[Justification de l'équation de Schrödinger–Poisson à partir du problème quantique à N corps]
We derive the time-dependent Schrödinger–Poisson equation as the weak coupling limit of the N-body linear Schrödinger equation with Coulomb potential.
On établit la validité de l'équation de Schrödinger–Poisson en régime instationnaire comme limite à couplage faible de l'équation de Schrödinger linéaire à N corps avec potentiel de Coulomb.
Accepté le :
Publié le :
Claude Bardos 1 ; Laszlo Erdös 2 ; François Golse 1 ; Norbert Mauser 3 ; Horng-Tzer Yau 4
@article{CRMATH_2002__334_6_515_0, author = {Claude Bardos and Laszlo Erd\"os and Fran\c{c}ois Golse and Norbert Mauser and Horng-Tzer Yau}, title = {Derivation of the {Schr\"odinger{\textendash}Poisson} equation from the quantum $ \mathbf{N}$-body problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {515--520}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2002}, doi = {10.1016/S1631-073X(02)02253-7}, language = {en}, }
TY - JOUR AU - Claude Bardos AU - Laszlo Erdös AU - François Golse AU - Norbert Mauser AU - Horng-Tzer Yau TI - Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem JO - Comptes Rendus. Mathématique PY - 2002 SP - 515 EP - 520 VL - 334 IS - 6 PB - Elsevier DO - 10.1016/S1631-073X(02)02253-7 LA - en ID - CRMATH_2002__334_6_515_0 ER -
%0 Journal Article %A Claude Bardos %A Laszlo Erdös %A François Golse %A Norbert Mauser %A Horng-Tzer Yau %T Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem %J Comptes Rendus. Mathématique %D 2002 %P 515-520 %V 334 %N 6 %I Elsevier %R 10.1016/S1631-073X(02)02253-7 %G en %F CRMATH_2002__334_6_515_0
Claude Bardos; Laszlo Erdös; François Golse; Norbert Mauser; Horng-Tzer Yau. Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 515-520. doi : 10.1016/S1631-073X(02)02253-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02253-7/
[1] Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., Volume 7 (2000), pp. 275-293
[2] C. Bardos, F. Golse, A. Gottlieb, N.J. Mauser, On the derivation of nonlinear Schrödinger and Vlasov equations, Proceedings of the I.M.A., Springer-Verlag (to appear)
[3] L. Erdös, H.-T. Yau, Derivation of the nonlinear Schrödinger equation with Coulomb potential, Preprint
[4] The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Volume 35 (1974), pp. 265-277
[5] The classical field limit of scattering theory for non-relativistic many-boson systems. I and II, Comm. Math. Phys., Volume 66 (1979), pp. 37-76 and 68 (1979) 45–68
[6] On a class of nonlinear Schrödinger equations with nonlocal interactions, Math. Z., Volume 170 (1980), pp. 109-145
[7] Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc., Volume 70 (1951), pp. 195-211
[8] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 183-248
[9] A note on a theorem of Nirenberg, J. Differential Geom., Volume 12 (1977), pp. 629-633
[10] Kinetic equations from hamiltonian dynamics, Rev. Mod. Phys., Volume 52 (1980) no. 3, pp. 569-615
- Dynamics of radial threshold solutions for generalized energy-critical Hartree equation, Forum Mathematicum (2025) | DOI:10.1515/forum-2024-0301
- Testing classicality of gravity by gravitation decoherence, Physical Review D, Volume 111 (2025) no. 6 | DOI:10.1103/physrevd.111.065026
- Nonlinear PDE models in semi-relativistic quantum physics, Computational Methods in Applied Mathematics, Volume 24 (2024) no. 2, pp. 453-465 | DOI:10.1515/cmam-2023-0101 | Zbl:1541.35410
- From many-body quantum dynamics to the Hartree-Fock and Vlasov equations with singular potentials, Journal of the European Mathematical Society (JEMS), Volume 26 (2024) no. 12, pp. 4923-5007 | DOI:10.4171/jems/1478 | Zbl:1555.35263
- Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions, Letters in Mathematical Physics, Volume 114 (2024) no. 2, p. 44 (Id/No 51) | DOI:10.1007/s11005-023-01768-7 | Zbl:1547.81255
- The interactions of dark, bright, parabolic optical solitons with solitary wave solutions for nonlinear Schrödinger–Poisson equation by Hirota method, Optical and Quantum Electronics, Volume 56 (2024) no. 7 | DOI:10.1007/s11082-024-07008-z
- Quantum Optimal Transport: Quantum Couplings and Many-Body Problems, Optimal Transport on Quantum Structures, Volume 29 (2024), p. 91 | DOI:10.1007/978-3-031-50466-2_3
- Quantitative derivation of the Euler-Poisson equation from quantum many-body dynamics, Peking Mathematical Journal, Volume 7 (2024) no. 2, pp. 643-711 | DOI:10.1007/s42543-023-00065-5 | Zbl:1554.35229
- Strong semiclassical limits from Hartree and Hartree-Fock to Vlasov-Poisson equations, Analysis PDE, Volume 16 (2023) no. 4, pp. 891-926 | DOI:10.2140/apde.2023.16.891 | Zbl:1515.35228
- Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations, Applied Numerical Mathematics, Volume 186 (2023), pp. 57-83 | DOI:10.1016/j.apnum.2023.01.002 | Zbl:1545.65030
- Structure-preserving finite-element schemes for the Euler-Poisson equations, Communications in Computational Physics, Volume 33 (2023) no. 3, pp. 647-691 | DOI:10.4208/cicp.oa-2022-0205 | Zbl:1514.65134
- A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems, Journal of Computational Physics, Volume 490 (2023), p. 18 (Id/No 112307) | DOI:10.1016/j.jcp.2023.112307 | Zbl:7715237
- Some connections between stochastic mechanics, optimal control, and nonlinear Schrödinger equations, Mathematics going forward. Collected mathematical brushstrokes, Cham: Springer, 2023, pp. 505-534 | DOI:10.1007/978-3-031-12244-6_36 | Zbl:1530.35272
- On the characterisation of fragmented Bose-Einstein condensation and its emergent effective evolution, Nonlinearity, Volume 36 (2023) no. 12, pp. 6364-6402 | DOI:10.1088/1361-6544/ad027a | Zbl:1527.35322
- Stability of steady states for Hartree and Schrödinger equations for infinitely many particles, Annales Henri Lebesgue, Volume 5 (2022), pp. 429-490 | DOI:10.5802/ahl.127 | Zbl:1500.35248
- Mean-field and classical limit for the
-body quantum dynamics with Coulomb interaction, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 6, pp. 1332-1376 | DOI:10.1002/cpa.21986 | Zbl:1502.81072 - An improved finite integration method for nonlocal nonlinear Schrödinger equations, Computers Mathematics with Applications, Volume 113 (2022), pp. 24-33 | DOI:10.1016/j.camwa.2022.03.004 | Zbl:1504.65234
- Global behavior of solutions to the focusing generalized Hartree equation, Michigan Mathematical Journal, Volume 71 (2022) no. 3, pp. 619-672 | DOI:10.1307/mmj/20205855 | Zbl:1497.35399
- A mass- and energy-conserved DG method for the Schrödinger-Poisson equation, Numerical Algorithms, Volume 89 (2022) no. 2, pp. 905-930 | DOI:10.1007/s11075-021-01139-0 | Zbl:1483.35230
- Note on rotating BEC under a confining potential, Partial Differential Equations in Applied Mathematics, Volume 6 (2022), p. 100461 | DOI:10.1016/j.padiff.2022.100461
- Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 6, pp. 1739-1762 | DOI:10.1016/j.anihpc.2021.01.004 | Zbl:1484.82024
- Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 6, pp. 1899-1916 | DOI:10.3934/dcdss.2021064 | Zbl:1479.35014
- On the asymptotic decay of the Schrödinger-Newton ground state, Physics Letters. A, Volume 395 (2021), p. 5 (Id/No 127209) | DOI:10.1016/j.physleta.2021.127209 | Zbl:7409497
- Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surveys in Mathematical Sciences, Volume 7 (2020) no. 2, pp. 253-408 | DOI:10.4171/emss/40 | Zbl:1472.35319
- Stability of equilibria for a Hartree equation for random fields, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 137 (2020), pp. 70-100 | DOI:10.1016/j.matpur.2020.03.003 | Zbl:1439.35438
- On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity, Journal of Differential Equations, Volume 269 (2020) no. 1, pp. 689-712 | DOI:10.1016/j.jde.2019.12.023 | Zbl:1436.35082
- On the focusing generalized Hartree equation, Mathematics in Applied Sciences and Engineering, Volume 1 (2020) no. 4, pp. 383-402 | DOI:10.5206/mase/10855 | Zbl:1496.35349
- On the size of chaos in the mean field dynamics, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 1, pp. 285-317 | DOI:10.1007/s00205-018-1280-y | Zbl:1404.81117
- Empirical measures and quantum mechanics: applications to the mean-field limit, Communications in Mathematical Physics, Volume 369 (2019) no. 3, pp. 1021-1053 | DOI:10.1007/s00220-019-03357-z | Zbl:1417.81127
- Propagation of moments and semiclassical limit from Hartree to Vlasov equation, Journal of Statistical Physics, Volume 177 (2019) no. 1, pp. 20-60 | DOI:10.1007/s10955-019-02356-7 | Zbl:1426.82034
- On the scattering problem for infinitely many fermions in dimensions
at positive temperature, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 35 (2018) no. 2, pp. 393-416 | DOI:10.1016/j.anihpc.2017.05.002 | Zbl:1383.81366 - Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 2, pp. 177-197 | DOI:10.1016/j.crma.2017.12.007 | Zbl:1383.81030
- On the derivation of the Hartree equation from the
-body Schrödinger equation: uniformity in the Planck constant, Journal of Functional Analysis, Volume 275 (2018) no. 7, pp. 1603-1649 | DOI:10.1016/j.jfa.2018.06.008 | Zbl:1400.82146 - Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity, Nuclear Physics. B, Volume 931 (2018), pp. 250-261 | DOI:10.1016/j.nuclphysb.2018.04.012 | Zbl:1390.81140
- A diffusion result for the Hartree equation around non-localised solutions, Séminaire Laurent Schwartz. EDP et Applications, Volume 2017-2018 (2018), p. ex | DOI:10.5802/slsedp.123 | Zbl:1475.35430
- The Schrödinger equation in the mean-field and semiclassical regime, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 1, pp. 57-94 | DOI:10.1007/s00205-016-1031-x | Zbl:1359.35164
- Global well-posedness of the NLS system for infinitely many fermions, Archive for Rational Mechanics and Analysis, Volume 224 (2017) no. 1, pp. 91-123 | DOI:10.1007/s00205-016-1068-x | Zbl:1369.35075
- The Gross-Pitaevskii hierarchy on general rectangular tori, Archive for Rational Mechanics and Analysis, Volume 220 (2016) no. 3, pp. 1119-1158 | DOI:10.1007/s00205-015-0950-2 | Zbl:1334.35315
- On the mean field and classical limits of quantum mechanics, Communications in Mathematical Physics, Volume 343 (2016) no. 1, pp. 165-205 | DOI:10.1007/s00220-015-2485-7 | Zbl:1418.81021
- Almost exact boundary conditions for transient Schrödinger-Poisson system, Journal of Computational Physics, Volume 313 (2016), pp. 233-246 | DOI:10.1016/j.jcp.2016.02.025 | Zbl:1349.65267
- On the Dynamics of Large Particle Systems in the Mean Field Limit, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Volume 3 (2016), p. 1 | DOI:10.1007/978-3-319-26883-5_1
- Approximations for the free evolution of self-gravitating quantum particles, Physical Review A, Volume 94 (2016) no. 2 | DOI:10.1103/physreva.94.022101
- About systems of fermions with large number of particles: a probabilistic point of view, Séminaire Laurent Schwartz. EDP et Applications, Volume 2015-2016 (2016), p. ex | DOI:10.5802/slsedp.86 | Zbl:1360.35212
- The Hartree equation for infinitely many particles. I: Well-posedness theory, Communications in Mathematical Physics, Volume 334 (2015) no. 1, pp. 117-170 | DOI:10.1007/s00220-014-2098-6 | Zbl:1312.35146
- Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT, Journal of Computational Physics, Volume 296 (2015), pp. 72-89 | DOI:10.1016/j.jcp.2015.04.045 | Zbl:1354.65200
- A mean-field model for spin dynamics in multilayered ferromagnetic media, Multiscale Modeling Simulation, Volume 13 (2015) no. 2, pp. 551-570 | DOI:10.1137/140953149 | Zbl:1317.82058
- Exact Artificial Boundary Condition for the Poisson Equation in the Simulation of the 2D Schrödinger-Poisson System, Communications in Computational Physics, Volume 16 (2014) no. 3, p. 764 | DOI:10.4208/cicp.110813.140314a
- Gravitational decoherence, alternative quantum theories and semiclassical gravity, Journal of Physics: Conference Series, Volume 504 (2014), p. 012021 | DOI:10.1088/1742-6596/504/1/012021
- The Hartree equation for infinite quantum systems, Journées équations aux dérivées partielles (2014), p. 1 | DOI:10.5802/jedp.111
- A review of the mean field limits for Vlasov equations, Kinetic and Related Models, Volume 7 (2014) no. 4, pp. 661-711 | DOI:10.3934/krm.2014.7.661 | Zbl:1318.35129
- The Schrödinger-Newton equation and its foundations, New Journal of Physics, Volume 16 (2014) no. 11, p. 17 (Id/No 115007) | DOI:10.1088/1367-2630/16/11/115007 | Zbl:1451.81381
- Problems with the Newton-Schrödinger equations, New Journal of Physics, Volume 16 (2014) no. 8, p. 19 (Id/No 085007) | DOI:10.1088/1367-2630/16/8/085007 | Zbl:1451.81380
- Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 5, p. B777 | DOI:10.1137/130945582
- Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Computer Physics Communications, Volume 184 (2013) no. 12, pp. 2621-2633 | DOI:10.1016/j.cpc.2013.07.012 | Zbl:1344.35130
- Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials, SIAM Journal on Applied Mathematics, Volume 73 (2013) no. 6, p. 2100 | DOI:10.1137/13091436x
- Mean-field quantum dynamics with magnetic fields, Journal of Mathematical Physics, Volume 53 (2012) no. 2, p. 022105 | DOI:10.1063/1.3687024 | Zbl:1274.81085
- The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, Journal of Mathematical Physics, Volume 53 (2012) no. 9, p. 095223 | DOI:10.1063/1.4752475 | Zbl:1286.81179
- Mean-field dynamics of rotating bosons in strongly anisotropic traps, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 31, p. 315303 | DOI:10.1088/1751-8113/45/31/315303
- Semiclassical propagation of coherent states for the Hartree equation, Annales Henri Poincaré, Volume 12 (2011) no. 8, pp. 1613-1634 | DOI:10.1007/s00023-011-0115-2 | Zbl:1238.81140
- Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 22 (2011) no. 4, pp. 525-552 | DOI:10.4171/rlm/613 | Zbl:1235.81100
- Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 95 (2011) no. 6, pp. 585-626 | DOI:10.1016/j.matpur.2010.12.004 | Zbl:1251.81062
- On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system, Journal of Computational Physics, Volume 230 (2011) no. 7, pp. 2660-2676 | DOI:10.1016/j.jcp.2010.12.045 | Zbl:1218.65115
- Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation, Applications of Mathematics, Volume 55 (2010) no. 3, pp. 197-219 | DOI:10.1007/s10492-010-0008-6 | Zbl:1224.81018
- One particle equations for many particle quantum systems: the MCTHDF method, Quarterly of Applied Mathematics, Volume 68 (2010) no. 1, pp. 43-59 | DOI:10.1090/s0033-569x-09-01181-7 | Zbl:1185.35206
- The Vlasov limit for a system of particles which interact with a wave field, Communications in Mathematical Physics, Volume 285 (2009) no. 2, pp. 673-712 | DOI:10.1007/s00220-008-0591-5 | Zbl:1157.70010
- Mean field limit for bosons and propagation of Wigner measures, Journal of Mathematical Physics, Volume 50 (2009) no. 4, p. 042107 | DOI:10.1063/1.3115046 | Zbl:1214.81089
- A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials, Journal of Computational and Applied Mathematics, Volume 220 (2008) no. 1-2, pp. 588-614 | DOI:10.1016/j.cam.2007.09.025 | Zbl:1146.65072
- A remark on the mean-field dynamics of many-body bosonic systems with random interactions and in a random potential, Letters in Mathematical Physics, Volume 84 (2008) no. 2-3, pp. 231-243 | DOI:10.1007/s11005-008-0250-y | Zbl:1167.82308
- Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, Volume 271 (2007) no. 3, pp. 681-697 | DOI:10.1007/s00220-007-0207-5 | Zbl:1172.82011
- Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, Volume 127 (2007) no. 6, pp. 1193-1220 | DOI:10.1007/s10955-006-9271-z | Zbl:1118.81021
- Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. III: From ab initio models to WKB for Schrödinger-Poisson, Journal of Computational Physics, Volume 211 (2006) no. 1, pp. 326-346 | DOI:10.1016/j.jcp.2005.05.020 | Zbl:1081.81041
- THE IVP FOR THE SCHRÖDINGER–POISSON-Xα EQUATION IN ONE DIMENSION, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 08, p. 1169 | DOI:10.1142/s0218202505000698
- Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. II: Impurities, confinement and Bloch oscillations, Journal of Computational Physics, Volume 201 (2004) no. 1, pp. 344-375 | DOI:10.1016/j.jcp.2004.06.004 | Zbl:1080.81010
- Mean field dynamics of fermions and the time-dependent Hartree–Fock equation, Journal de Mathématiques Pures et Appliquées, Volume 82 (2003) no. 6, p. 665 | DOI:10.1016/s0021-7824(03)00023-0
- MEAN-FIELD APPROXIMATION OF QUANTUM SYSTEMS AND CLASSICAL LIMIT, Mathematical Models and Methods in Applied Sciences, Volume 13 (2003) no. 01, p. 59 | DOI:10.1142/s0218202503002386
- Scaling Limits of Schrödinger Quantum Mechanics, Dynamics of Dissipation, Volume 597 (2002), p. 487 | DOI:10.1007/3-540-46122-1_19
Cité par 76 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier