[Une méthode de lignes de niveaux pour l'optimisation de forme]
Nous proposons une méthode de lignes de niveaux pour l'optimisation de la forme de structures élastiques. Notre approche combine la méthode des lignes de niveaux d'Osher et Sethian et la dérivée classique de formes. Bien que cette méthode ne soit pas spécifiquement conçue pour faire de l'optimisation topologique, elle permet très facilement les changements de topologie de la forme d'une structure pour des fonctions objectifs très générales. Son coût en temps de calcul est modéré puisqu'il s'agit d'une méthode numérique de capture de formes sur un maillage eulérien fixe.
We study a level-set method for numerical shape optimization of elastic structures. Our approach combines the level-set algorithm of Osher and Sethian with the classical shape gradient. Although this method is not specifically designed for topology optimization, it can easily handle topology changes for a very large class of objective functions. Its cost is moderate since the shape is captured on a fixed Eulerian mesh.
Accepté le :
Publié le :
Grégoire Allaire 1 ; François Jouve 1 ; Anca-Maria Toader 2
@article{CRMATH_2002__334_12_1125_0, author = {Gr\'egoire Allaire and Fran\c{c}ois Jouve and Anca-Maria Toader}, title = {A level-set method for shape optimization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1125--1130}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02412-3}, language = {en}, }
Grégoire Allaire; François Jouve; Anca-Maria Toader. A level-set method for shape optimization. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1125-1130. doi : 10.1016/S1631-073X(02)02412-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02412-3/
[1] Shape Optimization by the Homogenization Method, Springer-Verlag, New York, 2001
[2] Shape optimization by the homogenization method, Numer. Math., Volume 76 (1997), pp. 27-68
[3] Optimal design for minimum weight and compliance in plane stress using extremal microstructures, European J. Mech. A Solids, Volume 12 (1993) no. 6, pp. 839-878
[4] Methods for Optimization of Structural Topology, Shape and Material, Springer-Verlag, New York, 1995
[5] Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., Volume 71 (1988), pp. 197-224
[6] A. Chambolle, A density result in two-dimensional linearized elasticity and applications, Preprint CEREMADE 121, Université Paris-Dauphine, 2001
[7] On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., Volume 52 (1975), pp. 189-289
[8] Variational Methods for Structural Optimization, Springer-Verlag, New York, 2000
[9] Études de problèmes d'optimal design, Lecture Notes in Comput. Sci., 41, Springer-Verlag, Berlin, 1976, pp. 54-62
[10] Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum, J. Comput. Phys., Volume 171 (2001), pp. 272-288
[11] Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 78 (1988), pp. 12-49
[12] Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, 1984
[13] Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 1999
[14] Structural boundary design via level set and immersed interface methods, J. Comput. Phys., Volume 163 (2000), pp. 489-528
[15] Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optimz., Volume 2 (1980), pp. 649-687
[16] Introduction to Shape Optimization: Shape Sensitity Analysis, Springer Ser. Comput. Math., 10, Springer, Berlin, 1992
Cité par Sources :
Commentaires - Politique