[Equations elliptiques en dimension 3 : une conjecture de H. Brezis]
On étudie l'existence de solutions minimisantes à une EDP elliptique à croissance de Sobolev critique sur des domaines de l'espace euclidien de dimension trois. On résout en particulier une conjecture de H. Brezis sur le sujet. Les questions analogues en dimensions plus grandes étaient parfaitement comprises depuis des travaux de H. Brezis et L. Nirenberg.
We study the existence of minimizing solutions for an elliptic equation involving critical Sobolev exponent on domains of the three-dimensional Euclidean space. We solve in particular by the affirmative a conjecture of Haı̈m Brezis. The similar situation in higher dimensions was completely understood thanks to previous works by H. Brezis and L. Nirenberg.
Publié le :
Olivier Druet 1
@article{CRMATH_2002__334_8_643_0, author = {Olivier Druet}, title = {Elliptic equations in dimension three: a conjecture of {H.} {Brezis}}, journal = {Comptes Rendus. Math\'ematique}, pages = {643--647}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02289-6}, language = {en}, }
Olivier Druet. Elliptic equations in dimension three: a conjecture of H. Brezis. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 643-647. doi : 10.1016/S1631-073X(02)02289-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02289-6/
[1] Elliptic equations with nearly critical growth, J. Differential Equations, Volume 70 (1987), pp. 349-365
[2] Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Math., Volume 39 (1986), pp. 17-39
[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[4] Asymptotics for elliptic equations involving critical Sobolev exponents (L. Modica; F. Colombini; A. Marino; S. Spagnolo, eds.), Partial Differential Equations and the Calculus of Variations, Birkhäuser, Basel, 1989
[5] Compactness of isospectral conformal metrics in S3, Comment. Math. Helv., Volume 64 (1989), pp. 363-374
[6] O. Druet, Optimal Sobolev inequalities and extremal functions, The three-dimensional case, Indiana Univ. Math. J. (to appear)
[7] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 8 (1991) no. 2, pp. 159-174
[8] Asymptotic behavior of positive solutions of quasilinear elliptic equations with critical Sobolev growth, J. Differential Integral Equations, Volume 13 (2000), pp. 1073-1080
[9] The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J., Volume 79 (1995), pp. 235-279
[10] From best constants to critical functions, Math. Z., Volume 237 (2001), pp. 737-767
[11] Prescribing scalar curvature on Sn and related problems, part I, J. Differential Equations, Volume 120 (1995), pp. 319-420
[12] The concentration-compactness principle in the calculus of variations. The limit case. Part I, Rev. Mat. Iberoamericana, Volume 1 (1985) no. 1, pp. 145-201
[13] Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev exponent, Adv. Differential Equations, Volume 6 (2001) no. 7, pp. 821-846
[14] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Volume 20 (1984), pp. 479-495
[15] Prescribed scalar curvature on the n-sphere, Calc. Var., Volume 4 (1996), pp. 1-25
Cité par Sources :
Commentaires - Politique