[Conditions nécessaires d'extrémalité pour la fonctionnelle de Blake & Zisserman]
On donne des conditions nécessaires de minimisation d'une fonctionnelle dépendant de discontinuités libres et de dérivées secondes, reliée à la segmentation d'images. On exhibe un candidat explicite vérifiant toutes les conditions d'extrémalité.
We show some necessary conditions for minimizers of a functional depending on free discontinuities, free gradient discontinuities and second derivatives, which is related to image segmentation. A candidate for minimality of main part of the functional is explicitly exhibited
Accepté le :
Publié le :
Michele Carriero 1 ; Antonio Leaci 1 ; Franco Tomarelli 2
@article{CRMATH_2002__334_4_343_0, author = {Michele Carriero and Antonio Leaci and Franco Tomarelli}, title = {Necessary conditions for extremals of {Blake} & {Zisserman} functional}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--348}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02231-8}, language = {en}, }
TY - JOUR AU - Michele Carriero AU - Antonio Leaci AU - Franco Tomarelli TI - Necessary conditions for extremals of Blake & Zisserman functional JO - Comptes Rendus. Mathématique PY - 2002 SP - 343 EP - 348 VL - 334 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02231-8 LA - en ID - CRMATH_2002__334_4_343_0 ER -
Michele Carriero; Antonio Leaci; Franco Tomarelli. Necessary conditions for extremals of Blake & Zisserman functional. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 343-348. doi : 10.1016/S1631-073X(02)02231-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02231-8/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, 2000
[2] Visual Reconstruction, MIT Press, Cambridge, 1987
[3] Free gradient discontinuities (G. Buttazzo; G. Bouchitté; P. Suquet, eds.), Calculus of Variations, Homogenization and Continuum Mechanics, World Scientific, Singapore, 1994, pp. 131-147
[4] A second order model in image segmentation: Blake & Zisserman functional (R. Serapioni; F. Tomarelli, eds.), Variational Methods for Discontinuous Structures, Birkäuser, 1996, pp. 57-72
[5] Strong minimizers of Blake & Zisserman functional, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), Volume 25 (1997), pp. 257-285
[6] Density estimates and further properties of Blake & Zisserman functional (P.D. Panagiotopoulos; R. Gilbert; P.M. Pardalos, eds.), From Convexity to Nonconvexity, Kluwer Academic, 2001, pp. 381-392
[7] Free discontinuity problems in calculus of variations (R. Dautray, ed.), Frontiers Pure Appl. Math., North–Holland, Amsterdam, 1991, pp. 55-61
- Symmetrised fractional variation with L1 fidelity for signal denoising via Grünwald-Letnikov scheme, Applied Mathematics and Computation, Volume 500 (2025), p. 129429 | DOI:10.1016/j.amc.2025.129429
- Symmetrized fractional total variation for signal and image analysis, Advances in Continuous and Discrete Models, Volume 2023 (2023) no. 1 | DOI:10.1186/s13662-023-03762-8
- Smooth and Broken Minimizers of Some Free Discontinuity Problems, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Volume 22 (2017), p. 431 | DOI:10.1007/978-3-319-64489-9_17
- Corrigendum to “A candidate local minimizer of Blake and Zisserman functional” [J. Math. Pures Appl. 96 (1) (2011) 58–87], Journal de Mathématiques Pures et Appliquées, Volume 104 (2015) no. 5, p. 1005 | DOI:10.1016/j.matpur.2015.03.012
- A Survey on the Blake–Zisserman Functional, Milan Journal of Mathematics, Volume 83 (2015) no. 2, p. 397 | DOI:10.1007/s00032-015-0246-x
- Tomography: mathematical aspects and applications, Physica Scripta, Volume 90 (2015) no. 7, p. 074007 | DOI:10.1088/0031-8949/90/7/074007
- Generic uniqueness of minimizer for Blake Zisserman functional, Revista Matemática Complutense, Volume 26 (2013) no. 2, p. 361 | DOI:10.1007/s13163-012-0103-1
- Free gradient discontinuity and image inpainting, Journal of Mathematical Sciences, Volume 181 (2012) no. 6, p. 805 | DOI:10.1007/s10958-012-0716-4
- Uniform density estimates for Blake Zisserman functional, Discrete Continuous Dynamical Systems - A, Volume 31 (2011) no. 4, p. 1129 | DOI:10.3934/dcds.2011.31.1129
- A candidate local minimizer of Blake and Zisserman functional, Journal de Mathématiques Pures et Appliquées, Volume 96 (2011) no. 1, p. 58 | DOI:10.1016/j.matpur.2011.01.005
- Euler equations for Blake and Zisserman functional, Calculus of Variations and Partial Differential Equations, Volume 32 (2008) no. 1, p. 81 | DOI:10.1007/s00526-007-0129-2
- Calculus of variations and image segmentation, Journal of Physiology-Paris, Volume 97 (2003) no. 2-3, p. 343 | DOI:10.1016/j.jphysparis.2003.09.008
Cité par 12 documents. Sources : Crossref
Commentaires - Politique