Biju-Duval; J. Dercourt; X. Le Pichon From the Tethys ocean to the Mediterranean seas: a plate tectonic model of the evolution of the western Alpine system, International Symposium on the Structural History of the Mediterranean Basins (B. Biju-Duval; L. Montadert, eds.), Split, Yugoslavia, Edition Technip, Paris, 1977, pp. 143-164

[Biryol et al., 2011] C. B. Biryol; S. L. Beck; G. Zandt; A. Özacar Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography, Geophys. J. Int., Volume 184 (2011), pp. 1037-1057 | DOI

[Blake et al., 1981] M. C. Blake; M. Bonneau; J. Geyssant; J. R. Kienast; C. Lepvrier; H. Maluski; D. Papanikolaou A geologic reconnaissance of the Cycladic blueschist belt Greece, Geol. Soc. Am. Bull., Volume 92 (1981) no. 5, pp. 247-254 | DOI

[Bolhar et al., 2010] R. Bolhar; U. Ring; C. M. Allen An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 1: geochronology, Contrib. Miner. Petrol., Volume 160 (2010) no. 5, pp. 719-742 | DOI

[Bolhar et al., 2012] R. Bolhar; U. Ring; A. I. S. Kemp; M. J. Whitehouse; S. D. Weaver; J. D. Woodhead; I. Tonguc Uysal; R. Turnbull An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2 - geochemistry, Contrib. Mineral. Petrol., Volume 164 (2012), pp. 915-933 | DOI

[Bonev et al., 2015] N. Bonev; P. Marchev; R. Moritz; P. Filipov Timing of igneous accretion, composition, and temporal relation of the Kassandra–Sithonia rift-spreading center within the eastern Vardar suture zone, Northern Greece: insights into Jurassic arc/back-arc systems evolution at the Eurasian plate margin, Int. J. Earth Sci. (Geol. Rundsch), Volume 104 (2015), pp. 1837-1864 | DOI

[Bonev et al., 2019] N. Bonev; R. Moritz; M. Borisova; P. Filipov Therma-Volvi-Gomati complex of the Serbo-Macedonian Massif, northern Greece: a Middle Triassic continental margin ophiolite of Neotethyan origin, J. Geol. Soc., Volume 176 (2019), pp. 931-944 | DOI

[Bonneau and Kienast, 1982] M. Bonneau; J. R. Kienast Subduction, collision et schistes bleus ; l’exemple de l’Egee (Grece), Bull. Soc. Géol. Fr., Volume S7-XXIV (1982) no. 4, pp. 785-791 | DOI

[Bonneau et al., 1980] M. Bonneau; J. Kienast; C. Lepvrier; H. Maluski Tectonique et métamorphisme haute pression d’âge Eocène dans les Hellénides: exemple de l’île de Syros (Cyclades, Grèce), C. R. Acad. Sci. Paris, Volume 291 (1980), pp. 171-174

[Bonneau, 1973] M. Bonneau Sur les affinités ioniennes des calcaires en plaquettes épimétamorphiques de la Crète, le charriage de la série de Gavrovo-Tripolitza et la structure de l’arc égéen, C. R. Acad. Sci. Paris, Volume 277 (1973), pp. 1453-1456

[Bonneau, 1982] M. Bonneau Evolution géodynamique de l’arc égéen depuis le Jurassique supérieur jusqu’au Miocene, Bull. Soc. Géol. Fr. (7), Volume XXIV, 2 (1982), pp. 229-242 | DOI

[Bonneau, 1984] M. Bonneau Correlation of the Hellenic nappes in the south-east Aegean and their tectonic reconstruction, The Geological Evolution of the Eastern Mediterranean (J. E. Dixon; A. H. F. Robertson, eds.), Volume 17, Blackwell Scientific Publications, Oxford, 1984, pp. 517-527

[Bortolotti et al., 2008] V. Bortolotti; M. Chiari; M. Marcucci; A. Photiades; G. Principi; E. Saccani New geochemical and age data on the ophiolites from the Othrys area (Greece): implication for the Triassic evolution of the Vardar Ocean, Ofioliti, Volume 33 (2008) no. 2, pp. 135-151

[Bortolotti et al., 2013] V. Bortolotti; M. Chiari; M. Marroni; L. Pandolfi; G. Principi; E. Saccani Geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic belt: one, two or more Oceanic basins?, Int. J. Earth Sci., Volume 102 (2013), pp. 738-811 | DOI

[Bozkurt and Oberhänsli, 2001] E. Bozkurt; R. Oberhänsli Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution - a synthesis, Int. J. Earth Sci., Volume 89 (2001), pp. 679-708 | DOI

[Bozkurt and Park, 1994] E. Bozkurt; R. G. Park Southern Menderes massif: an incipient metamorphic core complex in Western Anatolia, J. Geol. Soc. Lond., Volume 151 (1994), pp. 213-216 | DOI

[Bozkurt and Satir, 2000] E. Bozkurt; M. Satir The southern Menderes Massif (western Turkey): geochronologie and exhumation history, Geol. J., Volume 35 (2000), pp. 285-296 | DOI

[Brichau et al., 2006] S. Brichau; U. Ring; R. A. Ketcham; A. Carter; D. Stockli; M. Brunel Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology, Earth Planet. Sci. Lett., Volume 241 (2006), pp. 293-306 | DOI

[Brichau et al., 2007] S. Brichau; U. Ring; A. Carter; P. Monie; R. Bolhar; D. Stockli et al. Extensional faulting on Tinos Island, Aegean Sea, Greece: how many detachments?, Tectonics, Volume 26 (2007), TC4009 | DOI

[Brichau et al., 2008] S. Brichau; U. Ring; A. Carter; R. Bolhar; P. Monié; D. Stockli; M. Brunel Timing, slip rate, displacement and cooling history of the Mykonos detachment footwall, Cyclades, Greece, and implications for the opening of the Aegean Sea basin, J. Geol. Soc., Volume 165 (2008), pp. 263-277 | DOI

[Briole et al., 2000] P. Briole; A. Rigo; H. Lyon-Caen; J. C. Ruegg; K. Papazissi; C. Mitsataki; A. Badolimou; G. Veis; D. Hatzfeld; A. Deschamps Active deformation of the Corinth rift, Greece: results from repeated Global Positionning System surveys between 1990 and 1995, J. Geophys. Res., Volume 105 (2000), pp. 25605-25626 | DOI

[Brix et al., 2002] R. Brix; B. Stöckhert; E. Seidel; T. Theye; S. N. Thomson; M. Küster Thermobarometric data from a fossil zircon partial annealing zone in high pressure–low temperature rocks of eastern and central Crete, Greece, Tectonophysics, Volume 349 (2002) no. 1–4, pp. 309-326 | DOI

[Brown and Robertson, 2003] S. A. M. Brown; A. H. F. Robertson Sedimentary geology as a key to understanding the tectonic evolution of the Mesozoic-Early Tertiary Paikon Massif, Vardar suture zone, N Greece, Sediment. Geol., Volume 160 (2003), pp. 179-212 | DOI

[Brun and Sokoutis, 2007] J. P. Brun; D. Sokoutis Kinematics of the southern rhodope core complex (North Greece), Int. J. Earth Sci., Volume 96 (2007), pp. 1079-1099 | DOI

[Brunn, 1956] J. H. Brunn Contribution à l’étude du Pinde septentrional et d’une partie de la Macédoine occidentale, Ann. Géol. Pays Helleniques, Volume 7 (1956), pp. 1-358

[Brunn, 1959] J. H. Brunn La dorsale médio-Atlantique et les épanchements ophiolitiques, C. R. Soc. Geol. Fr., Volume 8 (1959), pp. 234-236

[Bröcker and Enders, 1999] M. Bröcker; M. Enders U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece), Geol. Mag., Volume 136 (1999), pp. 111-118 | DOI

[Bröcker et al., 2013] M. Bröcker; S. Baldwin; R. Arkudas The geological significance of 40 Ar/  39 Ar and Rb–Sr white mica ages from Syros and Sifnos, Greece: a record of continuous (re)crystallization during exhumation?, J. Metam. Geol., Volume 31 (2013), pp. 629-646 | DOI

[Bröcker et al., 2014] M. Bröcker; K. Lowen; N. Rodionov Unraveling protolith ages of meta-gabbros from Samos and the Attic-Cycladic Crystalline Belt, Greece: Results of a U-Pb zircon and Sr-Nd whole rock study, Lithos, Volume 198–199 (2014), pp. 234-248 | DOI

[Buick, 1991] I. S. Buick The late alpine evolution of an extensional shear zone, Naxos, Greece, J. Geol. Soc., Volume 148 (1991), pp. 93-103 | DOI

[Burg et al., 1996] J. P. Burg; L. E. Ricou; Z. Ivanov; I. Godfriaux; D. Dimov; L. Klain Syn-metamorphic nappe complex in the Rhodope Massif: structure and kinematics, Terra Nova, Volume 8 (1996), pp. 6-15 | DOI

[Burg, 2011] J. P. Burg Rhodope: from Mesozoic convergence to Cenozoic extension. Review of Petro-structural Data in the Geochronological Frame, J. Virtual Explor., Volume 39 (2011), 1

[Capitanio, 2014] F. A. Capitanio The dynamics of extrusion tectonics: Insights from numerical modeling, Tectonics, Volume 33 (2014), pp. 2361-2381 | DOI

[Celet and Ferriere, 1978] P. Celet; J. Ferriere Les Hellenides internes: le Pelagonien, Eclogae Geol. Helv., Volume 71 (1978) no. 3, pp. 467-495

[Celet et al., 1976a] P. Celet; J. P. Cadet; J. Charvet; J. Ferriere Volcano-sedimentary and Volcano-detritic phenomena of Mesozoic age in Dinarid and Hellenic ranges: a comparison. Structural history of the Mediterranean Basins, Symposium International Split Yougoslavie, 1976, pp. 25-29

[Celet et al., 1976b] P. Celet; B. Clement; J. Ferriere La zone beotienne en Grece: implications paleogeographiques et structurales, Eclogae Geol. Helv., Volume 63 (1976) no. 3, pp. 577-599

[Celet et al., 1977] P. Celet; J. Ferriere; E. Wigniolle Le problème de l’origine des blocs exogènes du mélange à éléments ophiolitiques au sud du Sperchios et dans le massif de l’Othrys (Grèce), Bull. Soc. Géol. Fr., Volume 7-XIX (1977), pp. 935-942 | DOI

[Celet et al., 1980] P. Celet; B. Courtin; J. Ferriere Les ophiolites des Hellenides centrales dans leur contexte géotectonique. Ophiolites, Proceedings International Ophiolite Symposium Cyprus (A. Panayiotou, ed.), Ministry of Agriculture and Natural Resources, Geological Survey Department, 1980, pp. 360-371

[Celet, 1962] P. Celet Contribution à l’étude géologique du Parnasse-Kiona et d’une partie des régions méridionales de la Grèce continentale, Ann. Géol. Pays Helleniques, Volume 13 (1962), pp. 1-446

[Chanier et al., 2024] F. Chanier; J. Ferriere; O. Averbuch; F. Graveleau; F. Caroir; V. Gaullier; L. Watremez The Main Pelagonian Detachment (MPD): extensional re-activation of the Frontal Thrust of the Internal Zones of the Hellenides (Greece), C. R. Géosci., Volume 356 (2024) no. S2 (this volume) (submitted)

[Chatzaras et al., 2013] V. Chatzaras; W. Dorr; F. Finger; P. Xypolias; G. Zulauf U-Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evvia Island): Implications for the Triassic tectonic setting of Greece, Tectonophysics, Volume 595–596 (2013), pp. 125-139 | DOI

[Chiari et al., 2003] M. Chiari; V. Bortolotti; M. Marcucci; G. Principi; A. Photiades The Middle Jurassic siliceous sedimentary cover at the top of the Vourinos Ophiolite (Greece), Ofioliti, Volume 28 (2003) no. 2, pp. 95-103

[Chiari et al., 2013] M. Chiari; P. O. Baumgartner; D. Bernoulli; V. Bortolotti; M. Marcucci; A. Photiades; G. Principi Late Triassic, Early and Middle Jurassic Radiolaria from ferromanganese-chert nodules (Angelokastron, Argolis, Greece): evidence for prolonged radiolarite sedimentation in the Maliac-Vardar Ocean, Facies, Volume 59 (2013), pp. 391-424 | DOI

[Clément, 1983] B. Clément Evolution géodynamique d’un secteur des Hellénides internes. L’Attique-Béotie (Grèce continentale), Thèse, Université de Lille, Lille (1983) (1–521)

[Coleman, 1971] R. G. Coleman Plate tectonic emplacement of upper mantle peridotites along continental edges, J. Geophys. Res., Volume 76 (1971), pp. 1212-1222 | DOI

[Coutand et al., 2014] I. Coutand; M. Walsh; B. Louis; F. Chanier; J. Ferriere; J.Y. Reynaud Neogene upper-crustal cooling of the Olympus range (northern Aegean): major role of Hellenic back-arc extension over propagation of the North Anatolian Fault Zone, Terra Nova, Volume 26 (2014), pp. 287-297 | DOI

[Creutzburg, 1977] N. Creutzburg General Geological Map of Greece. Crete Island. 1:200,000, Institute of Geological and Mining Research, Athens, 1977

[Danelian et al., 1996] T. Danelian; A. H. F. Robertson; S. Dimitriadis Age and significance of radiolarian sediments, Geol. Mag., Volume 133 (1996), pp. 127-136

[Degnan and Robertson, 1998] P. J. Degnan; A. H. F. Robertson Mesozoic-early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece), Sediment. Geol., Volume 117 (1998), pp. 33-70 | DOI

[Dercourt et al., 1986] J. Dercourt; L. P. Zonenshain; L.-E. Ricou; V. G. Kazmin; X. Le Pichon; A. L. Knipper; C. Grandjaquet; I. M. Sbortshikov; J. Geyssant; C. Lepvrier; D. H. Pechersky; J. Boulin; J.-C. Sibuet; L. A. Savostin; O. Sorokhtin; M. Westphal; M. L. Bazhenov; J. P. Lauer; B. Biju-Duval Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias, Tectonophysics, Volume 123 (1986), pp. 241-315 | DOI

[Dercourt, 1970] J. Dercourt L’expansion océanique actuelle et fossile: ses implications géotectoniques, Bull. Soc. Géol. Fr., Volume XII (1970) no. 7, pp. 261-317 | DOI

[Dercourt, 1972] J. Dercourt The Canadian Cordillera, the Hellenides and the seafloor spreading theory, Can. J. Earth Sci., Volume 9 (1972), pp. 709-743 | DOI

[Derycke and Godfriaux, 1978] F. Derycke; I. Godfriaux Découverte de microfaunes paléogènes dans le flysch de Spilia (Ossa, Grèce), C. R. Acad. Sci. Paris, Volume 286 (1978), pp. 555-558

[Dewey and Bird, 1971] J. F. Dewey; J. M. Bird Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland, J. Geophys. Res., Volume 76 (1971), pp. 3179-3206 | DOI

[de Boorder et al., 1998] H. de Boorder; W. Spakman; S. H. White; M. J. R. Wortel Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt, Earth Planet. Sci. Lett., Volume 164 (1998), pp. 569-575 | DOI

[Dilek and Furnes, 2009] Y. Dilek; H. Furnes Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems, Lithos, Volume 113 (2009), pp. 1-20 | DOI

[Dilek et al., 2007] Y. Dilek; H. Furnes; M. Shallo Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana, Gondwana Res., Volume 11 (2007), pp. 453-475 | DOI

[Dilek et al., 2008] Y. Dilek; H. Furnes; M. Shallo Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust, Lithos, Volume 100 (2008), pp. 174-209 | DOI

[Dimo-Lahitte et al., 2001] A. Dimo-Lahitte; P. Monie; P. Vergely Metamorphic soles from the Albanian ophiolites: petrology, 40 Ar/  39 Ar geochronology, and geodynamic evolution, Tectonics, Volume 20 (2001), pp. 78-96 | DOI

[Dinter and Royden, 1993] D. A. Dinter; L. Royden Late Cenozoic extension in northeastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex, Geology, Volume 21 (1993), pp. 45-48 | DOI

[Doutsos et al., 1993] T. Doutsos; G. Pe-Piper; K. Roronkay; I. Koukouvelas Kinematics of the central Hellenides, Tectonics, Volume 12 (1993), pp. 936-953 | DOI

[Doutsos et al., 1994] T. Doutsos; I. Koukouvelas; A. Zelilidis; N. Kontopoulos Intracontinental wedging and postorogenic collapse in Mesohellenic Trough, Geol. Rundsch., Volume 83 (1994), pp. 257-275 | DOI

[Doutsos et al., 2006] T. Doutsos; J. K. Koukouvelas; P. Xypolias A new orogenic model for the External hellenides, Tectonic Development of the Eastern Mediterranean Region (A. H. F. Robertson; D. Mountrakis, eds.) (Geological Society, London, Special Publications, 260), Geological Society of London, 2006, pp. 507-520

[Dubois and Bignot, 1978] R. Dubois; G. Bignot Présence d’un hard-ground nummulitique au sommet de la série crétacée d’Almyropotamos (Eubée méridionale, Grèce). Conséquences, C. R. Acad. Sci. Paris, Volume 289 (1978), pp. 993-995

[Endrun et al., 2008] B. Endrun; T. Meier; S. Lebedev; M. Bohnhoff; G. Stavrakakis; H. P. Harjes S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion, Geophys. J. Int., Volume 174 (2008) no. 2, pp. 593-616 | DOI

[Fassoulas et al., 2004] C. Fassoulas; J. M. Rahl; J. Ague; K. Henderson Patterns and conditions of deformation in the plattenkalk nappe, Crete, Greece: a preliminary study, Bull. Geol. Soc. Greece, Volume 36 (2004.) no. 4, pp. 1626-1635 | DOI

[Faupl et al., 1998] P. Faupl; A. Pavlopoulos; G. Migiros On the provenance of flysch deposits in the External Hellenides of mainland Greece: results from heavy mineral studies, Geol. Mag., Volume 135 (1998), pp. 421-442 | DOI

[Faure and Bonneau, 1988] M. Faure; M. Bonneau Données nouvelles sur l’extension néogène de l’Egée: la déformation ductile du granite miocène de Mykonos (Cyclades, Grèce), C. R. Acad. Sci. Paris, Volume 307 (1988), pp. 1553-1559

[Faure et al., 1991] M. Faure; M. Bonneau; J. Pons Ductile deformation and syntectonic granite emplacement during the late Miocene extension of the Aegean (Greece), Bull. Soc. Géol. Fr., Volume 162 (1991), pp. 3-12 | DOI

[Fazzuoli and Carras, 2007] M. Fazzuoli; N. Carras Development and Demise of carbonate platform by compressional and extensional Tectonics: The Zygosti platform (Late Jurassic) and the Cretaceous transgression, Kozani, Northern Greece, IAS 25th Meeting, Field Trips Guide Book, Patras 4–7 September 2007, Conference and Cultural Center of the University of Patras, 2007

[Ferriere and Chanier, 2020] J. Ferriere; F. Chanier Analyse d’un processus d’obduction: l’exemple de l’Océan téthysien Maliaque (Hellénides), Ann. Soc. Geol. Nord, Volume T. 27 (2020) no. 2ème série, pp. 1-18

[Ferriere and Chanier, 2021] J. Ferriere; F. Chanier La marge Ouest-Maliaque de la Téthys (Hellenides) : une marge en hyper-extension pauvre en magma, Ann. Soc. Geol. Nord, Volume T. 28 (2021) no. 2ème série, pp. 1-11

[Ferriere and Faure, 2024] J. Ferriere; M. Faure Jean Aubouin et les chaînes de montagnes : des observations aux synthèses. L’itinéraire scientifique d’un géologue au rayonnement international, C. R. Géosci., Volume 356 (2024) no. S2, pp. 1-19 (this volume) Published on line: 23 May 2023

[Ferriere and Stais, 1995] J. Ferriere; A. Stais Nouvelle interpretation de la suture tethysienne vardarienne d’après l’analyse des séries de Peonias (Vardar oriental, Hellenides internes), Bull Soc. Geol. Fr., Volume 166 (1995) no. 4, pp. 327-339 | DOI

[Ferriere et al., 1998] J. Ferriere; J. Y. Reynaud; G. Migiros; J. N. Proust; M. Bonneau; A. Pavlopoulos; A. Houze Initiation d’un bassin transporté : l’exemple du sillon méso-hellénique au Tertiaire (Grèce), C. R. Acad. Sci. Paris, Volume 326 (1998), pp. 567-574

[Ferriere et al., 2001] J. Ferriere; M. Bonneau; M. Caridroit; J. P. Bellier; S. Gorican; H. Kollmann Les nappes tertiaires du Paikon (zone du Vardar, Macedoine, Grèce) : arguments stratigraphiques pour une nouvelle interprétation structurale, C. R. Acad. Sci. Paris Earth Planet. Sci., Volume 332 (2001), pp. 695-702

[Ferriere et al., 2004] J. Ferriere; J. Y. Reynaud; A. Pavlopoulos; M. Bonneau; G. Migiros; F. Chanier; J. N. Proust; S. Gardin Geologic evolution and geodynamic controls of the Tertiary intramontane piggyback Meso-Hellenic basin Greece, Bull. Soc. Géol. Fr., Volume 175 (2004) no. 4, pp. 361-381 | DOI

[Ferriere et al., 2011] J. Ferriere; F. Chanier; J.-Y. Reynaud; A. Pavlopoulos; P. Ditbanjong; G. Migiros; I. Coutand; J. Bailleul Tectonic control of the Meteora conglomerates (Meso-Hellenic Basin, Greece), Bull. Soc. Géol. Fr., Volume 182 (2011), pp. 437-450 | DOI

[Ferriere et al., 2012] J. Ferriere; F. Chanier; P. Ditbanjong The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion, Int. J. Earth Sci., Volume 101 (2012), pp. 1559-1580 | DOI

[Ferriere et al., 2013] J. Ferriere; F. Chanier; J. Y. Reynaud; A. Pavlopoulos; P. Ditbanjong; I. Coutand Evolution of the Mesohellenic Basin (Greece): a synthesis, J. Virtual Explor., Volume 45 (2013), 1 (Electronic Edition, ISSN 1441–8142)

[Ferriere et al., 2015] J. Ferriere; F. Chanier; P. O. Baumgartner; M. Caridroit; V. Bout-Roumazeilles; F. Graveleau; T. Danelian; S. Ventalon The evolution of the Triassic–Jurassic oceanic lithosphere: insights from the supra-ophiolitic series of Othris (continental Greece), Bull. Soc. Géol. Fr., Volume 186 (2015) no. 6, pp. 71-84

[Ferriere et al., 2016] J. Ferriere; P. O. Baumgartner; F. Chanier The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites, Int. J. Earth Sci., Volume 105 (2016), pp. 1941-1963 | DOI

[Ferriere, 1972] J. Ferriere Sur l’importance des déplacements tangentiels en Othrys centrale au Nord-Est d’Anavra (Grece), C. R. Acad. Sci., Volume 274 (1972), pp. 174-176

[Ferriere, 1974] J. Ferriere Etude geologique d’un secteur des zones helleniques internes sub-pelagoniennes (massif de l’Othrys, Grèce orientale). Importance et signification de la periode orogenique ante-Cretace-superieur, Bull. Soc. Géol. Fr., Volume XVI, 5 (1974), pp. 543-562 | DOI

[Ferriere, 1976a] J. Ferriere Etude préliminaire des terrains métamorphiques de la presqu’ile du Pelion anterieurs aux niveaux conglomeratiques presumes Cretacé superieur (Grece continentale orientale). Conséquences tectoniques, C. R. Acad. Sci. Paris, Volume 282 (1976), pp. 1485-1488

[Ferriere, 1976b] J. Ferriere Sur la signification des series du massif de l’Othrys (Grèce continentale): la zone isopique Maliaque, Ann. Soc. Geol. Nord, Volume 96 (1976) no. 2, pp. 121-134

[Ferriere, 1982] J. Ferriere Paleogeographies et tectoniques superposées dans les Hellenides Internes au niveau de l’Othrys et du Pelion (Grèce), Soc. Geol. Nord Publ., Volume 8 (1982), pp. 1-970

[Ferriere, 1985] J. Ferriere Nature et développement des ophiolites helléniques du secteur Othrys-Pelion, Ofioliti, Volume 10 (1985) no. 2/3, pp. 255-278

[Flansburg et al., 2019] M. E. Flansburg; D. F. Stockli; E. M. Poulaki; K. Soukis Tectono-magmatic and stratigraphic evolution of the Cycladic Basement, Ios Island, Greece, Tectonics, Volume 38 (2019), pp. 2291-2316 | DOI

[Fleury and Godfriaux, 1974] J. J. Fleury; I. Godfriaux Arguments pour l’attribution de la série de la fenêtre de l’Olympe (Grèce) à la zone de Gavrovo-tripolitza : présence de fossiles du maestrichtien et de l’Eocène inférieur (et moyen ?), Ann. Soc. Géol. Nord, Volume 94 (1974), pp. 149-156

[Fleury, 1980] J. J. Fleury Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grece con-tinentale et Peloponnese du Nord). Evolution d’une plate-forme et d’un bassin dans leur cadre alpin, Soc. Geol. Nord Lille Publ., Volume 4 (1980), pp. 1-651

[Froitzheim et al., 2014] N. Froitzheim; S. Jahn-Awe; D. Frei; A. N. Wainwright; R. Maas; N. Georgiev; T. J. Nagel; J. Pleuger Age and composition of meta-ophiolite from the Rhodope Middle Allochthon (Satovcha, Bulgaria): a test for the maximum-allochthony hypothesis of the Hellenides, Tectonics, Volume 33 (2014) no. 8, pp. 1477-1500 | DOI

[Funiciello et al., 2003] F. Funiciello; C. Facenna; D. Giardini; K. Regenauer Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments, J. Geophys. Res., Volume 108 (2003) no. B4, 2207 (1–16)

[Fytikas et al., 1984] M. Fytikas; F. Innocenti; P. Manetti; R. Mazzuoli; A. Peccerillo; L. Villari Tertiary to Quaternary evolution of volcanism in the Aegean region, The Geological Evolution of the Eastern Mediterranean (J. E. Dixon; A. H. F. Robertson, eds.), Volume 17, Geological Society, London, 1984, pp. 687-699

[Gaggero et al., 2009] L. Gaggero; M. Marroni; L. Pandolfi; L. Buzzi Modeling the oceanic lithosphere obduction: constraints from the metamorphic sole of Mirdita ophiolites (northern Albania), Ofioliti, Volume 34 (2009) no. 1, pp. 17-42

[Gautier and Brun, 1994] P. Gautier; J. P. Brun Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia island), Tectonophysics, Volume 238 (1994), pp. 399-424 | DOI

[Gautier et al., 1993] P. Gautier; J. P. Brun; L. Jolivet Structure and kinematics of upper Cenozoic extensional detachement on Naxos and Paros (Cyclades Islands, Greece), Tectonics, Volume 12 (1993), pp. 1180-1194 | DOI

[Gautier et al., 2010] P. Gautier; I. Gerdjikov; G. Ruffet; V. Bosse; Z. Cherneva; P. Pitra; E. Hallot Persistent synmetamorphic thrusting in the Rhodope until 33 Ma: evidence from the Nestos Shear Zone and implications for Aegean geodynamics, Geol. Balc., Volume 39 (2010), pp. 122-123 (19th Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece)

[Gautier et al., 2017] P. Gautier; V. Bosse; Z. Cherneva; A. Didier; I. Gerdjikov; M. Tiepolo Polycyclic alpine orogeny in the Rhodope metamorphic complex: The record in migmatites from the Nestos shear zone (N. Greece), Bull. Soc. Géol. Fr. Earth Sci. Bull., Volume 188 (2017) no. 6, 36

[Gawlick et al., 2008] H. J. Gawlick; W. Frisch; L. Hoxha; P. Dumitrica; L. Krystyn; R. Lein; S. Missoni; F. Schlagintweit Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin, Int. J. Earth Sci., Volume 97 (2008), pp. 865-881 | DOI

[Gessner et al., 2001] K. Gessner; U. Ring; C. Johnson; R. Hetzel; C. W. Passchier; T. Güngör An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in Western Turkey, Geology, Volume 29 (2001) no. 7, pp. 611-614 | DOI

[Godfriaux and Ricou, 1991] I. Godfriaux; L. E. Ricou Le Paikon, une fenêtre tectonique dans les Hellenides, C. R. Acad. Sci. Paris Sér. II, Volume 313 (1991), pp. 1479-1484

[Godfriaux et al., 1988] I. Godfriaux; J. Ferriere; A. Schmitt Le développement en contexte continental d’un métamorphisme HP-BT : les schistes bleus tertiaires thessaliens, Bull. Geol. Soc. Greece, Volume 20 (1988), pp. 175-192

[Godfriaux, 1962] I. Godfriaux L’Olympe : une fenêtre tectonique dans les Hellénides internes, C. R. Acad. Sci. Paris, Volume 255 (1962), pp. 1761-1763

[Godfriaux, 1968] I. Godfriaux Etude géologique de la région de l’Olympe (Grece), Thèse Lille (1968) (Annales géologiques des Pays Helléniques 19, 1–283)

[Govers and Wortel, 2005] R. Govers; M. J. R. Wortel Lithosphere tearing at STEP faults: Response to edges of subduction zones, Earth Planet. Sci. Lett., Volume 236 (2005), pp. 505-523 | DOI

[Grasemann et al., 2012] B. Grasemann; D. Schneider; D. F. Stockli; C. Iglseder Miocene bivergent crustal extension in the Aegean: evidence from the western Cyclades (Greece), Lithosphere, Volume 4 (2012) no. 1, pp. 23-39 | DOI

[Grasemann et al., 2017] B. Grasemann; B. Huet; D. A. Schneider; H. N. Rice; N. Lemonnier; C. Tschegg Miocene postorogenic extension of the Eocene synorogenic imbricated Hellenic subduction channel: New constraints from Milos (Cyclades, Greece), GSA Bull., Volume 130 (2017) no. 1–2, pp. 238-262

[Grasemann et al., 2019] B. Grasemann; D. A. Schneider; A. Rogowitz Back to normal: Direct evidence of the Cretan Detachment as a north-directed normal fault during the Miocene, Tectonics, Volume 38 (2019) no. 8, pp. 3052-3069 | DOI

[Greilling, 1982] R. Greilling The metamorphic and structural evolution of the Phyllite-Quartzite nappe of western Crete, J. Struct. Geol., Volume 4 (1982), pp. 291-297 | DOI

[Hatzfeld et al., 2001] D. Hatzfeld; A. Karagianni; I. Kassaras; A. Kiratzi; E. Louvari; H. Lyon-Caen; K. Makropoulos; P. Papadimitriou; G. Bock; K. Priestley Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation, J. Geophys. Res., Volume 106 (2001) no. B12, pp. 30737-30754 | DOI

[Hecht, 1984] J. Hecht Geological map of Greece, 1/50000, Syros Island, Institute of Geology and Mineral Exploration, Greece, 1984

[Hetzel et al., 1995] R. Hetzel; C. W. Passchier; U. Ring; O. Dora Bivergent extension in orogenic belts: the Menderes massif (southwestern Turkey), Geology, Volume 23 (1995), pp. 455-458 | DOI

[Hinshaw et al., 2023] E. Hinshaw; D. Stockli; K. Soukis Zircon and apatite U-Pb constraints on the tectonic affinity and metamorphic history of the blueschist-facies Ambelakia unit, Mt Ossa, Greece, Tectonics, Volume 42 (2023) no. 5, e2022TC007608 | DOI

[Hynes et al., 1972] A. J. Hynes; E. G. Nisbet; A. G. Smith; M. J. P. Welland; D. C. Rex Spreading and emplacement ages of some ophiolites in the Othris region (eastern central Greece), Zeitschrift Deutschen Geologischen Gesellschaft Band 123 Heft, Volume 2 (1972), pp. 455-468 | DOI

[Hynes, 1974] A. Hynes Igneous activity at the birth of an ocean basin in eastern Greece, Can. J. Earth Sci., Volume 11 (1974) no. 6, pp. 842-853 | DOI

[IGRS-IFP, 1966] IGRS-IFP Etude geologique de 1’Epire, Technip, Paris, 1966

[Jackson et al., 1982] J. A. Jackson; G. King; C. Vita-Finzi The neotectonics of the Aegean: an alternative view, Earth Planet. Sci. Lett., Volume 61 (1982), pp. 303-318 | DOI

[Jacobshagen and Wallbrecher, 1984] V. Jacobshagen; E. Wallbrecher Pre-Neogene nappe structure and metamorphism of the North Sporades and the southern Pelion peninsula, Geol. Soc. Lond. Spec. Publ., Volume 17 (1984), pp. 591-602 | DOI

[Jacobshagen, 1986] V. Jacobshagen Geologie von Griechenland, Beitrâge Zur Regionalen Geologie der Erde Band 19, Gebrüder Borntrager, Berlin, 1986, pp. 1-363

[Jansen and Schuilling, 1976] J. Jansen; R. Schuilling Metamorphism on Naxos. Petrology and geothermal gradients, Am. J. Sci., Volume 267 (1976), pp. 1225-1253 | DOI

[Jolivet and Brun, 2010] L. Jolivet; J. P. Brun Cenozoic geodynamic evolution of the Aegean region, Int. J. Earth Sci., Volume 99 (2010), pp. 109-138 | DOI

[Jolivet and Faccenna, 2000] L. Jolivet; C. Faccenna Mediterranean extension and the Africa-Eurasia collision, Tectonics, Volume 19 (2000) no. 6, pp. 1095-1106 | DOI

[Jolivet and Patriat, 1999] L. Jolivet; M. Patriat Ductile extension and the formation of the Aegean Sea, The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (B. Durand et al., eds.) (Geological Society, London, Special Publications, 156), Geological Society of London, 1999, pp. 427-456

[Jolivet et al., 1994a] L. Jolivet; J. P. Brun; P. Gautier; S. Lallemand; M. Patriat 3-D kinematics of extension in the Aegean from the Early Miocene to the present, insight from the ductile crust, Bull. Soc. Géol. Fr., Volume 165 (1994), pp. 195-209

[Jolivet et al., 1994b] L. Jolivet; J. M. Daniel; C. Truffert; B. Goffé Exhumation of deep crustal metamorphic rocks and crustal extension in back-arc regions, Lithos, Volume 33 (1994) no. 1/2, pp. 3-30 | DOI

[Jolivet et al., 1996] L. Jolivet; B. Goffe; P. Monie; C. Truffert-Luxey; M. Patriat; M. Bonneau Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks, Tectonics, Volume 15 (1996), pp. 1129-1153 | DOI

[Jolivet et al., 2003] L. Jolivet; C. Faccenna; B. Goffé; E. Burov; P. Agard Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens, Am. J. Sci., Volume 303 (2003), pp. 353-409 | DOI

[Jolivet et al., 2004a] L. Jolivet; V. Famin; C. Mehl; T. Parra; C. Aubourg; R. Hébert; P. Philippot Strain localisation during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea, Gneiss Domes in Orogeny (D. L. Whitney; C. Teyssier; C. S. Siddoway, eds.), Geological Society of America, Boulder, CO, 2004, pp. 185-210

[Jolivet et al., 2004b] L. Jolivet; G. Rimmelé; R. Oberhänsli; B. Goffé; O. Candan Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian Nappes and the Menderes massif, geodynamic implications, Bull. Géol. Soc. Fr., Volume 175 (2004) no. 3, pp. 217-238 | DOI

[Jolivet et al., 2009] L. Jolivet; C. Faccenna; C. Piromallo From Mantle to crust: stretching the Mediterranean, Earth Planet. Sci. Lett., Volume 285 (2009), pp. 198-209 | DOI

[Jolivet et al., 2010a] L. Jolivet; E. Lecomte; B. Huet; Y. Denèle; O. Lacombe; L. Labrousse; L. Le Pourhiet; C. Mehl The north cycladic detachment system, Earth Planet. Sci. Lett., Volume 289 (2010), pp. 87-104 | DOI

[Jolivet et al., 2010b] L. Jolivet; F. Trotet; P. Monie; O. Vidal; B. Goffe; L. Labrousse; P. Agard; G. Bad’r Along-strike variations of P-T conditions in accretionary wedges and syn-orogenic extension, the HP-LT Phyllite-Quartzite Nappe in Crete and the Peloponnese, Tectonophysics, Volume 480 (2010), pp. 133-148 | DOI

[Jolivet et al., 2013] L. Jolivet; C. Faccenna; B. Huet; L. Labrousse; L. Le Pourhiet; O. Lacombe; E. Lecomte; E. Burov; Y. Denèle; J. P. Brun; M. Philippon; A. Paul; G. Salaün; H. Karabulut; C. Piromallo; P. Monié; F. Gueydan; A. I. Okay; R. Oberhänsli; A. Pourteau; R. Augier; L. Gadenne; O. Driussi Aegean tectonics: Strain localisation, slab tearing and trench retreat, Tectonophysics, Volume 597–598 (2013), pp. 1-33 | DOI

[Jolivet et al., 2015] L. Jolivet; A. Menant; P. Sternai; A. Rabillard; L. Arbaret; R. Augier; V. Laurent; A. Beaudoin; B. Grasemann; B. Huet; L. Labrousse; L. Le Pourhiet The geological signature of a slab tear below the Aegean, Tectonophysics, Volume 659 (2015), pp. 166-182 | DOI

[Jolivet et al., 2021] L. Jolivet; L. Arbaret; F. Le Pourhiet; V. Cheval-Garabédian; A. Roche; L. Rabillard Labrousse Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids, Solid Earth, Volume 12 (2021), pp. 1-32 | DOI

[Jones and Robertson, 1991] G. Jones; A. H. F. Robertson Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northern Greece, J. Geol. Soc. Lond., Volume 148 (1991), pp. 267-288 | DOI

[Katrivanos and Kilias, 2013] E. Katrivanos; A. Kilias Kinematics of deformation and structural evolution of the Paikon Massif (Central Macedonia, Greece): a Pelagonian tectonic window?, Neues Jahrb. Geol. Palaontol. Abh., Volume 269 (2013) no. 2, pp. 149-171 | DOI

[Katsikatsos et al., 1976] G. Katsikatsos; J. L. Mercier; P. Vergely L’Eubée méridionale: une double fenêtre polyphasée dans les Hellénides internes (Grèce), C. R. Acad. Sci. Paris, Volume 283 (1976), pp. 459-462

[Kauffmann et al., 1976] G. Kauffmann; F. Kockel; H. Mollat Notes on the stratigraphic and paleogeographic position of the Svoula formation in the innermost zone of the Hellenides (Northern Greece), Bull. Soc. Géol. Fr., Volume 18 (1976), pp. 225-230 | DOI

[Kilias et al., 2010] A. Kilias; W. Frisch; A. Avgerinas; I. Dunkl; G. Falalakis; H. J. Gawlick Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides, Austrian J. Earth Sci., Volume 103 (2010) no. 1, pp. 4-28

[King et al., 1985] G. King; Z. Ouyang; P. Papadimitriou; A. Deschamps; A. Gagnepain; G. Houseman; J. Jackson; C. Soufleris; J. Virieux The evolution of the Gulf of Corinth (Greece) an aftershock study of the 1981 earthquake, Geophys. J. R. Astron. Soc., Volume 80 (1985), pp. 677-693 | DOI

[Kissel and Laj, 1988] C. Kissel; C. Laj The Tertiary geodynamic evolution of the Aegean arc: a paleomagnetic reconstruction, Tectonophysics, Volume 146 (1988), pp. 183-201 | DOI

[Kockel, 1986] F. Kockel Die Vardar-(Axios-) zone, Geologie von Griechenland (V. Jacobshagen, ed.), Gebrüder Borntrager, Berlin-Stuttgart, 1986, pp. 150-168

[Konstantopoulos and Zelilidis, 2012] P. Konstantopoulos; A. Zelilidis The geodynamic evolution of Pindos foreland basin in SW Greece, Episodes, Volume 35 (2012) no. 4, pp. 501-512 | DOI

[Kossmat, 1924] F. Kossmat Geologie der zentralen Balkanhalbinsel, Mit Einer Übersicht Des Dinarischen Gebirgsbaus, Gebrüder Borntrager, Berlin, 1924

[Kostopoulos et al., 2000] D. K. Kostopoulos; N. M. Ioannidis; S. A. Sklavounos A new occurrence of ultrahigh-pressure metamorphism, Central Macedonia, Northern Greece: evidence for graphitized diamonds?, Int. Geol. Rev., Volume 42 (2000), pp. 545-554 | DOI

[Kounov et al., 2015] A. Kounov; E. Wüthrich; D. Seward; J. P. Burg; D. Stöckli Low-temperature constraints on the Cenozoic thermal evolution of the Southern Rhodope Core Complex (Northern Greece), Int. J. Earth Sci., Volume 104 (2015), pp. 1337-1352 | DOI

[Kreemer et al., 2004] C. Kreemer; N. Chamot-Rooke; X. Le Pichon Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data, Earth Planet. Sci. Lett., Volume 225 (2004), pp. 329-346 | DOI

[Krenn et al., 2010] K. Krenn; C. Bauer; A. Proyer; U. Klötzli; G. Hoinkes Tectonometamorphic evolution of the Rhodope orogen, Tectonics, Volume 29 (2010), TC4001 | DOI

[Kukoc et al., 2015] D. Kukoc; S. Gorican; A. Kosir; M. Belak; J. Halamic; H. Hrvatovic Middle Jurassic age of basalts and the post-obduction sedimentary sequence in the Guevgueli Ophiolite Complex (Republic of Macedonia), Int. J. Earth Sci., Volume 104 (2015) no. 2, pp. 435-447 | DOI

[Kydonakis et al., 2014] K. Kydonakis; K. Gallagher; J. P. Brun; M. Jolivet; F. Gueydan; D. Kostopoulos Upper Cretaceous exhumation of the western Rhodope Metamorphic Province (Chalkidiki Peninsula, northern Greece), Tectonics, Volume 33 (2014), pp. 1113-1132 | DOI

[Lacombe et al., 2013] O. Lacombe; L. Jolivet; L. Le Pourhiet; E. Lecomte; C. Mehl Initiation, geometry and mechanics of brittle faulting in exhuming metamorphic rocks: insights from the northern Cycladic islands (Aegean, Greece), Bull. Soc. Géol. Fr., Volume 184 (2013), pp. 383-403 | DOI

[Lamont et al., 2020] T. Lamont; M. Searle; D. Waters; N. Roberts; R. Palin; A. Smye; B. Dyck; P. Gopon; O. Weller; M. St-Onge Compressional origin of the Naxos metamorphic core complex, Greece: Structure, petrography, and thermobarometry (June 04, 2019), GSA Bull., Volume 132 (2020) no. 1–2, pp. 149-197 | DOI

[Laskari et al., 2022] S. Laskari; K. Soukis; D. F. Stockli; S. Lozios; A. Zambetakis-Lekkas Reconstructing the southern Pelagonian domain in the Aegean Sea: Insights from U-Pb detrital zircon analysis, lithostratigraphic and structural study, and zircon (U-Th)/He thermochronology on Amorgos Island (SE Cyclades, Greece), Gondwana Res., Volume 106 (2022), pp. 329-350 | DOI

[Laubscher and Bernoulli, 1977] H. Laubscher; D. Bernoulli Mediterranean and Tethys, The Ocean Basins and Margins. The Eastern Mediterranean (A. E. M. Nairn; W. H. Kanes; F. G. Stehli, eds.), Volume 4A, Plenum Publishing Corp., New York, 1977, pp. 1-28

[Laurent et al., 2016] V. Laurent; L. Jolivet; V. Roche; R. Augier; S. Scaillet; L. Cardello Strain localization in a fossilized subduction channel: insights from the Cycladic Blueschist Unit (Syros, Greece), Tectonophysics, Volume 672–673 (2016), pp. 150-169 | DOI

[Laurent et al., 2017] V. Laurent; B. Huet; L. Labrousse; L. Jolivet; P. Monie; R. Augier Extraneous argon in high-pressure metamorphic rocks: distribution, origin and transport in the Cycladic Blueschist Unit (Greece), Lithos, Volume 272 (2017), pp. 315-335 | DOI

[Lee and Lister, 1992] J. Lee; G. S. Lister Late Miocene ductile extension and detachment faulting, Mykonos, Greece, Geology, Volume 20 (1992), pp. 121-124 | DOI

[Lefevre et al., 1993] C. Lefevre; B. Cabanis; J. Ferriere; F. Thiebault; R. Platevoet Mise en evidence d’une dualité dans le volcanisme triasique hellénique: apport de la geochimie des elements traces, C. R. Acad. Sci. Paris Ser. II (1993), pp. 1311-1318

[Le Pichon and Angelier, 1979] X. Le Pichon; J. Angelier The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area, Tectonophysics, Volume 60 (1979), pp. 1-42 | DOI

[Le Pichon and Angelier, 1981] X. Le Pichon; J. Angelier The Aegean Sea. The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern mediterranean area, Philos. Trans. R. Soc. Lond., Volume 300 (1981), pp. 357-372

[Le Pichon et al., 1995] X. Le Pichon; N. Chamot-Rooke; S. L. Lallemant; R. Noomen; G. Veis Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for eastern Mediterranean tectonics, J. Geophys. Res., Volume 100 (1995), pp. 12675-12690 | DOI

[Le Pichon et al., 2003] X. Le Pichon; N. Chamot-Rooke; C. Rangin; M. C. Sengor The North Anatolian fault in the sea of marmara, J. Geophys. Res., Volume 108 (2003) no. B4, 2179 | DOI

[Liati and Mposkos, 1990] A. Liati; E. Mposkos Evolution of the eclogites in the Rhodope Zone of northern Greece, Lithos, Volume 25 (1990), pp. 89-99 | DOI

[Liati and Seidel, 1996] A. Liati; E. Seidel Metamorphic evolution and geochemistry of kyanite eclogites in central Rhodope, northern Greece, Contrib. Mineral. Petrol., Volume 123 (1996), pp. 293-307 | DOI

[Liati et al., 2004] A. Liati; D. Gebauer; C. M. Fanning The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages, Chem. Geol., Volume 207 (2004), pp. 171-188 | DOI

[Lips et al., 1998] A. Lips; S. H. White; J. R. Wijbrans 40 Ar/  39 Ar laserprobe direct dating of discrete deformational events: a continuous record of early Alpine tectonics in the Pelagonian Zone, NW Aegean area, Greece, Tectonophysics, Volume 298 (1998), pp. 133-153 | DOI

[Lister et al., 1984] G. S. Lister; G. Banga; A. Feenstra Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece, Geology, Volume 12 (1984), pp. 221-225 | DOI

[Lyon-Caen et al., 1988] H. Lyon-Caen; R. Armijo; J. Drakopoulos; J. Baskoutass; N. Delibassis; R. Gaulon; V. Kouskouna; K. Latoussakis; K. Makropoulos; P. Papadimitriou; D. Papanastassiou; G. Pedotti The 1986 Kalamata (South Peloponnesus) earthquake: detailed study of a normal fault, evidences for E-W extension in the Hellenic Arc, J. Geophys. Res, Volume 93 (1988), pp. 14967-15000 | DOI

[Lyon-Caen et al., 2004] H. Lyon-Caen; P. Papadimitriou; A. Deschamps; P. Bernard; K. Makropoulos; F. Pacchiani; G. Patau First results of the CRLN seismic network in the western orinth Rift: evidence for old fault reactivation, C. R. Geosci., Volume 336 (2004) no. 4–5, pp. 343-351 | DOI

[Maffione and van Hinsbergen, 2018] M. Maffione; D. J. J. van Hinsbergen Reconstructing plate boundaries in the Jurassic Neo-Tethys from the East and West Vardar Ophiolites (Greece and Serbia), Tectonics, Volume 37 (2018), pp. 858-887 | DOI

[Maffione et al., 2015] M. Maffione; C. Thieulot; D. J. J. van Hinsbergen; A. Morris; O. Plümper; W. Spakman Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites, Geochem. Geophys. Geosyst., Volume 16 (2015), pp. 1753-1770 | DOI

[Makris et al., 2013] J. Makris; J. Papoulia; T. Yegorova A 3-D density model of Greece constrained by gravity and seismic data, Geophys. J. Int., Volume 194 (2013), pp. 1-17 | DOI

[Maluski et al., 1987] H. Maluski; M. Bonneau; J. R. Kienast Dating the metamorphic events in the Cycladic area: 39 Ar/ 40 Ar data from metamorphic rocks of the island of Syros (Greece), Bull. Soc. Géol. Fr., Volume 8 (1987), pp. 833-842 | DOI

[Mavridis et al., 1993] A. Mavridis; A. K. Kelepertzis; S. Tsaïla-monopolis; V. Skourtsi-koroneou Geological Map Knidi Sheet, 1:50,000, IGME, Athens, 1993

[McClusky et al., 2000] S. McClusky; S. Balassanian; A. Barka; C. Demir; S. Ergintav; I. Georgiev; O. Gurkan; M. Hamburger; K. Hurst; H. Kahle; K. Kastens; G. Kekelidze; R. King; V. Kotzev; O. Lenk; S. Mahmoud; A. Mishin; M. Nadariya; A. Ouzonis; D. Paradissis; Y. Peter; M. Prilepin; R. Reilinger; I. Sanli; H. Seeger; A. Tealeb; M. N. Toksöz; G. Veis Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., Volume 105 (2000), pp. 5695-5720 | DOI

[Mehl et al., 2005] C. Mehl; L. Jolivet; O. Lacombe From ductile to brittle: evolution and localization of deformation below a crustal detachment (Tinos, Cyclades, Greece), Tectonics, Volume 24 (2005), TC4017 | DOI

[Menant et al., 2016a] A. Menant; L. Jolivet; B. Vrielynck Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous, Tectonophysics, Volume 675 (2016), pp. 103-140 | DOI

[Menant et al., 2016b] A. Menant; P. Sternai; L. Jolivet; L. Guillou-Frottier; T. Gerya 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case, Earth Planet. Sci. Lett., Volume 442 (2016), pp. 93-107 | DOI

[Mercier and Vergely, 1972] J. Mercier; P. Vergely Les mélanges ophiolitques de Macédoine (Grèce), décrochements anté-Crétacé superieur, Z. Deutsch. Geol. Ges., Volume 123 (1972), pp. 469-489

[Mercier and Vergely, 1977] J. Mercier; P. Vergely Excursions 4eme -5ème journées. In Dercourt et al. Réunion extraordinaire de la Société géologique de France en Grèce, co-organisée avec la Société géologique de Grèce (sept. 1976), Bull. Soc. Géol. Fr. (7), Volume XIX, I (1977), pp. 469-489

[Mercier and Vergely, 1984] J. Mercier; P. Vergely Geological Map of Greece 1:50,000 Sheet Edhessa, Institute of Geology and Mineral Exploration, Athens, 1984

[Mercier et al., 1975] J. Mercier; P. Vergely; J. Bebien Les ophiolites helleniques obductees au Jurassique superieur sont-elles les vestiges d’un Ocean tethysien ou d’une mer marginale péri-europeenne?, C. R. Somm. Soc. Geol. Fr., Volume 4 (1975), pp. 108-112

[Mercier, 1968] J.-L. Mercier Etude geologique des zones internes des Hellenides en Macedoine Centrale (Grece), Ann. Geol. Pays Hell., Volume 20 (1968), pp. 1-792

[Migiros and Galeos, 1990] G. Migiros; A. Galeos Tectonic and stratigraphic significance of the Ano Garefi ophiolitic rocks, (Northern Greece), Ophiolites: Oceanic Crustal Analogues: Proccedings of the Symposium “Troodos 1987” (J. Malpas; E. M. Moores, eds.), IGCP, Geological Survey Department, Nicosia, 1990, pp. 279-284

[Monjoie et al., 2008] P. Monjoie; H. Lapierre; A. Tashko; G. Mascle; A. Dechamp; B. Muceku; P. Brunet Nature and origin of the Triassic volcanism in Albania and Othrys: a key to understanding the Neo-tethys opening?, Bull. Soc. Géol. Fr., Volume 179 (2008), pp. 411-425 | DOI

[Moores, 1969] E. G. Moores Petrology and structure of the vourinos ophiolitic complex of northern Greece, Geol. Soc. Am. Spec. Pap., Volume 118 (1969), pp. 1-74

[Most, 2003] T. Most Geodynamic evolution of the eastern Pelagonian zone in north-western Greece and the Republic of Macedonia: implications from U/Pb, Rb/Sr, K/Ar, 40 Ar/  39 Ar geochronology and fission track thermochronology, Phd thesis, Eberhardt-Karls-Universitat Tübingen (2003) (98 p. In Schmid, 2020. Gondwana Res. 78, 308–374)

[Mposkos et al., 2010] E. Mposkos; I. Baziotis; A. Krohe A record of two alpine high P metamorphic events in the Titaros ophiolite complex of the Pelagonian zone (Greece), Scientific Annals, School of Geology, Aristotle University of Thessaloniki Proceedings of the XIX CBGA Congress, Thessaloniki (Greece Special), Volume 99, Thessaloniki, 2010, pp. 289-298

[Nirta et al., 2018] G. Nirta; G. Moratti; L. Piccardi; D. Montanari; N. Carras; R. Catanzariti; M. Chiari; M. Marcucci From obduction to continental collision: new data from Central Greece, Geol. Mag., Volume 155 (2018), pp. 377-421 | DOI

[Nomikou et al., 2018] P. Nomikou; C. Hübscher; D. Papanikolaou; G. P. Farangitakis; M. Ruhnau; D. Lampridou Expanding extension, subsidence and lateral segmentation within the Santorini-Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central-south Aegean Sea, Greece, Tectonophysics, Volume 722 (2018), pp. 138-153 | DOI

[Okay and Tuysuz, 1999] A. Okay; O. Tuysuz Tethyan Sutures of northern Turkey, Geological Society, London, Special Publications, 156(1), Geological Society of London, 1999, pp. 475-515

[Okrusch et al., 1978] M. Okrusch; E. Seidel; E. N. Davis The assemblage jadeite-quartz in the glaucophane rocks of Sifnos (Cyclades, Greece), N. Jb. Mineral. Abh., Volume 132 (1978), pp. 284-308

[Ori and Roveri, 1987] G. G. Ori; M. Roveri Geometries of Gilbert-type deltas and large channels in the Meteora Conglomerate, MesoHellenic basin (Oligo-Miocene), Central Greece, Sedimentology, Volume 34 (1987), 845859

[Papanikolaou, 1977] D. Papanikolaou On the structural geology and tectonics of Paros Island (Aegean Sea), Ann. Géol. Pays Hell., Volume 28 (1977), pp. 450-464

[Papanikolaou, 1980] D. Papanikolaou Contribution to the geology of the Aegean Sea: the Island of Paros, Ann. Géol. Pays Hell., Volume 30 (1980), pp. 65-96

[Papanikolaou, 2009] D. Papanikolaou Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides, Lithos, Volume 108 (2009), pp. 262-280 | DOI

[Parra et al., 2002] T. Parra; O. Vidal; L. Jolivet Relation between deformation and retrogression in blueschist metapelites of Tinos island (Greece) evidenced by chlorite-mica local equilibria, Lithos, Volume 63 (2002), pp. 41-66 | DOI

[Patzak et al., 1994] M. Patzak; M. Okrusch; H. Kreuzer The Akrotiri Unit on the island of Tinos, Cyclades, Greece: Witness to a lost terrane of Late Cretaceous age, Neues Jahrb. Geol. Palaontol. Abh., Volume 194 (1994) no. 2–3, pp. 211-252 | DOI

[Paul et al., 2014] A. Paul; H. Karabulut; A. K. Mutlu; G. Salaün A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region, Earth Planet. Sci. Lett., Volume 389 (2014), pp. 14-22 | DOI

[Pe-Piper and Piper, 1984] G. Pe-Piper; D. J. W. Piper Tectonic setting of the Mesozoic Pindos Basin of the Peloponnese, Greece, The Geological Evolution of Asatern Mediterranean (J. E. Dixon; A. H. F Robertson, eds.) (Geological Society, London, Special Publications, 17), Geological Society of London, 1984, pp. 552-563

[Pe-Piper and Piper, 2002] G. Pe-Piper; D. J. W. Piper The Igneous Rocks of Greece. The Anatomy of an Orogen, Beitrage zur Regionalen Geologie der Erde, 30, Gebrüder Borntraeger, Berlin, 2002

[Pe-Piper, 1998] G. Pe-Piper The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry, Geol. Mag., Volume 135 (1998), pp. 331-348 | DOI

[Piromallo et al., 2006] C. Piromallo; T. W. Becker; F. Funiciello; C. Faccenna Three-dimensional instantaneous mantle flow induced by subduction, J. Geophys. Res., Volume 33 (2006), L08304

[Plunder et al., 2016] A. Plunder; P. Agard; C. Chopin; M. Soret; A. I. Okay; H. Whitechurch Metamorphic sole formation, emplacement and blueschist facies overprint: early subduction dynamics witnessed by western Turkey ophiolites, Terra Nova, Volume 28 (2016), pp. 329-339 | DOI

[Rabillard et al., 2018] A. Rabillard; L. Jolivet; L. Arbaret; E. Bessière; V. Laurent; A. Menant; R. Augier; A. Beaudoin Synextensional granitoids and detachment systems within cycladic metamorphic core complexes (Aegean Sea, Greece): Toward a regional tectonomagmatic model, Tectonics, Volume 37 (2018) no. 8, pp. 2328-2362 | DOI

[Rassios and Moores, 2006] A. Rassios; E. M. Moores Heterogeneous mantle complex, crustal processes and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece), Tectonic Development of the Eastern Medi-terranean Region (A. H. F. Robertson; D. Mountrakis, eds.) (Geological Society, London, Special Publications, 260), Geological Society of London, 2006, pp. 237-266

[Rassios and Smith, 2000] A. Rassios; A. Smith Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos and Othris) inferred from deformation structures in peridotites, Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program (Y. Dilek; E. M. Moores; D. Elthon; A. Nicolas, eds.) (Geological Society of America, Special Papers, 349), Geological Society of America, 2000, pp. 473-483

[Reilinger et al., 1995] R. Reilinger; S. McClusky; H. G. Kahle; M. V. Mülle; C. Straub; K. Kastens; L. Gilbert; K. Hurst; M. Veis; D. Paradissis; A. Barka GPS evidence for westward continuation of dextral strike-slip motion from the North Anatolian Fault Zone across the North Aegean and North-Central Greece, EOS, Volume 76 (1995) no. 2, pp. 9-11

[Reilinger et al., 2006] R. Reilinger; S. McClusky; P. Vernant; S. Lawrence; R. Ergintav; H. Cakmak; F. Ozener; I. Kadirov; R. Guliev; M. Stepanyan; G. Nadariya; S. Hahubia; K. Mahmoud; A. Sakr; D. ArRajehi; A. Paradissis; M. Al-Aydrus; T. Prilepin; E. Guseva; A. Evren; S. V. Dmitrotsa; F. Filikov; R. Gomez; R. Al-Ghazzi; G. Karam GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., Volume 111 (2006), B05411 | DOI

[Ricou and Godfriaux, 1995] L. E. Ricou; I. Godfriaux Mise au point sur la fenêtre multiple du Paikon et la structure du Vardar en Grèce, C. R. Acad. Sci., Paris Sér. IIA, Volume 321 (1995), pp. 601-608

[Ring and Layer, 2003] U. Ring; P. Layer High-pressure metamorphism in the Aegean, eastern Mediterranean: Underplating and exhumation from the Late, Tectonics, Volume 22 (2003) no. 3, 1022 (1–23) | DOI

[Ring et al., 1999] U. Ring; K. Gessner; T. Güngor; S. W. Passcher The Menderes Massif of western Turkey and the Cycladic Massif in the Aegean—do they really correlate?, J. Geol. Soc., Volume 156 (1999), pp. 3-6 | DOI

[Ring et al., 2001] U. Ring; P. Layer; T. Reischmann Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-magnitude displacement on the Cretan detachment, Geology, Volume 29 (2001) no. 5, pp. 395-398 | DOI

[Ring et al., 2010] U. Ring; J. Glodny; T. Will; S. Thomson The hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension, Annu. Rev. Earth Planet. Sci., Volume 38 (2010), pp. 45-76 | DOI

[Ring et al., 2011] U. Ring; J. Glodny; T. Will; S. Thomson Normal faulting on sifnos and the south cycladic detachment system, Aegean Sea, Greece, J. Geol. Soc. Lond., Volume 168 (2011), pp. 751-768 | DOI

[Robertson, 2012] A. H. F. Robertson Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region, Int. Geol. Rev., Volume 54 (2012) no. 4, pp. 373-454 | DOI

[Roche et al., 2019] V. Roche; L. Jolivet; D. Papanikolaou; E. Bozkurt; A. Menant; R. Rimmelé Slab fragmentation beneath the Aegean/Anatolia transition zone: Insights from the tectonic and metamorphic evolution of the Eastern Aegean region, Tectonophysics, Volume 754 (2019), pp. 101-129 | DOI

[Romano et al., 2004] S. Romano; W. Dörr; G. Zulauf Cambrian granitoids in pre-Alpine basement of Crete (Greece): evidence from U-Pb dating of zircon, Int. J. Earth Sci., Volume 93 (2004), pp. 844-859 | DOI

[Saccani and Photiades, 2004] E. Saccani; A. Photiades Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting, Lithos, Volume 73 (2004), pp. 229-253 | DOI

[Saccani et al., 2004] E. Saccani; L. Beccaluva; M. Coltorti; F. Siena Petrogenesis and tectono-magmatic significance of the Albanide-Hellenide subpelagonian ophiolites, Ofioliti, Volume 29 (2004) no. 1, pp. 75-93

[Saccani et al., 2008] E. Saccani; V. Bortolotti; M. Marroni; L. Pandolfi; A. Photiades; G. Principi The Jurassic association of back-arc basin ophiolites and calc-alkaline volcanics in the Guevgueli Complex (Northern Greece): Implication for the evolution of the Vardar Zone, Ofioliti, Volume 33 (2008), pp. 209-227

[Saccani et al., 2011] E. Saccani; L. Beccaluva; A. Photiades; O. Zeda Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector, Lithos, Volume 124 (2011), pp. 227-242 | DOI

[Saccani et al., 2015] E. Saccani; M. Chiari; V. Bortolotti; A. Photiades; G. Principi Geochemistry of volcanic and subvolcanic rocks and biostratigraphy on radiolarian cherts from the Almopias ophiolites and Paikon unit (Western Vardar, Greece), Ofioliti, Volume 40 (2015), pp. 1-25

[Salaün et al., 2012] G. Salaün; H. Pedersen; A. Paul; V. Farra; H. Karabulut; D. Hatzfeld; C. Papazachos; D. M. Childs; C. Pequegnat; SIMBAAD Team High resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper mantle structure, Geophys. J. Int., Volume 190 (2012), pp. 406-420 | DOI

[Schenker et al., 2014] F. L. Schenker; J. P. Burg; D. Kostopoulos; E. Moulas; A. Larionov; A. von Quadt From Mesoproterozoic magmatism to collisional Cretaceous anatexis: tectonomagmatic history of the Pelagonian Zone, Greece, Tectonics, Volume 33 (2014), pp. 1552-1576 | DOI

[Schenker et al., 2015] F. L. Schenker; M. G. Fellin; J. P. Burg Polyphase evolution of Pelagonia (northern Greece) revealed by geological and fission-track data, Solid Earth, Volume 6 (2015), pp. 285-302 | DOI

[Schermer et al., 1990] E. R. Schermer; D. R. Lux; B. C. Burchfiel Temperature-time history of subducted continental crust, Mount Olympos region, Greece, Tectonics, Volume 9 (1990) no. 5, pp. 1165-1195 | DOI

[Schermer, 1990] E. R. Schermer Mechanisms of blueschist creation and preservation in an A-type subduction zone, Mount Olympos region, Greece, Geology, Volume 18 (1990) no. 11, pp. 1130-1133 | DOI

[Schermer, 1993] E. R. Schermer Geometry and kinematics of continental basement deformation during the Alpine orogeny, Mt. Olympos region, Greece, J. Struct. Geol., Volume 15 (1993), pp. 571-591 | DOI

[Schmid et al., 2008] S. M. Schmid; D. Bernoulli; B. Fügenschuh; L. Maţenco; S. Schefer; R. Schuster; M. Tischler; K. Ustaszewski The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., Volume 101 (2008), pp. 139-183 | DOI

[Schmid et al., 2020] S. M. Schmid; B. Fügenshuh; A. Kounov; L. Matenco; P. Nievergelt; R. Oberhänsli; J. Pleuger; S. Schefer; R. Schuster; B. Tomilenovic; K. Ustaszewski; D. J. J. van Hinsbergen Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey, Gondwana Res., Volume 78 (2020), pp. 308-374 | DOI

[Schmitt, 1983] A. Schmitt Nouvelle contribution a l’étude géologique des Pierra, de l’Olympe et de l’Ossa (Grece du Nord), Phd thesis, Université de Paris VI, Paris, France (1983) | Numdam

[Schneider et al., 2018] D. A. Schneider; K. Soukis; B. Grasemann; E. Draganits Geodynamic significance of the Santorini Detachment System (Cyclades, Greece), Terra Nova, Volume 30 (2018), pp. 414-422 | DOI

[Searle and Lamont, 2020] M. Searle; T. Lamont Compressional metamorphic core complexes, low-angle normal faults and extensional fabrics in compressional tectonic settings, Geol. Mag., Volume 157 (2020) no. 1, pp. 101-118 | DOI

[Searle and Lamont, 2022] M. P. Searle; T. N. Lamont Compressional origin of the Aegean Orogeny, Greece, Geosci. Front., Volume 13 (2022) no. 2, 101049 | DOI

[Seidel et al., 1982] E. Seidel; H. Kreuzer; W. Harre The late Oligocene/early Miocene high pressure in the external hellenides, Geol. Jb. E, Volume 23 (1982), pp. 165-206

[Seidel et al., 2007] M. Seidel; E. Seidel; B. Stöckhert Tectono-sedimentary evolution of lower to middle Miocene half-graben basins related to an extensional detachment fault (western Crete, Greece), Terra Nova, Volume 19 (2007), pp. 39-47 | DOI

[Seidel, 1978] E. Seidel Zur Petrologie der Phyllit-Quartzit-serie Kretas, Habilitationsschrift, Braunschweig, 1978, pp. 1-145

[Shaked et al., 2000] Y. Shaked; D. Avigad; Z. Garfunkel Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece), Geol. Mag., Volume 137 (2000) no. 4, pp. 367-380 | DOI

[Sharp and Robertson, 2006] I. R. Sharp; A. H. F. Robertson Tectonic-sedimentary evolution of the western margin of the Mesozoic Vardar ocean: evidence from the Pelagonian and Almopias zones, northern Greece, Tectonic Development of the Eastern Mediterranean Region (A. H. F. Robertson; D. Mountrakis, eds.) (Geological Society, London, Special Publications, 260), Geological Society of London, 2006, pp. 373-412

[Skourlis and Doutsos, 2003] K. Skourlis; T. Doutsos The Pindos Fold-and-thrust belt (Greece): inversion kinematics of a passive continental margin, Int. J. Earth Sci., Volume 92 (2003), pp. 891-903 | DOI

[Smith and Rassios, 2003] A. G. Smith; A. Rassios The evolution of ideas for the origin and emplacementof the western Hellenic Ophiolites, Ophiolite Concept and the Evolution of Geological Thought (Y. Dilek; S. Newcomb, eds.) (Geological Society of America, Special Paper, 373), Geological Society of America, 2003, pp. 337-350

[Smith et al., 1975] A. G. Smith; A. J. Hynes; M. Menzies; E. G. Nisbet; I. Price; M. J. Welland; J. Ferriere The stratigraphy of the Othris Mountains, Eastern Central Greece: a deformed Mesozoic continental margin sequence, Eclogae Geol. Helv., Volume 68 (1975), pp. 463-481

[Sokoutis and Brun, 2018] D. Sokoutis; J. P. Brun Core complex segmentation in north aegean, a dynamic view, Tectonics, Volume 37 (2018) no. 6, pp. 1797-1830

[Spray et al., 1984] J. G. Spray; J. Bebien; D. C. Rex; J. C. Roddick Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites, The Geological Evolution of the Eastern Mediterranean (J. E. Dixon; A. H. F. Robertson, eds.) (Geological Society, London, Special Publications, 17), Geological Society of London, 1984, pp. 617-629

[Stais and Ferriere, 1991] A. Stais; J. Ferriere Nouvelles données sur la paleogeographie Mesozoıque du domaine vardarien: les bassins d’Almopias et de Peonias (Macedoine, Hellenides internes septentrionales), Bull. Geol. Soc. Greece, Volume 26 (1991) no. 1, pp. 491-507

[Stais et al., 1990] A. Stais; J. Ferriere; M. Caridroit; P. De Wever; B. Clement; J. Bertrand Donnees nouvelles sur l’histoire ante-obduction (Trias-Jurassique) du domaine d’Almopias (Macedoine, Grece), C. R. Acad. Sci. Paris, Volume 310 (1990), pp. 1275-1480

[Stampfli and Borel, 2002] G. M. Stampfli; G. Borel A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones, Earth Planet. Sci. Lett., Volume 196 (2002), pp. 17-33 | DOI

[Sternai et al., 2014] P. Sternai; L. Jolivet; A. Menant; T. Gerya Subduction and mantle flow driving surface deformation in the Aegean-Anatolian system, Earth Planet. Sci. Lett., Volume 405 (2014), pp. 110-118

[Sudar et al., 2013] M. N. Sudar; H. J. Gawlick; R. Lein; S. Missoni; S. Kovacs; D. Jovanovic Depositional environment, age and facies of the Middle Triassic Bulog and Rid formations in the Inner Dinarides (Zlatibor Mountain, SW Serbia): evidence for the Anisian break-up of the Neotethys Ocean, Neues Jahrb. Geol. Palaontol. Abh., Volume 269 (2013) no. 3, pp. 291-320 | DOI

[Surmont et al., 1991] J. Surmont; B. Vrielynck; J. Ferriere; J. F. Deconinck; J. Azema; A. Stais; F. Baudin; R. Mouterde Paleogeographies du Toarcien et de la limite Jurassique-Cretace dans les Hellenides entre le Pinde et le Vardar, Bull. Soc. Géol. Fr., Volume 162 (1991) no. 1, pp. 43-56 | DOI

[Theye and Seidel, 1991] T. Theye; E. Seidel Petrology of low-grade high-pressure metapelites from the External Hellenides (Crete, Peloponnese) A case study with attention to sodic minerals, Eur. J. Mineral., Volume 3 (1991) no. 2, pp. 343-366 | DOI

[Theye et al., 1992] T. Theye; E. Seidel; O. Vidal Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece, Eur. J. Mineral., Volume 4 (1992) no. 3, pp. 487-507 | DOI

[Thiébault, 1982] F. Thiébault Evolution géodynamique des Héllenides externes en Peloponnèse meridional (Grèce), Soc. Géol. Nord, Volume 6 (1982), pp. 1-574 (2 volumes)

[Thomson et al., 1998] S. N. Thomson; B. Stoeckhert; M. R. Brix Thermochronology of the high-pressure metamorphic rocks of Crete, Greece; implications for the speed of tectonic processes, Geology, Volume 26 (1998), pp. 259-262 | DOI

[Trotet et al., 2001a] F. Trotet; L. Jolivet; O. Vidal Tectono-metamorphic evolution of Syros and Sifnos Islands (Cyclades, Greece), Tectonophysics, Volume 338 (2001), pp. 179-206 | DOI

[Trotet et al., 2001b] F. Trotet; O. Vidal; L. Jolivet Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P–T paths, Eur. J. Mineral., Volume 13 (2001), pp. 901-920 | DOI

[Trotet et al., 2006] F. Trotet; B. Goffé; O. Vidal; L. Jolivet Evidence of retrograde Mg-carpholite in the Phyllite-Quartzite nappe of Peloponnese from thermobarometric modelisation geodynamic implications, Geodin. Acta, Volume 19 (2006) no. 5, pp. 323-343 | DOI

[Urai et al., 1990] J. L. Urai; R. D. Shuiling; J. B. H. Jansen Alpine deformation on Naxos (Greece), Deformation Mechanisms, Rheology and Tectonics (R. J. Knipe; E. H. Rutter, eds.) (Geological Society, London, Special Publications, 54), Geological Society of London, 1990, pp. 509-522

[Uunk et al., 2022] B. Uunk; F. Brouwer; M. de Paz-Álvarez; K. van Zuilen; R. Huybens; R. van ’t Veer; J. Wijbrans Consistent detachment of supracrustal rocks from a fixed subduction depth in the Cyclades, Earth Planet. Sci. Lett., Volume 584 (2022), 117479 | DOI

[Vamvaka et al., 2006] A. Vamvaka; D. Kilias; D. Mountrakis; J. Papaoikonomou Geometry and structural evolution of the Mesohellenic trough (Greece): a new approach, Tectonic Development of the Eastern Mediterranean Region (A. H. F. Robertson; D. Mountrakis, eds.) (Geological Society, London, Special Publications, 260), Geological Society of London, 2006, pp. 521-538

[Vamvaka et al., 2010] A. Vamvaka; C. Spiegel; W. Frisch; M. Danisik; A. Kilias Fission track data from the Mesohellenic Trough and the Pelagonian zone in NW Greece: cenozoic tectonics and exhumation of source areas, Int. Geol. Rev., Volume 52 (2010), pp. 223-248 | DOI

[van Hinsbergen et al., 2005a] D. J. J. van Hinsbergen; E. Hafkenscheid; W. Spakman; J. E. Meulenkamp; M. J. R. Wortel Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece, Geology, Volume 33 (2005) no. 4, pp. 325-328 | DOI

[van Hinsbergen et al., 2005b] D. J. J. van Hinsbergen; C. G. Langereis; J. E. Meulenkamp Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region, Tectonophysics, Volume 396 (2005) no. 1–2, pp. 1-34 | DOI

[van Hinsbergen et al., 2015] D. J. J. van Hinsbergen; K. Peters; M. Maffione; W. Spakman; C. Guilmette; C. Thieulot; O. Plumper; D. Gurer; F. M. Brouwer; E. Aldanmaz; N. Kaymakci Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions, Geochem. Geophys. Geosyst., Volume 16 (2015), pp. 1771-1785 | DOI

[van Hinsbergen et al., 2020] D. J. J. van Hinsbergen; T. H. Torsvik; S. M. Schmid; L. C. Matenco; M. Maffione; R. L. M. Vissers; D. Gürer; W. Spakman Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Res., Volume 81 (2020), pp. 79-229 | DOI

[Vergely and Mercier, 2000] P. Vergely; J. Mercier Données nouvelles sur les chevauchements d’âge post-Crétacé supérieur dans le massif du Païkon (zone de l’Axios-Vardar, Macédoine, Grèce) : un nouveau modèle structural, C. R. Acad. Sci. Ser. IIA Earth Planet. Sci., Volume 330 (2000) no. 8, pp. 555-561

[Vergely, 1984] P. Vergely Tectonique des ophiolites dans les Hellenides internes. Consequences sur l’evolution des régions téthysiennes occidentales, Thèse, Université Paris sud Orsay (1984) (pages 1–411)

[Walcott, 1998] R. C. Walcott The Alpine evolution of Thessaly (NW Greece) and late tertiary Aegean kinematics, Thesis, Universiteit Utrecht (1998) (no. 162, pages 1–73)

[Wawrzenitz et al., 2015] N. Wawrzenitz; A. Krohe; I. Baziotis; E. Mposkos; A. R. C. Kylander-Clark; R. L. Romer LASS U–Th–Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): effects of fluid, deformation and metamorphic reactions in local subsystems, Lithos, Volume 232 (2015), pp. 266-285 | DOI

[Wijbrans and McDougall, 1988] J. R. Wijbrans; I. McDougall Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40 Ar/  39 Ar age spectrum measurements, J. Metamorph. Geol., Volume 6 (1988), pp. 571-594 | DOI

[Wijbrans et al., 1993] J. R. Wijbrans; J. D. van Wees; R. A. Stephenson; S. A. P. L. Cloethingh Pressure-temperature-time evolution of the high-pressure metamorphic complex of Sifnos, Greece, Geology, Volume 21 (1993), pp. 443-446 | DOI

[Wortel et al., 2009] R. Wortel; R. Govers; W. Spakman Continental collision and the STEP-wise evolution of convergent plate boundaries: from structure to dynamics, Subduction Zone Geodynamics (S. Lallemand; F. Funiciello, eds.), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 47-59 | DOI

[Xypolias et al., 2012] P. Xypolias; I. Iliopoulos; V. Chatzaras; S. Kokkalas Subduction and exhumation-related structures in the Cycladic Blueschists: insights from south Evia Island (Aegean region, Greece), Tectonics, Volume 31 (2012), pp. 1-22 | DOI

[Zelilidis et al., 2002] A. Zelilidis; D. Piper; N. Kontopoulos Sedimentation and basin evolution of the Oligocene-Miocene Mesohellenic basin, Greece, Am. Assoc. Pet. Geol. Bull., Volume 86 (2002), pp. 161-182

[Özbakır et al., 2020] A. D. Özbakır; R. Govers; A. Fichtner The kefalonia transform fault: A STEP fault in the making, Tectonophysics, Volume 787 (2020), 228471 | DOI


Commentaires - Politique


Ces articles pourraient vous intéresser

The Main Pelagonian Detachment (MPD): extensional reactivation of the frontal thrust of the Internal Zones of the Hellenides (Greece)

Frank Chanier; Jacky Ferrière; Olivier Averbuch; ...

C. R. Géos (2024)


New structural and petrologic data on Mesozoic schists in the Rhodope (Bulgaria): geodynamic implications

Nikolay G. Bonev; Gérard M. Stampfli

C. R. Géos (2003)


Tethys and Apulia (Adria), 100 years of reconstructions

Laurent Jolivet

C. R. Géos (2023)