Comptes Rendus
Sous-ensembles homogènes de 2 et pavages du plan
Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 83-86.

Nous appelons sous-ensemble homogène de degré k pour F du plan discret 2 tout sous-ensemble tel qu'à travers toutes les positions possibles d'une fenêtre finie que l'on translate apparait toujours le même nombre k de points de A. Nous montrons deux propriétés, il existe un sous-ensemble homogène de degré 1 pour F si et seulement si F pave le plan par translation. Si la fenêtre est rectangulaire tout sous-ensemble homogène de degré k pour F est l'union disjointe de k sous-ensembles homogènes de degré 1 pour F.

We say that the subset A of the discrete plane 2 is k-homogeneous for F if and only if whichever is the position of a finite window F which we translate over 2 the same number k of points of A appears in the window. And we prove two properties. There exists a 1-homogeneous subset for F if and only if F tiles the plane by translation. If the window is a rectangle every k-homogeneous subset is the disjoint union of k 1-homogeneous subset.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02377-4

Maurice Nivat 1

1 LIAFA CNRS UMR 7089, Université Paris 7, case 7014, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2002__335_1_83_0,
     author = {Maurice Nivat},
     title = {Sous-ensembles homog\`enes de $ \mathbb{Z}^{2}$ et pavages du plan},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {83--86},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02377-4},
     language = {fr},
}
TY  - JOUR
AU  - Maurice Nivat
TI  - Sous-ensembles homogènes de $ \mathbb{Z}^{2}$ et pavages du plan
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 83
EP  - 86
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02377-4
LA  - fr
ID  - CRMATH_2002__335_1_83_0
ER  - 
%0 Journal Article
%A Maurice Nivat
%T Sous-ensembles homogènes de $ \mathbb{Z}^{2}$ et pavages du plan
%J Comptes Rendus. Mathématique
%D 2002
%P 83-86
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02377-4
%G fr
%F CRMATH_2002__335_1_83_0
Maurice Nivat. Sous-ensembles homogènes de $ \mathbb{Z}^{2}$ et pavages du plan. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 83-86. doi : 10.1016/S1631-073X(02)02377-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02377-4/

[1] D. Beauquier; M. Nivat Tiling the plane with one tile, Proc. of the 6th Ann. Symp. on Comp. Geometry, ACM, Berkeley, 1990, pp. 128-138

[2] R. Tijdeman Decomposition of the integers as a direct sum of two subsets (S. David, ed.), Number Theory, Number Theory Seminar, Paris, 1992–1993, Cambridge University Press, 1995, pp. 261-276

  • Amotz Bar-Noy; Toni Böhnlein; Zvi Lotker; David Peleg; Dror Rawitz Weighted microscopic image reconstruction, Discrete Applied Mathematics, Volume 345 (2024), pp. 17-33 | DOI:10.1016/j.dam.2023.11.004 | Zbl:1530.05184
  • Michela Ascolese; Andrea Frosini Proving a conjecture on prime double square tiles, Discrete Applied Mathematics, Volume 350 (2024), pp. 71-83 | DOI:10.1016/j.dam.2024.02.022 | Zbl:1536.05127
  • Niccolò Di Marco; Andrea Frosini The generalized microscopic image reconstruction problem for hypergraphs, Combinatorial image analysis. 21st international workshop, IWCIA 2022, Messina, Italy, July 13–15, 2022. Proceedings, Cham: Springer, 2023, pp. 317-331 | DOI:10.1007/978-3-031-23612-9_20 | Zbl:1525.68194
  • Amotz Bar-Noy; Toni Böhnlein; Zvi Lotker; David Peleg; Dror Rawitz The generalized microscopic image reconstruction problem, Discrete Applied Mathematics, Volume 321 (2022), pp. 402-416 | DOI:10.1016/j.dam.2022.07.026 | Zbl:7585606
  • Michela Ascolese; Andrea Frosini On the decomposability of homogeneous binary planar configurations with respect to a given exact polyomino, Discrete geometry and mathematical morphology. Second international joint conference, DGMM 2022, Strasbourg, France, October 24–27, 2022. Proceedings, Cham: Springer, 2022, pp. 139-152 | DOI:10.1007/978-3-031-19897-7_12 | Zbl:1522.68625
  • Amotz Bar-Noy; Toni Böhnlein; David Peleg; Mor Perry; Dror Rawitz Relaxed and approximate graph realizations, Combinatorial algorithms. 32nd international workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021. Proceedings, Cham: Springer, 2021, pp. 3-19 | DOI:10.1007/978-3-030-79987-8_1 | Zbl:7495010
  • Amotz Bar-Noy; Toni Böhnlein; Zvi Lotker; David Peleg; Dror Rawitz Weighted microscopic image reconstruction, SOFSEM 2021: theory and practice of computer science. 47th international conference on current trends in theory and practice of computer science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25–29, 2021. Proceedings, Cham: Springer, 2021, pp. 373-386 | DOI:10.1007/978-3-030-67731-2_27 | Zbl:1490.68270
  • Travis Dillon An inverse problem for the collapsing sum, The Australasian Journal of Combinatorics, Volume 79 (2021), pp. 183-192 | Zbl:1465.94010
  • Amotz Bar-Noy; Toni Böhnlein; Zvi Lotker; David Peleg; Dror Rawitz The generalized microscopic image reconstruction problem, 30th international symposium on algorithms and computation, ISAAC 2019, Shanghai University of Finance and Economics, Shanghai, China, December 8–11, 2019, Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2019, p. 15 (Id/No 42) | DOI:10.4230/lipics.isaac.2019.42 | Zbl:1527.68252
  • Tabane Yashiro; Ayane Minami Discrete tomography for L-shaped window, Advances and Applications in Discrete Mathematics, Volume 20 (2019) no. 1, pp. 37-60 | DOI:10.17654/dm020010037 | Zbl:1426.39022
  • Valérie Berthé; Paulina Cecchi Bernales Balancedness and coboundaries in symbolic systems, Theoretical Computer Science, Volume 777 (2019), pp. 93-110 | DOI:10.1016/j.tcs.2018.09.012 | Zbl:1423.68366
  • Tabane Yashiro Discrete tomography for the point sequence generated by the adjacent terms of a sequence, JP Journal of Algebra, Number Theory and Applications, Volume 40 (2018) no. 4, pp. 461-494 | DOI:10.17654/nt040040461 | Zbl:1441.39017
  • D. Battaglino; A. Frosini; S. Rinaldi A decomposition theorem for homogeneous sets with respect to diamond probes, Computer Vision and Image Understanding, Volume 117 (2013) no. 4, p. 319 | DOI:10.1016/j.cviu.2012.09.009
  • Daniela Battaglino; Andrea Frosini; Simone Rinaldi Planar configurations induced by exact polyominoes, Combinatorial image analysis. 14th international workshop, IWCIA 2011, Madrid, Spain, May 23–25, 2011. Proceedings, Berlin: Springer, 2011, pp. 275-283 | DOI:10.1007/978-3-642-21073-0_25 | Zbl:1330.68295
  • Andrea Frosini; Maurice Nivat; Simone Rinaldi Scanning integer matrices by means of two rectangular windows, Theoretical Computer Science, Volume 406 (2008) no. 1-2, pp. 90-96 | DOI:10.1016/j.tcs.2008.07.016 | Zbl:1160.68043
  • Andrea Frosini; Maurice Nivat Binary matrices under the microscope: A tomographical problem, Theoretical Computer Science, Volume 370 (2007) no. 1-3, pp. 201-217 | DOI:10.1016/j.tcs.2006.10.030 | Zbl:1113.68107
  • Fumio Hazama Discrete tomography and Hodge cycles, Tôhoku Mathematical Journal. Second Series, Volume 59 (2007) no. 3, pp. 423-440 | DOI:10.2748/tmj/1192117986 | Zbl:1134.39015
  • Maurice Nivat On a Tomographic Equivalence Between (0,1)-Matrices, Theory Is Forever, Volume 3113 (2004), p. 216 | DOI:10.1007/978-3-540-27812-2_20

Cité par 18 documents. Sources : Crossref, zbMATH

Commentaires - Politique