Comptes Rendus
A level-set method for shape optimization
[Une méthode de lignes de niveaux pour l'optimisation de forme]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1125-1130.

Nous proposons une méthode de lignes de niveaux pour l'optimisation de la forme de structures élastiques. Notre approche combine la méthode des lignes de niveaux d'Osher et Sethian et la dérivée classique de formes. Bien que cette méthode ne soit pas spécifiquement conçue pour faire de l'optimisation topologique, elle permet très facilement les changements de topologie de la forme d'une structure pour des fonctions objectifs très générales. Son coût en temps de calcul est modéré puisqu'il s'agit d'une méthode numérique de capture de formes sur un maillage eulérien fixe.

We study a level-set method for numerical shape optimization of elastic structures. Our approach combines the level-set algorithm of Osher and Sethian with the classical shape gradient. Although this method is not specifically designed for topology optimization, it can easily handle topology changes for a very large class of objective functions. Its cost is moderate since the shape is captured on a fixed Eulerian mesh.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02412-3

Grégoire Allaire 1 ; François Jouve 1 ; Anca-Maria Toader 2

1 Centre de mathématiques appliquées, École polytechnique, 91128 Palaiseau, France
2 CMAF, Faculdade de Ciências da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa, Portugal
@article{CRMATH_2002__334_12_1125_0,
     author = {Gr\'egoire Allaire and Fran\c{c}ois Jouve and Anca-Maria Toader},
     title = {A level-set method for shape optimization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1125--1130},
     publisher = {Elsevier},
     volume = {334},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02412-3},
     language = {en},
}
TY  - JOUR
AU  - Grégoire Allaire
AU  - François Jouve
AU  - Anca-Maria Toader
TI  - A level-set method for shape optimization
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1125
EP  - 1130
VL  - 334
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02412-3
LA  - en
ID  - CRMATH_2002__334_12_1125_0
ER  - 
%0 Journal Article
%A Grégoire Allaire
%A François Jouve
%A Anca-Maria Toader
%T A level-set method for shape optimization
%J Comptes Rendus. Mathématique
%D 2002
%P 1125-1130
%V 334
%N 12
%I Elsevier
%R 10.1016/S1631-073X(02)02412-3
%G en
%F CRMATH_2002__334_12_1125_0
Grégoire Allaire; François Jouve; Anca-Maria Toader. A level-set method for shape optimization. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1125-1130. doi : 10.1016/S1631-073X(02)02412-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02412-3/

[1] G. Allaire Shape Optimization by the Homogenization Method, Springer-Verlag, New York, 2001

[2] G. Allaire; E. Bonnetier; G. Francfort; F. Jouve Shape optimization by the homogenization method, Numer. Math., Volume 76 (1997), pp. 27-68

[3] G. Allaire; R.V. Kohn Optimal design for minimum weight and compliance in plane stress using extremal microstructures, European J. Mech. A Solids, Volume 12 (1993) no. 6, pp. 839-878

[4] M. Bendsoe Methods for Optimization of Structural Topology, Shape and Material, Springer-Verlag, New York, 1995

[5] M. Bendsoe; N. Kikuchi Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., Volume 71 (1988), pp. 197-224

[6] A. Chambolle, A density result in two-dimensional linearized elasticity and applications, Preprint CEREMADE 121, Université Paris-Dauphine, 2001

[7] D. Chenais On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., Volume 52 (1975), pp. 189-289

[8] A. Cherkaev Variational Methods for Structural Optimization, Springer-Verlag, New York, 2000

[9] F. Murat; S. Simon Études de problèmes d'optimal design, Lecture Notes in Comput. Sci., 41, Springer-Verlag, Berlin, 1976, pp. 54-62

[10] S. Osher; F. Santosa Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum, J. Comput. Phys., Volume 171 (2001), pp. 272-288

[11] S. Osher; J.A. Sethian Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 78 (1988), pp. 12-49

[12] O. Pironneau Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, 1984

[13] J.A. Sethian Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 1999

[14] J. Sethian; A. Wiegmann Structural boundary design via level set and immersed interface methods, J. Comput. Phys., Volume 163 (2000), pp. 489-528

[15] J. Simon Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optimz., Volume 2 (1980), pp. 649-687

[16] J. Sokolowski; J.P. Zolesio Introduction to Shape Optimization: Shape Sensitity Analysis, Springer Ser. Comput. Math., 10, Springer, Berlin, 1992

Cité par Sources :

Commentaires - Politique