[Transport de mesure sur l'espace de Wiener et théorème de Girsanov]
Soit (W,H,μ) un espace de Wiener abstrait ; on suppose que νi, i=1,2, sont deux probabilités sur
Let (W,H,μ) be an abstract Wiener space, and assume that νi, i=1,2, are two probability measures on
Accepté le :
Publié le :
Denis Feyel 1 ; Ali Süleyman Üstünel 2
@article{CRMATH_2002__334_11_1025_0, author = {Denis Feyel and Ali S\"uleyman \"Ust\"unel}, title = {Measure transport on {Wiener} space and the {Girsanov} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1025--1028}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2002}, doi = {10.1016/S1631-073X(02)02326-9}, language = {en}, }
Denis Feyel; Ali Süleyman Üstünel. Measure transport on Wiener space and the Girsanov theorem. Comptes Rendus. Mathématique, Volume 334 (2002) no. 11, pp. 1025-1028. doi : 10.1016/S1631-073X(02)02326-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02326-9/
[1] Polar factorization and monotone rearrangement of vector valued functions, Comm. Pure Appl. Math., Volume 44 (1991), pp. 375-417
[2] Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991) no. 1, pp. 49-76
[3] The notion of convexity and concavity on Wiener space, J. Funct. Anal., Volume 176 (2000), pp. 400-428
[4] Existence and uniqueness of monotone measure-preserving maps, Duke Math. J., Volume 80 (1995), pp. 309-323
[5] Convex Analysis, Princeton University Press, Princeton, 1972
[6] Introduction to Analysis on Wiener Space, Lecture Notes in Math., 1610, Springer, 1995
[7] Transformation of Measure on Wiener Space, Springer, 1999
Cité par Sources :
Commentaires - Politique