Comptes Rendus
Chaı̂nes de Markov Triplet
Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 275-278.

Les Chaı̂nes de Markov Cachées (CMC), qui permettent l'estimation des variables d'intérêt dans les cas des quantités importantes des données, sont largement utilisées dans les problèmes le plus divers. Ces modèles ont été récemment généralisés aux Chaı̂nes de Markov Couple (CMCouple), qui permettent des modélisations plus complètes des liens entre les processus caché et observé. Nous proposons dans cette Note de généraliser ces derniers aux modèles « Chaı̂nes de Markov Triplet » (CMT) dans lesquels la loi du couple (processus caché, processus observé) est la loi marginale d'un triplet Markovien. Nous montrons la calculabilité des estimations Bayésiennes du processus caché et présentons une CNS pour qu'une CMT soit une CMCouple, montrant en particulier que les modèles CMT sont strictement plus généraux que les modèles CMCouple. Nous précisons également un lien avec la fusion de Dempstert–Shafer.

The Hidden Markov Chains (HMC) are widely applied in various problems. This succes is mainly due to the fact that the hidden process can be recovered even in the case of very large set of data. These models have been recetly generalized to ‘Pairwise Markov Chains’ (PMC) model, which admit the same processing power and a better modeling one. The aim of this note is to propose further generalization called Triplet Markov Chains (TMC), in which the distribution of the couple (hidden process, observed process) is the marginal distribution of a Markov chain. Similarly to HMC, we show that posterior marginals are still calculable in Triplets Markov Chains. We provide a necessary and sufficient condition that a TMC is a PMC, which shows that the new model is strictly more general. Furthermore, a link with the Dempster–Shafer fusion is specified.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02462-7

Wojciech Pieczynski 1

1 Institut National des Télécommunications, Département CITI, 9, rue Charles Fourier, 91000 Evry, France
@article{CRMATH_2002__335_3_275_0,
     author = {Wojciech Pieczynski},
     title = {Cha{\i}̂nes de {Markov} {Triplet}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {275--278},
     publisher = {Elsevier},
     volume = {335},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02462-7},
     language = {fr},
}
TY  - JOUR
AU  - Wojciech Pieczynski
TI  - Chaı̂nes de Markov Triplet
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 275
EP  - 278
VL  - 335
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02462-7
LA  - fr
ID  - CRMATH_2002__335_3_275_0
ER  - 
%0 Journal Article
%A Wojciech Pieczynski
%T Chaı̂nes de Markov Triplet
%J Comptes Rendus. Mathématique
%D 2002
%P 275-278
%V 335
%N 3
%I Elsevier
%R 10.1016/S1631-073X(02)02462-7
%G fr
%F CRMATH_2002__335_3_275_0
Wojciech Pieczynski. Chaı̂nes de Markov Triplet. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 275-278. doi : 10.1016/S1631-073X(02)02462-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02462-7/

[1] A. Appriou Probabilités et incertitude en fusion de données multisenseurs, Rev. Sci. Techn. Défense, Volume 11 (1991), pp. 27-40

[2] L.E. Baum; T. Petrie; G. Soules; N. Weiss A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist., Volume 41 (1970), pp. 164-171

[3] A. Bendjebbour; Y. Delignon; L. Fouque; V. Samson; W. Pieczynski Multisensor images segmentation using Dempster–Shafer fusion in Markov fields context, IEEE Trans. GRS, Volume 39 (2001) no. 8, pp. 1789-1798

[4] G.D. Fornay The Viterbi algorithm, Proc. IEEE, Volume 61 (1973) no. 3, pp. 267-277

[5] S. Geman; D. Geman Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. PAMI, Volume 6 (1984) no. 6, pp. 721-741

[6] J. Marroquin; S. Mitter; T. Poggio Probabilistic solution of ill-posed problems in computational vision, J. Amer. Statist. Assoc., Volume 82 (1987), pp. 76-89

[7] P. Pérez Markov random fields and images, CWI Quart., Volume 11 (1998) no. 4, pp. 413-437

[8] W. Pieczynski; A.-N. Tebbache Pairwise Markov random fields and segmentation of textured images, Machine Graphics & Vision, Volume 9 (2000) no. 3, pp. 705-718

[9] W. Pieczynski Pairwise Markov chains and Bayesian unsupervisedc fusion, Proc. 3rd International Conference on Information Fusion, FUSION 2000, Vol. 1, July 10–13, Paris, France, 2000, p. MoD4-24-MoD4-31

[10] W. Pieczynski, Pairwise Markov chains, IEEE Trans. PAMI, to appear

[11] W. Pieczynski Arbres de Markov couple, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 79-82

[12] G. Shafer A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976

[13] P. Smets Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Internat. J. Approximate Reasoning, Volume 9 (1993), pp. 1-35

Cité par Sources :

Commentaires - Politique