Les Chaı̂nes de Markov Cachées (CMC), qui permettent l'estimation des variables d'intérêt dans les cas des quantités importantes des données, sont largement utilisées dans les problèmes le plus divers. Ces modèles ont été récemment généralisés aux Chaı̂nes de Markov Couple (CMCouple), qui permettent des modélisations plus complètes des liens entre les processus caché et observé. Nous proposons dans cette Note de généraliser ces derniers aux modèles « Chaı̂nes de Markov Triplet » (CMT) dans lesquels la loi du couple (processus caché, processus observé) est la loi marginale d'un triplet Markovien. Nous montrons la calculabilité des estimations Bayésiennes du processus caché et présentons une CNS pour qu'une CMT soit une CMCouple, montrant en particulier que les modèles CMT sont strictement plus généraux que les modèles CMCouple. Nous précisons également un lien avec la fusion de Dempstert–Shafer.
The Hidden Markov Chains (HMC) are widely applied in various problems. This succes is mainly due to the fact that the hidden process can be recovered even in the case of very large set of data. These models have been recetly generalized to ‘Pairwise Markov Chains’ (PMC) model, which admit the same processing power and a better modeling one. The aim of this note is to propose further generalization called Triplet Markov Chains (TMC), in which the distribution of the couple (hidden process, observed process) is the marginal distribution of a Markov chain. Similarly to HMC, we show that posterior marginals are still calculable in Triplets Markov Chains. We provide a necessary and sufficient condition that a TMC is a PMC, which shows that the new model is strictly more general. Furthermore, a link with the Dempster–Shafer fusion is specified.
Accepté le :
Publié le :
Wojciech Pieczynski 1
@article{CRMATH_2002__335_3_275_0, author = {Wojciech Pieczynski}, title = {Cha{\i}̂nes de {Markov} {Triplet}}, journal = {Comptes Rendus. Math\'ematique}, pages = {275--278}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02462-7}, language = {fr}, }
Wojciech Pieczynski. Chaı̂nes de Markov Triplet. Comptes Rendus. Mathématique, Volume 335 (2002) no. 3, pp. 275-278. doi : 10.1016/S1631-073X(02)02462-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02462-7/
[1] Probabilités et incertitude en fusion de données multisenseurs, Rev. Sci. Techn. Défense, Volume 11 (1991), pp. 27-40
[2] A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Statist., Volume 41 (1970), pp. 164-171
[3] Multisensor images segmentation using Dempster–Shafer fusion in Markov fields context, IEEE Trans. GRS, Volume 39 (2001) no. 8, pp. 1789-1798
[4] The Viterbi algorithm, Proc. IEEE, Volume 61 (1973) no. 3, pp. 267-277
[5] Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. PAMI, Volume 6 (1984) no. 6, pp. 721-741
[6] Probabilistic solution of ill-posed problems in computational vision, J. Amer. Statist. Assoc., Volume 82 (1987), pp. 76-89
[7] Markov random fields and images, CWI Quart., Volume 11 (1998) no. 4, pp. 413-437
[8] Pairwise Markov random fields and segmentation of textured images, Machine Graphics & Vision, Volume 9 (2000) no. 3, pp. 705-718
[9] Pairwise Markov chains and Bayesian unsupervisedc fusion, Proc. 3rd International Conference on Information Fusion, FUSION 2000, Vol. 1, July 10–13, Paris, France, 2000, p. MoD4-24-MoD4-31
[10] W. Pieczynski, Pairwise Markov chains, IEEE Trans. PAMI, to appear
[11] Arbres de Markov couple, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 79-82
[12] A Mathematical Theory of Evidence, Princeton University Press, Princeton, 1976
[13] Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Internat. J. Approximate Reasoning, Volume 9 (1993), pp. 1-35
- Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data, Computational Statistics and Data Analysis, Volume 180 (2023), p. 25 (Id/No 107663) | DOI:10.1016/j.csda.2022.107663 | Zbl:1543.62070
- , 2020 6th IEEE Congress on Information Science and Technology (CiSt) (2020), p. 361 | DOI:10.1109/cist49399.2021.9357304
- Arcminute-scale studies of the interstellar gas towards HESS J1804−216: Still an unidentified TeVγ-ray source, Publications of the Astronomical Society of Australia, Volume 37 (2020) | DOI:10.1017/pasa.2020.47
- Candidate radio supernova remnants observed by the GLEAM survey over 345°
, Publications of the Astronomical Society of Australia, Volume 36 (2019) | DOI:10.1017/pasa.2019.33 - New candidate radio supernova remnants detected in the GLEAM survey over 345°
, Publications of the Astronomical Society of Australia, Volume 36 (2019) | DOI:10.1017/pasa.2019.34 - , 2018 6th International Conference on Multimedia Computing and Systems (ICMCS) (2018), p. 1 | DOI:10.1109/icmcs.2018.8525988
- Unsupervised Image Segmentation with Pairwise Markov Chains Based on Nonparametric Estimation of Copula Using Orthogonal Polynomials, International Journal of Image and Graphics, Volume 16 (2016) no. 04, p. 1650020 | DOI:10.1142/s0219467816500200
- , 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (2014), p. 1 | DOI:10.1109/mlsp.2014.6958847
- Making Use of Partial Knowledge About Hidden States in HMMs: An Approach Based on Belief Functions, IEEE Transactions on Fuzzy Systems, Volume 22 (2014) no. 2, p. 395 | DOI:10.1109/tfuzz.2013.2259496
- , 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006. (2006), p. 386 | DOI:10.1109/isbi.2006.1624934
- Unsupervised restoration of hidden nonstationary Markov chains using evidential priors, IEEE Transactions on Signal Processing, Volume 53 (2005) no. 8, p. 3091 | DOI:10.1109/tsp.2005.851131
- Dempster-Shafer fusion in triplet partially Markov chains., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 339 (2004) no. 11, pp. 797-802 | DOI:10.1016/j.crma.2004.10.013 | Zbl:1142.60376
- Arbres de Markov triplet et fusion de Dempster-Shafer. (Triplet Markov trees and Dempster-Shafer fusion), Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 10, pp. 869-872 | DOI:10.1016/s1631-073x(03)00188-2 | Zbl:1030.60028
- Modèles de Markov triplet et filtrage de Kalman (Triplet Markov models and Kalman filtering), Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 336 (2003) no. 8, pp. 667-670 | DOI:10.1016/s1631-073x(03)00152-3 | Zbl:1031.62080
- Division X: Radio Astronomy: (Radioastronomie), Transactions of the International Astronomical Union, Volume 25 (2002) no. 1, p. 351 | DOI:10.1017/s0251107x00001723
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier