Comptes Rendus
Necessary conditions for extremals of Blake & Zisserman functional
[Conditions nécessaires d'extrémalité pour la fonctionnelle de Blake & Zisserman]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 343-348.

On donne des conditions nécessaires de minimisation d'une fonctionnelle dépendant de discontinuités libres et de dérivées secondes, reliée à la segmentation d'images. On exhibe un candidat explicite vérifiant toutes les conditions d'extrémalité.

We show some necessary conditions for minimizers of a functional depending on free discontinuities, free gradient discontinuities and second derivatives, which is related to image segmentation. A candidate for minimality of main part of the functional is explicitly exhibited

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02231-8

Michele Carriero 1 ; Antonio Leaci 1 ; Franco Tomarelli 2

1 Dipartimento di Matematica “Ennio De Giorgi”, Via Arnesano, I-73100 Lecce, Italy
2 Dipartimento di Matematica “Francesco Brioschi”, Politecnico, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
@article{CRMATH_2002__334_4_343_0,
     author = {Michele Carriero and Antonio Leaci and Franco Tomarelli},
     title = {Necessary conditions for extremals of {Blake} & {Zisserman} functional},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {343--348},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02231-8},
     language = {en},
}
TY  - JOUR
AU  - Michele Carriero
AU  - Antonio Leaci
AU  - Franco Tomarelli
TI  - Necessary conditions for extremals of Blake & Zisserman functional
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 343
EP  - 348
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02231-8
LA  - en
ID  - CRMATH_2002__334_4_343_0
ER  - 
%0 Journal Article
%A Michele Carriero
%A Antonio Leaci
%A Franco Tomarelli
%T Necessary conditions for extremals of Blake & Zisserman functional
%J Comptes Rendus. Mathématique
%D 2002
%P 343-348
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02231-8
%G en
%F CRMATH_2002__334_4_343_0
Michele Carriero; Antonio Leaci; Franco Tomarelli. Necessary conditions for extremals of Blake & Zisserman functional. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 343-348. doi : 10.1016/S1631-073X(02)02231-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02231-8/

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, 2000

[2] A. Blake; A. Zisserman Visual Reconstruction, MIT Press, Cambridge, 1987

[3] M. Carriero; A. Leaci; F. Tomarelli Free gradient discontinuities (G. Buttazzo; G. Bouchitté; P. Suquet, eds.), Calculus of Variations, Homogenization and Continuum Mechanics, World Scientific, Singapore, 1994, pp. 131-147

[4] M. Carriero; A. Leaci; F. Tomarelli A second order model in image segmentation: Blake & Zisserman functional (R. Serapioni; F. Tomarelli, eds.), Variational Methods for Discontinuous Structures, Birkäuser, 1996, pp. 57-72

[5] M. Carriero; A. Leaci; F. Tomarelli Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 25 (1997), pp. 257-285

[6] M. Carriero; A. Leaci; F. Tomarelli Density estimates and further properties of Blake & Zisserman functional (P.D. Panagiotopoulos; R. Gilbert; P.M. Pardalos, eds.), From Convexity to Nonconvexity, Kluwer Academic, 2001, pp. 381-392

[7] E. De Giorgi Free discontinuity problems in calculus of variations (R. Dautray, ed.), Frontiers Pure Appl. Math., North–Holland, Amsterdam, 1991, pp. 55-61

  • Michele Carriero; Antonio Leaci; Franco Tomarelli Almansi decomposition and expansion of a polyharmonic function near a crack-tip, Journal of Convex Analysis, Volume 31 (2024) no. 2, pp. 379-409 | Zbl:1537.31001
  • Antonio Leaci; Franco Tomarelli Symmetrized fractional total variation for signal and image analysis, Advances in Continuous and Discrete Models, Volume 2023 (2023), p. 17 (Id/No 14) | DOI:10.1186/s13662-023-03762-8 | Zbl:1535.94008
  • Michele Carriero; Antonio Leaci; Franco Tomarelli Segmentation and inpainting of color images, Journal of Convex Analysis, Volume 25 (2018) no. 2, pp. 435-458 | Zbl:1394.49013
  • Danilo Percivale; Franco Tomarelli Smooth and Broken Minimizers of Some Free Discontinuity Problems, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Volume 22 (2017), p. 431 | DOI:10.1007/978-3-319-64489-9_17
  • Michele Carriero; Antonio Leaci; Franco Tomarelli Corrigendum to: “A candidate local minimizer of Blake and Zisserman functional”, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 104 (2015) no. 5, pp. 1005-1011 | DOI:10.1016/j.matpur.2015.03.012 | Zbl:1332.49021
  • Michele Carriero; Antonio Leaci; Franco Tomarelli A survey on the Blake-Zisserman functional, Milan Journal of Mathematics, Volume 83 (2015) no. 2, pp. 397-420 | DOI:10.1007/s00032-015-0246-x | Zbl:1330.49010
  • Paolo Facchi; Marilena Ligabò; Sergio Solimini Tomography: mathematical aspects and applications, Physica Scripta, Volume 90 (2015) no. 7, p. 074007 | DOI:10.1088/0031-8949/90/7/074007
  • Tommaso Boccellari; Franco Tomarelli Generic uniqueness of minimizer for Blake Zisserman functional, Revista Matemática Complutense, Volume 26 (2013) no. 2, pp. 361-408 | DOI:10.1007/s13163-012-0103-1 | Zbl:1334.49113
  • M. Carriero; A. Leaci; F. Tomarelli Free gradient discontinuity and image inpainting, Journal of Mathematical Sciences (New York), Volume 181 (2012) no. 6, pp. 805-819 | DOI:10.1007/s10958-012-0716-4 | Zbl:1260.49025
  • Michele Carriero; Antonio Leaci; Franco Tomarelli Uniform density estimates for Blake Zisserman functional, Discrete Continuous Dynamical Systems - A, Volume 31 (2011) no. 4, p. 1129 | DOI:10.3934/dcds.2011.31.1129
  • Michele Carriero; Antonio Leaci; Franco Tomarelli A candidate local minimizer of Blake and Zisserman functional, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 96 (2011) no. 1, pp. 58-87 | DOI:10.1016/j.matpur.2011.01.005 | Zbl:1218.49029
  • Michele Carriero; Antonio Leaci; Franco Tomarelli Euler equations for Blake and Zisserman functional, Calculus of Variations and Partial Differential Equations, Volume 32 (2008) no. 1, pp. 81-110 | DOI:10.1007/s00526-007-0129-2 | Zbl:1138.49021
  • Michele Carriero; Antonio Leaci; Franco Tomarelli Calculus of variations and image segmentation, Journal of Physiology-Paris, Volume 97 (2003) no. 2-3, p. 343 | DOI:10.1016/j.jphysparis.2003.09.008

Cité par 13 documents. Sources : Crossref, zbMATH

Commentaires - Politique