[Une inégalité dans un espace de Sobolev]
Nous considérons N⩾5, a>0,
Let N⩾5, a>0,
Publié le :
Pedro M. Girão 1
@article{CRMATH_2002__334_2_105_0, author = {Pedro M. Gir\~ao}, title = {A sharp inequality for {Sobolev} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {105--108}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02215-X}, language = {en}, }
Pedro M. Girão. A sharp inequality for Sobolev functions. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 105-108. doi : 10.1016/S1631-073X(02)02215-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02215-X/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25
[2] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., Volume 113 (1993), pp. 318-350
[3] Sobolev inequalities with remainder terms, J. Funct. Anal., Volume 62 (1985), pp. 73-86
[4] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[5] Chabrowski J., Willem M., Least energy solutions for the critical Neumann problem with a weight, Calc. Var. (to appear)
[6] Problémes de Neumann nonlinéaires sur des variétés Riemannienes, J. Funct. Anal., Volume 57 (1984), pp. 154-207
[7] Costa D.G., Girão P.M., Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbation (to appear)
[8] The concentration-compactness principle in the calculus of variations, The limit case, Rev. Math. Iberoamericana, Volume 1 (1985) no. 1–2, pp. 145-201 (and 45–120)
[9] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, Volume 93 (1991), pp. 283-310
[10] Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., Volume 8 (1999), pp. 109-122
[11] Sharp Sobolev inequalities with interior norms, Calc. Var., Volume 8 (1999), pp. 27-43
- Multiple positive bound state solutions for a critical Choquard equation, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 10, pp. 4887-4919 | DOI:10.3934/dcds.2021061 | Zbl:1468.81041
- Minimization problem related to a Lyapunov inequality, Journal of Mathematical Analysis and Applications, Volume 432 (2015) no. 1, pp. 517-530 | DOI:10.1016/j.jmaa.2015.06.031 | Zbl:1330.35101
- On the second solution to a critical growth Robin problem, Journal of Mathematical Analysis and Applications, Volume 389 (2012) no. 2, pp. 950-967 | DOI:10.1016/j.jmaa.2011.12.039 | Zbl:1234.35074
- Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbation., Journal of Differential Equations, Volume 188 (2003) no. 1, pp. 164-202 | DOI:10.1016/s0022-0396(02)00070-0 | Zbl:1163.35372
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier