[Conditions nécessaires d'extrémalité pour la fonctionnelle de Blake & Zisserman]
On donne des conditions nécessaires de minimisation d'une fonctionnelle dépendant de discontinuités libres et de dérivées secondes, reliée à la segmentation d'images. On exhibe un candidat explicite vérifiant toutes les conditions d'extrémalité.
We show some necessary conditions for minimizers of a functional depending on free discontinuities, free gradient discontinuities and second derivatives, which is related to image segmentation. A candidate for minimality of main part of the functional is explicitly exhibited
Accepté le :
Publié le :
Michele Carriero 1 ; Antonio Leaci 1 ; Franco Tomarelli 2
@article{CRMATH_2002__334_4_343_0, author = {Michele Carriero and Antonio Leaci and Franco Tomarelli}, title = {Necessary conditions for extremals of {Blake} & {Zisserman} functional}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--348}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02231-8}, language = {en}, }
TY - JOUR AU - Michele Carriero AU - Antonio Leaci AU - Franco Tomarelli TI - Necessary conditions for extremals of Blake & Zisserman functional JO - Comptes Rendus. Mathématique PY - 2002 SP - 343 EP - 348 VL - 334 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02231-8 LA - en ID - CRMATH_2002__334_4_343_0 ER -
Michele Carriero; Antonio Leaci; Franco Tomarelli. Necessary conditions for extremals of Blake & Zisserman functional. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 343-348. doi : 10.1016/S1631-073X(02)02231-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02231-8/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, 2000
[2] Visual Reconstruction, MIT Press, Cambridge, 1987
[3] Free gradient discontinuities (G. Buttazzo; G. Bouchitté; P. Suquet, eds.), Calculus of Variations, Homogenization and Continuum Mechanics, World Scientific, Singapore, 1994, pp. 131-147
[4] A second order model in image segmentation: Blake & Zisserman functional (R. Serapioni; F. Tomarelli, eds.), Variational Methods for Discontinuous Structures, Birkäuser, 1996, pp. 57-72
[5] Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 25 (1997), pp. 257-285
[6] Density estimates and further properties of Blake & Zisserman functional (P.D. Panagiotopoulos; R. Gilbert; P.M. Pardalos, eds.), From Convexity to Nonconvexity, Kluwer Academic, 2001, pp. 381-392
[7] Free discontinuity problems in calculus of variations (R. Dautray, ed.), Frontiers Pure Appl. Math., North–Holland, Amsterdam, 1991, pp. 55-61
Cité par Sources :
Commentaires - Politique