[Une surface est une fonction continue de ses deux formes fondamentales]
Si un champ de matrices symétriques définies positives d'ordre deux et un champ de matrices symétriques d'ordre deux vérifient ensemble les équations de Gauß et de Codazzi–Mainardi dans un ouvert connexe et simplement connexe de
If a field of positive definite symmetric matrices of order two and a field of symmetric matrices of order two together satisfy the Gauß and Codazzi–Mainardi equations in a connected and simply connected open subset of
Publié le :
Philippe G. Ciarlet 1, 2
@article{CRMATH_2002__335_7_609_0, author = {Philippe G. Ciarlet}, title = {A surface is a continuous function of its two fundamental forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--614}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02538-4}, language = {en}, }
Philippe G. Ciarlet. A surface is a continuous function of its two fundamental forms. Comptes Rendus. Mathématique, Volume 335 (2002) no. 7, pp. 609-614. doi : 10.1016/S1631-073X(02)02538-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02538-4/
[1] P.G. Ciarlet, On the continuity of a surface as a function of its two fundamental forms, to appear
[2] On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185
[3] Up to isometries, a deformation is a continuous function of its metric tensor, C. R. Acad. Sci. Paris, Série I, Volume 335 (2002), pp. 489-493
[4] P.G. Ciarlet, F. Laurent, On the continuity of a deformation as a function of its Cauchy–Green tensor, 2002, to appear
[5] Eine Vorlesung über Differentialgeometrie, A Course in Differential Geometry, Springer-Verlag, Berlin, 1973 (English translation:, 1978, Springer-Verlag, Berlin)
- Estimates for completely integrable systems of differential operators and applications, Sobolev spaces in mathematics II. Applications in analysis and partial differential equations, New York, NY: Springer; Novosibirsk: Tamara Rozhkovskaya Publisher, 2009, pp. 311-327 | DOI:10.1007/978-0-387-85650-6_13 | Zbl:1172.35355
- The continuity of a surface as a function of its two fundamental forms., Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 82 (2003) no. 3, pp. 253-274 | DOI:10.1016/s0021-7824(03)00017-5 | Zbl:1042.53003
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique