[Fonctions de Lyapounov extensives pour des problèmes d'évolution preservant certains moments]
Nous considérons des solutions stationnaires pour des classes d'équations d'évolution préservant certains moments. Etant donnée une solution stationnaire, nous construisons une fonctionnelle convexe (l'entropie) qui est (dans une classe de fonctions de moments fixés) minimale en ce point. Sous des hypothèses générales, nous montrons qu'une telle entropie canoniquement associée à une distribution stationnaire est, à un changement de variable polynomial près, sa transformée de Legendre. On montre ensuite que, si la fonctionnelle ainsi obtenue est extensive, la solution stationnaire de départ est nécessairement une distribution de Gibbs. Une telle distribution étant donnée par l'exponentielle de la densité d'énergie, ceci clarifie la relation de dualité entre énergie et entropie.
We consider a certain class of moment-preserving equations from the point of view of their stationary solutions. Starting from a given stationary distribution, we construct a convex entropy functional which is (in a class of functions with prescribed moments) minimal precisely at this point. Under general assumptions, we show that the entropy which is canonically associated to a stationary distribution is, up to a polynomial change of variables, its Legendre–Fenchel transform. We then show that, if this entropy is extensive, necessarily the stationary distribution is a Gibbs state. Such a state being given by the exponential of the energy density, this clarifies the duality relationship between energy and entropy.
Révisé le :
Publié le :
Jean François Collet 1
@article{CRMATH_2002__334_5_429_0, author = {Jean Fran\c{c}ois Collet}, title = {Extensive {Lyapounov} functionals for moment-preserving evolution equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {429--434}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02266-5}, language = {en}, }
Jean François Collet. Extensive Lyapounov functionals for moment-preserving evolution equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 429-434. doi : 10.1016/S1631-073X(02)02266-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02266-5/
[1] On a quantum Boltzmann equation for a gas of photons, J. Math. Pures Appl. (9), Volume 80 (2001) no. 5, pp. 471-515
[2] Maximum entropy for reduced moment problems, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 7, pp. 1001-1025
[3] Domain of definition of Levermore's five-moment system, J. Statist. Phys., Volume 93 (1998) no. 5–6, pp. 1143-1167
[4] Boltzmann type schemes for gas dynamics and the entropy property, SIAM J. Numer. Anal., Volume 27 (1990) no. 6, pp. 1405-1421
[5] Remarks on entropy and equilibrium states, Appl. Math. Lett., Volume 12 (1999) no. 7, pp. 19-25
Cité par Sources :
Commentaires - Politique