Comptes Rendus
Derivation of the Schrödinger–Poisson equation from the quantum 𝐍-body problem
[Justification de l'équation de Schrödinger–Poisson à partir du problème quantique à N corps]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 515-520.

We derive the time-dependent Schrödinger–Poisson equation as the weak coupling limit of the N-body linear Schrödinger equation with Coulomb potential.

On établit la validité de l'équation de Schrödinger–Poisson en régime instationnaire comme limite à couplage faible de l'équation de Schrödinger linéaire à N corps avec potentiel de Coulomb.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02253-7

Claude Bardos 1 ; Laszlo Erdös 2 ; François Golse 1 ; Norbert Mauser 3 ; Horng-Tzer Yau 4

1 Université Paris 6, Laboratoire d'analyse numérique, 175, rue du Chevaleret, 75013 Paris, France
2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
3 Wolfgang Pauli Institute, c/o Inst. f. das Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
4 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA
@article{CRMATH_2002__334_6_515_0,
     author = {Claude Bardos and Laszlo Erd\"os and Fran\c{c}ois Golse and Norbert Mauser and Horng-Tzer Yau},
     title = {Derivation of the {Schr\"odinger{\textendash}Poisson} equation from the quantum $ \mathbf{N}$-body problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {515--520},
     publisher = {Elsevier},
     volume = {334},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02253-7},
     language = {en},
}
TY  - JOUR
AU  - Claude Bardos
AU  - Laszlo Erdös
AU  - François Golse
AU  - Norbert Mauser
AU  - Horng-Tzer Yau
TI  - Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 515
EP  - 520
VL  - 334
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02253-7
LA  - en
ID  - CRMATH_2002__334_6_515_0
ER  - 
%0 Journal Article
%A Claude Bardos
%A Laszlo Erdös
%A François Golse
%A Norbert Mauser
%A Horng-Tzer Yau
%T Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem
%J Comptes Rendus. Mathématique
%D 2002
%P 515-520
%V 334
%N 6
%I Elsevier
%R 10.1016/S1631-073X(02)02253-7
%G en
%F CRMATH_2002__334_6_515_0
Claude Bardos; Laszlo Erdös; François Golse; Norbert Mauser; Horng-Tzer Yau. Derivation of the Schrödinger–Poisson equation from the quantum $ \mathbf{N}$-body problem. Comptes Rendus. Mathématique, Volume 334 (2002) no. 6, pp. 515-520. doi : 10.1016/S1631-073X(02)02253-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02253-7/

[1] C. Bardos; F. Golse; N.J. Mauser Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., Volume 7 (2000), pp. 275-293

[2] C. Bardos, F. Golse, A. Gottlieb, N.J. Mauser, On the derivation of nonlinear Schrödinger and Vlasov equations, Proceedings of the I.M.A., Springer-Verlag (to appear)

[3] L. Erdös, H.-T. Yau, Derivation of the nonlinear Schrödinger equation with Coulomb potential, Preprint

[4] K. Hepp The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Volume 35 (1974), pp. 265-277

[5] J. Ginibre; G. Velo The classical field limit of scattering theory for non-relativistic many-boson systems. I and II, Comm. Math. Phys., Volume 66 (1979), pp. 37-76 and 68 (1979) 45–68

[6] J. Ginibre; G. Velo On a class of nonlinear Schrödinger equations with nonlocal interactions, Math. Z., Volume 170 (1980), pp. 109-145

[7] T. Kato Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc., Volume 70 (1951), pp. 195-211

[8] J. Leray Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 183-248

[9] T. Nishida A note on a theorem of Nirenberg, J. Differential Geom., Volume 12 (1977), pp. 629-633

[10] H. Spohn Kinetic equations from hamiltonian dynamics, Rev. Mod. Phys., Volume 52 (1980) no. 3, pp. 569-615

  • Xuemei Li; Chenxi Liu; Xingdong Tang; Guixiang Xu Dynamics of radial threshold solutions for generalized energy-critical Hartree equation, Forum Mathematicum (2025) | DOI:10.1515/forum-2024-0301
  • V. P. Stefanov; D. S. Mogilevtsev; I. Y. Rybak; A. Stefanov Testing classicality of gravity by gravitation decoherence, Physical Review D, Volume 111 (2025) no. 6 | DOI:10.1103/physrevd.111.065026
  • Jakob Möller; Norbert J. Mauser Nonlinear PDE models in semi-relativistic quantum physics, Computational Methods in Applied Mathematics, Volume 24 (2024) no. 2, pp. 453-465 | DOI:10.1515/cmam-2023-0101 | Zbl:1541.35410
  • Jacky J. Chong; Laurent Lafleche; Chiara Saffirio From many-body quantum dynamics to the Hartree-Fock and Vlasov equations with singular potentials, Journal of the European Mathematical Society (JEMS), Volume 26 (2024) no. 12, pp. 4923-5007 | DOI:10.4171/jems/1478 | Zbl:1555.35263
  • Immanuel Ben Porat; François Golse Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions, Letters in Mathematical Physics, Volume 114 (2024) no. 2, p. 44 (Id/No 51) | DOI:10.1007/s11005-023-01768-7 | Zbl:1547.81255
  • Syed T. R. Rizvi; Aly R. Seadawy; Nighat Farah; Sarfaraz Ahmad; Ali Althobaiti The interactions of dark, bright, parabolic optical solitons with solitary wave solutions for nonlinear Schrödinger–Poisson equation by Hirota method, Optical and Quantum Electronics, Volume 56 (2024) no. 7 | DOI:10.1007/s11082-024-07008-z
  • François Golse Quantum Optimal Transport: Quantum Couplings and Many-Body Problems, Optimal Transport on Quantum Structures, Volume 29 (2024), p. 91 | DOI:10.1007/978-3-031-50466-2_3
  • Xuwen Chen; Shunlin Shen; Zhifei Zhang Quantitative derivation of the Euler-Poisson equation from quantum many-body dynamics, Peking Mathematical Journal, Volume 7 (2024) no. 2, pp. 643-711 | DOI:10.1007/s42543-023-00065-5 | Zbl:1554.35229
  • Laurent Lafleche; Chiara Saffirio Strong semiclassical limits from Hartree and Hartree-Fock to Vlasov-Poisson equations, Analysis PDE, Volume 16 (2023) no. 4, pp. 891-926 | DOI:10.2140/apde.2023.16.891 | Zbl:1515.35228
  • Charles-Edouard Bréhier; David Cohen Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations, Applied Numerical Mathematics, Volume 186 (2023), pp. 57-83 | DOI:10.1016/j.apnum.2023.01.002 | Zbl:1545.65030
  • Matthias Maier; John N. Shadid; Ignacio Tomas Structure-preserving finite-element schemes for the Euler-Poisson equations, Communications in Computational Physics, Volume 33 (2023) no. 3, pp. 647-691 | DOI:10.4208/cicp.oa-2022-0205 | Zbl:1514.65134
  • Agissilaos Athanassoulis; Theodoros Katsaounis; Irene Kyza; Stephen Metcalfe A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems, Journal of Computational Physics, Volume 490 (2023), p. 18 (Id/No 112307) | DOI:10.1016/j.jcp.2023.112307 | Zbl:7715237
  • Sergio Albeverio; Francesco Carlo De Vecchi; Stefania Ugolini Some connections between stochastic mechanics, optimal control, and nonlinear Schrödinger equations, Mathematics going forward. Collected mathematical brushstrokes, Cham: Springer, 2023, pp. 505-534 | DOI:10.1007/978-3-031-12244-6_36 | Zbl:1530.35272
  • Jinyeop Lee; Alessandro Michelangeli On the characterisation of fragmented Bose-Einstein condensation and its emergent effective evolution, Nonlinearity, Volume 36 (2023) no. 12, pp. 6364-6402 | DOI:10.1088/1361-6544/ad027a | Zbl:1527.35322
  • Charles Collot; Anne-Sophie de Suzzoni Stability of steady states for Hartree and Schrödinger equations for infinitely many particles, Annales Henri Lebesgue, Volume 5 (2022), pp. 429-490 | DOI:10.5802/ahl.127 | Zbl:1500.35248
  • François Golse; Thierry Paul Mean-field and classical limit for the N-body quantum dynamics with Coulomb interaction, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 6, pp. 1332-1376 | DOI:10.1002/cpa.21986 | Zbl:1502.81072
  • Wei Zhao; Min Lei; Yiu-Chung Hon An improved finite integration method for nonlocal nonlinear Schrödinger equations, Computers Mathematics with Applications, Volume 113 (2022), pp. 24-33 | DOI:10.1016/j.camwa.2022.03.004 | Zbl:1504.65234
  • Anudeep Kumar Arora; Svetlana Roudenko Global behavior of solutions to the focusing generalized Hartree equation, Michigan Mathematical Journal, Volume 71 (2022) no. 3, pp. 619-672 | DOI:10.1307/mmj/20205855 | Zbl:1497.35399
  • Nianyu Yi; Hailiang Liu A mass- and energy-conserved DG method for the Schrödinger-Poisson equation, Numerical Algorithms, Volume 89 (2022) no. 2, pp. 905-930 | DOI:10.1007/s11075-021-01139-0 | Zbl:1483.35230
  • Christopher Leonard; Shijun Zheng Note on rotating BEC under a confining potential, Partial Differential Equations in Applied Mathematics, Volume 6 (2022), p. 100461 | DOI:10.1016/j.padiff.2022.100461
  • Laurent Lafleche Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 6, pp. 1739-1762 | DOI:10.1016/j.anihpc.2021.01.004 | Zbl:1484.82024
  • Hangzhou Hu; Yuan Li; Dun Zhao Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space, Discrete and Continuous Dynamical Systems. Series S, Volume 14 (2021) no. 6, pp. 1899-1916 | DOI:10.3934/dcdss.2021064 | Zbl:1479.35014
  • Michael K.-H. Kiessling On the asymptotic decay of the Schrödinger-Newton ground state, Physics Letters. A, Volume 395 (2021), p. 5 (Id/No 127209) | DOI:10.1016/j.physleta.2021.127209 | Zbl:7409497
  • Nicolas Rougerie Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surveys in Mathematical Sciences, Volume 7 (2020) no. 2, pp. 253-408 | DOI:10.4171/emss/40 | Zbl:1472.35319
  • C. Collot; Anne-Sophie de Suzzoni Stability of equilibria for a Hartree equation for random fields, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 137 (2020), pp. 70-100 | DOI:10.1016/j.matpur.2020.03.003 | Zbl:1439.35438
  • Shibo Liu; Sunra Mosconi On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity, Journal of Differential Equations, Volume 269 (2020) no. 1, pp. 689-712 | DOI:10.1016/j.jde.2019.12.023 | Zbl:1436.35082
  • Anudeep Kumar Arora; Svetlana Roudenko; Kai Yang On the focusing generalized Hartree equation, Mathematics in Applied Sciences and Engineering, Volume 1 (2020) no. 4, pp. 383-402 | DOI:10.5206/mase/10855 | Zbl:1496.35349
  • Thierry Paul; Mario Pulvirenti; Sergio Simonella On the size of chaos in the mean field dynamics, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 1, pp. 285-317 | DOI:10.1007/s00205-018-1280-y | Zbl:1404.81117
  • François Golse; Thierry Paul Empirical measures and quantum mechanics: applications to the mean-field limit, Communications in Mathematical Physics, Volume 369 (2019) no. 3, pp. 1021-1053 | DOI:10.1007/s00220-019-03357-z | Zbl:1417.81127
  • Laurent Lafleche Propagation of moments and semiclassical limit from Hartree to Vlasov equation, Journal of Statistical Physics, Volume 177 (2019) no. 1, pp. 20-60 | DOI:10.1007/s10955-019-02356-7 | Zbl:1426.82034
  • Thomas Chen; Younghun Hong; Nataša Pavlović On the scattering problem for infinitely many fermions in dimensions d3 at positive temperature, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 35 (2018) no. 2, pp. 393-416 | DOI:10.1016/j.anihpc.2017.05.002 | Zbl:1383.81366
  • François Golse; Thierry Paul Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 2, pp. 177-197 | DOI:10.1016/j.crma.2017.12.007 | Zbl:1383.81030
  • François Golse; Thierry Paul; Mario Pulvirenti On the derivation of the Hartree equation from the N-body Schrödinger equation: uniformity in the Planck constant, Journal of Functional Analysis, Volume 275 (2018) no. 7, pp. 1603-1649 | DOI:10.1016/j.jfa.2018.06.008 | Zbl:1400.82146
  • Luca Buoninfante; Gaetano Lambiase; Anupam Mazumdar Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity, Nuclear Physics. B, Volume 931 (2018), pp. 250-261 | DOI:10.1016/j.nuclphysb.2018.04.012 | Zbl:1390.81140
  • Anne-Sophie de Suzzoni; Charles Collot A diffusion result for the Hartree equation around non-localised solutions, Séminaire Laurent Schwartz. EDP et Applications, Volume 2017-2018 (2018), p. ex | DOI:10.5802/slsedp.123 | Zbl:1475.35430
  • François Golse; Thierry Paul The Schrödinger equation in the mean-field and semiclassical regime, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 1, pp. 57-94 | DOI:10.1007/s00205-016-1031-x | Zbl:1359.35164
  • Thomas Chen; Younghun Hong; Nataša Pavlović Global well-posedness of the NLS system for infinitely many fermions, Archive for Rational Mechanics and Analysis, Volume 224 (2017) no. 1, pp. 91-123 | DOI:10.1007/s00205-016-1068-x | Zbl:1369.35075
  • Sebastian Herr; Vedran Sohinger The Gross-Pitaevskii hierarchy on general rectangular tori, Archive for Rational Mechanics and Analysis, Volume 220 (2016) no. 3, pp. 1119-1158 | DOI:10.1007/s00205-015-0950-2 | Zbl:1334.35315
  • François Golse; Clément Mouhot; Thierry Paul On the mean field and classical limits of quantum mechanics, Communications in Mathematical Physics, Volume 343 (2016) no. 1, pp. 165-205 | DOI:10.1007/s00220-015-2485-7 | Zbl:1418.81021
  • Lei Bian; Gang Pang; Shaoqiang Tang; Anton Arnold Almost exact boundary conditions for transient Schrödinger-Poisson system, Journal of Computational Physics, Volume 313 (2016), pp. 233-246 | DOI:10.1016/j.jcp.2016.02.025 | Zbl:1349.65267
  • François Golse On the Dynamics of Large Particle Systems in the Mean Field Limit, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Volume 3 (2016), p. 1 | DOI:10.1007/978-3-319-26883-5_1
  • André Großardt Approximations for the free evolution of self-gravitating quantum particles, Physical Review A, Volume 94 (2016) no. 2 | DOI:10.1103/physreva.94.022101
  • Anne-Sophie de Suzzoni About systems of fermions with large number of particles: a probabilistic point of view, Séminaire Laurent Schwartz. EDP et Applications, Volume 2015-2016 (2016), p. ex | DOI:10.5802/slsedp.86 | Zbl:1360.35212
  • Mathieu Lewin; Julien Sabin The Hartree equation for infinitely many particles. I: Well-posedness theory, Communications in Mathematical Physics, Volume 334 (2015) no. 1, pp. 117-170 | DOI:10.1007/s00220-014-2098-6 | Zbl:1312.35146
  • Weizhu Bao; Shidong Jiang; Qinglin Tang; Yong Zhang Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT, Journal of Computational Physics, Volume 296 (2015), pp. 72-89 | DOI:10.1016/j.jcp.2015.04.045 | Zbl:1354.65200
  • Jingrun Chen; Carlos J. García-Cervera; Xu Yang A mean-field model for spin dynamics in multilayered ferromagnetic media, Multiscale Modeling Simulation, Volume 13 (2015) no. 2, pp. 551-570 | DOI:10.1137/140953149 | Zbl:1317.82058
  • Norbert J. Mauser; Yong Zhang Exact Artificial Boundary Condition for the Poisson Equation in the Simulation of the 2D Schrödinger-Poisson System, Communications in Computational Physics, Volume 16 (2014) no. 3, p. 764 | DOI:10.4208/cicp.110813.140314a
  • B L Hu Gravitational decoherence, alternative quantum theories and semiclassical gravity, Journal of Physics: Conference Series, Volume 504 (2014), p. 012021 | DOI:10.1088/1742-6596/504/1/012021
  • Julien Sabin The Hartree equation for infinite quantum systems, Journées équations aux dérivées partielles (2014), p. 1 | DOI:10.5802/jedp.111
  • Pierre-Emmanuel Jabin A review of the mean field limits for Vlasov equations, Kinetic and Related Models, Volume 7 (2014) no. 4, pp. 661-711 | DOI:10.3934/krm.2014.7.661 | Zbl:1318.35129
  • Mohammad Bahrami; André Großardt; Sandro Donadi; Angelo Bassi The Schrödinger-Newton equation and its foundations, New Journal of Physics, Volume 16 (2014) no. 11, p. 17 (Id/No 115007) | DOI:10.1088/1367-2630/16/11/115007 | Zbl:1451.81381
  • C. Anastopoulos; B. L. Hu Problems with the Newton-Schrödinger equations, New Journal of Physics, Volume 16 (2014) no. 8, p. 19 (Id/No 085007) | DOI:10.1088/1367-2630/16/8/085007 | Zbl:1451.81380
  • Shidong Jiang; Leslie Greengard; Weizhu Bao Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT, SIAM Journal on Scientific Computing, Volume 36 (2014) no. 5, p. B777 | DOI:10.1137/130945582
  • Xavier Antoine; Weizhu Bao; Christophe Besse Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Computer Physics Communications, Volume 184 (2013) no. 12, pp. 2621-2633 | DOI:10.1016/j.cpc.2013.07.012 | Zbl:1344.35130
  • Weizhu Bao; Huaiyu Jian; Norbert J. Mauser; Yong Zhang Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials, SIAM Journal on Applied Mathematics, Volume 73 (2013) no. 6, p. 2100 | DOI:10.1137/13091436x
  • Jonas Lührmann Mean-field quantum dynamics with magnetic fields, Journal of Mathematical Physics, Volume 53 (2012) no. 2, p. 022105 | DOI:10.1063/1.3687024 | Zbl:1274.81085
  • Michael K.-H. Kiessling The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion, Journal of Mathematical Physics, Volume 53 (2012) no. 9, p. 095223 | DOI:10.1063/1.4752475 | Zbl:1286.81179
  • Walid Abou Salem Mean-field dynamics of rotating bosons in strongly anisotropic traps, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 31, p. 315303 | DOI:10.1088/1751-8113/45/31/315303
  • Agissilaos Athanassoulis; Thierry Paul; Federica Pezzotti; Mario Pulvirenti Semiclassical propagation of coherent states for the Hartree equation, Annales Henri Poincaré, Volume 12 (2011) no. 8, pp. 1613-1634 | DOI:10.1007/s00023-011-0115-2 | Zbl:1238.81140
  • Agissilaos Athanassoulis; Thierry Paul; Federica Pezzotti; Mario Pulvirenti Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 22 (2011) no. 4, pp. 525-552 | DOI:10.4171/rlm/613 | Zbl:1235.81100
  • Z. Ammari; F. Nier Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 95 (2011) no. 6, pp. 585-626 | DOI:10.1016/j.matpur.2010.12.004 | Zbl:1251.81062
  • Yong Zhang; Xuanchun Dong On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system, Journal of Computational Physics, Volume 230 (2011) no. 7, pp. 2660-2676 | DOI:10.1016/j.jcp.2010.12.045 | Zbl:1218.65115
  • Bernard Ducomet Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation, Applications of Mathematics, Volume 55 (2010) no. 3, pp. 197-219 | DOI:10.1007/s10492-010-0008-6 | Zbl:1224.81018
  • Claude Bardos; Norbert J. Mauser One particle equations for many particle quantum systems: the MCTHDF method, Quarterly of Applied Mathematics, Volume 68 (2010) no. 1, pp. 43-59 | DOI:10.1090/s0033-569x-09-01181-7 | Zbl:1185.35206
  • Y. Elskens; M. K.-H. Kiessling; V. Ricci The Vlasov limit for a system of particles which interact with a wave field, Communications in Mathematical Physics, Volume 285 (2009) no. 2, pp. 673-712 | DOI:10.1007/s00220-008-0591-5 | Zbl:1157.70010
  • Z. Ammari; F. Nier Mean field limit for bosons and propagation of Wigner measures, Journal of Mathematical Physics, Volume 50 (2009) no. 4, p. 042107 | DOI:10.1063/1.3115046 | Zbl:1214.81089
  • Tiao Lu; Wei Cai A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials, Journal of Computational and Applied Mathematics, Volume 220 (2008) no. 1-2, pp. 588-614 | DOI:10.1016/j.cam.2007.09.025 | Zbl:1146.65072
  • Walid Khaled Abou Salem A remark on the mean-field dynamics of many-body bosonic systems with random interactions and in a random potential, Letters in Mathematical Physics, Volume 84 (2008) no. 2-3, pp. 231-243 | DOI:10.1007/s11005-008-0250-y | Zbl:1167.82308
  • Jürg Fröhlich; Sandro Graffi; Simon Schwarz Mean-field- and classical limit of many-body Schrödinger dynamics for bosons, Communications in Mathematical Physics, Volume 271 (2007) no. 3, pp. 681-697 | DOI:10.1007/s00220-007-0207-5 | Zbl:1172.82011
  • Riccardo Adami; François Golse; Alessandro Teta Rigorous derivation of the cubic NLS in dimension one, Journal of Statistical Physics, Volume 127 (2007) no. 6, pp. 1193-1220 | DOI:10.1007/s10955-006-9271-z | Zbl:1118.81021
  • Laurent Gosse; Norbert J. Mauser Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. III: From ab initio models to WKB for Schrödinger-Poisson, Journal of Computational Physics, Volume 211 (2006) no. 1, pp. 326-346 | DOI:10.1016/j.jcp.2005.05.020 | Zbl:1081.81041
  • H. P. STIMMING THE IVP FOR THE SCHRÖDINGER–POISSON-Xα EQUATION IN ONE DIMENSION, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 08, p. 1169 | DOI:10.1142/s0218202505000698
  • Laurent Gosse Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice. II: Impurities, confinement and Bloch oscillations, Journal of Computational Physics, Volume 201 (2004) no. 1, pp. 344-375 | DOI:10.1016/j.jcp.2004.06.004 | Zbl:1080.81010
  • Claude Bardos; François Golse; Alex D. Gottlieb; Norbert J. Mauser Mean field dynamics of fermions and the time-dependent Hartree–Fock equation, Journal de Mathématiques Pures et Appliquées, Volume 82 (2003) no. 6, p. 665 | DOI:10.1016/s0021-7824(03)00023-0
  • S. GRAFFI; A. MARTINEZ; M. PULVIRENTI MEAN-FIELD APPROXIMATION OF QUANTUM SYSTEMS AND CLASSICAL LIMIT, Mathematical Models and Methods in Applied Sciences, Volume 13 (2003) no. 01, p. 59 | DOI:10.1142/s0218202503002386
  • L. Erdős Scaling Limits of Schrödinger Quantum Mechanics, Dynamics of Dissipation, Volume 597 (2002), p. 487 | DOI:10.1007/3-540-46122-1_19

Cité par 76 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: